MODEL STACIONARNOG REAKTORA SA NEPOKRETNIM SLOJEM ČVRSTOG KATALIZATORA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MODEL STACIONARNOG REAKTORA SA NEPOKRETNIM SLOJEM ČVRSTOG KATALIZATORA"

Transcript

1 MODEL SIONNOG EKO S NEPOKENIM SLOJEM ČVSOG KLIZO Jedan od načina realizacie katalizovanih gasnih reakcia u industrii su reaktori sa neokretnim sloem katalizatora, kroz koe strui reakcioni fluid (Sl.7.) a) b) Sl.7. eaktor sa neokretnim sloem katalizatora: a) ednosloni, b) višesloni lađene ili zagrevane sloa se može izvoditi omoću fluida u omotaču (Sl.7.a). Kod egzotermnih reakcia, da bi se ostiglo efikasnie hlađene, ukuna količina katalizatora se deli na više sloeva (Sl.7.b), a hlađene ostiže međuslonim izmenivačima tolote ili uvođenem svežeg reakcionog gasa između sloeva. Zbog komlikovane geometrie međufazne ovršine, ri modelovanu se orozni slo katalitičkih zrna smatra homogenim. Formulisaćemo kvazihomogen matematički model sloa zrna katalizatora u kome se odvia egzotermna reakcia. ( g) roizvodi (9) Pretostavićemo ravan brzinski rofil (izrazito turbulentno struane gasa kroz slo): r r w w ( z) e azmotrimo dva slučaa: sr z a) reaktor sa omotačem za hlađene (greane), kroz koi rotiče rashladni (greni) fluid konstantne temerature const (sl.7.a). b) slo e idealno izolovan (adiabatski) ( Sl.7.b). Na slikama 7.a,b su skicirani radialni rofili temerature i koncentracie.

2 Sl.7.a adialni rofil u neizotermskom slou katalizatora Sl.7.b adialni rofil u adiabatskom slou katalizatora Neizotermski ednosloni reaktor emeratura i osledično koncentracia su funkcia i radialne koordinate zbog hlađena sloa fluidom u omotaču (Sl.7.a) ( z, r), ( z, r) Kvazihomogen komonentni bilans ima sva 4 dorinosa: t t t t aks. dif rad. dif konv. reakc. i nakon smene izraza za oedine dorinose (7.4), (7.), (7.), (7.7): D eff L z D r eff ( F) + r( r r, ) (7.4) r S z Zareminski rotok F(z) e dat ednačinom kontinuiteta: F( z) F / ( c,, ) ili ednačinom (7.9): v F( z) F ( + Kvx ) v Izraz r(,) [mol /(m oroznog sloa s)] dae količinu reaktanta koa izreague o edinici zaremine oroznog sloa katalizatora, u funkcii koncentracie i temerature u turbulentno masi reakcionog gasa koi strui kroz slo. Dakle, to e

3 makrokinetički izraz za slo katalitičkih čestica i on e u vezi sa makrokinetičkim izrazom za zrno katalizatora: odnosno: ( secifi cna zaremina oroznog sloa r (, ) r(, ) zrno ( secificna zaremina oroznog zrna r(, ) r(, ) zrno s - nasina gustina sloa (kg /m ) z - gustina oroznog zrna (kg /m ) s z Dakle, veza između izraza r(,) sa izrazom za brzinu ovršinske reakcie (mikrokinetika) e: s r(, ) η s rs (, (7.) ) mikrokin. izraz makro kin. z izraz η - faktor efektivnosti reakcie reakcie u zrnu Granični uslovi uz komonentni bilans su r : r (7.a) r : (7.b) r z : w w (, r) D eff L z (7.c) z L: (7.d) z eff eff Parametri D L i D su efektivni koeficienti odužne i orečne difuzie reaktanta kroz slo katalizatora ili koeficienti odužne i orečne diserzie reaktanta kroz slo. D eff sloa treba asno razlikovati od D eff za zrno katalizatora. Dok e (D eff ) zrno funkcia ravog molekulskog koeficienta D, oroznosti zrna i izviuganosti ora kao i Knudsenove difuzivnosti (ogl..), (D eff ) slo zavisi od D, oroznosti i dimenzia sloa i režima struana gasa kroz slo. D L eff takođe zavisi od režima struana, eff eff diserzioni koeficienti D L i D za slo se određuu ekserimentalno, ili na bazi korelacia - kriterialnih ednačina, dobienih na bazi ekerimentalnih odataka.

