LABORATORIJSKE VEŽBE IZ FIZIKE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "LABORATORIJSKE VEŽBE IZ FIZIKE"

Transcript

1 LABORATORIJSKE VEŽBE IZ FIZIKE Ime i prezime: Broj indeksa:

2 UPUTSTVO ZA IZRADU LABORATORIJSKIH VEŽBI IZ FIZIKE. Pre početka sa radom pažljivo se upoznati sa napomenama iz ovog uputstva!. Na početku opisa svake vežbe nalazi se teorijski uvod sa kojim studenti moraju biti upoznati tokom izrade vežbe. 3. Prilikom merenja pratiti redosled stavki u uputstvu, a za sve nejasnoće obratiti se predmetnom asistentu. 4. Izmereni podaci, izračunate vrednosti i grafici se popunjavaju u prostoru namenjenom u te svrhe u ovom priručniku. 5. U tabelama se pored kolona u kojima se beleže izmereni podaci, popunjavaju i kolone u kojima se unose srednja vrednost i greške merenja. Neka su izmerene vrednosti v = 0 ms, v =. 4 ms, v 3 = ms, v 4 =. 33 ms, v 5 = ms. Srednja vrednost se računa: v + v + v3 + v4 + v v sr = = =.096 ms broj merenja 5 U narednoj koloni se upisuju vrednosti apsolutnih grešaka Δ v, tj. razlike izmerenih vrednosti i srednje vrednosti: Δv = v v =.096 ms Δv Δv Δv Δv = v = v 3 = v = v 4 5 sr v v v v sr sr sr sr = ms =.34 ms = ms =.346 ms U sledećoj koloni upisuje se relativna ili procentualna greška δ v(%). Relativna greška predstavlja odnos apsolutnih grešaka sa srednjom vrednošću predstavljen u procentima: Δv Δv Δv3 δ v = 00% = 9.88 %, δ v = 00% =.74 %, δ v3 = 00% =.3 %, v v v sr Δv4 Δv5 δ v4 = 00% =. %, δ v5 = 00% = 8.5 %. v v sr sr sr sr U poslednjoj koloni se upisuje standardna devijacija σ : σ v = ± ( Δv ) + ( Δv ) + ( Δv ) + ( Δv ) + ( Δv ) 3 broj merenja 4 5 = = (.096) (.346) =.67 ms

3 3 Kada su završena merenja i računanja popunjena tabela treba da izgleda ovako: R. broj v ( ms ) v sr ( ms ) Δv ( ms ) δ (%) σ ( ms ) Na kraju, u prostoru predvidjenom za to, se upisuju izračunate vrednosti: v = v ± ms =.096 ±.67 ms ( ) ( ) sr σ v VAŽNE NAPOMENE:. Prilikom bilo kakvog računanja neophodno je dimenzije (jedinice) izmerenih vrednosti prebaciti u osnovne, tj. minute u sekunde, grame u kilograme itd.. Nakon što je vežba odrađena i izračunati su svi potrebni podaci, vežba se podnosi predmetnom asistentu na pregled. Tek kada asistent proveri rezultate i overi vežbu, smatra se da je student uspešno završio vežbu. 3. Neophodno je da student overi svih šest vežbi kako bi u indeksu dobio potpis predmetnog asistenta. 4. Bez odrađenih vežbi i potpisa predmetnog asistenta u indeksu ne može se izaći na polaganje ispita iz Fizike! v v

4 4. VEŽBA a) ODREĐIVANJE UBRZANJA ZEMLJINE TEŽE POMOĆU MATEMATIČKOG KLATNA Teorijski uvod Sva tela koja padaju sa relativno male visine u odnosu na površinu Zemlje kreću se, ako se zanemari trenje vazduha, konstantnim ubrzanjem g. Ovo ubrzanje je poznato pod nazivom ubrzanje Zemljine teže ili gravitaciono ubrzanje. Sila koja izaziva ovo ubrzanje naziva se sila teže, težina tela ili sila gravitacije i može se izraziti r r r r na sledeći način Q = mg. Vektori Q i g imaju isti pravac i smer i orijentisani su prema centru Zemlje. Pod matematičkim klatnom se podrazumeva telo zanemarljive mase i dimenzija obešeno o neistegljivu nit, koje može da osciluje pod dejstvom sile Zemljine teže. Period oscilovanja metematičkog klatna izračunava se po obrascu l T = π, g gde je l dužina klatna, a g ubrzanje Zemljine teže. Iz ovog izraza dobija se da ubrzanje Zemljine teže iznosi l g = 4π, T odakle se može uočiti linearna zavisnost između dužine klatna i kvadrata perioda oscilovanja klatna. Uputstvo za rad:. Izmeriti rastojanje od vrha konca do vrha gornje tangencijalne površine kuglice (l ) i rastojanje od vrha konca do donje tangencijalne površine (l ). Naći srednju vrednost l i l kao l = ( l + l ) / i nju koristiti u daljem radu.. Izvesti kuglicu iz ravnotežnog položaja (voditi računa da se ne jave eliptične oscilacije klatna) i meriti τ - vreme trajanja 30 oscilacija. 3. Postupak ponoviti 5 puta za različite vrednosti broja oscilacija (između 30 i 50). l 4. Izračunati ubrzanje Zemljine teže pomoću obrasca g = 4π u koji treba T zameniti vrednosti perioda oscilovanja matematičkog klatna koje se izračunavaju korišćenjem obrasca T = τ n, gde je τ - vreme za koje telo izvrši n oscilacija i n - broj oscilacija. Dobijene podatke uneti u tabelu. Iznad tabele napisati vrednost dužine klatna l.

5 5 l = m Red. br. merenja n τ (s) T (s) (m/s g ) g (m/s ) sr ) Δ g (m/s δ (%) σ (m/s g ) g g = ( g ± ) ms = ( ± ) ms sr σ g 5. Postupak iz tačaka. i. ponoviti za 5 različitih dužina klatna i podatke uneti u tabelu: Za n = 30 Red. br. merenja l (cm) l (cm) l (cm) τ (s) T (s ) a zatim naći ubrzanje Zemljine teže sa grafika l = f (T ), B O nacrtanim pomoću podataka iz prethodne tabele, A T (s)

6 6 O T (s) pri čemu se za izračunavanje ubrzanja Zemljine teže koristi sledeća radna formula: l OB g = 4π = 4π = cms. T OA

7 7 b) ODREĐIVANJE JUNGOVOG MODULA ELASTIČNOSTI ŽICE Teorijski uvod Sva tela pod uticajem sila, pored promene brzine, mogu promeniti svoj oblik i dimenzije, tj. mogu se deformisati. Deformacije mogu biti potpuno elastične i potpuno plastične. Potpuno elastična deformacija je ona kod koje se po prestanku dejstva sile telo vraća u prvobitni oblik i dimenzije. Ako to nije slučaj, deformacija je potpuno plastična. Realna tela su negde između ova dva granična slučaja. Eksperimentalno je pokazano da je kod elastičnih tela napon (količnik sile i površine na koju ona deluje) - σ proporcionalan relativnoj deformaciji - δ σ = Eδ, odnosno F S Δl = E, l gde je F sila koja deluje normalno na poprečni presek žice, S površina poprečnog preseka žice, l dužina žice, Δ l povećanje dužine žice prilikom istezanja (apsolutno istezanje žice). Koeficijent proporcionalnosti E naziva se modul elastičnosti i njegova vrednost zavisi od vrste materijala, a navedeni izraz predstavlja matematički oblik Hukovog zakona za elastičnu deformaciju tela. Ovaj zakon se može predstaviti i u obliku: Δ l = kf, gde je k koeficijent koji zavisi od vrste materijala, prečnika i dužine žice, pa se za Jungov modul elastičnosti dobija: F l l E = =, S Δl S k pri čemu za žicu prečnika d i dužine l, opterećenu tegom mase m, sila iznosi F = mg, a površina poprečnog preseka S = πd 4. Uputstvo za rad: a) Izmeriti metrom dužinu žice - l od tačke A do tačke B, kada je o kuku () okačen samo teg za početno zatezanje žice (3). Na slici je prikazan uređaj za određivanje modula elastičnosti žice. b) Mikrometarskim zavrtnjem izmeriti prečnik žice - d ( d = 0. 5 mm ).

