E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι"

Transcript

1 E. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι.Κόστος.Παραγωγή 3.Χρησιµότητα 4.Ζήτηση-Προσφορά 5.Φόρος. Κόστος Θεωρούµε ότι το κόστος παραγωγής (cost) ενός προιόντος είναι συνάρτηση της ποσότητας παραγωγής (production) : = () µε () d Για κάθε ποσότητα παραγωγής, το µέσο κόστος (average cost) d και το οριακό κόστος (marginal cost) ορίζονται µε τα µεγέθη: d A=, M= = : d Γραφικά παριστάνονται µε την κλίση της ακτίνας και της εφαπτόµενης αντίστοιχα, όπως στο γράφηµα. Η συνάρτηση κόστους αποτελείται από το σταθερό κόστος (fixed cost) F και το µεταβλητό κόστος (variable cost) V. Το άθροισµα των δύο δίνει το κόστος που ενίοτε καλείται και συνολικό κόστος (total cost) T. Παρατήρηση. Για ευκολία θα υποθέτουµε ότι το σταθερό κόστος υπάρχει και χωρίς παραγωγή, οπότε θα έχουµε: F= () και η συνάρτηση κόστους θα είναι συνεχής όπως στο πρώτο γράφηµα παραπλεύρως. Αντίθετα, αν το σταθερό κόστος V εµφανίζεται µόνο µε την παραγωγή, τότε η συνάρτηση κόστους θα F F είναι µη συνεχής όπως στο δεύτερο γράφηµα, µε F= lim (), () = Στις εφαρµογές, συνήθως συνυπάρχουν και οι δύο µορφές σταθερού κόστους. Το µέσο µεταβλητό κόστος (average variable cost) ορίζεται µε τον τύπο: V() F AV=, οπότε έχουµε: A= AV+ ίνεται από την κλίση της χορδής όπως στο πρώτο γράφηµα παραπάνω, δηλαδή αγνοώντας το σταθερό κόστος. Παρατήρηση. Το οριακό µεταβλητό κόστος συµπίπτει µε το οριακό κόστος διότι οι δύο συναρτήσεις διαφέρουν κατά µια σταθερά. Ιδιότητες της συνάρτησης κόστους. Η συνάρτηση κόστους έχει συνήθως τα παρακάτω χαρακτηριστικά:. Ως προς την µονοτονία είναι γνήσια αύξουσα, µε γνήσια θετικό οριακό κόστος: >, µε µη µηδενικό σταθερό κόστος: F= () >. Ως προς την κυρτότητα είναι κυρτή:, δηλαδή έχει αύξον οριακό κόστος, τουλάχιστον τελικά, δηλαδή για µεγάλες ποσότητες παραγωγής. Ειδικότερα, µπορεί να είναι: α) γραµµική µε σταθερό οριακό κόστος: = όπως στο πρώτο γράφηµα παρακάτω β) γνήσια κυρτή µε γνήσια αύξον οριακό κόστος: > όπως στο δεύτερο γράφηµα. γ) αρχικά γνήσια κοίλη µε γνήσια φθίνον οριακό κόστος: <, και τελικά κυρτή, όπως στο τρίτο γράφηµα. Στο επόµενο σχήµα δίνουµε τα γραφήµατα τριών τυπικών συναρτήσεων κόστους. Κάτω από το καθένα δίνουµε και τα αντίστοιχα γραφήµατα των συναρτήσεων µέσου, µέσου µεταβλητού και οριακού κόστους. Λέµε ότι σε κάποια επίπεδα παραγωγής έχουµε οικονοµίες κλίµακας (economies of scale) αν το µέσο κόστος είναι γνήσια φθίνον. Στην πρώτη συνάρτηση αυτό ισχύει πάντοτε ενώ στις επόµενες δύο ισχύει µόνο αρχικά µέχρι κάποιο επίπεδο παραγωγής όπου το µέσο κόστος παίρνει την ελάχιστη τιµή και στη συνέχεια γίνεται αύξον. Στις δύο πρώτες συναρτήσεις οι οικονοµίες κλίµακας οφείλονται στην ύπαρξη του σταθερού αρχικού κόστους το οποίο διαµοιράζεται στην παραγωγή ρίχνοντας το µέσο κόστος, ενώ στην τρίτη συνάρτηση οφείλεται και στο φαινόµενο του αρχικά φθίνοντος οριακού κόστους οπότε θα υπήρχε ακόµη και χωρίς σταθερό κόστος.

2 Εφαρµογές στα Οικονοµικά Ιδιότητες µέσου κόστους. Το µέσο κόστος ελαττώνεται γνήσια οπότε και έχουµε οικονοµίες κλίµακας, όταν το οριακό κόστος είναι γνήσια µικρότερο από το µέσο κόστος, και αυξάνει γνήσια όταν είναι γνήσια µεγαλύτερο. Ειδικότερα:. Σε εσωτερικό γνήσιο ελάχιστο του µέσου κόστους το οριακό κόστος συµπίπτει µε το µέσο κόστος, διασχίζοντας το από κάτω προς τα πάνω. 3. Οι παραπάνω ιδιότητες ισχύουν και για το µέσο µεταβλητό κόστος. Απόδειξη. Είναι άµεση συνέπεια του παρακάτω τύπου για την παράγωγο του µέσου κόστους ως προς : = = < < Οι ιδιότητες αυτές επαληθεύονται στα παρακάτω γραφήµατα, όπου σηµειώνουµε µε {,, } το ελάχιστο του µέσου κόστους του µέσου µεταβλητού και του οριακού, αντίστοιχα. = F+ = F+ + = F+ + συναρτήσεις κόστους 3 M A M A A AV AV M= AV = M A= F / + M= + A= F / + + M= + 3 A= F / + + AV= AV= + AV= + συναρτήσεις οριακού µέσου και µέσου µεταβλητού κόστους Παράδειγµα. Υποθέτουµε ότι µια ποσότητα προϊόντος µπορεί να παραχθεί µε δύο διαφορετικές διαδικασίες, µε αντίστοιχο κόστος: = w, = F+ w, όπου w < w Στη δεύτερη περίπτωση έχουµε µικρότερο οριακό κόστος, αλλά έχουµε επιπλέον κάποιο σταθερό κόστος. Αν για κάθε επίπεδο παραγωγής επιλέγουµε τη διαδικασία µε το µικρότερο κόστος, η συνάρτηση κόστους θα ορίζεται τµηµατικά, µε τη σχέση: w αν w w + F F / (w w ) () = min{, } = w + Fαν w w + F F / (w w ) w M= A A = () w M Είναι κοίλη αντί κυρτής, ως min γραµµικών συναρτήσεων. Επίσης εµφανίζει οικονοµίες κλίµακας στις µεγάλες ποσότητες παραγωγής, όπως διαπιστώνουµε στο δεύτερο γράφηµα παραπάνω.