4 Energetski bilans takođe obuhvata sva 4 dorinosa (edn.(7.8a-7.7)): eff eff λ L + λ (, ) (, ) r c w r (7.) z r r r z F w S Fm S F m - maseni rotok (kg/s) Granični uslov za osu cevi sledi iz simetrie radialnog temeraturnog rofila (Sl.7.a), r : (7.a) r a uslov na zidu cevi (r ) redstavla uslov nerekidnosti tolotnog fluksa uz aroksimaciu da e otor rovođenu tolote kroz zid zanemarliv, a e temeratura zida ednaka temeraturi reakcionog fluida uz zid: [ ( z, ) ] ' eff r : λ α (7.b) r α - koeficient relaza tolote sa zida na omoćni fluid - temeratura omoćnog fluida Za z-ravac, važe Dankvercovi granični uslovi: z eff λ L : w w (, r) (7.c) z z L : (7.d) z - temeratura naone strue ierarhiska struktura modela višeslonog katalitičkog reaktora Zanimlivo e rodiskutovati ceo roces formirana matematičkog modela višeslonog industriskog katalitičkog reaktora, očev od modelovana rocesa na katalitičko ovršini. ako se mogu definisati četiri nivoa u rocesu modelovana reaktora, koi su, oređani o hierarhii, naznačeni na sledećo šemi: 4

5 Izotermski ednosloni reaktor sa idealnim otiskivanem i ednom reakciom Neka se u reaktoru odigrava edna katalizovana reakcia : ν. Komonentni bilans klučnog reaktanta, ri retostavci o idealnom otiskivanu reakcionog gasa, svodi se na ednačinu istog oblika kao bilans za homogen reaktor sa idealnim otiskivanem: x d mol w ν r(, x, ) (7.7) dz m s x ( ) w F / S azlika dva modela e u tome kinetički izraz r (, x, ) redstavla čistu kinetiku kod modela homogenog reaktora, a makrokinetički izraz kod kvazihomogenog modela rocesa u katalitičkom slou Makrokinetički izraz se načešće formuliše na bazi ekserimentalnih rezultata u laboratoriskom reaktoru i obično izražava o kg katalizatora, t. ima dimenzie mol/kg s. ako e : r(, x, ) r (, x, ) mol m s m s r brzina reakcie o kg katalizatora, mol kg s m s nasina gustina katalitičkog sloa, kg / m ko element dužine reaktorske cevi, dz izrazimo reko odgovaraućeg elementa mase katalizatora:

6 dz dv S dmk S s m k - masa katalizatora (kg) u delu sloa, dužine z S - ovršina orečnog reseka reaktorske cevi, m i uvedemo brzinu reakcie o kg katalizatora, edn. (7) ostae: dx mol n ν rm (, x, ) (7. 7a) dmk kg s Integraciom dobiamo izraz za neohodnu količinu katalizatora, M k da bi se ostigao zadat steen konverzie (tzv. roektna ednačina): M L x dx k dmk n ν x rm (,, ) ( kg) (7.7b) n ulazni molski rotok reaktanta, mol/s PIME 7.7 (7.4) Izračunati masu katalizatora neohodnu za roizvodnu t/h S u reakcii: ( g) + S ( g) S ( g) + S( g) 4 na, ri čemu se sumor uvodi u višku od % u odnosu na stehiometrisku količinu, a steen konverzie metana e.9. Za temeraturu, brzina reakcie o kg katalizatora e data izrazom: rm.7 4 S ( kmol / kgh) - arcialni ritisak komonente (bar) Proces se izvodi na atmosferskom ritisku.. Neohodno e nare izraziti brzinu rocesa r m u funkcii od steena konverzie x. Numerisaćemo komonente kao: 4 - ; S - ; S - ; S 4.ko arcialne ritiske izrazimo reko molskih udela i ukunog ritiska, izraz za brzinu reakcie ostae: r y y m y y. 78 y y Prema odacima: n n.. n n n ( x ), n n nx n (. ) x Ukuan bro molova se ne mena tokom reakcie : N n + n. n Molski udeli, u funkcii od steena konverzie x