8 8 LEGENDA: - metalna žica - kuka za kačenje tegova 3- teg za zatezanje žice (500 g) 4- komparator 5- disk 6- zavrtanj za fiksiranje komparatora A- tačka učvršćenja žice B- tačka oslanjanja Merenje Δ l i određivanje k : a) O teg (3) okačiti najmanji teg, sačekati par minuta, a zatim očitati pokazivanje komparatora, odnosno apsolutno istezanje žice. Na isti način odrediti apsolutno istezanje i za druga, veća opterećenja. Izvršiti 5 ovakvih merenja. Na raspolaganju su tegovi masa 50, 500 i 000 g. Izmerene vrednosti uneti u tabelu: r. br. m (kg) F (N) Δ l (m) 3 4 5

9 b) Na osnovu dobijenih rezultata nacrtati grafik l = f ( F ) težina tega po modelu Δ, gde je F = mg 9 B O A F (N) i odrediti koeficijent pravca k tako dobijene prave. Koristeći vrednosti iz tabele nacrtati grafik: O F (N)

10 0 c) Na osnovu tako određene vrednosti koeficijenta k, izračunati Jungov modul elastičnosti E po obrascu: l l l OA E = = = = Nm. S k S tgα S OB

11 . VEŽBA a) ODREĐIVANJE MOMENTA INERCIJE TELA POMOĆU TORZIONOG KLATNA Teorijski uvod Moment inercije tela je veličina koja ima isti fizički smisao pri rotacionom kretanju kao masa pri translatornom. Dakle, što je veća vrednost momenta inercije tela, isto telo će biti teže zarotirano (što je veća masa tela, teže će biti pokrenuto). Međutim, kretanje tela koje rotira zavisi ne samo od njegove mase, već i od rasporeda mase tela u odnosu na osu rotacije. Ako je telo homogeno (gustina tela je ista u svakom njegovom delu), moment inercije se može izračunati pomoću formule: I = r dm = r ρdv, gde je r-rastojanje od ose rotacije, ρ -gustina tela, dm-elemenat mase i dv-elemenat zapremine. Gore navedena formula se može iskoristiti za izračunavanje momenta inercije homogenih tela pravilnog oblika. U narednoj tabeli se mogu videti neke vrednosti momenata inercije izračunatih kada se osa rotacije preklapa sa težišnom osom datih tela: disk, cilindar I = mr sfera I = mr 5 prsten I = mr Dosadašnja razmatranja su važila kada se osa rotacije poklapa sa težišnom osom tela koje rotira. Međutim, kada telo rotira oko bilo koje ose da bi se izračunao moment inercije tela mora se primeniti Štajnerova teorema: Moment inercije tela oko neke ose jednak je zbiru momenta inercije tela oko paralelne ose koja prolazi kroz centar mase ( I 0 ) i proizvodu mase tela i kvadrata rastojanja među dvema osama ( md ). I = I 0 + md. Na kraju, ako je telo nepravilnog oblika, moment inercije je teško izračunati, a ponekad i nemoguće, pa se moment inercije tada odredjuje eksperimentalno.

12 a) Određivanje torzione konstante žice. Prečnik cilindričnog tega iznosi d = 4, cm.. Na donji kraj žice koja visi sa vrha drvenog rama pričvrstiti cilindrični teg pomoću zavrtnja. Kazaljka cilindričnog tega treba da bude okrenuta prema posmatraču. 3. Oko cilindričnog tega omotati nekoliko puta konac sa tasovima i krajeve prebaciti preko kotura. 4. Tasove opteretiti tegovima od po 0 g. Dolazi do pomeranja cilindra. Na gornjem kraju drvenog rama nalazi se pokretni crni točak sa graduisanom skalom. Pomeranjem točka dovesti kazaljke do ponovnog poklapanja i očitati položaj na skali. Očitana vrednost na skali predstavlja ugao upredanja α. 5. Merenje ponoviti sa vrednostima tegova: 0, 30, 50, 60, 80 i 00 g, a rezultate uneti u tabelu: Redni broj m (g) α ( 0 ) Q = mg (N) g = 9. 8 ms -ubrzanje Zemljine teže. Na osnovu tabele nacrtati grafik α = f ( Q ), i sa njega odrediti torzionu konstantu žice. M c = α Qd = α [rad] 80 = π o Qd α [ o ] o 80 d = π OA. OB

13 3 b) Određivanje momenta inercije tela c = Nm.. Skinuti cilindrični teg i tasove i na donji kraj žice pričvrstiti pomoću zavrtnja priloženo telo nepravilnog oblika, čiji moment inercije treba odrediti.. Telo izvesti iz ravnotežnog položaja pomoću točka na ramu i hronometrom izmeriti vreme trajanja 30 oscilacija. Merenje ponoviti 5 puta. Znajući torzionu konstantu žice c (koja je određena u prvom delu vežbe) i period oscilovanja T, odrediti moment inercije priloženog tela I: ct I =. 4π R.br τ ( ) T = τ 30 / 30 ( s) I ( kgm ) I sr ( kgm ) Δ I ( kgm ) δ (%) ( kgm ) s ( ) kgm I = ±. I σ I

14 4 b) ODREDJIVANJE MOMENTA INERCIJE TELA PRIMENOM ŠTAJNEROVE TEOREME Uputstvo za rad: LEGENDA: - nožice za nivelaciju postolja, - postolje, 3- stezač, 4- metalna žica, 5- uzorak, 6- otvor na stezaču, 7- ručica, 8- držač, 9- zavrtanj, 0- valjak.. Sa uzorka 5 skinuti jedan valjak 0 i pomoću nonijusa (šublera) izmeriti njegov unutrašnji ( D ) i spoljašnji prečnik ( D ) i visinu valjka (H). Masa valjka je m = 50 g.. Na osnovu izmerenih vrednosti izračunati vrednost momenta inercije I 0 valjka u odnosu na osu koja prolazi kroz centar mase valjka normalno na njegovu težišnu osu: m I 0 = ( D + D +.33H ) = kgm Postaviti valjak na uzorak 5 tako da oba valjka budu podjedanko udaljena od zavrtnja Izmeriti rastojanje d od zavrtnja na valjku do držača Uzorak 5 izvesti iz ravnotežnog položaja tako da počne da osciluje u horizontalnoj ravni i meriti vreme trajanja 30 oscilacija. 6. Vreme trajanja 30 oscilacija izmeriti za 5 različitih vrednosti d.