3 Ε ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ I 3 Παράδειγµα. Μια επιχείρηση εκτελεί παραγγελία ποσότητας µε κόστος: = () Αν έχει δύο παραγγελίες: {, }, τότε το µέσο κόστος ανά παραγγελία είναι: = [( ) + ( )] / Αν οι παραγγελίες ήταν σταθερές ίσες µε το µέσο όρο των παραπάνω, τότε θα είχε κόστος ανά παραγγελία: () µε = (+ ) / Παρατηρούµε ότι: Αν η συνάρτηση κόστους είναι κυρτή, τότε η κυµαινόµενη παραγωγή έχει µεγαλύτερο µέσο κόστος από τη σταθερή ενδιάµεση παραγωγή. () Το αντίθετο συµβαίνει αν η συνάρτηση κόστους είναι κοίλη. Απόδειξη. Σύµφωνα µε την χαρακτηριστική γραφική ιδιότητα των κυρτών συναρτήσεων η καµπύλη της συνάρτησης βρίσκεται κάτω από την χορδή, οπότε έχουµε: () = + ( ) + ( ) = Παρατήρηση. Χρησιµοποιώντας την γενική ιδιότητα των κυρτών συναρτήσεων: (t + t ) t( ) + t( ) για t, t, t + t = αποδεικνύεται, π.χ. επαγωγικά ως προς τον αριθµό των παραγγελιών, ότι το παραπάνω αποτέλεσµα ισχύει για οιοδήποτε αριθµό παραγγελιών.. Παραγωγή Η αντίστροφη της συνάρτησης κόστους καλείται συνάρτηση παραγωγής (production function): = () Συνήθως είναι µηδενική πριν από ένα επίπεδο δαπάνης που αντιστοιχεί στο σταθερό κόστος. Σε κάθε συνάρτηση παραγωγής αντιστοιχούν και τα µεγέθη: = () d A= () /, µέσο προϊόν (average product) F M= (), οριακό προϊόν (marginal product) Γραφικά, ορίζονται από την κλίση της ακτίνας και της εφαπτοµένης αντίστοιχα, στα διάφορα σηµεία της καµπύλης παραγωγής, όπως στο παραπάνω γράφηµα. Λόγω της σχέσης αντιστροφής µεταξύ της συνάρτησης κόστους και της συνάρτησης παραγωγής, το µέσο προϊόν και το οριακό προϊόν είναι τα ανάστροφα του µέσου κόστους και του οριακού κόστους αντίστοιχα, για τα ίδια επίπεδα παραγωγήςκόστους {,} : A= / A, M= / M Ιδιότητες της συνάρτησης παραγωγής Η συνάρτηση παραγωγής έχει συνήθως τις παρακάτω ιδιότητες µονοτονίας και κυρτότητας:. Ως προς την µονοτονία, είναι µηδενική πριν από ένα επίπεδο δαπάνης που αντιστοιχεί στο σταθερό κόστος, και στη συνέχεια είναι γνήσια αύξουσα µε γνήσια θετικό οριακό προϊόν: >.. Παραβλέποντας το αρχικό κοµµάτι, ως προς την κυρτότητα είναι κοίλη:, δηλαδή έχει φθίνον οριακό προϊόν. Ειδικότερα, µπορεί να είναι γραµµική µε σταθερό οριακό προϊόν: = όπως στο πρώτο γράφηµα παρακάτω, ή γνήσια κοίλη µε γνήσια φθίνον οριακό προϊόν: < όπως στο δεύτερο γράφηµα. Σε ορισµένες περιπτώσεις µπορεί να έχει ένα αρχικό τµήµα όπου είναι γνήσια κυρτή: > πριν τελικά γίνει κοίλη, όπως στο τρίτο γράφηµα Οι αντίστροφες των συναρτήσεων κόστους που δώσαµε σε προηγούµενο γράφηµα µας δίνουν τις αντίστοιχες συναρτήσεις παραγωγής µε τα παρακάτω γραφήµατα. Βρίσκονται παίρνοντας τα συµµετρικά ως προς την διαγώνιο. Αναλυτικά, η δεύτερη και η τρίτη δίνονται σε πλεγµένη µορφή. Σε όλες τις περιπτώσεις η παραγωγή αρχίζει µετά από κάποιο επίπεδο δαπάνης που αντιστοιχεί στο σταθερό κόστος F. ίνουµε και τα γραφήµατα των αντίστοιχων συναρτήσεων µέσου προϊόντος και οριακού προϊόντος. d 3

4 Εφαρµογές στα Οικονοµικά Παρατήρηση. Σε επόµενο κεφάλαιο θα εξετάσουµε την παραγωγή ως συνάρτηση των συντελεστών παραγωγής. Στην απλούστερη περίπτωση µπορεί να έχουµε την παραγωγή ως συνάρτηση ενός µόνο συντελεστή παραγωγής, π.χ. της εργασίας (Labor) L, στη µορφή: = (L) θεωρώντας τους υπόλοιπους συντελεστές σταθερούς. Οι συναρτήσεις αυτές έχουν γενικά τις ίδιες ιδιότητες µε τις συναρτήσεις παραγωγής που εξετάσαµε παραπάνω. Εξάλλου στην απλούστερη περίπτωση µπορούµε να κάνουµε αλλαγή µεταβλητής: L, υποθέτοντας το κόστος αύξουσα συνάρτηση της εργασίας.. = F + + F= συναρτήσεις παραγωγής συναρτήσεις οριακού και µέσου προϊόντος F= 3. Χρησιµότητα Τα παραπάνω αφορούν την παραγωγή. Θεωρούµε τώρα το άλλο σκέλος της οικονοµίας που είναι η κατανάλωση. Σένα πρώτο επίπεδο η θεωρία της κατανάλωσης παρουσιάζει αντιστοιχίες µε την θεωρία παραγωγής, όπου θεωρούµε ότι η κατανάλωση (consumption) X µε την γενική έννοια της δαπάνης ή ειδικότερα της κατανάλωσης µιας ποσότητας κάποιου αγαθού, παράγει χρησιµότητα (utility) U. Η σχέση µεταξύ των µεγεθών {X,U} εκφράζεται µε µια συνάρτηση χρησιµότητας (utility function): U= U(Χ) Ο βασικός ρόλος της είναι να ορίζει καταρχήν µια διάταξη προτίµησης (preference ordering) στο σύνολο {X} οπότε µας ενδιαφέρουν οι ιδιότητες µονοτονίας. Συνήθως είναι γνήσια αύξουσα αλλά µπορεί να έχει και διαστήµατα αδιαφορίας όπου η τιµή της είναι σταθερή ή ακόµη και σηµείο κορεσµού µετά το οποίο γίνεται φθίνουσα. ύο συναρτήσεις χρησιµότητας ορίζουν την ίδια διάταξη προτίµησης αν είναι διατακτικά ή µονότονα ισοδύναµες (order equivalent) όπου η κάθε µία είναι γνήσια αύξων µετασχηµατισµός της άλλης: V= V(U) µε V (U) > Η συνάρτηση χρησιµότητας µπορεί να έχει και αρνητικές τιµές. Εξάλλου συνήθως ποσοτικοποιείται όχι η ίδια η χρησιµότητα αλλά η διαφορά της από κάποια κατανάλωση αναφοράς. Έτσι, η διαφορά: U(Χ) U(Χ ) A M M µπορεί να εκφράζει την προτίµηση του Χ ως προς το Χ, στη µορφή του επιπλέον ποσού ή προσπάθειας ή και ρίσκου που είναι διατεθειµένος να καταβάλει ένας καταναλωτής για να αποκτήσει την επιπλέον ποσότητα αν Χ> Χ, ή να εισπράξει για να συµβιβαστεί µε τη µικρότερη ποσότητα αν Χ< Χ οπότε και θα έχει αρνητική τιµή. Π.χ. η διαφορά: U(X) U() εκφράζει την πρόσθετη χρησιµότητα που αντλεί ο καταναλωτής από την ποσότητα κατανάλωσης Χ σε σχέση µε την µη κατανάλωση. εδοµένου ότι η µονάδα µέτρησης και η κατανάλωση αναφοράς ορίζονται A M A 4