7 y n x. x, y N.. ako za makrokinetički izraz dobiamo: r m.78 kmol ( x )(. x ).. kg h a za količinu katalizatora: M k x dx. x.4n.4n ln ( x)(. x) x x..9 M k. 94.(.9).4n ln n Ulazni rotok metana, n nalazimo iz zadate roizvodne S: n n kg / h 9. kmol / h, M kg x 7 kg / kmol 8. k 8. 4 PIME 7.8 Izračunati masu katalizatora otrebnu da bi se ostigao steen konverzie toluena od 89,% u reakcii : + + 4, r m kk + K + K B B kmol kg s B - benzol, - toluol u reaktoru sa neokretnim sloem katalitizatora na temeraturi od i ritisku atm. Nasina gustina katalitičkog sloa e. g/cm. Naona smeša sastava: % toluena, 4% vodonika i 4% inerta se uvodi sa rotokom od 4 l/min. Vrednosti kinetičkih arametara : k kmol kg s atm 8,4, K, atm, K B,4 atm Uorediti izračunatu zareminu reaktora sa neokretnim sloem katalizatora sa zareminom reaktora sa fluidizovanim sloem (ri istim ostalim uslovima izvođena rocesa), ri čemu treba retostaviti idealno mešane u fluidizovanom slou. Nasina gustina fluidizovanog sloa e.4 g/cm (Mathcad). 7

8 Pad ritiska kroz slo katalizatora Pad ritiska duž cevnog reaktora se zanemarue ri roračunu homogenih cevnih reaktora. Pri roticanu fluida kroz slo katalizatora, međutim, ad ritiska e osetno veći.pri tom, Kad su u itanu reakcie u tečno fazi, može se zanemariti utica ritiska na brzinu reakcie (koncentracie komonenata neznatno zavise od ritiska), a se zanemarue ad ritiska duž sloa katalizatora. Kod gasnih reakcia, utica ukunog ritiska na brzinu reakcie e značaan (koncentracie komonenata su roorcionalne ritisku), a e ri tačniim roračunima neohodno uzeti u obzir ad ritiska duž sloa katalizatora. Za oisivane ada ritiska ri roticanu gasne reakcione smeše kroz orozni slo katalizatora koristi se Ergunova ednačina: d dz ε w ε Pa +.7 (7.8) e d ε m ε roroznost sloa e gustina reakcione smeše, w ovršinska brzina gasa, w F S kg m F - zareminski rotok reakcione smeše, d e - hidraulički ekvivalentan rečnik katalitičkog zrna, m e - enoldsov kriterium: m s e wd e µ ako se ri rigorozniem simulacionom ili roektnom roračunu ednoslonog izotermskog katalitičkog reaktora sa ednom reakciom, rešava sistem dif. ednačina (7.7, 7.8). PIME 7.9 U izotermskom katalitičkom cevnom reaktoru, na temeraturi se roizvodi etilen oksid katalizovanom gasnom reakciom r m 4 k + O B 4 O lbmol lb h, k.4lbmol lb h atm Etilen i kiseonik (sa vazduhom) se uvode na ritisku od atm u stehiometriskom 4 odnosu, sa molskim rotokom etilena lbmol s. Potrebno e izračunati količinu katalizatora za % konverziu etilena. Površina orečnog reseka reaktorske cevi e S.44 ft. Ekvivalentan rečnik katalitičkih zrna e d e. in, oroznost sloa ε.4, a nasina gustina s lb ft. Pri roračunu ada ritiska za gustinu i 8