15 5 R. broj τ 30 ( s) d (cm) d ( cm ) T = τ 30 / 30 ( s) T ( s ) Zavisnost T = f ( d ) prikazati na grafiku. U preseku dobijene prave sa d -osom očitati apsolutnu vrednost x. Na narednoj slici prikazan je postupak određivanja x. Izračunati moment inercije šipke I x u odnosu na osu oscilovanja koja se poklapa sa pravcem žice: I x = x m I 0 = kgm ( ).

16 6 3. VEŽBA a) PROVERAVANJE BOJL-MARIOTOVOG ZAKONA Teorijski uvod Pri proučavanju gasova uglavnom se koristi model idealnog gasa, pa se i zakoni o kojima će biti reči odnose na tu aproksimaciju. Kod idealnog gasa smatra se da je zapremina molekula zanemarljiva u odnosu na zapreminu suda u kome se gas nalazi. Osim toga, dejstvo međumolekularnih sila se zanemaruje, a sudar između molekula gasa i zidova suda smatra savršeno elastičnim. Ponašanje idealnih gasova se može opisati pomoću nekoliko zakona. To su Bojl-Mariotov, Gej-Lisakov, Šarlov, Avogadrov i Daltonov zakon. Bojl-Mariotov zakon glasi: pri konstantnoj temperaturi zapremina date količine gasa obrnuto je srazmerna pritisku, ili proizvod pritiska i zapremine određene količine gasa pri stalnoj temperaturi je konstantan i može se matematički izraziti pv = const. ( T = const., m = const.) Na p-v dijagramu ovaj zakon se predstavlja jednostranom hiperbolom koja se naziva izoterma. V (m 3 ) Gej-Lisakov zakon: V = V0 ( + γ t), ( p = const.), gde je V 0 zapremina gasa na 0 o C, V zapremina gasa na t o C, a γ termički koeficijent zapreminskog širenja gasa koji za sve gasove iznosi /73 K -. Na V-t dijagramu ovaj proces je prikazan pravom koja se naziva izobara. Šarlov zakon: p = p0 ( + γ t), ( V = const.), gde je p 0 pritisak gasa na 0 o C, p pritisak gasa na t o C. Na p-t dijagramu ovaj proces je prikazan pravom koja se naziva izohora.

17 7 Avogadrov zakon: u jednakim zapreminama idealnih gasova, na istoj temperaturi i pritisku, nalazi se isti broj molekula (atoma). Daltonov zakon: u smeši gasova koji međusobno ne reaguju hemijski, svaki gas deluje sopstvenim pritiskom nezavisno, kao da drugi gasovi nisu prisutni, ili ukupni pritisak u sudu jednak je zbiru parcijalnih pritisaka prisutnih gasova. Uputstvo za rad:. Najpre je potrebno izjednačiti nivoe žive u sve tri cevi manometra. U tom cilju potrebno je odvrnuti slavinu S i štipaljku A držati otvorenom. (Ukoliko se ne postigne izjednačenje nivoa žive u sve tri cevi, što odgovara nultom podeoku, potrebno je za trenutak pumpom P povećati pritisak u cevi (), kako bi se živa zatalasala i postigla određen nivo. Tada se u cevi (3) iznad žive nalazi V 0 = 8 cm 3 vazduha pod atmosferskim pritiskom.. Zatvoriti štipaljkom A cev (3). 3. Pomoću pumpe P povećati pritisak vazduha u cevi (3), pomeranjem nivoa žive u njoj za oko 0 mmhg. 4. Zavrnuti slavinu S i sačekati nekoliko minuta da se vazduh, zagrejan usled kompresije, ohladi do temperature okoline. 5. Očitati vrednosti promena zapremine ΔV i promene pritiska Δp. ΔV očitavati na desnoj skali uz cev (3), a Δp kao razliku nivoa h i h u cevima () i (3). Tada su nove vrednosti zapremine i pritiska: V = V 0 ΔV i p = p a + Δp. 6. Postupak merenja ponoviti 5 puta, pri čemu pritisak u cevi () treba povećati za po 0 mmhg.

18 8 7. Rezultate merenja uneti u tablicu: R. br h (mmhg) h (mmhg) ΔV (m 3 ) Δp= h - h (mmhg) Δp (Pa) p (Pa) V (m 3 ) pv (J) (pv) sr (J) Δ(pV) (J) δ pv (%) σ pv (J) pv = (( pv ) ± σ ) J = ( ± ) J sr pv Potrebne konstante: Atmosferski pritisak iznosi: P a = Pa Veza između mmhg i Pa: mmhg = 33.3 Pa 8. Nacrtati grafik p = f (V). V (m 3 )

19 b) ODREĐIVANJE ODNOSA c p /c v ZA VAZDUH 9 Teorijski uvod Specifična toplota nekog tela je količina toplote potrebna da se zagreje kg mase toga tela za o C. Gasovi znatno povećavaju svoju zapreminu pri zagrevanju, pa postoje dve različite okolnosti pod kojima se može odrediti njihova specifična toplota. U prvom slučaju gas se može zatvoriti u sud stalne zapremine i time sprečiti njegovo širenje pri zagrevanju. Specifična toplota gasa određena pod ovakvim okolnostima, zove se specifična toplota pri konstantnoj zapremini c v. U drugom slučaju se gas može zagrevati tako, da se pri tome širi zadržavajući stalni pritisak p. Na ovaj način se dobija specifična toplota gasa pri stalnom pritisku c p. Na nekom gasu se može vršiti ekspanzija ili kompresija pri stalnoj temperaturi- izotermna promena za koju važi pv = const. Promena stanja gasa bez razmene toplote sa okolinom naziva se adijabatska promena, tj. adijabatska ekspanzija κ ili kompresija, za koje važi pv = const, gde je κ = c p cv adijabatska konstanta. Ovakva adijabatska promena se vrši kada je gas toplotno izolovan od okoline. U tom slučaju nema nikakve razmene toplote između gasa i okoline te se energija gasa ne menja. Uputstvo za rad:. U balonu se nalazi CaCl koji služi za sušenje vazduha.. Pumpom ubaciti vazduh u balon tako da pritisak u balonu bude veći od atmosferskog za 3-5 cm Hg i zatvoriti slavinu (pritisak ne sme biti veći jer može doći do prskanja balona). 3. Sačekati par minuta da se temperatura vazduha u balonu izjednači sa okolinom. Izjednačavanje temperature se može konstatovati po pritisku koji ostaje stalan pri izjednačavanju temperature. 4. Pročitati razliku nivoa žive u manometru.

20 0 5. Otvoriti staklenu slavinu 5 sekunde, što je dovoljno da se pritisak u balonu izjednači sa atmosferskim. 6. Posle zatvaranja slavine sačekati neko vreme da se temperature ponovo izjednače (živa u manometru prestane da se penje). 7. Pročitati razliku nivoa žive u manometru. 8. Postupak iz tačaka. do 7. ponoviti 5 puta. 9. Rezultate uneti i tabelu: Redni br. merenja h (mm) h (mm) κ = c p c v κ sr Δκ δ κ (%) σ κ k = k sr ± σ k = ( ± ) 0. Odrediti odnos c p cv primenom obrasca: κ = h /(h -h ).