5 Ε ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ I 5 συµβατικά, δύο συναρτήσεις χρησιµότητας σ αυτό το πλαίσιο θα είναι γραµµικά ισοδύναµες (linearly equivalent) αν η µια είναι αύξων γραµµικός µετασχηµατισµός της άλλης: V= αu+ β µε α> Π.χ. οι παρακάτω συναρτήσεις χρησιµότητας είναι διατακτικά ισοδύναµες. Η η και η 4η είναι γραµµικά ισοδύναµες µεταξύ τους. Η η και η 3η παίρνουν και αρνητικές τιµές: Χ, + Χ, Χ, lnχ, ln( + Χ) Σηµαντική είναι επίσης και η έννοια της οριακής χρησιµότητας (marginal utility) που δίνεται από την παράγωγο της συνάρτησης χρησιµότητας: U (Χ) Εκφράζει την πρόσθετη χρησιµότητα µιας επιπλέον µονάδας του αγαθού της κατανάλωσης, οριακά. 4. Ζήτηση-Προσφορά Θεωρούµε τώρα µια αγορά στην οποία έχουµε παραγωγή και κατανάλωση στη µορφή προσφοράς και ζήτησης ενός αγαθού. Η συνολική ζήτηση για ένα αγαθό χαρακτηρίζεται από την ποσότητα ζήτησης: και από την µοναδιαία τιµή:. Γενικά υπάρχει µία σχέση µεταξύ των δύο µεγεθών, η οποία παριστάνεται µε µια συνάρτηση ζήτησης (demand function): = () Θα ασχοληθούµε µόνο µε κανονικά αγαθά (normal goods) για τα οποία η συνάρτηση ζήτησης είναι σταθερή ή γνήσια φθίνουσα. Συνήθως παριστάνουµε την συνάρτηση ζήτησης µε τον άξονα οριζόντιο οπότε το γράφηµα που προκύπτει είναι αυτό της αντίστροφης συνάρτησης ζήτησης (inverse demand function): = () Από τη µεριά της συνολικής προσφοράς υπάρχει επίσης µια σχέση µεταξύ της µοναδιαίας τιµής και της προσφερόµενης ποσότητας η οποία εκφράζεται τώρα µε µια συνάρτηση προσφοράς (supply function): = () Συνήθως είναι γνήσια αύξουσα, αλλά µπορεί να είναι και σταθερή, ή ακόµη και γνήσια φθίνουσα σε πολύ ειδικές περιπτώσεις. Όπως και για τη συνάρτηση ζήτησης το γράφηµά της παριστάνεται συνήθως µε τον άξονα οριζόντιο οπότε το γράφηµα που προκύπτει είναι αυτό της αντίστροφης συνάρτησης προσφοράς (inverse supply function): = () Παρατήρηση. Αν η ζήτηση είναι σταθερή ανεξάρτητα της τιµής τότε το γράφηµα της αντίστροφης συνάρτησης είναι κατακόρυφη ευθεία και λέµε ότι η ζήτηση είναι πλήρως ανελαστική (perfectly inelastic). Αντίθετα αν η τιµή είναι σταθερή ανεξάρτητα της ζήτησης τότε το γράφηµα είναι οριζόντια ευθεία και λέµε ότι η ζήτηση είναι πλήρως ελαστική. Αντίστοιχη ορολογία χρησιµοποιούµε για την προσφορά. Ένα ζεύγος ζήτησης-προσφοράς, δίνει δύο καµπύλες στο επίπεδο των {,}. Η τοµή τους καθορίζει την ποσότητα και την τιµή ισορροπίας της αγοράς (market equilibrium). Βρίσκονται λύνοντας το παρακάτω σύστηµα δύο εξισώσεων µε δύο αγνώστους: = () = () ή (, ) = () = () Έτσι, στην ισορροπία η ποσότητα ζήτησης συµπίπτει µε την ποσότητα προσφοράς, και η τιµή του καταναλωτή συµπίπτει µε την τιµή του παραγωγού. Στην ισορροπία οι καταναλωτές και οι προµηθευτές αντιµετωπίζουν την ίδια τιµή και την ίδια ποσότητα, οπότε και το κόστος της κατανάλωσης συµπίπτει µε το έσοδο της παραγωγής, και δίνεται από το εµβαδόν του παραλληλογράµµου, όπως στο παρακάτω σχήµα: E = Παράδειγµα. Θεωρούµε τις παρακάτω γραµµικές συναρτήσεις ζήτησηςπροσφοράς, µε όλους τους συντελεστές θετικούς: α /β α γ : = α β =, : = γ+ δ = + β β δ δ Η ποσότητα και η τιµή ισορροπίας βρίσκονται ως λύσεις του συστήµατος: γ /δ : = α β α+ γ αδ βγ =, = : = γ+ δ β+ δ β+ δ 5

6 Εφαρµογές στα Οικονοµικά Για να έχουµε ισορροπία, δηλαδή για να τέµνονται οι καµπύλες στη θετική περιοχή και τα παραπάνω µεγέθη να είναι θετικά, πρέπει η µέγιστη τιµή ζήτησης να είναι µεγαλύτερη από την ελάχιστη τιµή προσφοράς: αδ> βγ α /β> γ /δ 6