9 viskozitet reakcione smeše uzeti vrednosti za vazduh na datim uslovima ( µ. 7 lb ft h ) diabatski ednosloni reaktor sa idealnim otiskivanem i ednom reakciom Komonentni bilans e dat ednačinom (7.7), a energetski bilans se dobia izbacivanem dorinosa aksialne difuzie: x w w c dx dz ν r(, x d r(, x dz, ), ) (, ) mol m s J m s ), () ( (7.9) Eliminaciom izraza za brzinu iz gorne dve dif. ednačine, analognim ostukom onom kod adiabatskog šaržnog reaktora dobiamo ednačinu: (, ) c ν adiabatsk a romena temerature x (.) koom ri roračunu reaktora možemo da eliminišemo ednu od funkcia x i. PIME 7. U adiabatskom cevnom katalitičkom reaktoru se izvodi reakcia dobiana stirena dehidrogenaciom etilbenzola: + r m k( E S K h ) E etilbenzol, S - stiren, - vodonik Za kinetičku konstantu k( lbmol lb h atm) i ravnotežnu konstantu K (atm) važe temeraturne zavisnosti: k e, log K. + ( u K) olota reakcie e BU/lbmol. emeratura naone smeše i sredni ritisak u reaktoru su,. atm. Prečnik reaktora e 4ft, a nasina gustina katalizatora s 9lb ft vodene are. Secifična tolota reakcione smeše e. U reaktor se uvodi.lbmol/h etilbenzola i 7 lbmol/h c. BU lb. Potrebno e 9

10 izračunati količinu katalizatora za ostizane konverzie od 4% i katalizatora. deblinu sloa (Mathcad) ZDI. ko e u nekom roblemu sa ednom hemiskom reakciom, brzina reakcie izražena reko arcialnih ritisaka, ona se može izraziti u funkcii od steena konverzie klučnog reaktanta uvodeći sledeće izraze za arcialne ritiske komonenata, koi važe od retostavkom da e reakciona smeša idealan gas: ν + x ν, K v y + K vx ν ν što e ednostavnie nego osredstvom izraza za koncentracie : ν + x ν,,.., N K v + x c a) Izvesti datu formulu za b) ešiti rimer 7. koristeći tu formulu.. U adiabatskom cevnom reaktoru se odigrava elementarna reakcia hlorovana roilena: l k + k l + l lbmol r k l. ( ft atm h), E 7 BU molk Protok naone smeše e.8 lbmol/h, a molski odnos roilena i hlora u naou e 4:. emeratura i ritisak naoa su 8 i atm. emeratura u reaktoru ne sme da revaziđe granicu od i da bi se to ostiglo naono smeši treba dodati inert. max 88 a) Potrebno e izračunati minimalnu količinu inerta koi treba dodati da izlazna temeratura ne revaziđe dozvoleni maksimum, ako se u reaktoru ostiže konverzia hlora od 9%. Uzeti ri tom da se sredne molske secifične tolote reaktanata i inerta neznatno razlikuu i da iznose: BU lbmol i zanemariti ad ritiska u reaktoru. olota reakcie na 8 e 48 BU lbmol. (eš:.mol/s) Pomoć: Koristiti Foglerovu formulu za adiabatsku romenu temerature (zadatak 4. u oglavlu " Neizotermska simulacia reaktora ") b) Izračunati zareminu katalizatora da bi se, sa minimalnom količinom inerta, ostigla data konverzia. (eš. 7.7m )

11 7. (Smirnov, P-4) U adiabatskom cevnom reaktoru se izvodi ovratna egzotermna elementarna reakcia: k B k r k B ( ) k.8 K e 48 s Sastav naone smeše ( kmol m ) e:.8,, 7. (inert ), a B I temeratura 8K. Na to temeraturi, konstanta ravnoteže i standardna tolota reakcie imau vrednosti K 7., 8 kj kmol. Sredne molske secifične tolote komonenata ( kj kmolk ) su: 74, 8,. B I a) Koliki e maksimalno mogući steen konverzie (Odg..4) b) Izračunati steen konverzie za kontaktno vreme τ 7s (eš. x.4) Pomoć: Brzinu reakcie izraziti u funkcii od temerature i u integralu za kontaktno vreme izvršiti smenu romenlive. 8. eakcia termičkog krekovana acetona (. reda): k O O + 4 ln k ( uk) se izvodi u adiabatskom cevnom reaktoru. Naona smeša e čist aceton i kaacitet reaktora e 8kg/h acetona. Pritisak u reaktoru e kpa, a ulazna temeratura K. ermodinamički odaci: Komo- nenta h f,98 K ( J mol) Konstante u ednačini: a+ b+ c J molk a b c O (g) O (g) (g) a) Koe vrednosti imau redeksonencialni faktor k i energia aktivacie E za osmatranu 4 reakciu? (Odg s,.84 J mol ) b) Za izračunavane adiabatskog ovećana temerature (.) otrebne su sredne vrednosti secifičnih tolota komonenata u odgovaraućim temeraturnim intervalima. U osmatranom roblemu, radi izračunavana sredne vrednosti u izrazu za tolotni efekat reakcie, otrebne su sredne vrednosti secifičnih tolota komonenata u intervalu [ 98, ] K. Izračunati ih sa reciznošću od decimala (eš., 8, J molk )