21 4. VEŽBA a) ODREĐIVANJE TOPLOTE ISPARAVANJA TEČNOSTI Teorijski uvod Kada se nekoj tečnosti dovodi toplota, njena će temperatura rasti pri čemu se dovedena toplota troši na povišenje temperature tečnosti. Ako se toplota dovodi tečnosti i dalje, kad ona počne da ključa, njena temperatura se više neće povećavati dok tečnost potpuno ne ispari. Sada se toplota više ne troši na zagrevanje, već samo na isparavanje tečnosti (promenu agregatnog stanja). Količina toplote koju je potrebno dovesti jedinici mase nekog tečnog tela da bi se isto prevelo iz tečnog u gasovito stanje na temperaturi ključanja i na normalnom pritisku naziva se toplota isparavanja. Pri kondenzovanju kg pare u tečnost oslobađa se količina toplote koja je jednaka toploti isparavanja. Toplota kondenzovanja je ona količina toplote koja se oslobodi pri kondenzovanju jedinice mase gasovitog tela na temperaturi kondenzovanja u tečnost, pri čemu tečnost ostane na temperaturi kondenzovanja tj. ključanja. Toplota isparavanja se može odrediti pomoću kalorimetra. Ako se para tečnosti, na temperaturi ključanja, uvede u kalorimetar sa nižom temperaturom, nastaće kondenzovanje pare. Pri tome će se osloboditi ista količina toplote, koja je utrošena na isparavanje tečnosti. Merenjem mase kondenzovane tečnosti i oslobođene toplote može se naći koliko toplote se oslobodilo u kalorimetru pri kondenzovanju kg tečnosti, što predstavlja toplotu isparavanja tečnosti. Ukupna količina toplote oslobođene u kalorimetru biće Q = M ( t t), gde je M -toplotni kapacitet kalorimetra, t -temperatura vode u kalorimetru pre upuštanja pare i t -temperatura vode u kalorimetru posle upuštanja pare. Od ove količine toplote treba oduzeti količinu toplote Q koju preda kalorimetru kondenzovana tečnost mase m, usled rashlađivanja do temperature vode u sudu, pošto ista ne ulazi u definiciju toplote isparivanja. Prema tome je Q' = mct ( t 3 t), gde je c T -specifična toplota kondenzovane tečnosti, t 3 -temperatura ključanja tečnosti. Toplota isparavanja tečnosti q će prema tome biti Q Q' M ( t t) mct ( t3 t ) q = =, m m pri čemu treba uzeti da je toplotni kapacitet kalorimetra M = 600 J / K, a specifični toplotni kapacitet vode c = 486, 8 J / kgk.

22 Opis aparature Kalorimetar A ima unutrašnji sud u koji su smešteni kondanzator i mešalica (Sl. ). Kondenzator ima u donjem delu proširenje N u kome se skuplja kondenzovana tečnost. Jedan kraj kondenzatora vezan je gumenim crevom za cev iz koje dolazi para. Drugi kraj kondenzatora završava se slobodno i održava vezu sa atmosferom. Sud B služi za isparavanje tečnosti a isparena tečnost se povremeno nadoknađuje iz suda C po principu spojenih sudova, otvaranjem štipaljke F. Zagrevanje tečnosti se vrši električnim grejačem D. Zatvarač E služi za upuštanje pare u kalorimetar. Kada je zatvarač u donjem položaju on naleze na cev i sprečava ulaz pare u kalorimetar, a istovremeno je preko cevi otvoren izlaz u atmosferu. U gornjem položaju zatvarača E otvara se ulaz pari u kalorimetar a zatvara izlaz u atmosferu. Termometar T 3 pokazuje temperaturu ključanja tečnosti. Pregrada S-S štiti kalorimetar od toplotnih uticaja iz suda B. Postupak pri merenju: Sl. Aparatura za određivanje toplote isparavanja tečnosti. Izmeriti temperaturu vode u kalorimetru (t ).. Uključiti ispravljač mrežnog napona u strujnu mrežu. 3. Kada zagrevana voda dostigne t 60 C otvoriti ventil za izlaz pare. 4. Paru kondenzovati 30 minuta i za to vreme stalno mešalicom mešati vodu u kalorimetru. Takođe izmeriti temperaturu pare (ključanja tečnosti) t Po isteku 30 minuta aparaturu isključiti prekidačem na ispravljaču iz mreže.

23 3 6. Nastaviti mešanje mešalicom dok temperatura vode u kalorimetru ne dostigne maksimum. To je temperatura t. 7. Zatvoriti ventil za izlaz pare i otkačiti crevo za dovod pare u kalorimetar. 8. Izvaditi poklopac kalorimetra, zajedno sa kondenzatorom i kondenzovanu tečnost isipati u menzuru. Izmeriti masu kondenzovane tečnosti m. 9. Odrediti toplotu isparavanja tečnosti prema datoj relaciji. NAPOMENA: Obavezno zatvoriti štipaljku za dovod vode u grejani lonac! Rezultate merenja, kao i traženu vrednost toplote isparavanja vode upisati u tabelu: t ( o C) t ( o C) t 3 ( o C) m (kg) q (J) Tabela

24 4 b) ODREĐIVANJE NEPOZNATE TEMPERATURE TERMOPAROM Teorijski uvod Temperatura je fizička veličina koja određuje stepen zagrejanosti nekog tela, a instrumenti za njeno merenje nazivaju se termometri. U suštini, svaki termometar kao princip rada koristi temperaturnu zavisnost neke fizičke veličine: zapremine, dužine, pritiska, boje... U okviru ove vežbe će biti opisano kako se za određivanje temperature tela može iskoristiti zavisnost elektromotorne sile spoja dva metala od temperature spoja, odnosno okoline u kojoj se on nalazi. Pri dodiru dva različita metala dolazi do njihovog naelektrisavanja na mestu dodira, pri čemu su količine naelektrisanja na jednom i drugom metalu jednake, ali suprotnog znaka. Ovaj efekat je otkrio Volta, pa je po njemu i dobio naziv. Razlika potencijala između metala je kontaktni napon (ili dodirni napon) i njegova vrednost zavisi od vrste metala koji se dodiruju i od temperature na mestu dodira. Prema veličini kontaktnog napona i polaritetu naelektrisanja na njima, metali mogu da se poređaju u tzv. Voltin naponski niz: (+) Rb K Na Al Zn Sn Cd Pb Sb Bi Hg Fe Cu Ag Au Pt (-). Pri dodiru dva metala iz niza, pozitivno će se naelektrisati metal koji je bliži (+) kraju Voltinog niza. Na primer, olovo u dodiru sa bakrom postaje pozitivno, a bakar negativan. Međutim, olovo u dodiru sa cinkom postaje negativno. Ukoliko su metali u nizu dalje jedan od drugog, utoliko je i međusobna razlika potencijala veća. Ukoliko se niz metala spoji redom A, B, C, D (Sl. ), onda se na krajevima tog stuba javlja razlika potencijala koja zavisi samo od prirode metala koji se nalaze na krajevima A i D, a ne zavisi od toga koji se provodnici (B i C) nalaze između njih u stubu. Zebekov efekat Sl. Šematski prikaz niza metala na čijim se spojevima javlja razlika potencijala Ako se od dva metala formira zatvoreno kolo kao na Sl., usled Voltinog efekta, dolazi do razdvajanja naelektrisanja na spojevima i, tako da se svaki od spojeva ponaša kao izvor elektromotorne sile. Budući da se u kolu ne odvijaju nikakvi hemijski procesi, kao i da u kolu ne postoje dodatni izvori elektromotorne sile, po zakonu održanja energije posmatrano kolo mora da bude u stanju električne ravnoteže, odnosno kroz ovo kolo ne protiče struja. Do ovog zaključka se može doći i polazeći od činjenice da su elektromotorne sile, koje se javljaju na spojevima, istog

