x (t) u (t) = x 0 u 0 e 2t,

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "x (t) u (t) = x 0 u 0 e 2t,"

Transcript

1 Κεφάλαιο 7 Η ΕΝΝΟΙΑ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ Η ευαισθησία της λύσης μιας ΔΕ σε μεταβολές της αρχικής τιμής είναι έ- να θεμελιώδες ζήτημα στη θεωρία αλλά και στις εφαρμογές των διαφορικών εξισώσεων. Παράδειγμα Για τη ΔΕ ẋ = 2x, t 0 και x (0) = x 0 η λύση είναι x (t) = x 0 e 2t. Άρα η λύση x (t; x 0 ) εξαρτάται κατά συνεχή τρόπο από το x 0. Για κάθε άλλη λύση u (t) με u (0) = u 0 θα έχουμε x (t) u (t) = x 0 u 0 e 2t, δηλαδή για t > 0 οι τιμές των λύσεων απέχουν λιγότερο από ότι οι αρχικές τιμές, x (t) u (t) x 0 u 0. Ακριβέστερα, για κάθε ε > 0 υπάρχει δ > 0 : x 0 u 0 < δ x (t) u (t) < ε, (στο παράδειγμα αρκεί να πάρουμε δ = ε). Λέμε ότι οι λύσεις της ΔΕ είναι ευσταθείς για t > 0. Για t < 0 η αρχική διαφορά x 0 u 0 μεγενθύνεται κατά τον μεγάλο παράγοντα e 2t. Παρ ότι η λύση είναι συνεχής συνάρτηση του x 0, μικρές αλλαγές στο x 0 επιφέρουν μεγάλες αλλαγές στο x (t). Π.χ. αν x 0 u 0 = 10 3, τότε x ( 7) u ( 7) = 10 3 e Παράδειγμα Για τη ΔΕ ẋ = x, t 0 θα έχουμε x (t) u (t) = x 0 u 0 e t, δηλαδή όσο μικρό και αν είναι το x 0 u 0, για κάθε ε υπάρχει t > 0 : x (t) u (t) > ε, επομένως οι λύσεις της ΔΕ απέχουν πολύ περισσότερο από τις αρχικές τιμές x 0, u 0. Λέμε ότι οι λύσεις είναι ασταθείς. Η λύση x (t) είναι πολύ ευαίσθητη σε μεταβολές της αρχικής τιμής για t > 0, αλλά αναίσθητη για t <

2 134 ΚΕΦΑΛΑΙΟ 7. Η ΕΝΝΟΙΑ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ Συνήθως ενδιαφερόμαστε για την ευστάθεια των λύσεων για t > 0 ως εάν t αντιστοιχεί στο χρόνο ενός φυσικού προβλήματος. Οπως έχει τονισθεί αλλού, ένα πρόβλημα αρχικών τιμών που περιγράφει το μέλλον ενός φυσικού συστήματος πρέπει να είναι αναίσθητο σε μεταβολές των αρχικών τιμών. 7.1 Βασικοί ορισμοί Η έννοια της ευστάθειας ποσοτικοποιείται ως εξής. Θεωρούμε τη ΔΕ ẋ = f (x). (7.1.1) Μία λύση, u (t), της (7.1.1) θα λέγεται ευσταθής αν λύσεις που ξεκινούν κοντά στην u (t) κάποια στιγμή t 0 παραμένουν κοντά στην u (t) για κάθε t > t 0. Η απαίτηση αυτή διατυπώνεται ακριβέστερα στον επόμενο ορισμό και μάλιστα σε περισσότερες διαστάσεις. Θεωρούμε τη ΔΕ ẋ = f (x), x R n. (7.1.2) Ορισμός Η λύση u (t) της (7.1.2) λέγεται ευσταθής (κατά Liapunov) αν ε > 0 δ (ε) > 0 : κάθε λύση x (t) με x (0) u (0) < δ ικανοποιεί την x (t) u (t) < ε t > 0. Οπως έχει τονισθεί μία ειδική μορφή λύσεων της (7.1.2) είναι τα σημεία ισορροπίας. Θέλουμε να επαναλάβουμε τον παραπάνω ορισμό για σημεία ι- σορροπίας. Διαισθητικά περιμένουμε ότι τροχιές που ξεκινούν σε μία περιοχή ενός ευσταθούς σημείου ισορροπίας x 0, παραμένουν σ αυτήν για κάθε t > 0. Υπενθυμίζουμε πρώτα ότι μία ε περιοχή του σημείου x 0 είναι η ανοιχτή μπάλλα B ε (x 0 ) = {x R n : x x 0 < ε}, βλ. Παράρτημα. Εστω φ t (x) η λύση της (7.1.2) με αρχική τιμή x, δηλαδή φ 0 (x) = x. Θα λέμε ότι το x 0 είναι ευσταθές σημείο ισορροπίας της (7.1.2) αν ε > 0 υπάρχει δ > 0 : για κάθε x B δ (x 0 ) και t > 0 να έχουμε φ t (x) B ε (x 0 ). Για παράδειγμα το σύστημα ẋ = y, ẏ = x,