12 Sredna secifična tolota naone smeše, se računa u osegu temeratura u reaktoru, i ako rocenimo da e izlazna temeratura 9K to e interval [ 9, ]K Izračunati e u osmatranom roblemu.(eš. J/molK) c) Izračunati izlaznu temeraturu i otrebnu zareminu reaktora za ostizane konverzie acetona od %. (eš. 9.K,.m ) d) Pošto e ri izračunavanu sredne secifične tolote naone smeše, korišćena rocenena izlazna temeratura ( k 9K), koa se razlikue od izračunate (9.K) rezultat nie sasvim tačan i bilo bi neohodno da se onovi sa rocenom izlazne temerature ednakom dobieno vrednosti u rethodnom roračunu (9.K), što se u Mathcad-u izvodi vrlo ednostavno. ko se novi rezultat dovolno slaže sa rethodnim (recimo do K), usvaa se osledni rezultat kao konačan. U rotivnom izvodi se oš edna iteracia (onovleni roračun) itd. Izvesti oisani iterativni ostuak u ovom roblemu. (eš. U drugo iteracii : k 97.K V.m ) 9. U zadatku 7., otrebno e isitati utica ulazne temerature na ostignuti steen konverzie u datom adiabatskom cevnom reaktoru sa kontaktnim vremenom 7s. a) Izračunati ostignutu konverziu za sledeće ulazne temerature (K) : 8,8,...,8 (eš..4,.4,.4,.4,.48) c) Da li ostoi otimalna vrednost ulazne temerature i kako obašnavaš nenu egzistenciu? Proceniti otimalnu ulaznu temeraturu u osmatranom roblemu. (eš. 84.K). U 8. zadatku e korišćenem izraza za adiabatsku romenu temerature λ( ) sa srednim vrednostima secifičnih tolota, uz onavlane roračuna, dobiena tražena zaremina reaktora. Proračun bi se mogao izvesti u edno iteracii ne koristeći sredne nego rave, temeraturno zavisne secifične tolote. a) Pokazati da e odgovarauća veza izmedu steena konverzie i temerature data ednačinom: x M, x, ( ) d + + ( ) d ( ), ( ) M, - molska gustina naone smeše x,,..., - molski sastav naone smeše N c θ, ( ) d, ( ) d θ molski odnos komonente i klučnog reakanta () u naono smeši - referentna temeratura, na koo e oznat tolotni efekat reakcie ν ) ( ), (, Pomoć: uvesti u izraz λ ( ) izraze koima se računau sredne vrednosti secifičnih tolota.

13 b) Koristeći datu funkciu steena konverzie od temerature izračunati kranu temeraturu i zareminu reaktora ( eš. k 97K V.9m )

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

TERMODINAMIKA. Vježbe II

TERMODINAMIKA. Vježbe II ERMODINAMIKA Vježbe II Zadatak br. 9 kg neke materije mijenja stanje kvazistatički o zakonu = ks, gdje je od stanja ( 00K ) do stanja ( k kg K kj 900K ). Potrebna količina tolote dovodi se od tolotnog

Διαβάστε περισσότερα

12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016.