25 5 intenziteta ali da su suprotno orijentisane, pa je ukupna elektromotorna sila jednaka nuli i kroz kolo ne protiče struja. Sl. Zatvoreno kolo nastalo spajanjem dva različita metalna provodnika U suštini, u slučaju spoja dva različita metala dolazi do razdvajanja naelektrisanja, pri čemu se ova naelektrisanja ne kreću, već su samo razdvojena. Ako u takav spoj vežemo galvanometar, on će pokazivati nulu. Međutim, ukoliko su temperature spojeva metala (t za spoj, odnosno t za spoj ) različite, kroz kolo počinje da teče struja i to od spoja više temperature odnosno višeg potencijala, ka spoju niže temperature odnosno nižeg potencijala. Kretanje nosilaca naelektrisanja, odnosno proticanje električne struje pokazuje galvanometar, a elektromotorna sila je, u ovom slučaju, posledica pretvaranja toplotne energije u električnu. Pojava se naziva termoelektrični efekat, a ovakvo zatvoreno kolo sastavljeno od dva različita metala čiji spojevi imaju različite temperature, naziva se termoelement, termopar ili termospreg. Sama elektromotorna sila se naziva termoelektromotorna sila (obično je vrlo mala, reda veličine V), a struja termostruja. Ovu pojavu je otkrio nemački fizičar Zebek 8. godine, po kome je i efekat dobio ime. Veliki broj izvedenih eksperimenata je pokazao da je termoelektromotorna sila složena funkcija temparature, kao i da zavisi od prirode metala. Pokazalo se, takođe, da postoje spojevi kod kojih je termoelektromotorna sila u dovoljno širokom opsegu temperatura srazmerna razlici temperatura spojeva. Takvi su, npr. parovi metala Fe Cu, Pt Fe, Bi Cu. Za njih, dakle, važi: ( t t ) = CΔ t, E = C () gde je C konstanta za dati par metala, koja predstavlja promenu termoelektormotorne sile termoelementa pri promeni temperaturne razlike spojeva za o C. Ovakvi termoelementi su pogodni za merenje temperature, pri čemu se jedan spoj termoelementa nalazi na konstantnoj temperaturi t, koja je poznata, a drugi u sredini čija se temperatura, t, meri. Merenje temperature termoelementom je veoma precizno, jer se termoelektromotorna sila može izmeriti sa velikom tačnošću, pa se tako termoelement može koristiti i kao instrument za baždarenje drugih termometara. Merenjem termoelektromotorne sile E određuje se temperaturna razlika Δ t, a zatim se izračunava nepoznata temperatura t :

26 6 t = t + Δ t, () ukoliko je poznata temperatura jednog spoja (sredine) t. Za merenje temperature, umesto termoelektromotorne sile meri se jačina struje koja protiče kroz kolo u koje je vezan termoelement, pri čemu su jačina struje i (koja se meri osetljivim ampermetrom), termoelektromotorna sila i razlika temperatura spojeva termoelementa povezani Omovim zakonom: E C I = = Δ t, (3) R R gde je R ukupni otpor u kolu, tj. otpor termoelementa i galvanometra. Iz ove relacije se vidi da je zavisnost jačine struje od temepraturne razlike linearna. Termoelementi imaju nekoliko prednosti u odnosu na druge vrste termometara. Na primer, ukoliko se napravi spoj teško topivih metala pomoću njih se može izmeriti tepmeratura i do 000 o C, dok, ukoliko se napravi spoj izuzetno malih dimanzija, moguće je izmeriti temperature i na nepristupačnim mestima i vrlo malim telima. Recimo, dodirna površina žice i tela čija se temperatura meri može biti jako malo, ukoliko se jedan spoj napravi u vidu duge i tanke igle. Na taj način se u biologiji meri temperatura insekata, kada se igla ubode u njihovo telo. Ista procedura se može primeniti i za merenje temperature unutrašnjih organa drugih živih organizama, kao i u medicini za merenje temperature kože, mišića i drugih tkiva. Osim toga, nasuprot živinim termometrima, žice od koji se prave termoelementi imaju vrlo mali toplotni kapacitet. Opis aparature Šema eksperimenta je prikazana na Sl. 3. Sastoji se od termoelementa od gvozdene i bakarne žice, dva termometra, dva staklena suda, mikroampermetra, električnog rešoa, vode i leda. Metod merenja Da bi pomoću termoelementa mogla da se određuje temperatura nekog tela, on se prvo mora kalibrisati. Taj postupak se izvodi na sledeći način. Jedan spoj termoelementa i termometar T se stavljaju u sud sa vodom na sobnoj temperaturi t (ili u sud u kome se nalazi mešavina vode i leda na 0 o C), a drugi spoj i termometar T u drugi sud sa vodom koji se zagreva na električnom rešou. Termoelement i mikroampermetar μa se vezuju u strujno kolo prema šemi sa Sl. 3. Pre početka merenja treba proveriti nulu mikroampermetra, tako što se oba spoja termoelementa stavljaju u sud sa vodom na sobnoj temparaturi, jer su tada temperature spojeva jednake, a termoelektromotorna sila jednaka nuli. Ukoliko mikroampermetar registruje struju u kolu, potrebno je namestiti njegovu kazaljku na nulti podeok skale, ili očitati jačinu struje i kasnije, u toku merenja, sve merene vrednosti struje računati od te vrednosti.

27 7 Sl. 3 Zatvoreno kolo nastalo spajanjem dva različita metalna provodnika Nakon podešavanja nule mikroampermetra, spoj termoelementa se vraća u sud sa vodom i uključuje se električni rešo. Merenje se svodi na istovremeno čitanje temperature t na termometru T i jačine struje I na ampermetru. Merenje se ponavlja više puta, tako što se vrši čitanje vrednosti jačine struje pri svakom porastu o temperature Δ t = ( 5 8 ) C, sve dok temperatura vode u sudu ne dostugne vrednost o ( ) C. Pre svakog čitanja jačine struje potrebno je skloniti sud sa rešoa i sačekati par minuta da se temperatura vode, odnosno spoja termoelementa, stabilizuje. Dobijeni rezultati se unose u tabelu i crta se zavisnost jačine struje od temperaturne razlike. Ova zavisnost je, što se iz ranije iznetog može zaključiti, prava linija (Sl. 4) i naziva se kalibraciona linija termopara. Zadatak vežbe Određivanje nepoznate temperature. Izvršiti kalibraciju termopara na način opisan u metodama merenja.. Posle izvršenog postupka kalibracije, spoj termoelementa se stavlja u sud sa vodom čiju temperaturu t x treba odrediti i pročita se jačina struje I x na mikroampermetru. 3. Naći tu vrednost jačine struje na grfiku (Sl. 3) i sa njega očitati vrednost temperaturne razlike Δ tx koja joj odgovara. 4. Tražena temperatura t x je tx = t + Δtx. 5. Nepoznatu temperaturu vode izmeriti i običnim (živinim) termometrom i tu vrednost upotrebiti za određivanje i analizu grešaka merenja.