7 Ε ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ I 7 5. Φόρος Αν επιβληθεί φορολογία τότε η αγορά καταλήγει σε µια νέα ισορροπία, στην οποία η ποσότητα ζήτησης είναι πάλι ίδια µε την ποσότητα προσφοράς αλλά τώρα οι τιµές είναι διαφορετικές, οπότε θα έχουµε τρεις µεταβλητές:, {, } Σε κάθε περίπτωση η φορολογία µπορεί να επιβληθεί είτε στην κατανάλωση είτε στην παραγωγή. ιακρίνουµε δύο ειδών φόρους:. Φόρος στην αξία (ad valorem, value tax). Είναι ο συνήθης ποσοστιαίος φόρος στην τιµή. Με συντελεστή φορολογίας t (ποσοστιαίο φόρο: %T= t ), οι τιµές θα συνδέονται µε τη σχέση: = + t = (+ t) για φόρο στην κατανάλωση s = t = /( t) για φόρο στην παραγωγή Στην πρώτη περίπτωση ο φόρος προστίθεται στην τιµή του προµηθευτή ενώ στη δεύτερη αφαιρείται από την τιµή του καταναλωτή. Υπολογιστικά, οι δύο περιπτώσεις δεν διαφέρουν πολύ διότι το t είναι µικρό δεκαδικό, οπότε έχουµε την γνωστή γραµµική προσέγγιση: t t +. Φόρος στην ποσότητα (quantity tax). Επιβάλλεται µοναδιαίος φόρος T, δηλαδή φόρος ανά µονάδα προϊόντος, όπως γίνεται συνήθως στα καύσιµα ή στον καπνό, οπότε οι τιµές συνδέονται µε τη σχέση: = T Τώρα οι δύο περιπτώσεις είναι ακριβώς ίδιες. εν παίζει ρόλο αν ο φόρος προστεθεί στην παραγωγή ή αφαιρεθεί από την κατανάλωση. Υποθέτοντας για ευκολία ότι έχουµε φόρο στην ποσότητα, η ισορροπία θα καθορίζεται από τα συστήµατα εξισώσεων: = () = () = T Το παραπάνω σύστηµα καθορίζει πλεγµένα τα νέα µεγέθη ισορροπίας:,, Για την γραφική παρουσίαση θα αντικαταστήσουµε το από την τρίτη εξίσωση, οπότε θα έχουµε τελικά δύο εξισώσεις για τις µεταβλητές: {, }. Παριστάνοντας την τιµή προσφοράς µε: = : προ φόρου τιµή, καταλήγουµε στο σύστηµα: = () T = () Όπως φαίνεται στο πρώτο γράφηµα παρακάτω η νέα ισορροπία βρίσκεται µετατοπίζοντας την καµπύλη της αντίστροφης συνάρτησης ζήτησης προς τα κάτω κατά τον όρο T. Τώρα σε κάθε τιµή = η ζήτηση είναι µικρότερη από προηγουµένως διότι στην πραγµατικότητα η κατανάλωση αντιµετωπίζει µεγαλύτερη τιµή. Σε κάθε περίπτωση µετά την επιβολή φόρου, η τιµή ισορροπίας του καταναλωτή µεγαλώνει και του παραγωγού µικραίνει, όπως φαίνεται στο πρώτο γράφηµα παρακάτω, όπου για ευκολία χρησιµοποιήσαµε γραµµικές συναρτήσεις ζήτησης και προσφοράς. Στο ίδιο σχήµα διακρίνουµε και τα εξής µεγέθη ως εµβαδά παραλληλογράµµων:. E =, δαπάνη καταναλωτή και έσοδο παραγωγού χωρίς φόρο.. E =, δαπάνη καταναλωτή µε φόρο 3. E =, έσοδο παραγωγού µε φόρο Φ= E E, συνολικός φόρος (σκιαγραφηµένο τµήµα). 4. 7

8 Εφαρµογές στα Οικονοµικά Παρατήρηση. Στο δεύτερο γράφηµα παρακάτω δίνουµε την λύση στην περίπτωση που έχουµε φόρο στην αξία. Με τις ίδιες αντικαταστάσεις βρίσκουµε ότι τώρα πολλαπλασιάζουµε την καµπύλη ζήτησης µε τον συντελεστή /(+ t) : = () = (+ t) = () = () /(+ t), όπου: = = () Φ T Φ φόρος στην ποσότητα φόρος στην αξία Παράδειγµα. Θεωρούµε γραµµικές συναρτήσεις ζήτησης/προσφοράς: : = α β, : = γ+ δ, µε α/β> γ /δ όπου υποθέτουµε ότι όλοι οι συντελεστές είναι θετικοί. Με επιβολή µοναδιαίου φόρου ποσότητας T, η ποσότητα και η προ φόρου τιµή στην ισορροπία θα ικανοποιούν το σύστηµα: = α β = α β( + T) α+ γ βt = γ+ δ = = γ+ δ β+ δ β+ δ = + T Βρίσκουµε τα παρακάτω µεγέθη ως συναρτήσεις του T, επαληθεύοντας όλες τις ιδιότητες: α+ γ βt α+ γ δt. = =, = + T= + β + δ β + δ β + δ β + δ αδ βγ βδt αδ βγ βδ βδ α γ. = γ+ δ = Φ= T= T T = T T β+ δ β+ δ β+ δ β+ δ β+ δ δ δ Όταν ο φόρος T είναι µικρός τότε το φορολογικό έσοδο Φ είναι µικρό διότι το έσοδο ανά µονάδα προιόντος είναι µικρό. Όταν ο φόρος είναι µεγάλος τότε το έσοδο είναι πάλι µικρό αλλά τώρα διότι η διακινούµενη ποσότητα είναι µικρή. Ενδιάµεσα έχουµε µέγιστο φορολογικό έσοδο όταν: αδ βγ α γ Φɺ = T = = βδ β δ Φ(T) όπου µε πάνω τελεία παριστάνουµε παραγώγιση ως προς την παράµετρο T. Είναι το ενδιάµεσο µεταξύ της µέγιστης τιµής = α /β για να υπάρξει T ζήτηση, και της ελάχιστης τιµής = γ / δ για να υπάρξει προσφορά. Έτσι: αύξηση του φόρου T θα προκαλέσει µείωση του φορολογικού εσόδου Φ αν το T είναι µεγαλύτερο από την παραπάνω κρίσιµη τιµή T. 8

C(Q) FC. } τα επίπεδα παραγωγής με ελάχιστο μέσο μεταβλητό κόστος p

C(Q) FC. } τα επίπεδα παραγωγής με ελάχιστο μέσο μεταβλητό κόστος p EI.. ΜΕΣΟ ΚΟΣΤΟΣ.Μέσο κόστος(α).ελάχιστο μέσο κόστος 3.Μέσο προιόν(a).μέγιστο μέσο προιόν 5.Κερδοφορία. Μέσο κόστος Θεωρούμε το κόστος παραγωγής ενός προιόντος ως συνάρτηση της ποσότητας παραγωγής, και

Διαβάστε περισσότερα

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός

Διαβάστε περισσότερα

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II 1.Εισροές-Συντελεστές παραγωγής.εκροές-παραγόμενα προιόντα 3.Εξωτερικότητες 4.Εισροές-Καταναλωτικά αγαθά 5.Καμπύλες αδιαφορίας 6.Βελτιστοποίηση Σε μια παραγωγική διαδικασία

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών

Διαβάστε περισσότερα

A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ

A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ.Ελαστικότητα.Χαρακτηρισµός ελαστικότητας 3.Ελαστικότητα αντίστροφης 4. ιαφορικά 5.Οµογενείς συναρτήσεις 6.Λογισµός ρυθµών και διαφορικών 7.Λογαριθµική κλίµακα. 8.Σχετικός

Διαβάστε περισσότερα

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ.Παραδείγματα αναλυτικά.παραδείγματα αριθμητικά 3.Ελαστικότητα ζήτησης 4.Ελαστικότητα προσφοράς 5. Έσοδο 6.Κέρδος μονοπωλίου. Παραδείγματα αναλυτικά Παράδειγμα. Σε μια οικονομία

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι

ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι α) Η ποσότητα ζήτησης ενός αγαθού εξαρτάται από την µοναδιαία τιµή του P και από το εισόδηµα Y, σύµφωνα µε την σχέση: = P Y. Αν η τιµή αυξηθεί κατά %, να εκτιµηθεί πόσο πρέπει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 24 ιάρκεια εξέτασης: 2 ώρες Θεωρία. 2 (4 µονάδες)

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 24 ιάρκεια εξέτασης: 2 ώρες Θεωρία. 2 (4 µονάδες) ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 4 ιάρκεια εξέτασης: ώρες Θεωρία (4 µονάδες) (α) Μια συνάρτηση f() έχει την παράγωγο του f () γραφήµατος παραπλεύρως. Να βρεθεί η µέγιστη τιµή της για, υποθέτοντας

Διαβάστε περισσότερα

Af(x) = και Mf(x) = f (x) x

Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,

Διαβάστε περισσότερα

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f ΤΕΣΤ Α ΟΜΑΔΑ Ι Θεωρούμε την συνάρτηση: f() = pln(+ ) για, με p>. Να διερευνηθεί αν είναι κυρτή η κοίλη. Να βρεθούν οι τιμές της παραμέτρου p για τις οποίες η μέγιστη τιμή της βρίσκεται στο =.. Η συνάρτηση

Διαβάστε περισσότερα

Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος.

Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος. ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 6 ιάρκεια εξέτασης: ώρες Θεωρία. (4 µονάδες) α) Να γίνει το γράφηµα µιας συνεχούς συνάρτησης f() της οποίας η παράγωγος f () έχει το γράφηµα του παραπλεύρως

Διαβάστε περισσότερα

E3 ΠΛΕΟΝΑΣΜΑΤΑ 1.Πλεόνασµα καταναλωτή 2.Πλεόνασµα προµηθευτή 3.Συνολικό πλεόνασµα

E3 ΠΛΕΟΝΑΣΜΑΤΑ 1.Πλεόνασµα καταναλωτή 2.Πλεόνασµα προµηθευτή 3.Συνολικό πλεόνασµα E3 ΠΛΕΟΝΑΣΜΑΤΑ.Πλεόνασµα καταναλωτή 2.Πλεόνασµα προµηθευτή 3.Συνολικό πλεόνασµα. Πλεόνασµα καταναλωτή Η αντίστροφη συνάρτηση ζήτησης: = () έχει καταρχήν την γνωστή ερµηνεία όπου είναι η µοναδιαία τιµή

Διαβάστε περισσότερα

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1 I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα

Διαβάστε περισσότερα

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0 Β4. ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ-ΚΥΡΤΟΤΗΤΑ 1.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Συνθήκες για ακρότατα 5.Κυρτές/κοίλες συναρτήσεις 6.Ολικά ακρότατα

Διαβάστε περισσότερα

1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα

1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα Β3. ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE.Ολικά και τοπικά ακρότατα.εσωτερικά και συνοριακά ακρότατα 3. Χωριζόμενες μεταβλητές 4.Ισοτικός περιορισμός 5.Περιορισμένη στασιμότητα 6.Πολλαπλασιαστής Lagrange 7.Συνάρτηση

Διαβάστε περισσότερα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα ΔΙΑΓΩΝΙΣΜΑ 0 Μέρος Α. (.6 μονάδες) α). Οι μεταβλητές {,,} συνδέονται με τις εξισώσεις κανόνας αλυσωτής παραγώγισης. { = e +, = ln}. Να επαληθευτεί ο β). Οι μεταβλητές {, y} συνδέονται με μια εξίσωση. Για

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το

ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το εισόδημα Y, σύμφωνα με την σχέση: = P Y. Αν η τιμή αυξηθεί κατά %, να εκτιμηθεί πόσο πρέπει να

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 1. Α Μέρος

ΔΙΑΓΩΝΙΣΜΑ 1. Α Μέρος Α Μέρος ΔΙΑΓΩΝΙΣΜΑ 1 1. (3.6 μονάδες) (α). Δίνεται η εξίσωση: = 8. Αν το ελαττωθεί από την τιμή = κατά 1%, να εκτιμηθεί η αντίστοιχη ποσοστιαία μεταβολή στην τιμή του. (β). Να διαπιστωθεί ότι η συνάρτηση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α

ΔΙΑΓΩΝΙΣΜΑ 5. Μέρος Α Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 5 1. (4 μονάδες) α). Θεωρούμε τη σχέση = 3. Να εκτιμηθεί η ποσοστιαία μεταβολή του που θα προκαλέσει μείωση του κατά 1% από την αρχική τιμή =. β). Να διαπιστωθεί ότι η συνάρτηση () =

Διαβάστε περισσότερα

II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ

II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Κυρτές/κοίλες συναρτήσεις 5.Σταθμικές περιοχές κυρτών/κοίλων συναρτήσεων 6.Παραβολική