3 7.1. ΒΑΣΙΚΟ Ι ΟΡΙΣΜΟ Ι 135 έχει σημείο ισορροπίας την αρχή (0, 0) και κάθε άλλη λύση γράφεται x (t) cos t sin t x (0) x (t) = =, y (t) sin t cos t y (0) δηλαδή οι τροχιές είναι ομόκεντροι κύκλοι. Άρα για δοθέν ε > 0 αρκεί να επιλέξουμε δ = ε/2, οπότε εξασφαλίζουμε ότι τροχιές που ξεκινούν μέσα στο δίσκο x 2 + y 2 < δ 2 παραμένουν μέσα στο δίσκο x 2 + y 2 < ε 2 για κάθε t > 0. Το σημείο ισορροπίας x 0 είναι ασταθές αν δεν είναι ευσταθές. Τούτο σημαίνει ότι: Το x 0 είναι ασταθές σημείο ισορροπίας της (7.1.2), αν υπάρχει ε > 0 ώστε για κάθε δ > 0 υπάρχει x B δ (x 0 ) τέτοιο ώστε, για κάποιο t > 0 να έχουμε φ t (x) / B ε (x 0 ). Παράδειγμα Το σύστημα ẋ = y x 3 xy 2, ẏ = x y 3 x 2 y, έχει σημείο ισορροπίας την αρχή (0, 0), δηλαδή έχει λύση την u (t) = 0 t 0 που ικανοποιεί την αρχική συνθήκη u (0) = 0. Εστω x (t) = (x (t), y (t)) μία άλλη λύση. Το σύστημα γράφεται σε πολικές συντεταγμένες ως ṙ = r 3, θ = 1. (7.1.3) Ως γνωστόν r (t) εκφράζει την απόσταση της λύσης x (t) από την αρχή, δηλαδή από τη μηδενική λύση r (t) = x (t) u (t) = x (t) 0 = x 2 (t) + y 2 (t). Η λύση του (7.1.3) είναι r (t) = r r 2 0 t, θ (t) = θ 0 + t, δηλαδή η απόσταση x (t) 0 είναι φθίνουσα συνάρτηση του χρόνου, άρα κατά τον προηγούμενο ορισμό το (0, 0) είναι ευσταθές (ευσταθής εστία). Λύστε τη λογιστική εξίσωση ẋ = x (1 x) και αποδείξτε ότι το σημείο 1 είναι ευσταθές σημείο ισορροπίας και μάλιστα για κάθε λύση x (t) με x (0) > 0 ισχύει lim t x (t) = 1. Παράδειγμα Το σύστημα ẋ = y + x 3 xy 2, ẏ = x + y 3 + x 2 y,

4 136 ΚΕΦΑΛΑΙΟ 7. Η ΕΝΝΟΙΑ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ έχει σημείο ισορροπίας την αρχή (0, 0), δηλαδή έχει λύση την u (t) = 0 t 0 που ικανοποιεί την αρχική συνθήκη u (0) = 0. Εστω x (t) = (x (t), y (t)) μία άλλη λύση. Το σύστημα γράφεται σε πολικές συντεταγμένες ως ṙ = r 3, θ = 1, με λύση r (t) = r 0 1 2r 2 0 t, t < 1 2r0 2, θ (t) = θ 0 + t, δηλαδή η απόσταση x (t) 0 είναι αύξουσα συνάρτηση του χρόνου, άρα κατά τον προηγούμενο ορισμό το (0, 0) είναι ασταθές (ασταθής εστία). Και στα δύο παραπάνω παραδείγματα μπορούσαμε να αποφανθούμε για την ευστάθεια του σημείου ισορροπίας χωρις να λύσουμε το σύστημα. Π.χ. στο τελευταίο σύστημα είναι ṙ = r 3, επομένως ṙ > 0 άρα r (t) αύξουσα, δηλαδή η απόσταση της τροχιάς από την αρχή αυξάνει. Να εξετάσετε ως προς την ευστάθεια το σύστημα ẋ = x + x x 2 + y 2, ẏ = y + y x 2 + y 2. Ορισμός Το x 0 είναι ασυμπτωτικά ευσταθές σημείο ισορροπίας της (7.1.2) αν είναι ευσταθές και επιπλέον υπάρχει δ > 0 : για κάθε x B δ (x 0 ), lim φ t (x) = x 0. t Από τον ορισμό προκύπτει ότι δεν αρκεί μόνο η λύση να τείνει ασυμπτωτικά στο x 0, αλλά απαιτείται να παραμένει σε μία περιοχή του x 0 για κάθε t > 0. Αντιπαράδειγμα όπου η λύση πλησιάζει ασυμπτωτικά το x 0, αλλά δεν είναι ευσταθής μπορείτε να βρείτε στο Πρόβλημα 7 σελ. 253 του βιβλίου [5]. Πρόκειται για ένα σύστημα όπου μία ή περισσότερες τροχιές ξεκινούν κοντά σε ένα σημείο ισορροπίας, απομακρύνονται από αυτό και στη συνέχεια επανέρχονται και τείνουν ασυμπτωτικά προς το σημείο ισορροπίας. Παράδειγμα Το (0, 0) είναι ασυμπτωτικά ευσταθές σημείο ισορροπίας του συστήματος ẋ = x, ẏ = 2y, (ευσταθής κόμβος). Το (0, 0) είναι ευσταθές σημείο ισορροπίας του συστήματος ẋ = y, ẏ = x, αλλά όχι ασυμπτωτικά ευσταθές (κέντρο).