12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016. 12 SKUPIN ZDK IZ FIZIKE I 6 linja 2016 Zadatak 121 U osudi - sremniku očetnog volumena nalazi se n molova dvoatomnog lina na temeraturi rema slici) Plin izobarno ugrijemo na temeraturu, adijabatski ga

Διαβάστε περισσότερα

Željko Ciganović TERMODINAMIKA KRATKI IZVODI IZ TEORIJE

Željko Ciganović TERMODINAMIKA KRATKI IZVODI IZ TEORIJE Željko Ciganović ERMODINAMIKA KRAKI IZVODI IZ EORIJE januar 2002. str.2/46 OSNOVNE DEFINICIJE Zatvoren termodinamički sistem je deo ošteg rostora (okoline), odvojen od okoline granicom sistema. U zatvorenom

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Slično važi i za bilo koje druge kombinacije nekondenzujućih ( O

Slično važi i za bilo koje druge kombinacije nekondenzujućih ( O 8. Vlažni gasovi 8.1 Uvod - smeše realnog i idealnog gasa - smeše kondenzujućeg i nekondenzujućeg gasa - arno gasne smeše - najoznatiji redstavnik ažan vazduh - smeša (suvog) vazduha idealnog gasa i age

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici. VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Sistem sučeljnih sila

Sistem sučeljnih sila Sistm sučljnih sila Gomtrijski i analitički način slaganja sila, projkcija sil na osu i na ravan, uslovi ravnotž Sistm sučljnih sila Za sistm sila s kaž da j sučljni ukoliko sil imaju zajdničku napadnu

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Prosti cevovodi

MEHANIKA FLUIDA. Prosti cevovodi MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora

Διαβάστε περισσότερα

STACIONARAN IZOTERMSKI CEVNI REAKTOR SA JEDNOM REAKCIJOM

STACIONARAN IZOTERMSKI CEVNI REAKTOR SA JEDNOM REAKCIJOM STIONN IZOTEMSKI EVNI EKTO S JENOM EKIJOM U opštem slučau, bilans omponente ima stutuu: t + + t as + t ad.. t onv. dif. dif. ea. (7.74) gde su poedini dopinosi dati ednačinama (7.64a,b), (7.65)-(7.67).

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

=1), što znači da će duljina cijevi L odgovarati kritičnoj duljini Lkr. koji vlada u ulaznom presjeku, tako da vrijedi

=1), što znači da će duljina cijevi L odgovarati kritičnoj duljini Lkr. koji vlada u ulaznom presjeku, tako da vrijedi Primjer. Zrak (R=87 J/(kg K), κ=,4) se iz atmosfere ( =, bar, T =88 K) usisava oz cijev romjera D = mm, duljine L = m, rema slici. Treba odrediti maksimalno mogući maseni rotok m max oz cijev uz retostavku

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

ULAZ - IZLAZ + GENERISANJE = AKUMULACIJA U SISTEMU (3.1)

ULAZ - IZLAZ + GENERISANJE = AKUMULACIJA U SISTEMU (3.1) 3. MATERIJALNI BILANSI Pri izvođenu ednačina materialnog bilansa polazi se od opšte bilansne ednačine za otvoreni sistem: ULAZ - IZLAZ + GENERISANJE AKUMULACIJA U SISTEMU (3. 3. Uupni bilans materie i

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)

МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

НАФТНО-ГАСНИ КОМПЛЕКСИ

НАФТНО-ГАСНИ КОМПЛЕКСИ Индустријско инжеnjерство у експлоатацији нафте и гаса Технички факултет Михајло Пупин Зрењанин НАФТНО-ГАСНИ КОМПЛЕКСИ (Решени задаци за писмени) Вер.1 Др. Радослав Д. Мићић, доц SADRŽAJ: 1. KONVERZIJA

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

5. PRVI PRINCIP TERMODINAMIKE

5. PRVI PRINCIP TERMODINAMIKE 5. PRVI PRINCIP TERMODINAMIKE 5. Uvod Prvi rinci termodinamike je asolutni rirodni zakon koji važi za sve ojave koje se odigravaju na svim rostornim nivoima (mikro, makro i mega svetu) Zasnovan je na brojnim

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

( ) Φ = Hɺ Hɺ. 1. zadatak

( ) Φ = Hɺ Hɺ. 1. zadatak 7.vježba iz ermodiamike rješeja zadataka. zadatak Komresor usisava 30 m 3 /mi zraka staja 35 o C i 4 bar te ga o ravotežoj romjei staja v kost. komrimira a tlak 8 bar. Komresor se hladi vodom koja tijekom

Διαβάστε περισσότερα