28 Redni broj t ( o C) t ( o C) I (μa) Δ t =t t ( o C) Tabela 8 Na osnovu tabele nacrtati grafik I = f ( Δt ), i sa njega odrediti nepoznatu temperaturu vode. Sl. 4 Određivanje nepoznate temperature sa grafika eksperimentalno dobijenih vrednosti

29 9 Sl. 5 Eksperimentalno dobijena zavisnost struje u kolu od promene temperature. t x o x = = t + Δ t = t + OC = + ( C) C. o

30 5. VEŽBA 30 a) ODREĐIVANJE BRZINE ZVUKA U VAZDUHU Teorijski uvod Kada se dva talasa iste talasne dužine prostiru istim pravcima, ali suprotnim smerovima javlja se poseban slučaj interferencije i kao rezultat ovakve superpozicije obrazuje se stojeći talas. Duž pravca prostiranja stojećeg talasa se naizmenično ređaju čvorovi (mesta gde se dva talasa međusobno maksimalno kompenzuju i, u idelnom slučaju, u čvoru stojećeg talasa nema rezultujućih oscilacija) i trbusi (mesta gde se oscilacije dva talasa maksimalno pojačavaju i daju maksimalne amplitude stojećeg talasa) na stalnom međusobnom rastojanju od polovine talasne dužine. Mesta gde se nalaze čvorovi i trbusi stojećeg talasa ne menjaju svoj položaj u prostoru, tj. ostaju na istom mestu. U specijalnom slučaju kada talas posle drugog odbijanja padne u fazu sa prvobitnim talasom nastaje samopojačavanje talasa pri njihovoj interferenciji. Tada stojeći talas dobija izraziti oblik i velike amplitude, a takav slučaj se naziva rezonancija. Štap ili vazdušni stub u cevi ograničene dužine se naziva rezonatorom. Kada nastupi specijalni slučaj da talas posle dva odbijanja pada u u fazu sa prvobitnim talasom javiće se izraziti stojeći talasi sa velikim amplitudama što odgovara procesu rezonancije, pa otuda i potiče naziv rezonancije, odnosno rezonatora. U slučaju kada je rezonator vazdušni stub zatvoren na jednom kraju, ovakav specijalni slučaj rezonancije javiće se onda kada je dužina rezonatora jednaka celom neparnom umnošku četvrtine talasne dužine stojećeg talasa. Ako dužinu rezonatora označimoa sa l, važiće: λ c l = +, ( n + ) = ( n ) 4 4 ν gde je n = 0,,,, c brzina prostiranja talasa i ν frekvencija talasa. Pri tome je iskorišćena činjenica da je brzina zvuka povezana sa talasnom dužinom i frekvencijom relacijom: c = λν. Pošto je n bilo koji ceo broj, onda se u jednom rezonatoru može javiti više slučajeva rezonancije. U ovom slučaju brzina zvuka se određuje merenjem talasne dužine iz uslova rezonancije zvučne viljuške poznate frekvencije i vazdušnog stuba u cevi. Ako se postigne prva rezonancija (osnovni harmonik) pri dužini λ vazdušnog suba l, a sledeća pri dužini l imamo da je = l l, pa je, na osnovu prethodne relacije; c = ν l l, ( )

31 gde je ν rezonantna frekvencija, koja je jednaka frekvenciji zvučne viljuške. Metod merenja a) Dovesti pokretni klip u krajnji levi položaj, odnosno što bliže kraju A cevi. Udarcem gumenog čekića pobuditi na oscilovanje zvučnu viljušku, a zatim je prineti kraju A cevi. b) Držeći jednom rukom zvučnu viljušku na gore opisani način, drugom rukom sporo pomerati klip udesno sve dok se prvi put ne čuje pojačan zvuk, koji pokazuje da je došlo do rezonancije zvučnih oscilacija vazduha u cevi i zvučne viljuške. Tada se izmeri dužina vazdušnog stuba l, koja je jednaka rastojanju od kraja A cevi do klipa. Ovaj postupak ponoviti najmanje 5 puta i sve vrednosti upisati u tebelu. c) Ponoviti postupak pod a), a zatim nastaviti sa laganim pomeranjem klipa udesno dok se ne čuje pojačan zvuk ali na većem rastojanju nego pri merenju l. To je dužina l, čije se merenje vrši na potpuno isti način kao i za l. d) Nakon upisivanja rezultata merenja u tabelu, za svaku kombinaciju l i l, korišćenjem obrasca c = ν ( l l ), izračunati vrednosti brzine zvuka u vazduhu, a zatim pristupiti određivanju grešaka merenja. 3 Slika. Prikaz aparature za određivanje brzine zvuka u vazduhu u cevi zatvorenoj na jednom kraju R.br l ( m) l ( m) c ( m s) c sr ( m s) c( m s) ( ) m / s c = ±. Δ δ (%) ( m / s ) C σ C

32 3 b) ODREĐIVANJE KOEFICIJENTA LINEARNOG ŠIRENJA ČVRSTIH TELA Teorijski uvod Tokom zagrevanja ili hlađenja tela, dolazi do promene njihovih dimenzija. Ukoliko se ostale dimenzije mogu zanemariti u odnosu na dužinu, imamo pojavu linearnog širenja. Telo, čija je početna dužina l o na temperaturi t o, nakon zagrevanja do temperature t dostigne dužinu l. Veza između dužine l i početne dužine l 0 je data relacijom: l = l0 ( + αδ t), gde je Δ t = t t temperaturni interval, a α koeficijent linearnog širenja, koji pokazuje promenu dužne tela od datog materijala pri promeni temperature za jedan Celzijusov ili Kelvinov stepen (/ o C). Ukoliko se ne može zameriti promena površine poprečnog preseka nekog tela, onde je veza između krajnje i početne vrednosti površine data relacijom: S = S0 ( + βδ t), gde je β koeficijent površinskog širenja datog materijala. Analogno, pri promeni zapremine nekog tela tokom zagrevanja važi veza: V = V0 ( + γδ t), gde je γ koeficijent zapreminskog širenja datog materijala. Veza između datih koeficijenata je: β=α, γ=3α. Uputstvo za rad:. Epruvetu napuniti do /3 vodom i izmeriti temperaturu sipane vode.. Spustiti uzorak u epruvetu. 3. Epruvetu sa ispitivanim uzorkom uvesti u grejač. 4. Pomeriti osovinu indikatora naviše, postaviti indikator nad epruvetom i opustiti osovinu u udubljenje na čelu uzorka. Nosač zafiksirati zavrtnjem. 5. Podesititi položaj strelice na skali indikatora (za prvo merenje najbolje je strelicu postaviti na nulu). 6. Uključiti aparaturu u strujnu mrežu pritiskom na prekidač. Pri ključanju vode u epruveti ispitivani uzorak prima temperaturu vode. Povećanje dužine uzorka određuje se otklonom strelice indikatora od prvobitnog položaja. Za svaki od uzoraka demonstrirati vežbu. 7. Koeficijent linearnog širenja čvrsog tela odrediti iz formule l = l 0 ( + αδt). Potrebne konstante: Dužina uzorka na sobnoj temperaturi je l 0 = 60 mm Temperatura ključanja vode je t = 00 C. NAPOMENA: Jedan podeok na kružnoj skali iznosi 0.0 mm.