5 7.2. ΕΥΣΤ ΑΘΕΙΑ ΓΡΑΜΜΙΚ ΩΝ ΣΥΣΤΗΜ ΑΤΩΝ Ευστάθεια γραμμικών συστημάτων Το παρακάτω θεώρημα δείχνει ότι για γραμμικά συστήματα η ευστάθεια του σημείου ισορροπίας καθορίζεται από τις ιδιοτιμές του πίνακα A. Θεώρημα Για το γραμμικό σύστημα ẋ = Ax, x R n, α) αν όλες οι ιδιοτιμές του πίνακα A έχουν αρνητικό πραγματικό μέρος, τότε το σημείο ισορροπίας 0 είναι ασυμπτωτικά ευσταθές (επομένως για κάθε λύση ισχύει lim t x (t) = 0). β) αν μία ιδιοτιμή έχει θετικό πραγματικό μέρος, τότε το σημείο ισορροπίας 0 είναι ασυμπτωτικά ασταθές. γ) αν όλες οι ιδιοτιμές του πίνακα A έχουν πραγματικό μέρος αρνητικό ή μηδέν, τότε το σημείο ισορροπίας 0 είναι ευσταθές. Η απόδειξη προκύπτει από τη θεωρία που αναπτύξαμε στο Κεφάλαιο 5, βλ. Παράγραφο 5.3. Παράδειγμα Το σύστημα ẋ = Ax, με A = a b 0 b a c, a, b, c > 0, έχει ιδιοτιμές λ 1,2 = a ± ib, λ 3 = c. Επομένως η αρχή είναι ασταθής. Ειδικότερα, τροχιές που ξεκινούν στο επίπεδο x 1 x 2 παραμένουν σε αυτό και απομακρύνονται σπειροειδώς απο το 0. Τροχιές που ξεκινούν επί του άξονα x 3 παραμένουν σε αυτόν και πλησιάζουν ασυμπτωτικά το 0. Δηλαδή το επίπεδο x 1 x 2 είναι ο ασταθής υπόχωρος E u και ο άξονας x 3 είναι ο ευσταθής υπόχωρος E s. Το πορτραίτο φάσεων του συστήματος φαίνεται στο Σχήμα 7.1. Σχηματοποιούμε τις έννοιες του παραπάνω παραδείγματος κατά ακριβή τρόπο. Εστω E s ο υπόχωρος του R n που παράγεται από τα ιδιοδιανύσματα που αντιστοιχούν σε ιδιοτιμές με αρνητικό πραγματικό μέρος, E u ο υπόχωρος που παράγεται από τα ιδιοδιανύσματα που αντιστοιχούν σε ιδιοτιμές με θετικό πραγματικό μέρος και E c ο υπόχωρος που παράγεται από τα ιδιοδιανύσματα που αντιστοιχούν σε ιδιοτιμές με πραγματικό μέρος μηδέν. Παράδειγμα Ο πίνακας A =

6 138 ΚΕΦΑΛΑΙΟ 7. Η ΕΝΝΟΙΑ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ Σχήμα 7.1: Οι υπόχωροι E u (το επίπεδο x 1, x 2 ) και E s (ο άξονας x 3 ). 0 1 έχει ιδιοδιάνυσμα w 1 = u 1 + iv 1 = 1 + i 0 που αντιστοιχεί στην ιδιοτιμή λ 1 = 2 + i και u 2 = υπόχωρος E s είναι το επίπεδο x 1, x 2 και ο ασταθής υπόχωρος είναι ο άξονας x 3. Παράδειγμα Ο πίνακας A = που αντιστοιχεί στην ιδιοτιμή λ 2 = 3. Ο ευσταθής έχει λ 1 = i, u 1 = (0, 1, 0) T, v 1 = (1, 0, 0) T, λ 2 = 2, u 2 = (0, 0, 1) T. Ο υπόχωρος κέντρου E c είναι το επίπεδο x 1, x 2 και ο ασταθής υπόχωρος είναι ο άξονας x 3. Για το γραμμικό σύστημα ẋ = Ax, [5]) το παρακάτω θεώρημα. x R n αποδεικνύεται (βλέπε π.χ. Θεώρημα Ο R n είναι το ευθύ άθροισμα των υποχώρων E s, E u, E c, δηλαδή R n = E s E u E c. Οι υπόχωροι E s, E u, E c είναι αναλλοίωτοι υπό την ροή της ΔΕ με την έννοια ότι τροχιές που ξεκινούν σε κάποιον υπόχωρο παραμένουν σε αυτόν για κάθε t. Επιπλέον, x E s συνεπάγεται ότι lim t + φ (t, x) = 0, και x E u συνεπάγεται ότι lim t φ (t, x) =.

7 7.3. ΕΥΣΤ ΑΘΕΙΑ ΜΗ ΓΡΑΜΜΙΚ ΩΝ ΣΥΣΤΗΜ ΑΤΩΝ Ευστάθεια μη γραμμικών συστημάτων Οπως έχουμε σχολιάσει και αλλού, το Θεώρημα Hartman-Grobman δεν μας επιτρέπει να αποφανθούμε για την ευστάθεια μη υπερβολικών σημείων ισορροπίας. Στην περίπτωση που κάποια ιδιοτιμή είναι μηδέν ή είναι καθαρώς φανταστική δεν υπάρχει γενική μέθοδος αντιμετώπισης του προβλήματος. Μία προσέγγιση στο ζήτημα της ευστάθειας μη υπερβολικών σημείων ισορροπίας είναι η μέθοδος Liapunov. Ορισμός Εστω f (x 0 ) = 0 και E ένα ανοιχτό υποσύνολο του R n που περιέχει το x 0. Μία διαφορίσιμη συνάρτηση V : E R λέγεται συνάρτηση Liapunov αν έχει τις εξής ιδιότητες: (α) V (x 0 ) = 0 και (β) V (x) > 0 για x = x 0. Από τον κανόνα της αλυσίδας προκύπτει ότι η παράγωγος της βαθμωτής συνάρτησης V κατά μήκος της λύσης φ t (x) δίνεται από τον τύπο V (x) = d dt V (φ t (x)) t=0 = V (x) ẋ = V (x) f (x), βλ. (12.4.5) και (12.4.6) στο Παράρτημα. Επομένως αν V (x) είναι αρνητική, τότε η V ελαττώνεται κατά μήκος της τροχιάς. Θεώρημα (Liapunov). Εστω x 0 R n ένα σημείο ισορροπίας της ẋ = f (x) και V μία συνάρτηση Liapunov. (α) Αν V (x) 0, τότε το x 0 είναι ευσταθές. (β) Αν V (x) < 0 εκτός του σημείου x 0, τότε το x 0 είναι ασυμπτωτικά ευσταθές. (γ) Αν V (x) > 0, τότε το x 0 είναι ασταθές. Στον R 2 μπορούμε να δώσουμε μία γεωμετρική ερμηνεία στο θεώρημα. Οι ιδιότητες της V δείχνουν ότι κοντά στο x 0 το γράφημα της V είναι μία επιφάνεια που μοιάζει με παραβολοειδές. Επομένως οι ισοσταθμικές καμπύλες της είναι κλειστές, ακριβέστερα για μικρά c > 0, η εξίσωση V (x) = c παριστάνει μία οικογένεια κλειστών καμπυλών που περικυκλώνουν το x 0. Οταν V (x) < 0, μία τροχιά που τέμνει μία τέτοια καμπύλη οδεύει προς το εσωτερικό. Παράδειγμα Για να κατανοήσουμε την κεντρική ιδέα της μεθόδου θεωρούμε πάλι τον αρμονικό ταλαντωτή με απόσβεση mẍ + bẋ + kx = 0, ή ẋ = y ẏ = k m x b m y.