Διαβάστε περισσότερα

E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ

E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ.Εισοδηματικός περιορισμός.μεγιστοποίηση χρησιμότητας 3.Γραμμική χρησιμότητα 4.Λογαριθμική χρησιμότητα τύπου -D 5.Χρησιμότητα τύπου Lontif-min 6.Μεγιστοποίηση χρησιμότητας-κανονικές

Διαβάστε περισσότερα

Ε7 Βελτιστοποίηση στην Κατανάλωση

Ε7 Βελτιστοποίηση στην Κατανάλωση 217 Ε7 Βελτιστοποίηση στην Κατανάλωση Θεωρούµε ότι η χρησιµότητα που αποφέρει η κατανάλωση αγαθών είναι κάποια συνάρτηση των ποσοτήτων κατανάλωσης. Θα αναφερθούµε σε ορισµένες απλές συναρτήσεις χρησιµότητας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I 22 Διάρκεια εξέτασης: 2 ώρες και 15' 1 (4 μονάδες)

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I 22 Διάρκεια εξέτασης: 2 ώρες και 15' 1 (4 μονάδες) ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I Διάρκεια εξέτασης: ώρες και 15' 1 (4 μονάδες) f() α) Να βρεθούν γραφικά τα σημεία ισοελαστικότητας, αν υπάρχουν, της συνάρτησης f() που έχει το γράφημα του παραπλεύρως

Διαβάστε περισσότερα

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 7 Διάρκεια εξέτασης: ώρες Μέρος Α. (4 μονάδες) (α). Μια συνάρτηση () έχει το γράφημα του παραπλεύρως σχήματος. Να γίνουν τα γραφήματα των συναρτήσεων () οριακής τιμής:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα

Διαβάστε περισσότερα

1. Ισοσταθμικές: f(x, y) = c. Θεωρούμε μια συνάρτηση δύο μεταβλητών και την παράστασή της ως επιφάνεια στον τρισδιάστατο χώρο:

1. Ισοσταθμικές: f(x, y) = c. Θεωρούμε μια συνάρτηση δύο μεταβλητών και την παράστασή της ως επιφάνεια στον τρισδιάστατο χώρο: Β. ΙΣΟΣΤΑΘΜΙΚΕΣ-ΙΑΚΩΒΙΑΝΕΣ ΟΡΙΖΟΥΣΕΣ 1.Ισοσταθμικές.Εξίσωση υποκατάστασης-ρυθμός υποκατάστασης 3.Κλίση ισοσταθμικών 4.Κυρτότητα ισοσταθμικών 5.Εξαρτημένες συναρτήσεις 6.Επιμέρους ρυθμοί υποκατάστασης 7.Ιακωβιανές

Διαβάστε περισσότερα

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ.

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ. Άσκηση. α Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία (,y, Α=(, και Β=(0, β Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο B(0, και έχει κλίση -0.. Να βρεθούν τα σημεία που

Διαβάστε περισσότερα

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης.

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης. ΕΛΑΣΤΙΚΟΤΗΤΑ ΖΗΤΗΣΗΣ Ορισμός: Η ελαστικότητα ζήτησης, ενός αγαθού ως προς την τιμή του δίνεται από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία μεταβολή της τιμής του. Δηλαδή %

Διαβάστε περισσότερα

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ 1.Διαφορικά.Σχετικά ή ποσοστιαία διαφορικά 3.Λογισμός Διαφορικών 4.Ομογενείς συναρτήσεις μιας μεταβλητής 5.Ελαστικότητα κλίμακας 6.Ομογενής μηδενικού βαθμού 7.Ομογενής βαθμού κ

Διαβάστε περισσότερα

B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ

B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ 1.Συναρτήσεις δύο µεταβλητών.μερικές παράγωγοι 3.Γραφήµατα-Επιφάνειες 4.Ειδικές συναρτήσεις 5.Μερικές ελαστικότητες 6.Γραµµική προσέγγιση-εφαπτόµενο επίπεδο 7.Μονοτονία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι Η εξίσωση ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι αβ+ α = ορίζει πλεγμένα το ως συνάρτηση των {α,β}. Να βρεθούν η παράγωγος και η ελαστικότητα του ως προς β, στις τιμές: {α=,β =, = }. Λύση. Ο τύπος πλεγμένης παραγώγισης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 13. A παραπλεύρως σχήματος. Να βρεθούν τα πρόσημα των μερικών

ΔΙΑΓΩΝΙΣΜΑ 13. A παραπλεύρως σχήματος. Να βρεθούν τα πρόσημα των μερικών Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 3. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() f () της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Οι μεταβλητές {,} συνδέονται

Διαβάστε περισσότερα

(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w :

(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w : ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι Οι εξισώσεις: {=, + = w} ορίζουν πλεγμένα τα {,} ως συναρτήσεις των {,w}. Να βρεθεί η μερική παράγωγος του ως προς. Λύση. Με τους τύπους πλεγμένης παραγώγισης: (,g) (,,, w) = = (,)

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 11. (δ). Να βρεθεί η λύση της διαφορικής εξίσωσης: y = xy, που έχει θετικές τιμές: y 0 και ικανοποιεί: y(0) = 1. 2.

ΔΙΑΓΩΝΙΣΜΑ 11. (δ). Να βρεθεί η λύση της διαφορικής εξίσωσης: y = xy, που έχει θετικές τιμές: y 0 και ικανοποιεί: y(0) = 1. 2. ΔΙΑΓΩΝΙΣΜΑ 11 Μέρος Α 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης () στο διάστημα, της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος. (β). Οι μεταβλητές {,} συνδέονται με την

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΑΛΟΓΗΡΑΤΟΥ Ζ. - ΜΟΝΟΒΑΣΙΛΗΣ Θ. Τυπικές Συναρτήσεις Μικροοικονομικής Ανάλυσης Συνάρτηση Παραγωγής Q (production function):

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Διαφορικός Λογισμός Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 1 Σκοποί ενότητας 4

Διαβάστε περισσότερα

45 Γ. 0 10 Β Χ 2. Η τεχνολογία βελτιώθηκε στην παραγωγή: β) Του Υ µόνο

45 Γ. 0 10 Β Χ 2. Η τεχνολογία βελτιώθηκε στην παραγωγή: β) Του Υ µόνο 3 Ασκήσεις πολλαπλής επιλογής στην 1 η ενότητα: Παραγωγικές δυνατότητες Χρησιµότητα Ζήτηση 1. Στην Οικονοµική επιστήµη ως οικονοµικό πρόβληµα χαρακτηρίζουµε: α) Την έλλειψη χρηµάτων που αντιµετωπίζει µια

Διαβάστε περισσότερα

f(x) Af(x) = και Mf(x) = f (x) x

f(x) Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων, τα γραφήματα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Κεφάλαιο 3 Οικονοµικά των Επιχειρήσεων Ε. Σαρτζετάκης 1 Καταναλωτική συµπεριφορά! Σκοπός αυτής της διάλεξης είναι να εξετάσουµε τον τρόπο µε τον οποίο οι καταναλωτές

Διαβάστε περισσότερα

/ P, παρά το γεγονός ότι στα διαγράµµατα συνεχίζουν

/ P, παρά το γεγονός ότι στα διαγράµµατα συνεχίζουν ΕΝΟΤΗΤΑ 4 4.1 ΟΡΙΣΜΟΣ ΤΗΣ ΠΡΟΣΦΟΡΑΣ ΚΑΙ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Ατοµική καµπύλη προσφοράς Προσδιοριστικοί παράγοντες της προσφοράς Η καµπύλη προσφοράς αποτελεί το γεωµετρικό τόπο όλων των σηµείων που αντιστοιχούν

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 7 ΘΕΜΑ Α A Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ Αν f σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα

Διαβάστε περισσότερα

που προκύπτουν στις δύο περιπτώσεις: (α) και (β) αντίστοιχα;

που προκύπτουν στις δύο περιπτώσεις: (α) και (β) αντίστοιχα; ΔΙΑΓΩΝΙΣΜΑ 9 Μέρος Α. (3.6 μονάδες) (α). Να γίνει το γράφημα της συνάρτησης f() = ln(+ ), και να βρεθεί γραφικά το σημείο ισοελαστικότητας. (β). Δίνεται η συνάρτηση f() = ln. Να διαπιστωθεί ότι είναι κυρτή

Διαβάστε περισσότερα

ε = 5 / 4. Αν η τιµή του αγαθού αυξηθεί κατά 10% ποια ποσοστιαία µεταβολή της

ε = 5 / 4. Αν η τιµή του αγαθού αυξηθεί κατά 10% ποια ποσοστιαία µεταβολή της ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 3 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής Α1. Σε δύο σηµεία της ίδιας ζήτησης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 8. Μέρος Α. 1. (3.2 μονάδες) Η συνάρτηση f(x) είναι ορισμένη στο διάστημα x 0,

ΔΙΑΓΩΝΙΣΜΑ 8. Μέρος Α. 1. (3.2 μονάδες) Η συνάρτηση f(x) είναι ορισμένη στο διάστημα x 0, Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 8. (3. μονάδες) Η συνάρτηση f() είναι ορισμένη στο διάστημα 0, και έχει το γράφημα του παραπλεύρως σχήματος. α). Να βρεθεί γραφικά το σημείο ισοελαστικότητας β). Να γίνουν τα γραφήματα

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε.

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε. Παράγωγος-Κλίση-Μονοτονία Άσκηση η : Να βρεθούν οι παράγωγοι των συναρτήσεων:, log, ) ln(, e, Λύση: Έχουμε ln ln ( ), f = = e = e R ln ln f ( ) = ( e ) = e ( ln ) = ln = ln, R Γενικά ισχύει: ( a ) = ln

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: 2 ώρες

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: 2 ώρες ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: ώρες Μέρος Α 1. (4 μονάδες) (α). Να γίνει το γράφημα μιας συνεχούς συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ 1. Αν f συνεχής στο [α, β] είναι f ( ) d 0 f ( ) 0 2. Αν f συνεχής και γν. αύξουσα στο [α, β] ισχύει ότι: f ( ) d 0. 3. Αν f ( ) d g( ) d, ό f ( ) g( ) ά [, ]. 4. Το σύνολο τιμών

Διαβάστε περισσότερα

Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του

Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του ΣΥΜΒΟΛΙΣΜΟΙ - ΕΝΝΟΙΕΣ Q ή q : Ποσότητα (Quantity) προϊόντος ρ, Ρ : τιμή (Price) προϊόντος ανά μονάδα προϊόντος. Συνάρτηση τηςζητησης; Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του. Δηλαδή Qd = f(p).

Διαβάστε περισσότερα

Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει

Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει το άτομο (i =,,n). - Πρόβλημα καταναλωτή: Κάθε άτομο (καταναλωτής)

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις

Διαβάστε περισσότερα

Οικονοµία. Βασικές έννοιες και ορισµοί. Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά

Οικονοµία. Βασικές έννοιες και ορισµοί. Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά Οικονοµία Βασικές έννοιες και ορισµοί Οικονοµική Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά των ανθρώπινων όντων αναφορικά µε την παραγωγή, κατανοµή και κατανάλωση υλικών αγαθών και υπηρεσιών σε έναν

Διαβάστε περισσότερα

1 Μερική παραγώγιση και μερική παράγωγος

1 Μερική παραγώγιση και μερική παράγωγος Περίγραμμα διάλεξης 5 Βιβλίο Chiang και Wainwright (κεφ 74,75,76) 1 Μερική παραγώγιση και μερική παράγωγος Έστω η συνάρτηση (x) όπου x R ή εναλλακτικά γράφουμε ( 1 2 ) Το διάνυσμα x περιέχει τις ανεξάρτητες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Ένθετο Κεφάλαιο ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Μικροοικονομική Ε. Σαρτζετάκης 1 Καταναλωτική συμπεριφορά Σκοπός αυτής της διάλεξης είναι να εξετάσουμε τον τρόπο με τον οποίο οι καταναλωτές

Διαβάστε περισσότερα

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ.

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ. Σύνολα Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το άλλο, δηλαδή

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΕΒ ΟΜΟ ΘΕΩΡΙΑ ΠΡΟΣΦΟΡΑΣ-ΕΝΝΟΙΑ ΚΟΣΤΟΥΣ

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΕΒ ΟΜΟ ΘΕΩΡΙΑ ΠΡΟΣΦΟΡΑΣ-ΕΝΝΟΙΑ ΚΟΣΤΟΥΣ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΕΒ ΟΜΟ ΘΕΩΡΙΑ ΠΡΟΣΦΟΡΑΣ-ΕΝΝΟΙΑ ΚΟΣΤΟΥΣ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 28-29 ΕΠΙΧ Μικροοικονοµική ιαφάνεια 1 ΝΟΜΟΣ ΠΡΟΣΦΟΡΑΣ Σύµφωνα

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΘΕΜΑ Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας,

Διαβάστε περισσότερα

Επαναληπτικές ερωτήσεις πολλαπλής επιλογής: Κεφάλαιο 1 ο

Επαναληπτικές ερωτήσεις πολλαπλής επιλογής: Κεφάλαιο 1 ο Επαναληπτικές ερωτήσεις πολλαπλής επιλογής: Κεφάλαιο 1 ο 1. Σε γραµµική ΚΠ της µορφής Y = a+ β X : α. Η µέγιστη ποσότητα για το αγαθό Υ παράγεται όταν Y = β β. Η µέγιστη ποσότητα για το αγαθό Χ παράγεται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α

ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 14 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Να βρεθεί συνάρτηση f() σταθερής

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f Συνάρτηση f, λέγεται η διαδικασία µε βάση την οποία σε κάθε στοιχείο χ ενός συνόλου Α αντιστοιχούµε ακριβώς ένα στοιχείο ενός άλλου συνόλου Β. Το σύνολο Α λέγεται πεδίο ορισµού ( ή σύνολο ορισµού ) της

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΩΡΙΑ. Γραµµική εξίσωση µε δύο αγνώστους, y Λέγεται κάθε εξίσωση της µορφής α + βy = γ, µε α 0 ή β 0. Γραφική παράσταση γραµµικής εξίσωσης Κάθε γραµµική εξίσωση α + βy = γ παριστάνει

Διαβάστε περισσότερα

Μικροοικονομική Ι. Ενότητα # 3: Θεωρία επιλογών καταναλωτή Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών

Μικροοικονομική Ι. Ενότητα # 3: Θεωρία επιλογών καταναλωτή Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Μικροοικονομική Ι Ενότητα # 3: Θεωρία επιλογών καταναλωτή Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Ας δούμε τα γραφήματα των συναρτήσεων των τριών τελευταίων παραδειγμάτων του τελευταίου μαθήματος. Στο πρώτο παράδειγμα το γράφημα καθεμιάς f () = είναι

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία

Μικροοικονοµική Θεωρία Μικροοικονοµική Θεωρία Θεωρία Χρησιµότητας και Προτιµήσεων. Καταναλωτικές Προτιµήσεις: Βασικά Αξιώµατα. Συνολική και οριακή χρησιµότητα Καµπύλη αδιαφορίας ή ισοϋψής καµπύλη χρησιµότητας. Ιστορική Αναδροµή

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 1. i) Να δείξετε ότι υπάρχει μοναδικό 3 3 0 1, ώστε: 3 e, 1 ln 0 + 0 = 0 ii) Δίνεται ο μιγαδικός 3 z = ln + i, > 0 a) Να βρείτε την ελάχιστη απόσταση k της εικόνας του z από την αρχή

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Επιστήμη Ι

Εισαγωγή στην Οικονομική Επιστήμη Ι Εισαγωγή στην Οικονομική Επιστήμη Ι Ελαστικότητα και Εφαρμογές Ελαστικότητα... μας επιτρέπει να αναλύσουμε την προσφορά και τη ζήτηση σε βάθος. αποτελεί μια μέτρηση για τον τρόπο με τον οποίο πόσοι παραγωγοί

Διαβάστε περισσότερα

2.10. Τιμή και ποσότητα ισορροπίας

2.10. Τιμή και ποσότητα ισορροπίας .. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή

Διαβάστε περισσότερα

Παράγωγοι ανώτερης τάξης

Παράγωγοι ανώτερης τάξης Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 3 / 1 0 / 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 1 Η. Ζήτηση, Προσφορά, Ελαστικότητες και Ισορροπία

ΔΙΑΛΕΞΗ 1 Η. Ζήτηση, Προσφορά, Ελαστικότητες και Ισορροπία ΔΙΑΛΕΞΗ 1 Η Ζήτηση, Προσφορά, Ελαστικότητες και Ισορροπία Μάθημα : Πολιτική Οικονομία και Δημόσια Οικονομική 1 Τί είναι αγορά; Είναι μια ομάδα αγοραστών και πωλητών ενός συγκεκριμένου αγαθού ή υπηρεσίας.

Διαβάστε περισσότερα

Ιδιότητες καµπυλών ζήτησης

Ιδιότητες καµπυλών ζήτησης Ιδιότητες καµπυλών ζήτησης Διάλεξη 6 ΖΗΤΗΣΗ Συγκριτική στατική ανάλυση των συναρτήσεων της κανονικής ζήτησης είναι η µελέτη του πώς οι συναρτήσεις κανονικής ζήτησης (, 2,) και (, 2,) αλλάζουν όταν οι τιµές,

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

Λύσεις Πρώτου Πακέτου Ασκήσεων

Λύσεις Πρώτου Πακέτου Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2016-17 Λύσεις Πρώτου Πακέτου Ασκήσεων Άσκηση 1 1. α) Αν βάλουµε την ποσότητα του αγαθού X στον οριζόντιο και την ποσότητα

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Προσφορά των Αγαθών

ΚΕΦΑΛΑΙΟ 4. Προσφορά των Αγαθών ΚΕΦΑΛΑΙΟ 4 Προσφορά των Αγαθών Καμπύλη Προσφοράς Υποθέσεις 1. Η επιχείρηση είναι αποδέκτης τιμών (price taker) και όχι διαμορφωτής τιμών (price maker). 2. H επιχείρηση στοχεύει στην μεγιστοποίηση του κέρδους.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Θεωρούμε μια συνάρτηση f συνεχή σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. α) Θα λέμε ότι η f είναι κυρτή ή στρέφει τα κοίλα άνω στο Δ, αν η f

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ιοίκηση Επιχειρήσεων & Οργανισµών Θεµατική Ενότητα: ΕΟ 34 - Οικονοµική Ανάλυση & Πολιτική Ακαδ. Έτος: 2009-10 ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΟΝΟΜΑ - ΕΠΩΝΥΜΟ:.

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική Γραπτή Εργασία # 4 (Δημόσια Οικονομική) Ακαδ. Έτος: 2006-7 Οδηγίες

Διαβάστε περισσότερα

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x ΘΕΜΑ A ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. Δίνεται η συνάρτηση f με τύπο: f ( ) ln,,. Να δείξετε ότι η f είναι αντιστρέψιμη και να βρείτε το πεδίο ορισμού της αντίστροφής της.. Να δικαιολογήσετε ότι η εξίσωση f ( ) a, a,

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x ΕΞΕΤΑΣΕΩΝ 05 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα. Αν η F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

E13 Βελτιστοποίηση µε Aβεβαιότητα

E13 Βελτιστοποίηση µε Aβεβαιότητα 79 E3 Βελτιστοποίηση µε Aβεβαιότητα Στην οικονοµία πολλές αποφάσεις παίρνονται σε περιβάλλον αβεβαιότητας. Η αβεβαιότητα αυτή εκφράζεται µε µια κατανοµή πιθανοτήτων όσον αφορά τις τιµές των διαφόρων παραµέτρων.

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν η συνάρτηση f είναι παραγωγίσιµη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β).. * Αν η συνάρτηση f

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α ΑΡΧΕΣ ΟΙΟΝΟΜΙΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η

Διαβάστε περισσότερα