33 33 6. VEŽBA PRIMENA ZAKONA GEOMETRIJSKE OPTIKE I PRINCIP RADA OPTIČKIH INSTRUMENATA Teorijski uvod Svetlost je elektromagnetni talas čija brzina zavisi od električnih i magnetnih osobina sredine kroz koju se prostire. Ljudsko oko može da registruje talasne dužine svetlosti u opsegu od 380 do 760 nm. Kada je talasna dužina svetlosti mnogo manja od dimenzija objekta, zakoni kojima se opisuje kretanje svetlosti mogu se formulisati preko geometrijskih zakona i ova grana optike se naziva geometrijskom optikom. Osnovni zakoni geometrijske optike jesu:. zakon pravolinijskog prostiranja svetlosti. zakon nezavisnog prostiranja svetlosnih zraka 3. zakon odbijanja svetlosti 4. zakon prelamanja svetlosti.. U homogenim sredinama zraci se prostiru duž pravih linija. Zakon ne važi kada svetlost nailazi na male otvore i prepreke, tada se primenjuju zakoni talasne optike.. Svetlosni zraci ne utiču jedni na druge u mestima njihovog ukrštanja. Ovo ne važi za laserske zrake. Pre formulisanja trećeg i četvrtog zakona neophodno je uvesti neke pojmove. Pri prelasku svetlosti iz jedne u drugu sredinu, na granici te dve sredine, deo svetlosti se odbija ili reflektuje, a deo se prelama u drugu sredinu. Svetlost koja pada na granicu dve sredine predstavljena je upadnim zrakom (), dok je odbijena svetlost predstavljena reflektovanim zrakom (). Svetlost koja je prešla u drugu sredinu se

34 34 predstavlja prelomnim zrakom (3). Uglovi predstavljeni na slici su uglovi koje pravci zraka zaklapaju sa normalom na graničnu površinu dve sredine i to su: upadni ugao θ, reflektovani ugao θ i prelomni ugao θ. 3. Zakon odbijanja za svetlosni zrak koji pada na graničnu površinu dve sredine različitih optičkih gustina glasi da je upadni ugao jednak odbojnom uglu. Upadni, odbojni zrak i normala na graničnu povrčinu leže u istoj ravni. 4. Indeks prelamanja neke sredine predstavlja odnos brzine prostiranja svetlosti u vakuumu i nekoj sredini: cvakuum n =. csredina Zakon prelamanja (Snelijus-Dekartov zakon) glasi da kada svetlost pada na graničnu površinu dve transparentne sredine, indeksa prelamanja n i n (kao na slici), sinusi upadnog i prelomnog ugla se odnose kao: n = θ. sinθ n sin

35 35 Uputstvo za rad: NAPOMENA: NIKAKO NE USMERAVATI LASERSKI SNOP KA OČIMA!!!. Postaviti magnetnu tablu na radnu površinu stola.. Uključiti laser preko adaptera u struju. Dugme on/mode/off na laserskoj kutiji reguliše broj zraka koji izlazi iz kutije. 3. Na magnetnu tablu postaviti podlogu F tako da su nule na podlozi okrenute ka kraćim stranama table. 4. Na podlogu F staviti ravno ogledalo (RO) tako da se ivica duže strane poklapa sa pravcem na podlozi koji spaja nule (0-0). 5. Pritiscima na dugme laserske kutije obezbediti da iz kutije izlazi samo jedan laserski zrak i usmeriti ga na površinu ogledala tako da zrak udara u mesto gde se seku ravan ogledala i pravac (90-90) na podlozi. 6. Kakav je odnos upadnog i odbijenog zraka? (Zaokružite tačana odgovor) a) upadni ugao je veći, b) odbijeni je veći, c) jednaki su, d) ne važi nijedan od tri gore ponudjena odgovora. 7. Sa podloge skloniti ravno ogledalo i postaviti sabirno sočivo () tako da se njegova duža osa poklapa sa pravcem (0-0). Usmeriti svih pet laserskih zraka ka sočivu tako da su paralelni pravcu (90-90). Ponoviti postupak za rasipno sočivo (5). Kako se ponašaju zraci posle prolaska kroz jedno, a kako posle prolaska kroz drugo sočivo? 8. Skloniti sočiva sa podloge i na nju staviti konkavno ogledalo KO na isto mesto na kome su bila postavljena sočiva. Usmeriti laserske zrake ka ogledalu tako da su paralelni sa pravcem (90-90). Tačka u kojoj se seku odbijeni zraci se naziva žiža, a rastojanje do ogledala žižna daljina f. Izmeriti žižnu daljinu. f = cm. Zakrivljena površina ogledala se može shvatiti kao deo velikog kružnog prstena čiji je poluprečnik R i naziva se poluprečnikom krivine ogledala. Poluprečnik krivine datog konkavnog ogledala je

36 36 R = f = cm. 9. Skloniti ogledalo sa podloge. Na podlogu staviti sočivo PS tako da mu se ravna strana poklapa sa pravcem (0-0). Lasersku kutiju postaviti tako da zraci padaju prvo na ravnu stranu i namestiti da kutiju napušta samo jedan zrak. Neka zrak pada na ravan sočiva PS u tački gde se seku pravci (0-0) i (90-90) pod proizvoljno odredjenim upadnim uglom θ. Mogu se zapaziti upadni, odbojni i prelomni zrak. Izmeriti prelomni ugao θ. Na osnovu jednačine () i znajući da je indeks prelamanja vazduha n, izračunati indeks prelamanja materijala sočiva. θ = 0 θ = 0 n = 0. Okrenuti sočivo PS tako da se ravna površina i dalje poklapa sa pravcem (0-0), ali da je sada zakrivljena strana okrenuta ka laserskoj kutiji. Neka laserski zrak po prolasku kroz zakrivljenu stranu sočiva pada na ravan kraj u tački preseka pravaca (0-0) i (90-90). Može se zapaziti da zrak napušta sočivo na drugom kraju. Održavajući uslov da zrak sve vreme na ravan kraj sočiva pada u istoj tački, rotirati lasersku kutiju do momenta dok zrak ne napušta sočivo sa druge strane. Nastala pojava naziva se totalna refleksija, a upadni ugao za koji se ona prvi put primećuje naziva se graničnim uglom totalne refleksije. Izmeriti njegovu vrednost. α g 0 =. Na podlogu postaviti sočivo OV tako da mu se duža osa poklapa sa pravcem (90-90). Jedan laserski zrak usmeriti ka kraćoj strani sočiva pod nekim proizvoljnim uglom. Pojava totalne refleksije se koristi pri izradi optičkih vlakana. Optička vlakna jesu dielektrične niti kružnog preseka koja se sastoje od dva sloja, unutrašnjeg-jezgra i spoljašnjeg-omotača vlakna. Indeks prelamanja jezgra je nešto veći od indeksa prelamanja omotača. Svetlosni zraci koji ulaze u jezgro vlakna pod malim uglom, nailaze na optički redju sredinu na granici jezgra i omotača, pod uglom koji je veći od graničnog usled čega dolazi totalne refleksije. Pojednostavljeni prikaz rada optičkog vlakna može se videti pri prostiranju zraka kroz sočivo OV.. Skloniti podlogu F i umesto nje staviti podlogu A. Na mestu obeleženom u te svrhe staviti sočivo. Ka sočivu usmeriti pet zraka normalno na sočivo. Posle prelamanja zraci se seku u žutoj mrlji. Ovime je predstavljen model normalnog oka. 3. Umesto sočiva staviti sočio. Prelomljeni zraci se seku ispred žute mrlje (kratkovidost). Korekcija se vrši dodavanjem rasipnog sočiva 5.