8 140 ΚΕΦΑΛΑΙΟ 7. Η ΕΝΝΟΙΑ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ Οπως γνωρίζουμε από την ανάλυση του πορτραίτου των φάσεων του συστήματος, το σημείο ισορροπίας (0, 0) είναι ευσταθές. Στο συμπέρασμα αυτό καταλήγουμε και ως εξής. Η ενέργεια του ταλαντωτή E (x, y) = 1 2 my kx2, είναι μία συνάρτηση Liapunov (ελέγξετε το). Κατά μήκος μιας λύσης (x (t), y (t)) έχουμε d E E (x, y) = dt x ẋ + E y ẏ = by2 0. Σύμφωνα με το παραπάνω θεώρημα, το (0, 0) είναι ευσταθές. Η γεωμετρική ερμηνεία είναι ότι αφού η E είναι φθίνουσα συνάρτηση του χρόνου, το άθροισμα my 2 + kx 2 διαρκώς ελαττώνεται, επομένως και η απόσταση του (x (t), y (t)) από το (0, 0) ελαττώνεται. Παράδειγμα Για το σύστημα η αρχή είναι σημείο ισορροπίας και Df (0) = ẋ = 2y + yz ẏ = x xz ż = xy Ο Df (0) έχει ιδιοτιμές λ 1 = 0, λ 2,3 = ±2i, δηλαδή η αρχή x = 0 είναι μη υπερβολικό σημείο ισορροπίας και κατά συνέπεια το θεώρημα Hartman-Grobman δεν μας επιτρέπει να αποφανθούμε για την ευστάθεια του. Αναζητούμε μία κατάλληλη. συνάρτηση Liapunov. Δοκιμάζουμε μία συνάρτηση της μορφής V (x) = ax 2 + by 2 + cz 2, a, b, c > 0. Η παράγωγός της κατά μήκος των τροχιών V (x) = V (x) f (x) υπολογίζεται εύκολα V (x) = 2 (a b + c) xyz + 2 ( 2a + b) xy. Αν λοιπόν επιλέξουμε b = 2a και c = a θα έχουμε V (x) > 0 για x = 0 και V (x) = 0 για κάθε x. Σύμφωνα με το προηγούμενο θεώρημα το 0 είναι ευσταθές. Επιπλέον διαλέγοντας c = a = 1 και b = 2 βλέπουμε ότι οι τροχιές του συστήματος κείνται στις επιφάνειες των ελλειψοειδών x 2 + 2y 2 + z 2 = C 2.

9 7.3. ΕΥΣΤ ΑΘΕΙΑ ΜΗ ΓΡΑΜΜΙΚ ΩΝ ΣΥΣΤΗΜ ΑΤΩΝ 141 Η μέθοδος Liapunov εφαρμόζεται επιτυχώς στα λεγόμενα δυναμικά συστήματα βαθμίδας (gradient dynamical systems). Θεωρούμε το δυναμικό σύστημα ẋ = V (x), όπου V είναι βαθμωτή συνάρτηση κλάσεως C 2 σε ένα ανοιχτό υποσύνολο E του R n. Είναι προφανές ότι τα σημεία ισορροπίας του συστήματος ταυτίζονται με τα κρίσιμα σημεία της V, δηλαδή τα σημεία όπου V (x) = 0, βλ. Παράγραφο Η ροή του συστήματος είναι σχετικώς α- πλή διότι οι τροχιές είναι εφαπτόμενες στο V (x), επομένως είναι κάθετες στις ισοσταθμικές επιφάνειες της V, δηλαδή στις επιφάνειες V (x) = C. Πρόταση Για κάθε σύστημα της μορφής ẋ = V (x), η V είναι φθίνουσα συνάρτηση κατά μήκος των τροχιών, δηλαδή V (x) 0 στο E. Είναι V (x) = 0 αν και μόνο αν το x είναι σημείο ισορροπίας του συστήματος. Αν x 0 είναι ένα απομονωμένο σημείο ελαχίστου της V, τότε το x 0 είναι ασυμπτωτικά ευσταθές. Απόδειξη. Οι δύο πρώτοι ισχυρισμοί προκύπτουν αμέσως παραγωγίζοντας την V κατά μήκος μιας τροχιάς του συστήματος V (x) = V (x) ẋ = V (x) V (x) = V (x) 2. Για τον τρίτο ισχυρισμό αρκεί να παρατηρήσουμε ότι η V (x) V (x 0 ) είναι μία συνάρτηση Liapunov σε μία περιοχή του x 0 γνησίως φθίνουσα κατά μήκος των τροχιών του συστήματος. Ασκήσεις 1. Προσδιορίστε την ευστάθεια των σημείων ισορροπίας για το ẋ = f (x) όπου f (x) δίνεται από x 2 y 2 1 y x y + x 2 (a), (b), (c). 2y 2y 2 2xy 4x + y 2 2. Βρείτε κατάλληλη συνάρτηση Liapunov για να εξετάσετε την ευστάθεια της αρχής για το σύστημα ẋ ẏ = ż y xy 2 + z 2 x 3 x + z 3 x 3 xz zx 2 yz 2 z 5 Τι πληροφορίες παίρνουμε από την ανάλυση του γραμμικού συστήματος ẋ =Df (0) x;.

10

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις ẋ 1 f 1 (x 1 x 2 ) ẋ 2 f 2 (x 1 x 2 ) (501) Το σύστημα αυτό γράφεται σε διανυσματική

Διαβάστε περισσότερα

Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή

Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Μία ειδική κατηγορία διδιάστατων δυναμικών συστημάτων είναι τα λεγόμενα συντηρητικά συστήματα. Ο όρος προέρχεται από την μηχανική, όπου για υλικό σημείο που δέχεται δύναμη

Διαβάστε περισσότερα

Κεφάλαιο 6 ΤΟ ΘΕΩΡΗΜΑ ΤΗΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗΣ. 6.1 Το Θεώρημα Hartman-Grobman

Κεφάλαιο 6 ΤΟ ΘΕΩΡΗΜΑ ΤΗΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗΣ. 6.1 Το Θεώρημα Hartman-Grobman Κεφάλαιο 6 ΤΟ ΘΕΩΡΗΜΑ ΤΗΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗΣ Στο κεφάλαιο αυτό θα δούμε ότι η συμπεριφορά των λύσεων ενός δυναμικού συστήματος ẋ = f (x) κοντά σε ένα σημείο ισορροπίας x 0, καθορίζεται από το γραμμικό τμήμα

Διαβάστε περισσότερα

Στο Κεφάλαιο αυτό θα θεωρήσουμε δυναμικά συστήματα της μορφής

Στο Κεφάλαιο αυτό θα θεωρήσουμε δυναμικά συστήματα της μορφής Κεφάλαιο 9 ΔΙΑΚΛΑΔΩΣΕΙΣ ΣΗΜΕΙΩΝ ΙΣΟΡΡΟΠΙΑΣ Στο Κεφάλαιο αυτό θα θεωρήσουμε δυναμικά συστήματα της μορφής ẋ = f (x, µ), (9.0.1) όπου το διανυσματικό πεδίο f εξαρτάται από μία παράμετρο µ και είναι αρκούντως

Διαβάστε περισσότερα

Κεφάλαιο 4 ΜΟΝΟΔΙΑΣΤΑΤΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. 4.1 Η ροή μιας διαφορικής εξίσωσης. Θεωρούμε πάλι το πρόβλημα αρχικών τιμών. x (0) = x 0, (4.1.

Κεφάλαιο 4 ΜΟΝΟΔΙΑΣΤΑΤΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. 4.1 Η ροή μιας διαφορικής εξίσωσης. Θεωρούμε πάλι το πρόβλημα αρχικών τιμών. x (0) = x 0, (4.1. Κεφάλαιο 4 ΜΟΝΟΔΙΑΣΤΑΤΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4.1 Η ροή μιας διαφορικής εξίσωσης Θεωρούμε πάλι το πρόβλημα αρχικών τιμών ẋ = f (x), x (0) = x 0, (4.1.1) όπου το διανυσματικό πεδίο f είναι κλάσεως C 1 σε ένα

Διαβάστε περισσότερα

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους:

,..., xn) Οι συναρτήσεις που ορίζουν αυτό το σύστημα υποτίθενται παραγωγίσιμες με συνεχείς παραγώγους: ΜΑΘΗΜΑ 6 ο : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΙΣΟΡΡΟΠΙΑΣ (ΣΥΝΑΡΤΗΣΕΙΣ LYAPUNOV) O Aleksadr Lyapuv (857-98) έθεσε τις βάσεις της μαθηματικής θεωρίας της ευστάθειας που φέρει το όνομά του εμπνευσμένος από μια απλή

Διαβάστε περισσότερα

ẋ = f(x), x = x 0 όταν t = t 0,

ẋ = f(x), x = x 0 όταν t = t 0, Κεφάλαιο 2 ΤΟ ΘΕΩΡΗΜΑ ΥΠΑΡΞΗΣ ΚΑΙ ΜΟΝΑΔΙΚΟΤΗΤΑΣ 2.1 Πρόβλημα αρχικών τιμών Στο κεφάλαιο αυτό θα δούμε ότι το πρόβλημα αρχικών τιμών (ΑΤ) ẋ = f(x), x = x 0 όταν t = t 0, έχει λύση και μάλιστα μοναδική για

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέματα και Λύσεις. Ox υπό την επίδραση του δυναμικού. x 01

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέματα και Λύσεις. Ox υπό την επίδραση του δυναμικού. x 01 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 1 Θέματα και Λύσεις ΘΕΜΑ 1 Υλικό σημείο κινείται στον άξονα x' Ox υπό την επίδραση του δυναμικού 3 ax x V ( x) a x, a 3 α) Βρείτε τα σημεία ισορροπίας και την ευστάθειά τους

Διαβάστε περισσότερα

Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής.

Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 55 Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. Η δισδιάστατη γραμμική δυναμική ορίζεται στο ευκλείδειο επίπεδο από ένα σύστημα

Διαβάστε περισσότερα

ΑΝΑΛΛΟΙΩΤΑ ΣΥΝΟΛΑ, ΟΡΙΑΚΑ ΣΥΝΟΛΑ

ΑΝΑΛΛΟΙΩΤΑ ΣΥΝΟΛΑ, ΟΡΙΑΚΑ ΣΥΝΟΛΑ Κεφάλαιο 8 ΑΝΑΛΛΟΙΩΤΑ ΣΥΝΟΛΑ, ΟΡΙΑΚΑ ΣΥΝΟΛΑ Θεωρούμε πάλι μία ΔΕ ẋ = f (x), όπου το διανυσματικό πεδίο f είναι κλάσεως C 1 σε ένα ανοιχτό υποσύνολο E του R n και έστω φ η ροή της. 8.1 Βασικοί ορισμοί Το

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ Ορισμός. Αν τα και είναι τα μοναδιαία διανύσματα των αξόνων και αντίστοιχα η συνάρτηση που ορίζεται από τη σχέση όπου (συνιστώσες) είναι

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Πραγματικές Συναρτήσεις Πολλών Μεταβλητών (μέρος 1) Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Βαθμωτές Συναρτήσεις Πολλών Μεταβλητών Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βαθμωτές Συναρτήσεις Πολλών Μεταβλητών :

Διαβάστε περισσότερα

Διαφορικός Λογισμός πολλών μεταβλητών

Διαφορικός Λογισμός πολλών μεταβλητών Διαφορικός Λογισμός πολλών μεταβλητών Πρόχειρες σημειώσεις Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Τα στοιχεία του R n είναι όλα τα n-διάστατα διανύσματα ή, ισοδύναμα,

Διαβάστε περισσότερα

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6 ΜΑΘΗΜΑ : ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Θεωρούμε ένα σύστημα γραμμικών διαφορικών εξισώσεων με σταθερούς πραγματικούς συντελεστές εκφρασμένο στις καρτεσιανές συντεταγμένες

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις

Συνήθεις Διαφορικές Εξισώσεις ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μεταπτυχιακό Μάθημα: Συνήθεις Διαφορικές Εξισώσεις Καθηγητές: Α Μπούντης - Σ Πνευματικός Ακαδημαϊκό έτος 11-1 ΕΞΕΤΑΣΗ ΙΟΥΝΙΟΥ ΤΟ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΤΥΠΟ ΤΩΝ LOKA-VOLERRA

Διαβάστε περισσότερα

Γεωµετρικη Θεωρια Ελεγχου

Γεωµετρικη Θεωρια Ελεγχου Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Χειµερινό Εξάµηνο 2016-2017 Γεωµετρικη Θεωρια Ελεγχου εύτερη Εργασία 1. Βρείτε δύο διαφορετικά παραδείγµατα συστηµάτων στο

Διαβάστε περισσότερα

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14 1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική Κατηγορίες f.p. σε γραμμικά διαφορικά συστήματα 1 ης τάξης Έστω το γενικό

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT

ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT Αρβανιτογεώργος Ανδρέας Πατέρας Ιωάννης ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ Στόχος Εργασίας Η εύρεση των γεωδαισιακών καμπυλών πάνω σε μια επιφάνεια.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Βαθμωτές Συναρτήσεις Πολλών Μεταβλητών Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βαθμωτές Συναρτήσεις Πολλών Μεταβλητών :

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (

Διαβάστε περισσότερα

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Ο Α1. Έστω η συνάρτηση f ( x,,1. Nα αποδείξετε ότι η f είναι παραγωγίσιμη στο. v v 1 και ισχύει : x vx A2. Να διατυπώσετε και να ερμηνεύσετε γεωμετρικά το Θεώρημα Bolzano.

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Βαθμωτές Συναρτήσεις Πολλών Μεταβλητών Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βαθμωτές Συναρτήσεις Πολλών Μεταβλητών f

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα

Διαβάστε περισσότερα

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 16/5/2000 Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Στη Χαµιλτονιανή θεώρηση η κατάσταση του συστήµατος προσδιορίζεται κάθε στιγµή από ένα και µόνο σηµείο

Διαβάστε περισσότερα

Ομοκλινικό Θεώρημα Melnikov

Ομοκλινικό Θεώρημα Melnikov Ομοκλινικό Θεώρημα Melnikov Ζαφειράκογλου Απόστολος ΠΜΣ Υπολ.Φυσικής Ζαφειράκογλου Απόστολος (ΠΜΣ Υπολ.Φυσικής) Ομοκλινικό Θεώρημα Melnikov 1 / 40 Μη γραμμική Δυναμική Εισαγωγή Γενικά στοιχεία. Στην Μη-Γραμμική

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

Γεωµετρικη Θεωρια Ελεγχου

Γεωµετρικη Θεωρια Ελεγχου Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Χειµερινό Εξάµηνο 2018-2019 Γεωµετρικη Θεωρια Ελεγχου εύτερη Εργασία, 2018-2019 1. ώστε δύο διαφορετικά παραδείγµατα συστηµάτων

Διαβάστε περισσότερα

Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων.

Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων. Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων. 1. Ποιά από τα παρακάτω σύνολα είναι συμπαγή; Μία κλειστή μπάλα, μία ανοικτή μπάλα, ένα ανοικτό ορθ. παραλληλεπίπεδο, ένα ευθ. τμήμα (στον R n ), μία

Διαβάστε περισσότερα

Συναρτήσεις Πολλών Μεταβλητών. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Συναρτήσεις Πολλών Μεταβλητών. ΗΥ111 Απειροστικός Λογισμός ΙΙ ΗΥ-111 Απειροστικός Λογισμός ΙΙ Συναρτήσεις Πολλών Μεταβλητών Παραδείγματα συνεχή/διακριτά : t t Καρδιογράφημα Σήμα φωνής Σεισμικό σήμα Παραδείγματα : Ασπρόμαυρες Εικόνες Χάρτης Θερμοκρασίας Ακτινογραφία

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ds ds ds = τ b k t (3)

ds ds ds = τ b k t (3) Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 73 8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ρισμός της συνέχειας Έστω οι συναρτήσεις g h παρακάτω σχήματα των οποίων οι γραφικές παραστάσεις δίνονται στα C h 6 l ( C l g( C g l l (a Παρατηρούμε ότι:

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ. Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),

Διαβάστε περισσότερα

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1 I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα

Διαβάστε περισσότερα

και αναζητούμε τις λύσεις του:

και αναζητούμε τις λύσεις του: ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 3. ΔΙΣΔΙΑΣΤΑΤΗ ΓΡΑΜΜΙΚΗ ΔΥΝΑΜΙΚΗ Η γραμμική δυναμική που ορίζεται στο ευκλείδειο επίπεδο εκφράζεται με ένα σύστημα γραμμικών διαφορικών εξισώσεων με

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012 ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: : : : ma 3 για κάθε Να αποδείξετε ότι για κάθε ισχύει: 3 3 Τι συμπεραίνετε για τις παραπάνω νόρμες του Αν θεωρήσουμε

Διαβάστε περισσότερα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα 33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις. ΚΕΦΑΛΑΙΟ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Σκοπός: Σκοπός του κεφαλαίου είναι αρχικά η υπενθύμιση βασικών εννοιών που αφορούν τον ορισμό, τις πράξεις και τη γραφική παράσταση της συνάρτησης αφ ενός και η μελέτη της

Διαβάστε περισσότερα

Θεώρημα Bolzano. ΑΠΑΝΤΗΣΗ. Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει

Θεώρημα Bolzano. ΑΠΑΝΤΗΣΗ. Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει Θεώρημα Bolzno. ΑΠΑΝΤΗΣΗ Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει f f 0, τότε υπάρχει ένα, τουλάχιστον, 0 (, ) τέτοιο, ώστε f( 0

Διαβάστε περισσότερα

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b) 1 ΑΝΑΛΥΣΗ ΙΙ Μερική Παράγωγος Μερικές Παράγωγοι Ορισμός 1: a) Εστω f(x y) : U R R μία συνάρτηση δύο μεταβλητών και (a b) ένα σημείο του U. Θεωρούμε ότι μεταβάλλεται μόνο το x ένω το y παραμένει σταθερό

Διαβάστε περισσότερα

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y)

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y) 11.7. Aκρότατα και σαγματικά σημεία 903 39. Εκτίμηση μέγιστου σφάλματος Έστω ότι u e sin και ότι τα,, και μπορούν να μετρηθούν με μέγιστα δυνατά σφάλματα 0,, 0,6, και / 180, αντίστοιχα. Εκτιμήστε το μέγιστο

Διαβάστε περισσότερα

Λύσεις στο Επαναληπτικό Διαγώνισμα 2

Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Για τυχόν παρατηρήσεις, απορίες ή λάθη που θα βρείτε, στείλτε μου

Διαβάστε περισσότερα

3ο Διαγώνισμα στις παραγώγους

3ο Διαγώνισμα στις παραγώγους wwwaskisopolisgr ΘΕΜΑ Α ο Διαγώνισμα στις παραγώγους Διάρκεια:,5 ώρες Α α) Αν μια συνάρτηση f είναι γνησίως αύξουσα σε ένα διάστημα Δ, τότε f στο Δ; Δώστε παράδειγμα β) Αν μια συνάρτηση f είναι παραγωγίσιμη

Διαβάστε περισσότερα

= x. = x1. math60.nb

= x. = x1. math60.nb MH ΓΡΑΜΜΙΚΑ ΑΥΤΟΝΟΜΑ ΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΙΑΣΤΑΣΕΩΝ Χώρος Φάσεων : Επίπεδο (, Φασικές Τροχιές : Επίπεδες µονοπαραµετρικές καµπύλες (t (t χωρίς εγκάρσιες τοµές. Οι φασικές τροχιές µπορούν να υπολογιστούν από

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών

Διαβάστε περισσότερα

x y Ax By Εξίσωση Κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου

x y Ax By Εξίσωση Κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου ΚΥΚΛΟΣ Εξίσωση Κύκλου Έστω Oy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο O(, ) και ακτίνα ρ έχει εξίσωση y y ε Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου y ρ στο σημείο του

Διαβάστε περισσότερα

Μεθοδολογία Υπερβολής

Μεθοδολογία Υπερβολής Μεθοδολογία Υπερβολής Υπερβολή ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερή και μικρότερη από την απόσταση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI Ιουνίου 202 Απαντήστε και στα 4 Θέματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ Άσκηση. Έστω f συνεχής στο διάστημα I και έστω ότι ισχύει f() για κάθε I. Αν η f 2 είναι παραγωγίσιμη στο I, αποδείξτε ότι η f είναι παραγωγίσιμη στο

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

dx cos x = ln 1 + sin x 1 sin x.

dx cos x = ln 1 + sin x 1 sin x. Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6. a2 x 2 y 2. = y

ΛΥΣΕΙΣ 6. a2 x 2 y 2. = y ΛΥΣΕΙΣ 6. Οι ασκήσεις από το βιβλίο των Marsden - romba. 7.5. Θεωρούμε την παραμετρικοποίηση rx, y = x, y, a 2 x 2 y 2, όπου το x, y διατρέχει τον δίσκο στο xy-επίπεδο που ορίζεται από την x 2 +y 2 a 2.

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 Βιομαθηματικά BIO-156 Παραγώγιση Ντίνα Λύκα Εαρινό Εξάμηνο, 213 lika@biology.uoc.gr Μια συνάρτηση είναι παραγωγίσιμη στο αν και μόνο αν το όριο lim h + h h υπάρχει. Αν το όριο υπάρχει θα το ονομάζουμε

Διαβάστε περισσότερα

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α, Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,

Διαβάστε περισσότερα

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης. Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο 2016-17. Φυλλάδιο ασκήσεων επανάληψης. 1. Για καθεμία από τις παρακάτω συναρτήσεις ελέγξτε βάσει του ορισμού της παραγωγισιμότητας αν είναι παραγωγίσιμη στο αντίστοιχο

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι Ιανουαρίου, 9 Καλή σας επιτυχία. Πρόβλημα Α Ένα σωματίδιο μάζας m κινείται υπό την επίδραση του πεδίου δύο σημειακών ελκτικών κέντρων, το ένα εκ των οποίων

Διαβάστε περισσότερα

5 Παράγωγος συνάρτησης

5 Παράγωγος συνάρτησης 5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.κυρτή 3.Κοίλη 4.Ιδιότητες κυρτών/κοίλων συναρτήσεων 5.Σημεία καμπής 6.Παραβολική προσέγγιση(επέκταση) ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

X v (q) = ( x v (q), y v (q), z v (q) ) x u (q) y u (q) z u (q) x v (q) y v (q) z v (q) X 1 u (q) X 1. det. X 2 u (q) X 2. v (q)

X v (q) = ( x v (q), y v (q), z v (q) ) x u (q) y u (q) z u (q) x v (q) y v (q) z v (q) X 1 u (q) X 1. det. X 2 u (q) X 2. v (q) Κεφάλαιο 2 Κανονικές επιφάνειες Σύνοψη Προκειμένου να ορίσουμε την έννοια της επιφάνειας στον R 3, έχουμε δύο δυνατές προσεγγίσεις. Με την πρώτη μπορούμε να ορίσουμε μια επιφάνεια ως ένα υποσύνολο του

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

8. Πολλαπλές μερικές παράγωγοι

8. Πολλαπλές μερικές παράγωγοι 94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής

Διαβάστε περισσότερα

< F ( σ(h(t))), σ (h(t)) > h (t)dt.

< F ( σ(h(t))), σ (h(t)) > h (t)dt. ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ IV, /6/9 Θέμα 1. Εστω : a 1, β 1 ] R μια C 1 καμπύλη. Μια C 1 καμπύλη ρ : a, β] R λέγεται αναπαραμετρικοποίηση της αν υπάρχει h : a, β] a 1, β 1 ], 1 1 επί και

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους. 7 3.5 Το θεώρημα Hah-Baach σε τοπολογικούς διανυσματικούς χώρους. Εξετάζουμε καταρχήν τη σχέση μεταξύ ενός μιγαδικού διανυσματικού χώρου E και του υποκείμενου πραγματικού χώρου E R. Έστω E μιγαδικός διανυσματικός

Διαβάστε περισσότερα

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: Φεβρουαρίου Ημερομηνία παράδοσης της Εργασίας: 6 Μαρτίου Πριν από την λύση κάθε άσκησης καλό είναι να

Διαβάστε περισσότερα

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1, ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Αποδεικνύουμε το θεώρημα στην περίπτωση που

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ A. Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα. Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις

Διαβάστε περισσότερα

4. Να βρεθεί η προβολή του σημείου Ρ=(6,1,5) πάνω στην ευθεία ε: x ={3,1,2}+λ{1,2,1},, και η απόστασή του από αυτήν.

4. Να βρεθεί η προβολή του σημείου Ρ=(6,1,5) πάνω στην ευθεία ε: x ={3,1,2}+λ{1,2,1},, και η απόστασή του από αυτήν. ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙI Α Σ Κ Η Σ Ε Ι Σ ΑΚΑΔ. ΕΤΟΣ 009-00 Κ Ε Φ Α Λ Α Ι Ο V Ι. Δίνονται οι ευθείες δ: x ={,0,0}+λ{,,}, ε: x -x + x -=0, x -x =. Να εξετάσετε αν οι ευθείες δ, ε είναι ασύμβατες. Αν ναι, βρείτε

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1

1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1 1 Πολυώνυμα και συσχετικός χώρος Ορισμός 3.1 Ενα μονώνυμο N στις μεταβλητές x 1, x 2,..., x n είναι ένα γινόμενο της μορφής x m 1 2...x m n n, όπου όλοι οι εκθέτες είναι φυσικοί αριθμοί. Ο βαθμός του μονωνύμου

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ IV.3 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ης ΤΑΞΕΩΣ.Γενική λύση.χωριζόμενων μεταβλητών 3.Ρυθμοί 4.Γραμμικές 5.Γραμμική αυτόνομη 6.Bernoulli αυτόνομη 7.Aσυμπτωτικές ιδιότητες 8.Αυτόνομες 9.Σταθερές τιμές.διάγραμμα ροής.ασυμπτωτική

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y.

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y. ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (/7/ 203) ΘΕΜΑ. (α) Δίνεται η συνάρτηση f : R 2 R με f(x, y) = xy x + y, αν (x, y) (0, 0) και f(0, 0) = 0. Δείξτε ότι η f είναι συνεχής στο (0, 0). (β) Εξετάστε αν

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 6 Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ / ΤΜΗΜΑ : ΘΕΤΙΚΩΝ & ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ 2018

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ / ΤΜΗΜΑ : ΘΕΤΙΚΩΝ & ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ 2018 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ / ΤΜΗΜΑ : ΘΕΤΙΚΩΝ & ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ 18 ΑΡΙΘΜΟΣ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α Α1. Πότε η ευθεία : λέγεται κατακόρυφη

Διαβάστε περισσότερα