37 37 4. Skloniti sočiva i staviti sočivo 3. Prelomljeni zraci se seku iza žute mrlje (dalekovidost). Korekcija se vrši dodavanjem sabirnog sočiva Skloniti sočiva i umesto njih postaviti plankonveksno sočivo PK. Linija koja prolazi kroz sredinu sočiva se naziva glavnom optičkom osom. Ka sočivu usmeriti tri laserska zraka sa najvećim mogućim medjusobnim udaljenjem. Primetiti da se zraci ne seku u istoj tački. Zatim ka sočivu usmeriti tri zraka sa najmanjim mogućim medjusobnim udaljenjem. Zraci se seku u istoj tački. Primećena pojava se naziva sferna aberacija i posledica je nesavršenosti optičkih sredstava. Naime, što su zraci koji padaju na sočivo dalje od optičke ose, tj. bliže ivicama sočiva, zakoni geometrijske optike su sve manje primenljivi. 6. Na magnetnu tablu staviti podlogu D (šemu Keplerovog teleskopa). Staviti odgovarajuća sočiva. Ka sočivim usmeriti tri laserska zraka. Zaklanjanjem jednog od laserskih zraka utvrditi da li teleskop daje uspravan ili obrnut lik. Keplerov teleskop daje lik. 7. Na tablu staviti podlogu C (šema Galilejevog telskopa) i preko nje odgovarajuća sočiva. Ka sočivima usmeriti tri zraka i na isti način kao iz prethodnog koraka utvrditi da li teleskop daje uspravan ili obrnut lik. Galilejev teleskop daje lik. 8. Na tablu staviti podlogu B (šema analognog fotoaparata). Staviti odgovarajuće sočivo. Usmeriti tri zraka ka sočivu. Zraci se usmeravaju sočivom i padaju na film. Umesto filma kod digitalnih aparata nalaze se senzori koji intenzitet svetlosti pretvaraju u električne impulse.

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

LABORATORIJSKE VEŽBE IZ FIZIKE. za generaciju 2013/14.

LABORATORIJSKE VEŽBE IZ FIZIKE. za generaciju 2013/14. LABORATORIJSKE VEŽBE IZ FIZIKE za generaciju 03/4. UNIVERZITET U NIŠU UPUTSTVO ZA IZRADU LABORATORIJSKIH VEŽBI IZ FIZIKE. Pre početka rada pažljivo se upoznati sa napomenama iz ovog uputstva!. Na početku

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

LABORATORIJSKI PRAKTIKUM - FIZIKA. za generaciju 2015/16.

LABORATORIJSKI PRAKTIKUM - FIZIKA. za generaciju 2015/16. LABORATORIJSKI PRAKTIKUM - FIZIKA za generaciju 015/16. SPISAK LABORATORIJSKIH VEŽBI IZ FIZIKE 1. VEŽBA - a) Određivanje ubrzanja Zemljine teže pomoću matematičkog klatna b) Određivanje Jungovog modula

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

C 273,15, T 273,15, 1 1 C 1 50 C 273,15 K 50K 323,15K 50K 373,15K C 40 C 40 K

C 273,15, T 273,15, 1 1 C 1 50 C 273,15 K 50K 323,15K 50K 373,15K C 40 C 40 K 1 Zadatak temperatura K- C Telo A se nalazi na temperaturi 50 C i zagreje se za 50 K. Telo B se nalazi na temperaturi 313 K.i zagreje se za 40 C. Koje je telo toplije posle zagravanja i kolika je razlika

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

VEŽBA BR. 3 ODREĐIVANJE MODULA ELASTIČNOSTI

VEŽBA BR. 3 ODREĐIVANJE MODULA ELASTIČNOSTI VEŽBA BR. 3 ODREĐIVANJE MODULA ELASTIČNOSTI Za MODUL ELASTIČNOSTI je vezan HUKOV ZAKON Hukov zakon je dat izrazom R E MPa R napon ε jedinično izduženje E modul elastičnosti Modul elastičnosti (E) predstavlja

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

Snimanje karakteristika dioda

Snimanje karakteristika dioda FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

GASNO STANJE.

GASNO STANJE. GASNO STANJE http://www.ffh.bg.ac.rs/geografi_fh_procesi.html AGREGATNA STANJA MATERIJE Četiri agregatna stanja materije na osnovu stepena uređenosti, tj. odnosa termalne energije čestica i energije međumolekulskih

Διαβάστε περισσότερα

Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona.

Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona. Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona Prema osnovnoj formuli za dimenzionisanje maksimalni tangencijalni napon τ max koji se javlja u štapu mora biti manji

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE Laboratorijske vežbe 2014/2015 LABORATORIJSKI PRAKTIKUM-ELEKTRONSKE KOMPONENTE Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50 INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM LOGO ISPITIVANJE MATERIJALA ZATEZANJEM Vrste opterećenja Ispitivanje zatezanjem Svojstva otpornosti materijala Zatezna čvrstoća Granica tečenja Granica proporcionalnosti Granica elastičnosti Modul

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1 OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

. Iz lonca ključanjem ispari 100 vode za 5. Toplota

. Iz lonca ključanjem ispari 100 vode za 5. Toplota ELEKTROTEHNIČKI FAKULTET SARAJEVO RIJEŠENI ISPITNI ZADACI IF2 II PARCIJALNI Juni 2009 2A. Sunce zrači kao a.c.t. pri čemu je talasna dužina koja odgovara max. intenziteta zračenja jednaka 480. Naći snagu

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA.   Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

PRELAZ TOPLOTE - KONVEKCIJA

PRELAZ TOPLOTE - KONVEKCIJA PRELAZ TOPLOTE - KONVEKCIJA Prostiranje toplote Konvekcija Pri konvekciji toplota se prostire kretanjem samog fluida (tečnosti ili gasa): kroz fluid ili sa fluida na čvrstu površinu ili sa čvrste površine

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

Fizička mehanika i termofizika, junski rok

Fizička mehanika i termofizika, junski rok Fizička mehanika i termofizika, junski rok 5.7.2001. 1. Po strmoj ravni, nagibnog ugla α, kotrlja se bez klizanja masivni šuplji cilindar, mase M i poluprečnika R. Po unutrašnjosti cilindra se kreće pas.

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1.

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1. . U zračnom rasporu d magnetnog kruga prema slici akumulirana je energija od,8 mj. Odrediti: a. Struju I; b. Magnetnu energiju akumuliranu u zračnom rasporu d ; Poznato je: l = l =, m; l =, m; d = d =

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα