Γεωμετρία Β Λυκείου Τράπεζα Θεμάτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γεωμετρία Β Λυκείου Τράπεζα Θεμάτων"

Transcript

1 Γεωμετρία Β Λυκείου Τράπεζα Θεμάτων ASKISOPOLIS

2 Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης, Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία, Μάκος Σπύρος Μαρωνίτη Ειρήνη, Μαρωνίτης Λάμπρος Μπουρούνης Μιχάλης, Μιχαήλογλου Στέλιος Πανούσης Γιώργος, Παπαθανάση Κέλλυ Πατσιμάς Ανδρέας, Πατσιμάς Δημήτρης Ραμαντάνης Βαγγέλης, Σαμπάνης Νίκος Τόλης Ευάγγελος, Φανέλη Αναστασία Φερεντίνου Σταυρούλα Έκδοση η --0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην _909 αφαιρέθηκε το δ ερώτημα στην _907 αφαιρέθηκε το δ ερώτημα και στην _906 άλλαξε η σειρά στα σημεία Δ και Ε

3 Θεώρημα Θαλή.897. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. α) Να αποδείξετε ότι μ και. β) Να υπολογίσετε τα μήκη των τμημάτων ΑΔ και ΓΕ. μ 0 α) Επειδή το Θ είναι βαρύκεντρο του τριγώνου ΑΒΓ, η απόστασή του από τη κορυφή Α είναι ίση με τα της διαμέσου ΑΜ, δηλαδή M M Επειδή ΔΕ // ΒΓ από το θεώρημα Θαλή ισχύει ότι: και 8 β) Είναι 9 6 και.90. Στο τρίγωνο ΑΒΓ του διπλανού σχήματος, το τμήμα ΔΕ είναι παράλληλο στην πλευρά ΒΓ του τριγώνου. Από το σημείο Δ φέρουμε την παράλληλη προς τη ΒΕ η οποία τέμνει την ΑΓ στο σημείο Ζ. Να αποδείξετε ότι: μ 0 β) α) μ 0 γ) μ α) Επειδή το τρίγωνο ΑΔΕ ορίζεται από τις ευθείες δυο πλευρών του τριγώνου ΑΒΓ και μια παράλληλη προς την τρίτη πλευρά του τριγώνου ΑΒΓ, τα τρίγωνα ΑΔΕ και ΑΒΓ έχουν πλευρές ανάλογες άρα () β) Επειδή το τρίγωνο ΑΔΖ ορίζεται από τις ευθείες δυο πλευρών του τριγώνου ΑΒΕ και μια παράλληλη προς την τρίτη πλευρά του τριγώνου ΑΒΕ τα τρίγωνα ΑΔΖ και ΑΒΕ έχουν πλευρές ανάλογες άρα () γ) Οι σχέσεις (),() έχουν δεύτερα μέλη ίσα άρα και πρώτα επομένως

4 .906. Δίνεται τρίγωνο ΑΒΓ και τυχαίο σημείο Δ στην πλευρά ΒΓ. Φέρνουμε από το σημείο Δ παράλληλες στις πλευρές ΑΓ και ΑΒ που τέμνουν αντίστοιχα τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Ζ. Να αποδείξετε ότι: α) μ 0 β) μ 0 γ) μ α) Επειδή το τρίγωνο ΒΕΔ ορίζεται από τις ευθείες δυο πλευρών του τριγώνου ΑΒΓ και μια παράλληλη προς την τρίτη πλευρά του τριγώνου ΑΒΓ τα τρίγωνα ΒΕΔ και ΑΒΓ έχουν πλευρές ανάλογες άρα () β) Επειδή το τρίγωνο ΖΔΓ ορίζεται από τις ευθείες δυο πλευρών του τριγώνου ΑΒΓ και μια παράλληλη προς την τρίτη πλευρά του τριγώνου ΑΒΓ τα τρίγωνα ΖΔΓ και ΑΒΓ έχουν πλευρές ανάλογες άρα () γ) Από πρόσθεση κατά μέλη των (),() προκύπτει.90.δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια ώστε. Να αποδείξετε ότι : α) ΕΖ//ΘΗ//ΔΒ μ 0 β) μ 0 γ) ΕΖΗΘ παραλληλόγραμμο. μ λόγω του Θεωρήματος Θαλή είναι ΕΖ//ΔΒ (). Ομοίως και λόγω του Θεωρήματος Θαλή είναι ΘΗ//ΒΔ (). Από (), () προκύπτει ότι ΕΖ//ΘΗ//ΔΒ. α) Επειδή. Από υπόθεση έχουμε ότι άρα και () Ομοίως λόγω του ότι ΘΗ//ΔΒ ισχύει οπότε διότι από υπόθεση. Άρα () Από (), () προκύπτει ότι γ) Το ΕΖΗΘ παραλληλόγραμμο αφού ΕΖ = // ΗΘ. β) Επειδή ΕΖ//ΔΒ ισχύει ότι

5 .906.Οι διαγώνιοι του τραπεζίου ΑΒΓΔ (ΑΒ//ΓΔ) με ΓΔ>ΑΒ τέμνονται στο Ο. Η παράλληλη από το Β προς την ΑΔ τέμνει την ΑΓ στο Μ. Αν ΟΑ=, ΟΒ= 9 και ΟΓ= 6, να αποδείξετε ότι: α) ΟΔ = 7 μ β) ΟΜ = μ α) Αφού ΑΒ//ΓΔ τότε από το Θεώρημα Θαλή έχουμε ΟΑ ΟΒ 9 ΟΔ 7 ΟΓ ΟΔ 6 ΟΔ β) Επειδή ΒΜ//ΑΔ τότε από το Θεώρημα Θαλή προκύπτει ότι: ΟΜ ΟΒ ΟΜ 9 ΟΜ ΟΑ ΟΔ Δίνεται τρίγωνο ΑΒΓ και τα σημεία Δ και Ε των πλευρών του ΑΒ και ΑΓ αντίστοιχα, ώστε. Από το σημείο Α φέρνουμε ευθεία (ε) παράλληλη στη ΒΓ. Η ευθεία (ε) τέμνει τις προεκτάσεις των ΒΕ και ΓΔ στα σημεία Ζ, Η αντίστοιχα. Να αποδείξετε ότι: α) ΔΕ//ΓΒ β) α) Από υπόθεση έχουμε γ) μ9 και λόγω του θεωρήματος Θαλή είναι ΔΕ//ΓΒ. () Από υπόθεση ισχύει () Άρα από την () έχουμε β) Αφού ΑΖ//ΒΓ έχουμε ότι ˆ ˆ ως κατακορυφήν, και επειδή και δηλαδή τα τρίγωνα ΑΕΖ και ΕΒΓ έχουν δύο πλευρές ανάλογες και τις περιεχόμενες γωνίες στις πλευρές αυτές ίσες, οπότε είναι όμοια. Είναι, άρα γ) Είναι Θεωρήματα διχοτόμων.90. Στο κυρτό τετράπλευρο ΑΒΓΔ του παρακάτω σχήματος, η διχοτόμος της γωνίας Α είναι παράλληλη στην πλευρά ΒΓ και τέμνει τη ΔΒ στο Ε και τη ΔΓ στο Ζ. Αν, 8, 9 και 6, να αποδείξετε ότι: α) 6 μ β) 9 μ

6 α) Από Θεώρημα εσωτερικής διχοτόμου στο τρίγωνο ΑΔΒ,έχουμε ότι β) Επειδή ΖΕ//ΒΓ ισχύει ότι.900.δίνεται τρίγωνο ΑΒΓ (ΑΒ >ΑΓ) και ΑΔ, ΑΕ η εσωτερική και η εξωτερική διχοτόμος του αντίστοιχα. Αν είναι ΑΒ=6, ΔΒ=, ΒΓ= και ΒΕ=, να αποδείξετε ότι: α) ΑΓ = μ β) ΔΕ = μ α) Από το θεώρημα της εσωτερικής διχοτόμου στο τρίγωνο ΑΒΓ προκύπτει ότι 6. β) Είναι όπου 0 και ΔΓ ΒΓ ΒΔ. Άρα 0. Όμοια πολύγωνα.90. Στο διπλανό σχήμα, τα πολύγωνα ΑΒΓΔΕ και ΚΛΜΝΡ. είναι όμοια και έχουν και α) Να προσδιορίσετε το λόγο ομοιότητάς τους. Να αιτιολογήσετε την απάντησή σας. β) Να υπολογίσετε το μήκος x της πλευράς ΑΕ. γ) Να βρείτε την περίμετρο του πολυγώνου ΑΒΓΔΕ. μ9 K,,, είναι και οπότε στις πλευρές α) Επειδή ΑΒ, ΒΓ, ΓΔ,ΔΕ, ΕΑ του πολυγώνου ΑΒΓΔΕ ομόλογες πλευρές του ΚΛΜΡΝ είναι οι ΚΛ, ΛΜ, ΜΝ, ΝΡ, ΡΚ. Ο λόγος ομοιότητας λ των ομοίων πολυγώνων είναι ο λόγος δυο ομόλογων πλευρών άρα 0. λ= β) Αφού τα πολύγωνα ΑΒΓΔΕ και ΚΛΜΝΡ είναι όμοια άρα x λ δηλαδή 8

7 x x 6 x 8 γ) Η περίμετρος του πολυγώνου ΚΛΜΝΡ είναι =69 Αν η περίμετρος του πολυγώνου ΑΒΓΔΕ τότε λ Συνεπώς Όμοια τρίγωνα.898. Θεωρούμε δύο τρίγωνα ΑΒΓ και ΔΕΖ. α) Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να δικαιολογήσετε την απάντησή σας., 0, 0,. i. AB 8,, 7, 8, 7, 9. ii.,. iii., μ β) Στις περιπτώσεις που το τρίγωνο ΑΒΓ είναι όμοιο με το ΔΕΖ, να γράψετε τους ίσους λόγους των ομόλογων πλευρών του. μ 0, 8 και, δηλαδή α) i. Είναι 0 0 Επειδή τα δύο τρίγωνα έχουν δύο πλευρές ανάλογες και τις περιεχόμενες στις πλευρές αυτές γωνίες ίσες, είναι όμοια. ii. Από το άθροισμα γωνιών του τριγώνου ΑΒΓ έχουμε: και, δηλαδή τα δύο τρίγωνα έχουν δύο Είναι γωνίες τους ίσες μία προς μία, οπότε είναι όμοια., τα δύο τρίγωνα έχουν δύο iii. Επειδή και πλευρές ανάλογες και τις περιεχόμενες στις πλευρές αυτές γωνίες ίσες, είναι όμοια. β) i. ii. iii.

8 Στο διπλανό σχήμα τα τμήματα ΑΕ και ΒΔ τέμνονται στο Γ. Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΕΔΓ είναι όμοια σε κάθε μια από τις παρακάτω περιπτώσεις: α) ΑΒ // ΔΕ μ β) και μ ως κατακορυφήν και α) Τα τρίγωνα ΑΒΓ και ΕΔΓ έχουν : ) ως εντός εναλλάξ των παραλλήλων ΑΒ, ΔΕ ) που τέμνονται από την ΑΕ Επειδή τα δύο τρίγωνα έχουν δύο γωνίες τους ίσες μία προς μία, άρα είναι όμοια., δηλαδή, και ) ως κατακορυφήν. Επειδή τα δύο τρίγωνα έχουν δύο πλευρές ανάλογες και τις περιεχόμενες στις πλευρές αυτές γωνίες ίσες, είναι όμοια. β) Τα τρίγωνα ΑΒΓ και ΕΔΓ έχουν : ).899. α) Να εξετάσετε αν δύο τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια σε κάθε μία από τις παρακάτω περιπτώσεις: i., 6, 8, 0, 0, 8 6, 8, 6, ii. μ β) Έστω τρίγωνο ΑΒΓ με πλευρές 6, 7 και 8. Ποιο θα είναι το μήκος των πλευρών ενός τριγώνου ΔΕΖ το οποίο είναι όμοιο με το τρίγωνο ΑΒΓ, με λόγο ομοιότητας ; μ 0 α) i. Επειδή η ΑΓ είναι η μικρότερη πλευρά του τριγώνου ΑΒΓ και η ΔΖ η μικρότερη του ΔΕΖ είναι αντίστοιχες και έχουν λόγο. 0 Επειδή οι πλευρές ΒΑ και ΔΕ είναι οι μεγαλύτερες πλευρές των τριγώνων, είναι 8 αντίστοιχες και έχουν λόγο 8 8 Επειδή τα δύο τρίγωνα δεν είναι όμοια. ii. Από το άθροισμα γωνιών του τριγώνου ΑΒΓ έχουμε: και, οπότε είναι όμοια. Τα τρίγωνα ΑΒΓ και ΔΕΖ έχουν β) Έστω ότι η πλευρά ΔΕ είναι αντίστοιχη της ΑΒ, η ΔΖ της ΑΓ και η ΕΖ της ΒΓ, τότε: 6 8, 7 και 8 6

9 .90.Από ένα σημείο Σ που βρίσκεται έξω από έναν δοσμένο κύκλο φέρουμε τα εφαπτόμενα τμήματα ΣΑ και ΣΒ και μία τέμνουσα ΣΓΔ. Να αποδείξετε ότι: α) i. Τα τρίγωνα ΣΒΓ και ΣΔΒ είναι όμοια. ii. Τα τρίγωνα ΣΑΓ και ΣΔΑ είναι όμοια. μ 6 β) ΑΓ ΒΔ=ΑΔ ΒΓ μ9 α) i) Τα τρίγωνα ΣΒΓ και ΣΔΒ έχουν : ˆ κοινή ˆ (γωνία χορδής και εφαπτομένης ίση με την ˆ εγγεγραμμένη που βαίνει στο αντίστοιχο τόξο της χορδής) Άρα τα τρίγωνα είναι όμοια ii) Τα τρίγωνα ΣΑΓ και ΣΔΑ έχουν : ˆ κοινή ˆ ˆ (γωνία χορδής και εφαπτομένης ίση με την εγγεγραμμένη που βαίνει στο αντίστοιχο τόξο της χορδής) Άρα τα τρίγωνα είναι όμοια. () και από α)ii) () Επειδή τα ΒΣ,ΑΣ είναι εφαπτόμενα τμήματα από το σημείο Σ, είναι ίσα, άρα: β) Από α)i) έχουμε :.90.Τα παρακάτω τρίγωνα ΑΒΓ και ΔΕΖ ˆ ˆ, ˆ ˆκαι ΑΓ=, ΕΖ=, ΕΔ=8 έχουν και ΖΔ=. α) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια. β) Να συμπληρώσετε την ισότητα των λόγων με τις κατάλληλες πλευρές του τριγώνου ΔΕΖ : μ γ) Να υπολογίσετε τα x και y. α) Τα δύο τρίγωνα είναι όμοια επειδή έχουν δύο γωνίες ίσες. β) Από την ομοιότητα των τριγώνων ΑΒΓ και ΔΕΖ έχουμε: γ) Z y x.άρα : Z 8 y x y y 0 και x 8 x 0 8 7

10 .90. Στο διπλανό σχήμα, το τμήμα ΔΕ είναι παράλληλο στην πλευρά ΒΓ του τριγώνου ΑΒΓ και επιπλέον ισχύουν ΑΔ=, ΔΒ= και ΔΕ=6. α) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΑΔΕ είναι όμοια. μ 9 β) Με τη βοήθεια του ερωτήματος α) να συμπληρώσετε τα κενά... στην ισότητα: μ γ) Ένας μαθητής χρησιμοποιεί την αναλογία για να υπολογίσει το x. 6 x Να εξηγήσετε γιατί αυτή η αναλογία είναι λάθος, να γράψετε τη σωστή και να υπολογίσετε την τιμή του x. μ7 α) Τα τρίγωνα ΑΒΓ και ΑΔΕ έχουν : ˆ κοινή ˆ ˆ (εντός εκτός και επί τα αυτά των παραλλήλων ΔΕ και ΒΓ που τέμνονται από τη ΒΓ) Άρα τα τρίγωνα είναι όμοια β) Από την ομοιότητα των τριγώνων ΑΒΓ και ΑΔΕ έχουμε: γ) Είναι λάθος επειδή στους όρους της αναλογίας έχει πλευρές των όμοιων τριγώνων ενώ ο ος είναι το μήκος του ευθυγράμμου τμήματος ΔΒ. 9 x 9 x x, Η σωστή αναλογία είναι 6 6 x.907. Τα διπλανά τρίγωνα ΑΒΓ και ΔΕΖ είναι ορθογώνια με ορθές τις γωνίες Α και Δ αντίστοιχα. Επιπλέον, για τις πλευρές των τριγώνων ΑΒΓ και ΔΕΖ αντίστοιχα ισχύουν ΑΒ=8, ΑΓ= και ΔΕ=, ΔΖ=8. α) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια. μ 0 β) Με τη βοήθεια του ερωτήματος α) να συμπληρώσετε... κατάλληλα τα κενά: μ γ) Από τις παρακάτω ισότητες να επιλέξετε τη σωστή. 8 i. ii. iii. 8 iv. μ6 α) Τα τρίγωνα ΑΒΓ και ΔΕΖ έχουν : ( 7) 8 8 ˆ ˆ 90 Επομένως τα τρίγωνα ΑΒΓ και ΔΕΖ έχουν δύο πλευρές ανάλογες και τις περιεχόμενες στις πλευρές αυτές γωνίες ίσες άρα είναι όμοια. 8

11 β) Επειδή τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια ισχύει ότι: γ) Στο διπλανό σχήμα ισχύουν ΑΒ//ΔΓ, ΑΕ=6, ΑΒ=8, ΓΕ= και ΔΕ=0. α) Να βρείτε δυο ζεύγη ίσων γωνιών των τριγώνων ΑΕΒ και ΔΕΓ. Να αιτιολογήσετε την απάντησή σας. β) Να αποδείξετε ότι τα τρίγωνα ΑΕΒ και ΔΕΓ είναι όμοια και να γράψετε την ισότητα των λόγων των ομόλογων πλευρών τους. μ9 γ) Να υπολογίσετε τα τμήματα ΒΕ και ΔΓ. ˆ ˆ ως εντός εναλλάξ των παραλλήλων α) ΑΒ και ΓΔ που τέμνονται από την ΑΓ και ˆ ˆ γιατί είναι κατακορυφήν. β) Τα τρίγωνα ΑΕΒ και ΔΕΓ έχουν : ˆ ˆ ˆ ˆ Επομένως τα τρίγωνα ΑΕΒ και ΔΕΓ έχουν δύο γωνίες ίσες μία προς μία και είναι όμοια, οπότε οι ομόλογες πλευρές του είναι ανάλογες, δηλαδή. γ) Αφού τα τρίγωνα ΑΕΒ και ΔΕΓ είναι όμοια :

12 .90. Να χρησιμοποιήσετε τις πληροφορίες που σας δίνονται για το κάθε ζεύγος τριγώνων των παρακάτω σχημάτων, προκειμένου να απαντήσετε στα ακόλουθα: α) Ποιο από τα παρακάτω ζεύγη τριγώνων είναι όμοια και ποιο δεν είναι; Να αιτιολογήσετε την απάντησή σας. μ β) Για το ζεύγος των όμοιων τριγώνων του προηγούμενου ερωτήματος, i. να γράψετε την ισότητα των λόγων των ομόλογων πλευρών. μ6 ii. να βρείτε το λόγο ομοιότητάς τους. μ ο ζεύγος: τρίγωνα ΚΛΜ και ΖΔΕ ο ζεύγος: τρίγωνα ΑΒΓ και ΗΚΛ 0 6 = 900 () και 9 Επομένως τα τρίγωνα ΚΛΜ και ΔΕΖ είναι όμοια γιατί έχουν δυο πλευρές ανάλογες μία προς μία και τις περιεχόμενες στις πλευρές αυτές γωνίες ίσες ο ζεύγος: Έστω ότι τα τρίγωνα ΑΒΓ και ΚΗΛ ήταν όμοια, τότε θα είχαν τις γωνίες απέναντι από τις ομόλογες πλευρές ίσες. Όμως το τρίγωνο ΑΒΓ είναι ισοσκελές με γωνία άρα καμία γωνία του δεν είναι 00 επομένως κορυφής 0 6 άτοπο. Άρα τα τρίγωνα ΑΒΓ και ΚΛΜ δεν είναι όμοια. α) ο ζεύγος: ισχύει ii) Ο λόγος ομοιότητας λ των ομοίων τριγώνων ΚΛΜ και ΔΕΖ είναι ο λόγος δυο ομόλογων πλευρών άρα λ= β) i) από () ˆ θεωρούμε.900.στη διχοτόμο Οδ της γωνίας xoy τα σημεία Α, Β τέτοια ώστε:. Η κάθετος στην Οδ στο σημείο Α τέμνει την πλευρά Οx στο σημείο Ε και έστω Δ η προβολή του Β στην Οy. Να αποδείξετε ότι : α) Τα τρίγωνα ΟΑΕ και ΟΔΒ είναι όμοια. μ 0 β) μ ˆ y άρα ˆ ˆ. α) Η Οδ είναι διχοτόμος της γωνίας x Επειδή τα τρίγωνα ΕΟΑ και ΒΟΔ είναι ορθογώνια, έχουν δύο γωνίες ίσες μία προς μία, οπότε είναι όμοια. β) Από το προηγούμενο ερώτημα έχουμε ότι ΟΑΕ και ΟΔΒ είναι όμοια. Άρα έχουμε (). 0

13 Από υπόθεση γνωρίζουμε ότι οπότε αντικαθιστώντας στην () προκύπτει δηλαδή.90.δίνεται τρίγωνο ΑΒΓ και τα σημεία Δ και Ε των A πλευρών ΑΒ και ΑΓ αντίστοιχα ώστε. Από το σημείο Ε φέρνουμε παράλληλη προς την ΑΒ, η οποία τέμνει την ΒΓ στο σημείο Ζ. Να αποδείξετε ότι : α) Τα τρίγωνα ΑΒΓ και ΑΔΕ είναι όμοια. μ 0 β) ΒΖ = ΒΓ. μ α) Τα τρίγωνα ΑΒΓ και ΑΔΕ είναι όμοια γιατί έχουν A ˆ κοινή (ο κριτήριο και ομοιότητας). ˆ ˆ και ˆ ˆ, οπότε β) Αφού τα τρίγωνα ΑΒΓ και ΑΔΕ είναι όμοια θα έχουν ΔΕ//ΒΓ (εντός, εκτός και επί τα αυτά γωνίες ίσες). Επιπλέον αφού ΕΖ//ΑΒ τότε το ΔΕΖΒ είναι παραλληλόγραμμο, άρα ΔΕ ΒΖ. Από την ομοιότητα των τριγώνων ΑΒΓ και ΑΔΕ προκύπτει άρα οπότε από την () έχουμε Σε οξυγώνιο τρίγωνο ΑΒΓ φέρουμε τα ύψη του ΑΔ και ΒΕ. α) Αν το τρίγωνο ΑΒΓ είναι και σκαληνό, τότε: i. Να αποδείξετε ότι τα τρίγωνα ΑΔΓ και ΒΕΓ είναι όμοια. μ 0 ii. Να δικαιολογήσετε γιατί τα τρίγωνα ΑΔΒ και ΒΕΑ δεν μπορεί να είναι όμοια. μ 0 β) Αν το τρίγωνο ΑΒΓ είναι και ισοσκελές με κορυφή το Γ, τότε μπορούμε να ισχυριστούμε ότι τα τρίγωνα ΑΔΒ και ΒΕΑ είναι όμοια; Να αιτιολογήσετε την απάντησή σας. μ α) i. Τα τρίγωνα ΑΔΓ και ΒΕΓ έχουν: 90 και ) τη γωνία Γ κοινή, οπότε έχουν δύο γωνίες ) ίσες μία προς μία και είναι όμοια. ii. Τα τρίγωνα ΑΔΒ και ΒΕΑ έχουν τις γωνίες Δ και Ε ορθές.. θα ήταν ίση με την ή την A Αν ήταν όμοια τότε η γωνία, τότε τα τρίγωνα ΑΔΓ και ΒΕΓ θα είχαν δύο γωνίες ίσες μία προς μία, οπότε θα Αν που είναι αδύνατο. είχαν και A είναι άτοπο γιατί αφού το τρίγωνο ΑΒΓ είναι οξυγώνιο το ύψος ΑΔ είναι Αν A. εσωτερικό της ΒΑΓ, οπότε Άρα τα τρίγωνα ΑΔΒ και ΒΕΑ δεν μπορεί να είναι όμοια. γιατί θα βρίσκονταν στη β) Αν το τρίγωνο ΑΒΓ είναι ισοσκελές με κορυφή το Γ, τότε βάση του ισοσκελούς., δηλαδή έχουν δύο γωνίες 90 και ) Τα τρίγωνα ΑΔΒ και ΒΕΑ έχουν: ) ίσες μία προς μία οπότε είναι όμοια.

14 .899.Στην πλευρά ΑΒ παραλληλογράμμου ΑΒΓΔ θεωρούμε σημείο Ε τέτοιο, ώστε και στην πλευρά ΔΓ θεωρούμε σημείο Ζ τέτοιο, ώστε. Αν η διαγώνιος ΑΓ τέμνει τις ΔΕ και ΒΖ στα σημεία Μ και Ν αντίστοιχα, να αποδείξετε ότι: α) ΑΜ=ΓΝ=MN μ β) μ α) Είναι και ΒΕ//ΔΖ, άρα το τετράπλευρο ΔΖΒΕ είναι παραλληλόγραμμο και ΔΕ//ΖΒ. Τα τρίγωνα ΑΕΜ και ΑΒΝ έχουν : ˆ κοινή ˆ ˆ ( εντός εκτός και επί τα αυτά των παραλλήλων ΕΜ και ΒΝ που τέμνονται από την ΑΒ) Επομένως τα τρίγωνα ΑΕΜ και ΑΒΝ έχουν δύο γωνίες ίσες μία προς μία άρα είναι όμοια. Οπότε ( ) () Όμοια τα τρίγωνα ΖΓΝ και ΔΓΜ έχουν : ˆ κοινή ˆ ( εντός εκτός και επί τα αυτά των παραλλήλων ΖΝ και ΔΜ που ˆ τέμνονται από την ΓΔ) Επομένως τα τρίγωνα ΖΓΝ και ΔΓΜ έχουν δύο γωνίες ίσες μία προς μία άρα είναι όμοια. Οπότε ( ) (). Από (),() έχουμε ΑΜ=ΓΝ=MN ος τρόπος Τα τρίγωνα ΑΜΕ και ΖΝΓ είναι ίσα γιατί έχουν: NZ (γωνίες με πλευρές παράλληλες), ΑΕ ΑΒ ΓΔ ΖΓ, MEA (εντός εναλλάξ των παραλλήλων ΑΒ και ΓΔ που τέμνονται από την ΑΓ). Άρα θα ισχύει: () ΓΔ ΓΖ ΓΝ ΓΝ ΓΝ Επειδή ΔΜ//ΖΝ, θα ισχύει: ΓΝ ΜΝ () ΖΔ ΜΝ ΜΝ ΓΔ ΜΝ Από τις () και () προκύπτει ότι ΑΜ = ΓΝ = ΜΝ

15 α) β).9000.δίνεται τρίγωνο ΑΒΓ. Θεωρούμε ΑΜ τη διάμεσό του και Ε τυχαίο σημείο του τμήματος ΒΜ. Από το Ε φέρουμε ευθεία παράλληλη στην ΑΜ που τέμνει την πλευρά ΑΒ στο Δ και την προέκταση της ΓΑ στο Ζ. α) Να συμπληρώσετε τις αναλογίες και να αιτιολογήσετε την επιλογή σας: i ii. μ... β) Να αποδείξετε ότι το άθροισμα είναι σταθερό, για οποιαδήποτε θέση του Ε στο ΒΜ. μ α) i) Τα τρίγωνα ΒΔΕ και ΒΑΜ έχουν : ˆ κοινή ˆ ˆ (εντός, εκτός και επί τα αυτά των παραλλήλων ΕΔ και ΑΜ που τέμνονται από την ΒΓ) Επομένως τα τρίγωνα ΒΔΕ και ΒΑΜ έχουν δύο γωνίες ίσες μία προς μία και είναι όμοια. Άρα η ζητούμενη αναλογία είναι η: (). ii) Τα τρίγωνα ΓΖΕ και ΓΑΜ έχουν : ˆ κοινή ˆ ˆ (εντός, εκτός και επί τα αυτά των παραλλήλων ΕΖ και ΑΜ που τέμνονται από την ΒΓ) Επομένως τα τρίγωνα ΓΖΕ και ΓΑΜ έχουν δύο γωνίες ίσες μία προς μία άρα είναι όμοια. Άρα η ζητούμενη αναλογία είναι η: (). β) Από (),() έχουμε: μέσο.906.στο διπλανό σκαληνό τρίγωνο ΑΒΓ θεωρούμε τα σημεία Ε και Δ στις πλευρές ΑΒ και ΑΓ αντίστοιχα, έτσι ώστε να ισχύουν: και. ˆ ˆ. α) Να αποδείξετε ότι. μ 9 β) Να εξετάσετε αν ισχύει :. μ 8

16 γ) Να εξετάσετε αν το τμήμα ΒΓ είναι παράλληλο στο τμήμα ΔΕ. Να αιτιολογήσετε πλήρως τις απαντήσεις σας. και. α) Από τις δεδομένες σχέσεις έχουμε: Άρα και. Τα τρίγωνα ΑΔΕ και ΑΒΓ είναι όμοια γιατί έχουν δύο πλευρές ανάλογες μια προς μια και τις περιεχόμενες στις πλευρές αυτές γωνίες ίσες. Οι γωνίες που είναι απέναντι από τις ˆ ˆ. ανάλογες πλευρές είναι ίσες άρα: β) Από τις ανάλογες πλευρές των όμοιων τριγώνων έχουμε:, άρα ισχύει η δεδομένη σχέση. γ) Αν το τμήμα ΒΓ είναι παράλληλο στο ΔΕ θα πρέπει οι γωνίες Β και Ε να είναι ίσες ως εντός εκτός και επί τα αυτά μέρη. Όμως από τα όμοια τρίγωνα οι γωνίες Ε και Γ είναι ίσες. Άρα θα πρέπει και οι Β και Γ να είναι ίσες γωνίες. Αυτό όμως δεν μπορεί να ισχύει γιατί το τρίγωνο είναι σκαληνό..909.δίνεται τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ) και Μ σημείο της πλευράς ΑΔ ώστε. Από το Μ φέρνουμε παράλληλη προς τις βάσεις του τραπεζίου, η οποία τέμνει τις ΑΓ και ΒΓ στα σημεία Κ και Ν αντίστοιχα. Να αποδείξετε ότι: α) β) γ) μ9 α) Έπειδή ΜΚ//ΔΓ από το θεώρημα Θαλή ισχύει ότι οπότε. β) Επειδή ΑΒ//ΓΔ και ΚΝ//ΔΓ είναι και ΚΝ//ΑΒ, οπότε τα τρίγωνα ΑΒΓ και ΓΚΝ έχουν πλευρές παράλληλες, δηλαδή:. Άρα γ) Από το σχήμα έχουμε ότι () Από το β) ερώτημα έχουμε ότι άρα () Επειδή ΜΚ//ΔΓ έχουμε ότι λόγω του α) οπότε () Αντικαθιστώ τις (), () στην () οπότε προκύπτει

17 ˆ 6 0 και η.909. Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ, διχοτόμος του ΒΔ. α) Να αποδείξετε ότι: i) Τα τρίγωνα ΒΔΓ και ΑΒΓ είναι όμοια. μ6 ii). μ9 β) Αν ΑΓ =,να υπολογίσετε το μήκος του τμήματος ΑΔ. μ , οπότε αφού η ΒΔ είναι διχοτόμος, ισχύει ότι ˆ ˆ 60. Άρα τα τρίγωνα ΒΔΓ και ΑΒΓ είναι όμοια ˆ 6 0 και ˆ κοινή. γιατί έχουν ˆ α) i) Επειδή το τρίγωνο ΑΒΓ είναι ισοσκελές τότε ˆ ˆ ˆ 800 ˆ ˆ , συνεπώς το τρίγωνο ΒΓΔ είναι ii) Είναι ˆ 60 ) οπότε ισοσκελές και ΒΓ= ΒΔ. Επίσης το τρίγωνο ΑΒΔ είναι ισοσκελές ( ˆ ΑΔ = ΒΔ. Άρα ΒΓ= ΑΔ (). Από την ομοιότητα των τριγώνων ΒΔΓ και ΑΒΓ προκύπτει. Οπότε από τη σχέση () θα είναι. ος τρόπος Επειδή ΒΔ διχοτόμος, από το θεώρημα εσωτερικής διχοτόμου προκύπτει ότι: ΔΑ ΑΒ ΑΒ ΑΓ ΑΔ ΑΓ ΒΓ ΑΔ ΑΔ ΑΓ ΑΔ ΔΓ ΑΓ ΔΓ ΒΓ ΔΓ ΒΓ ΔΓ ΑΔ β) Έστω x και τότε x οπότε από τη σχέση () προκύπτει: x x ή x x x x 0, οπότε x x x 0 (απορρίπτεται). Άρα. Πυθαγόρειο θεώρημα Ένας άνθρωπος σπρώχνει ένα κουτί προς τα πάνω στη ράμπα του διπλανού σχήματος. α) Να αποδείξετε ότι για το ύψος y, που απέχει το κουτί από s το έδαφος κάθε χρονική στιγμή, ισχύει ότι y, όπου s το μήκος που έχει διανύσει το κουτί πάνω στη ράμπα. μ β) Όταν το κουτί απέχει από το έδαφος m, να βρείτε: i. το μήκος s που έχει διανύσει το κουτί στη ράμπα. μ ii. Την απόσταση του σημείου Δ από την άκρη της ράμπας Α. μ7

18 α) Τα τρίγωνα ΑΕΔ και ΑΒΓ έχουν: 90 και ) ) Τη γωνία Α κοινή Επειδή έχουν δύο γωνίες ίσες, τα τρίγωνα είναι όμοια, οπότε οι πλευρές τους είναι ανάλογες, δηλαδή: y s s s y 0 0 β) Για y m είναι: s i. s 8 m ii. () Από το πυθαγόρειο θεώρημα στο ορθογώνιο τρίγωνο ΑΒΓ έχουμε: AB Από τη σχέση () έχουμε: m.900. Σε τρίγωνο ΑΒΓ η διχοτόμος της γωνίας Α τέμνει την πλευρά ΒΓ σε σημείο Δ, τέτοιο, ώστε. α) Να αποδείξετε ότι. μ β) Αν επιπλέον ισχύει ότι, να εξετάσετε αν το τρίγωνο ΑΒΓ είναι ορθογώνιο. Να δικαιολογήσετε την απάντησή σας. μ α) Από το θεώρημα διχοτόμων στο τρίγωνο ΑΒΓ ισχύει ότι: 6 9 β) Είναι και Επειδή το τρίγωνο ΑΒΓ είναι ορθογώνιο με 6

19 α) Ποιες από τις παρακάτω τριάδες θετικών αριθμών μπορούν να θεωρηθούν μήκη πλευρών ορθογωνίου τριγώνου; Να δικαιολογήσετε την απάντησή σας. i.,, ii. λ, λ, λ ( λ>0) iii.,, 6 μ 8 β) Στο παρακάτω ορθογώνιο τρίγωνο να αποδείξετε ότι, το μήκος x είναι ακέραιο πολλαπλάσιο του. μ 7 α) Οι δύο πρώτες τριάδες μπορούν να θεωρηθούν μήκη πλευρών ορθογωνίου τριγώνου επειδή σ αυτές ισχύει το Πυθαγόρειο θεώρημα. i. 9 6 ii. λ λ λ λ 9λ 6λ λ λ Ενώ στην iii) 6 6( 6 ) β) Από πυθαγόρειο θεώρημα στο τρίγωνο ΑΒΓ έχουμε: άρα x Άρα το μήκος x είναι ακέραιο πολλαπλάσιο του. 0 με ύψος ΑΔ και ΑΓ = 8, και.90.δίνεται ορθογώνιο τρίγωνο ΑΒΓ A. Να υπολογίσετε τα μήκη των παρακάτω τμημάτων: α) ΒΓ μ 9 β) ΑΒ μ 8 γ) ΑΔ μ 8 ΔΓ= α) Από το ορθογώνιο τρίγωνο ΑΒΓ (Α=90ο) έχουμε: ο ) έχουμε: β) Από το Πυθαγόρειο Θεώρημα στο τρίγωνο ΑΒΓ ( γ) Ισχύει: 0 0 8, 6 90ο ) έχουμε: Από το Πυθαγόρειο Θεώρημα στο τρίγωνο ΑΓΔ ( 7

20 , Δίνεται ορθογώνιο τρίγωνο ΑΒΓ A με ΑΓ = και ύψος ΑΔ=. α) Να υπολογίσετε το μήκος του τμήματος ΔΓ. 9 β) Να αποδείξετε ότι ΔΒ=. γ) Να βρείτε το εμβαδόν του τριγώνου ΑΒΓ. μ 0 μ 0 μ 90 έχουμε: α) Από το πυθαγόρειο θεώρημα στο τρίγωνο ΑΔΓ β) Στο τρίγωνο ΑΒΓ έχουμε: γ) Για το εμβαδόν του τριγώνου ΑΒΓ έχουμε 6 9 β υ (ΑΒΓ)= Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές του ΑΒ και ΓΔ που τέμνονται σε ένα σημείο Μ. α) Αν το σημείο Α είναι μέσο του τόξου ΓΔ, να αποδείξετε ότι: i. Όταν η χορδή ΑΒ είναι κάθετη στη χορδή ΓΔ, τότε ii. Όταν η χορδή ΑΒ δεν είναι κάθετη στη χορδή ΓΔ, ισχύει η σχέση ; Να αιτιολογήσετε την απάντησή σας. μ9 β) Αν για τις χορδές ΑΒ και ΓΔ που τέμνονται σε σημείο Μ ισχύει ότι, να αποδείξετε ότι το σημείο Α είναι το μέσο του τόξου ΓΔ. α) i. Επειδή το Α είναι μέσο του τόξου ΓΔ, η ΟΑ είναι μεσοκάθετος της χορδής ΓΔ. Όμως η χορδή ΑΒ είναι κάθετη στη χορδή ΓΔ, άρα η ΑΒ διέρχεται από το κέντρο Ο του κύκλου. είναι ορθή γιατί είναι εγγεγραμμένη σε ημικύκλιο. Η γωνία Στο ορθογώνιο τρίγωνο ΑΒΓ για τη κάθετη πλευρά ΑΓ ισχύει ότι: ii. Έστω τώρα ότι η AB δεν είναι κάθετη στη χορδή ΓΔ. Τα τρίγωνα ΑΓΜ και ΑΓΒ έχουν: 8

21 γιατί είναι εγγεγραμμένες σε ίσα τόξα και ) ) τη γωνία Α κοινή Άρα τα δύο τρίγωνα έχουν δύο γωνίες τους ίσες μία προς μία και είναι όμοια, οπότε και οι πλευρές τους είναι ανάλογες, δηλαδή:. β) Στα τρίγωνα ΑΓΜ και ΑΓΒ ισχύει ότι:. Επειδή τα δύο τρίγωνα έχουν δύο πλευρές τους ανάλογες και τις περιεχόμενες γωνίες στις πλευρές αυτές ίσες ( η γωνία Α είναι κοινή), τα τρίγωνα είναι όμοια, οπότε έχουν και τις, οπότε και τα αντίστοιχα τόξα τους ΑΓ υπόλοιπες γωνίες τους αντίστοιχα ίσες. Άρα και ΑΔ είναι ίσα, δηλαδή το Α είναι μέσο του τόξου ΓΔ Δίνεται κύκλος (O,R) και μία διάμετρός του ΑΒ. Με διαμέτρους τα τμήματα ΟΑ και ΟΒ γράφουμε τους κύκλους κέντρων Κ και Λ αντίστοιχα. Ένας τέταρτος κύκλος κέντρου Μ και ακτίνας ρ εφάπτεται εξωτερικά των κύκλων κέντρων Κ και Λ και εσωτερικά του κύκλου κέντρου Ο. α) Να εκφράσετε τις διακέντρους ΚΜ, ΛΜ και ΟΜ των αντιστοίχων κύκλων ως συνάρτηση των ακτίνων τους, δικαιολογώντας την απάντησή σας. μ R β) Να αποδείξετε ότι. μ α) Η διάκεντρος δύο εφαπτόμενων εξωτερικά κύκλων διέρχεται από το σημείο επαφής των κύκλων και ισούται με το άθροισμα των ακτίνων τους. R Οπότε ρ και R ρ Η διάκεντρος δύο εφαπτόμενων εσωτερικά κύκλων διέρχεται από το σημείο επαφής των κύκλων και ισούται με την διαφορά των ακτίνων τους.επομένως R ρ β) Το τρίγωνο ΚΛΜ είναι ισοσκελές αφού ΚΜ=ΛΜ (από το (α) ερώτημα), με Ο το μέσο της πλευράς ΚΛ, άρα η διάμεσος ΜΟ 900 είναι και ύψος, δηλαδή Από πυθαγόρειο θεώρημα στο τρίγωνο ΜΟΚ έχουμε R R ρ (R ρ) ρ R ρ R R R R R ρ ρ R ρ R ρ 9

22 Ένα κινητό ξεκινάει από ένα σημείο Α και κινείται βόρεια χιλιόμετρα, κατόπιν συνεχίζει 0 χιλιόμετρα ανατολικά, στη συνέχεια προχωράει χιλιόμετρα βόρεια και τέλος χιλιόμετρα ανατολικά καταλήγοντας στο σημείο Ε. α) Αν από το σημείο Ε επιστρέψει στο σημείο Α από το οποίο ξεκίνησε, κινούμενο ευθύγραμμα, να βρείτε την απόσταση ΑΕ που θα διανύσει. β) Τα σημεία Α, Γ και Ε είναι συνευθειακά; Να αιτιολογήσετε πλήρως την απάντησή σας. μ μ 90ο ) από το α) Στο ορθογώνιο τρίγωνο ΑΚΕ ( Πυθαγόρειο Θεώρημα έχουμε: ( ) (0 ) β) Αν τα σημεία Α, Γ και Ε ήταν συνευθειακά θα πρέπει να ισχύει: ΑΓ+ΓΕ=ΑΕ 90ο ) από το Πυθαγόρειο Θεώρημα έχουμε: Στο ορθογώνιο τρίγωνο ΑΒΓ ( ο ) από το Πυθαγόρειο Θεώρημα έχουμε: Στο ορθογώνιο τρίγωνο ΔΕΓ ( , 0,60,000. Γενίκευση πυθαγορείου θεωρήματος.900. Τα μήκη των πλευρών τριγώνου ΑΒΓ είναι 8, 6 και. α) Να αποδείξετε ότι το τρίγωνο είναι αμβλυγώνιο. μ β) Να υπολογίσετε τις προβολές της πλευράς ΑΒ στις πλευρές ΑΓ και ΒΓ. μ α) Είναι β γ 6 6 και α Επειδή α β γ το τρίγωνο ΑΒΓ είναι αμβλυγώνιο με β) Η προβολή της ΑΒ στην ΑΓ είναι το ΑΔ και στην ΒΓ το ΒΕ. Από το θεώρημα αμβλείας για τη γωνία Α στο τρίγωνο ΑΒΓ, έχουμε: Από το θεώρημα οξείας για τη γωνία Β, έχουμε:

23 60.90.Δίνεται τρίγωνο ΑΒΓ με πλευρές ΑΒ = 6, ΒΓ = 9 και α) Να αποδείξετε ότι 7. β) Να βρείτε το είδος του τριγώνου ΑΒΓ ως προς τις γωνίες του. γ) Να υπολογίσετε την προβολή της ΑΒ πάνω στη ΒΓ. μ 8 μ 8 μ 9 α) Από τον νόμο των συνημιτόνων στο τρίγωνο ΑΒΓ έχουμε: συν ˆ συν β) Για το είδος του τριγώνου ελέγχουμε το τετράγωνο της μεγαλύτερης πλευράς με το άθροισμα των τετραγώνων των δύο άλλων πλευρών και έχουμε: 90ο και το τρίγωνο είναι οξυγώνιο. 9 6 ( 7 ) Άρα γ) Η προβολή της πλευράς ΑΒ πάνω στην πλευρά ΑΓ είναι το ευθύγραμμο τμήμα ΒΔ. 90ο και 60ο άρα BA ˆ 00. Οπότε Στο ορθογώνιο τρίγωνο ΑΒΔ έχουμε ΒΔ= 6. Θεωρήματα διαμέσων.90.δίνεται τρίγωνο ΑΒΓ με πλευρές α = 7, β = και. α) Να αποδείξετε ότι. β) Να βρείτε το είδος του τριγώνου ΑΒΓ ως προς τις γωνίες του. μ μ α) Από το θεώρημα των διαμέσων στο τρίγωνο ΑΒΓ έχουμε: α γ β 7 γ μ β 7 γ 7 γ γ γ 90 β) Είναι β γ 6 και α 9, δηλαδή α β γ και το τρίγωνο είναι αμβλυγώνιο. Τέμνουσες κύκλου.90. Κυρτό τετράπλευρο ΑΒΓΔ είναι εγγεγραμμένο σε κύκλο. Οι διαγώνιοί του ΑΓ και ΒΔ τέμνονται στο σημείο Μ, το οποίο είναι το μέσο της διαγωνίου ΒΔ. Να αποδείξετε ότι: α) μ7 β) μ9

24 γ) μ9 α) Οι χορδές ΔΒ και ΑΓ τέμνονται στο Μ συνεπώς () β) Από ο θεώρημα διαμέσων στο ΑΒΔ τρίγωνο έχουμε () Από τις () και () προκύπτει: γ) Από ο ερώτημα ισχύει ότι όμοια προκύπτει από το ο θεώρημα διαμέσων στο ΔΓΒ τρίγωνο, προσθέτοντας αυτές τις σχέσεις προκύπτει Εμβαδόν βασικών ευθύγραμμων σχημάτων.908. Δίνεται ισοσκελές τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ) και ΒΕ το ύψος του. Αν είναι, 7 και τότε, α) να αποδείξετε ότι. β) να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ. μ μ α) Θεωρούμε το ισοσκελές τραπέζιο ΑΒΓΔ με και ˆ ˆ και ύψος ΒΕ. Φέρνουμε το ύψος ΑΖ. Είναι ΑΖ//ΒΕ και ΑΒ//ΖΕ από υπόθεση άρα ΑΒΕΖ παραλληλόγραμμο συνεπώς. Είναι και ˆ ˆ, άρα τα ορθογώνια τρίγωνα ΑΖΔ και ΒΕΓ είναι ίσα συνεπώς 7. Εφαρμόζουμε το Πυθαγόρειο Θεώρημα στο ορθογώνιο τρίγωνο ΒΕΓ και έχουμε: άρα β) β υ α υ α ος τρόπος

25 ΑΒΓ ΑΒ ΒΕ Λόγος εμβαδών.908. Σε ημικύκλιο διαμέτρου ΑΒ κέντρου Ο θεωρούμε σημείο του Δ. Η χορδή ΔΒ τέμνει το ημικύκλιο διαμέτρου ΟΒ στο Γ. Να αποδείξετε ότι: α) Τα τρίγωνα ΑΔΒ και ΟΓΒ είναι όμοια. μ β) (ΑΔΒ)= (ΟΓΒ) μ α) Τα τρίγωνα ΑΔΒ και ΟΓΒ είναι όμοια γιατί έχουν ˆ ˆ 900 (εγγεγραμμένες γωνίες που βαίνουν σε A ημικύκλιο) και ˆ γωνία κοινή. β) Ο λόγος ομοιότητας των ομοίων τριγώνων ΑΔΒ και ΒΟΓ είναι ρ οπότε ο λόγος των εμβαδών τους είναι ρ.90. Δίνεται τρίγωνο ΑΒΓ εγγεγραμμένο σε κύκλο (Ο,R) τέτοιο ώστε να ισχύει. Αν η προέκταση της διάμεσου του ΑΜ τέμνει τον κύκλο στο σημείο Ρ, να αποδείξετε ότι : α) β) μ6 γ) μ 9 6 β γ α, α α α α μα α) Από πρώτο θεώρημα διαμέσων είναι μ α όμως α β γ άρα μ α β) Επειδή οι χορδές ΑΡ και ΒΓ τέμνονται στο Μ ισχύει ότι: α α α α α 6 γ) ΑΜ διάμεσος στο τρίγωνο ΑΒΓ άρα τα εμβαδά των τριγώνων ΑΒΜ και ΑΜΓ είναι ίσα και ίσα με το μισό του εμβαδού του τριγώνου ΑΒΓ (Τα τρίγωνα ΑΒΜ και ΑΜΓ είναι ισοδύναμα αφού έχουν ίσες τις πλευρές ΒΜ και ΜΓ και το ίδιο ύψος από τη κορυφή Α). ως εγγεγραμμένες στο ίδιο Ακόμη τα τρίγωνα ΜΡΓ και ΑΒΜ είναι όμοια, αφού ως κατακορυφήν. Συνεπώς ο λόγος των εμβαδών τους είναι τόξο ΑΓ και ίσος με το τετράγωνο του λόγου ομοιότητας άρα

26 α ( ) ( ) ( ) ( ) ( ) α ( ) 6 ( ) ( ) 6 ( ) ( ).90. Δίνονται δύο κύκλοι O, και, με, οι οποίοι εφάπτονται εξωτερικά στο Μ. Φέρνουμε το κοινό εφαπτόμενο τμήμα ΑΒ με Α, Β σημεία των κύκλων O, και, αντίστοιχα. Από το Μ θεωρούμε την κάθετη στο ΑΒ, η οποία τέμνει τα ευθύγραμμα τμήματα ΑΚ και ΑΒ στα σημεία Λ και Ν αντίστοιχα. Να αποδείξετε ότι: α) β) γ) Αν και είναι τα εμβαδά των κύκλων O, και, αντίστοιχα, τότε μ9 α) Ισχύει ότι και άρα ΜΛ//ΟΑ οπότε από το θεώρημα Θαλή έχουμε β β αβ ότι α α β α α β ος τρόπος Επειδή τα τρίγωνα ΚΛΜ και ΚΑΟ είναι όμοια (Κ: κοινή, ΑΟΚ = ΛΜΚ: εντός εναλλάξ γωνίες των παραλλήλων ΜΛ, ΟΑ που τέμνονται από την ΟΚ) έχουμε ΜΛ ΚΜ ΜΛ β αβ ΜΛ ΟΑ ΚΟ α α β α β ().Όμως στο τρίγωνο ΚΑΟ από το θεώρημα Θαλή α έχουμε δηλαδή α β β) Ισχύει ότι ΛΝ//ΚΒ άρα α α β Άρα από την () προκύπτει α α αβ. α β β α β α β ος τρόπος Ισχύει ότι και άρα ΝΛ//ΚΒ οπότε επειδή τα τρίγωνα ΑΝΛ και ΑΚΒ

27 είναι όμοια (Α: κοινή, ΑΝΜ = ΑΒΚ = 90 ) έχουμε ότι Στο τρίγωνο ΑΟΚ επειδή ΜΛ//ΑΟ έχουμε ότι Από (i) και (ii) προκύπτει ότι ΛΝ ΑΛ (i) ΚΒ ΑΚ ΑΛ ΟΜ (ii) ΑΚ ΟΚ ΛΝ ΟΜ ΛΝ α αβ. ΛΝ ΚΒ ΟΚ β α β α β ˆ ˆ (ως κατακορυφήν) οπότε γ) Τα τρίγωνα ΑΛΝ και ΜΛΚ έχουν ( ) α () ( ) β πρ πα α α () ( ) Όμως πρ πβ β β ( ).90. Δίνεται τρίγωνο ΑΒΓ και σημεία Μ, Λ και Ζ πάνω στις πλευρές ΑΒ, ΑΓ και ΒΓ αντίστοιχα τέτοια, ώστε, και. α) Να αποδείξετε ότι. μ7. β) Να αποδείξετε ότι μ 8 γ) Να υπολογίσετε το λόγο των εμβαδών. μ6 ˆ κοινή οπότε α) Τα τρίγωνα ΑΜΛ και ΑΒΓ έχουν τη γωνία ˆ κοινή τότε β) Αφού τα τρίγωνα ΒΜΖ και ΑΒΓ έχουν τη γωνία Β. 6 Επίσης τα τρίγωνα ΓΛΖ και ΑΒΓ έχουν τη γωνία Γˆ κοινή οπότε. 9 Άρα

28 γ) Είναι

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (29) -2- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος

Διαβάστε περισσότερα

Θεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε

Θεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε Θεώρημα Θαλή.8975. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και 5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. α) Να αποδείξετε

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr 9--0 Θεώρημα Θαλή.897. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο Άσκηση 1 (2_18984) Θεωρούμε δύο τρίγωνα ΑΒΓ και ΔΕΖ. (α) Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να δικαιολογήσετε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 7 : ΑΝΑΛΟΓΙΕΣ. Δίνεται τρίγωνο ΑΒΓ (ΑΒ>ΑΓ) και ΑΔ, ΑΕ η εσωτερική και η εξωτερική διχοτόμος του αντίστοιχα. Αν είναι ΑΒ=6, ΔΒ=, ΒΓ=5 και ΒΕ=5, να αποδείξετε ότι: α) ΑΓ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (14) -- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος -- Τράπεζα θεμάτων Μαθηματικών

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Γεωμετρία Β Λυκείου

Τράπεζα Θεμάτων Γεωμετρία Β Λυκείου Τράπεζα Θεμάτων Γεωμετρία Β Λυκείου Θεώρημα Θαλή. Θεωρούμε τρίγωνο ΑΒΓ με και. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΝΑΛΟΓΙΕΣ Α. ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ Ο 1. Δίνεται τρίγωνο ABΓ με AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει τις AB,AΓ στα Δ,E αντίστοιχα. α) Να αποδείξετε ότι AΔ = AB

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου ο Θέμα Εκφωνήσεις - Λύσεις των θεμάτων Έκδοση 1 η (14/11/014) Θέματα ης Ομάδας GI_V_GEO 18975 Δίνεται τρίγωνο ABΓμε AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015

Γεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015 Τράπεζα Θεμάτων 8 -//0 ο Θέμα Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης Θεωρήματα διχοτόμων..8.δίνεται τρίγωνο ΑΒΓ με ΑΔ διχοτόμο της γωνίας και Φέρουμε τις διχοτόμους

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΩΜΤΡΙ ΛΥΚΙΟΥ (ΤΡΠΖ ΘΜΤΩΝ) GI_V_GEO_2_18975 ίνεται τρίγωνο AB με AB=9, A=15. πό το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά B που τέμνει τις AB,A στα,e αντίστοιχα. α) Να αποδείξετε ότι A = 2 AB

Διαβάστε περισσότερα

VERSION :00. α) Γνωρίζουμε από την Α Λυκείου 5.7 ότι οι διάμεσοι ενός τριγώνου διέρχονται από το ίδιο σημείο

VERSION :00. α) Γνωρίζουμε από την Α Λυκείου 5.7 ότι οι διάμεσοι ενός τριγώνου διέρχονται από το ίδιο σημείο VERSION 16-11-014 17:00 _18975 α) Γνωρίζουμε από την Α Λυκείου 5.7 ότι οι διάμεσοι ενός τριγώνου διέρχονται από το ίδιο σημείο του οποίου η απόσταση από κάθε κορυφή είναι τα 3 του μήκους της αντίστοιχης

Διαβάστε περισσότερα

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το 1. ίνεται ισοσκελές τρίγωνο ΑΒΓ µε ΑΒ=ΑΓ, Â =36o και η διχοτόµος του Β. α) Να αποδείξετε ότι: i) Τα τρίγωνα Β Γ και ΑΒΓ είναι όµοια. ii) A 2 =ΑΓ Γ β) Αν θεωρήσουµε το ΑΓ ως µοναδιαίο τµήµα (ΑΓ=1), να υπολογίσετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΝΑ ΕΝΟΤΗΤΑ ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ ο ΘΕΜΑ -8975 Δίνεται τρίγωνο ABΓ με AB=9, AΓ=5. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μιχαήλογλου Στέλιος Παπαθανάση Κέλλυ Πατσιμάς Ανδρέας Πατσιμάς Δημήτρης Ραμαντάνης Βαγγέλης

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές του ΑΒ και ΓΔ που τέμνονται σε ένα σημείο Μ. α) Αν το σημείο Α είναι το μέσο του τόξου ΓΔ, να αποδείξετε ότι:

Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές του ΑΒ και ΓΔ που τέμνονται σε ένα σημείο Μ. α) Αν το σημείο Α είναι το μέσο του τόξου ΓΔ, να αποδείξετε ότι: GI_V_GEO_4_8976 Σε οξυγώνιο τρίγωνο ΑΒΓ φέρουμε τα ύψη του ΑΔ και ΒΕ. α) Αν το τρίγωνο ΑΒΓ είναι και σκαληνό, τότε: i. Να αποδείξετε ότι τα τρίγωνα ΑΔΓ και ΒΕΓ είναι όμοια. (Μονάδες 0) ii. Να δικαιολογήσετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15)

Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15) Αναλογίες 2_20863. Στο παρακάτω σχήμα είναι 12 και 8. α) Να υπολογίσετε τους λόγους και. (Μονάδες 6) β) Να υπολογίσετε το ΑΓ συναρτήσει του κ. (Μονάδες 5) γ) Να υπολογίσετε τον λόγο. Σε τι λόγο λ διαιρείται

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1ο Α. Nα αποδείξετε ότι το άθροισμα των γωνιών κάθε τριγώνου είναι 2 ορθές. Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια

5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 7 η διδακτική ενότητα : Παραλληλόγραμμα-Είδη παραλληλογράμμων 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις: α) Οι διαγώνιοι κάθε

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε ΘΕΜΑ 4 Στο διπλανό τραπέζιο ΑΒΓΔ η ευθεία ΜΛ είναι παράλληλη στις βάσεις ΑΒ και ΔΓ του τραπεζίου και ισχύει ότι = α) Να αποδείξετε ότι = και = (Μονάδες 8) β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

Γεωμετρία. Κεφ 1 ο : Γεωμετρια.

Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μαθηματικά Γ Γυμνασίου Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μέρος Α Θεωρία. 1. Με τι είναι ίσο το άθροισμα των γωνιών ενός τριγώνου; 2. Ποιο τρίγωνο λέγετε οξυγώνιο αμβλυγώνιο ορθογώνιο. 3. Ποιο τρίγωνο λέγετε

Διαβάστε περισσότερα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα Γ Ε Ω Μ Ε Τ Ρ Ι Α Β Λ Υ Κ Ε Ι Ο Υ Συνοπτική θεωρία Οι σημαντικότερες αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα Μαθηματικός Περιηγητής 1 ΚΕΦΑΙΑΟ 9 ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43 Ον/μο:.. Α Λυκείου Ύλη: Όλη η ύλη 08-05-16 Θέμα 1 ο : Α. Σε ποιες κατηγορίες ταξινομούνται τα τρίγωνα με βάση τις πλευρές τους και σε ποιες με βάση τις γωνίες τους; (αναλυτικά)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1 (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση 7 - - 05 Μεταβολές από την προηγούμενη έκδοση Προστέθηκαν 50 ασκήσεις Θεώρημα Θαλή.8975. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και 5. Από το βαρύκεντρο

Διαβάστε περισσότερα

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Όμοια τρίγωνα Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Συμβολισμός : Αν τα τρίγωνα ΑΒΓ, ΔΕΖ είναι όμοια γράφουμε Κριτήριο 1 Όταν δύο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο

Διαβάστε περισσότερα

2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB

2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB 2ο ΘΕΜΑ 2845. Σε ισοσκελές τρίγωνο ΑΒΓ AB A φέρουμε τη ΑΔ και μια ευθεία (ε) παράλληλη προς τη ΒΓ, που τέμνει τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα. Να αποδείξετε ότι: α) Το τρίγωνο ΑΕΖ είναι

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α A1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας, τη λέξη Σωστό ή Λάθος,

Διαβάστε περισσότερα

α) Να αποδείξετε ότι = και = 2 (Μονάδες 15) β) Να υπολογίσετε τα μήκη των τμημάτων ΑΔ και ΓΕ. (Μονάδες 10)

α) Να αποδείξετε ότι = και = 2 (Μονάδες 15) β) Να υπολογίσετε τα μήκη των τμημάτων ΑΔ και ΓΕ. (Μονάδες 10) Θεωρούμε τρίγωνο ΑΒΓ με ΑΒ=9 και ΑΓ=15. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. ΑΔ 2 ΑΕ α) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που

Διαβάστε περισσότερα

κζντρου Ο. β) Να αποδείξετε ότι (Μονάδεσ 13)

κζντρου Ο. β) Να αποδείξετε ότι (Μονάδεσ 13) ΘΕΜΑ 4 Δίνεται τρίγωνο ΑΒΓ. Θεωροφμε ΑΜ τη διάμεςό του και Ε τυχαίο ςημείο του τμήματοσ ΒΜ. Από το Ε φζρουμε ευθεία παράλληλη ςτην ΑΜ που τζμνει την πλευρά ΑΒ ςτο Δ και την προζκταςη τησ ΓΑ ςτο Ζ. α) Να

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Όµοια λέγονται δύο πολύγωνα που έχουν τις πλευρές τους ανάλογες και τις αντίστοιχες γωνίες τους ίσες. Λόγος οµοιότητας δύο όµοιων πολυγώνων λέγεται ο λόγος δύο

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ 1) Ο λόγος των μηκών δύο κύκλων ( Ο, ρ ) και ( Ο, ρ ) είναι 1 3. Αν ρ = 1,15 cm να βρείτε : Την ακτίνα ρ. Το μήκος του ( Ο, ρ ) Το λόγο των διαμέτρων τους. 2) Οι περίμετροι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΚΕΦΑΛΑΙΟ:9 ο

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΚΕΦΑΛΑΙΟ:9 ο 14 1 ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:9 ο _18997 ΘΕΜΑ Β Ένας άνθρωπος σπρώχνει ένα κουτί προς τα πάνω στη ράµπα του παρακάτω σχήµατος. α) Να αποδείξετε ότι για το ύψος y, που απέχει το κουτί από

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ 1 ο Θεώρημα διαμέσου ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ Σε κάθε τρίγωνο, το άθροισμα των τετραγώνων δύο πλευρών τριγώνου ισούται με το διπλάσιο του τετραγώνου της περιεχόμενης διαμέσου, αυξημένο κατά το μισό του τετραγώνου

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ 07-1-014 Ονοματεπώνυμο: Θέμα 1ο Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του ισούται με το γινόμενο της υποτείνουσας

Διαβάστε περισσότερα

Ασκήσεις - Πυθαγόρειο Θεώρηµα

Ασκήσεις - Πυθαγόρειο Θεώρηµα Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο

Διαβάστε περισσότερα

Κόλλιας Σταύρος 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Κόλλιας Σταύρος  1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: Κόλλιας Σταύρος http://users.sch.gr/stkollias 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Θέμα 1 Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ )

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ ) ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ.3-4-5-6.) 1. Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Στην προέκταση της ΑΓ προς το Γ παίρνουμε τμήμα ΓΔ=ΑΓ. Έστω Ε τυχαίο σημείο της πλευράς ΒΓ και Ζ σημείο της προέκτασης της ΓΒ

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 4 Νοεμβρίου 007 Β ΓΥΜΝΑΣΙΟΥ ( 00 :8 00) 00 : ( 8 ) 76 3 007. Α= + + + + + + ( 5 00) ( 00 :0 76) 5 ( 0 76) = + + + + + = + + = 5 + 78 = 007.. Αν ω είναι ο αριθμός

Διαβάστε περισσότερα

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ.

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ. 1. Θεωρούµε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Στο µέσο της πλευράς ΑΒ φέρουµε κάθετη ευθεία που τέµνει την ΑΓ στο Ε. Από το Ε φέρουµε ευθεία παράλληλη στη βάση ΒΓ που τέµνει την ΑΒ στο Ζ. α) Να αποδείξετε

Διαβάστε περισσότερα

1 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ο ΤΡΙΓΩΝΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

1 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ο ΤΡΙΓΩΝΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ο ΤΡΙΓΩΝΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 η Έστω ΑΒΓ ένα ισοσκελές τρίγωνο (ΑΒ = ΑΓ), Δ, Ε σημεία της πλευράς ΒΓ τέτοια, ώστε ΒΔ = ΔΕ = ΕΓ και Μ, Ρ τα μέσα των πλευρών ΑΒ, ΑΓ

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο

Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο 1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία

Διαβάστε περισσότερα

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αµυραδάκη 0, Νίκαια (10-4903576) ΝΟΕΜΒΡΙΟΣ 011 ΘΕΜΑ 1 Ο Να αποδείξετε ότι, σε ένα ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του ισούται µε το γινόµενο της υποτείνουσας επί την προβολή της στην

Διαβάστε περισσότερα

ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος» ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΘΕΩΡΙΑ : Μήκος κύκλου: L = Εμβαδόν κύκλου: Ε = ( όπου π = 3,14) Γνωρίζοντας ότι σε γωνία 360 0 αντιστοιχεί κύκλος με μήκος L και εμβαδόν Ε έχουμε : α) ημικύκλιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ.

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ. ΚΦΑΛΑΙΟ 11. Παραθέτουμε για εύκολη αναφορά το πινακάκι με την αντιστοιχία χορδών-αποστημάτων-τόξων που χρειάζεται σε όλες σχεδόν τις παρακάτω ασκήσεις Κανονικό εξάγωνο Πλευρά λν Χορδή λ = Απόστημα α =

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130 ΣΗΜΕΙΩΣΗ Οι λύσεις των θεμάτων είναι ενδεικτικές.πιθανόν να υπάρχουν και άλλες λύσεις και μάλιστα πιο απλές. ΘΕΜΑ 2 2814 α) Αφού ΑΒΓ ισοσκελές 180 ˆ ˆ ˆ Α 180 80 100 Β=Γ= = = = 50 2 2 2 Επειδή ΒΕ=ΒΔ θα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ.

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ. 1 Δινεται τριγωνο ΑΒΓ και η διχοτομος ΒΕ της γωνιας B του τριγωνου Απο το Α φερνουμε παράλληλη της ΒΕ, που τεμνει τη ΒΓ 3 Να δειχτει οτι α + 11 α Ποτε ισχυει ΑΔ ΒΕ το ισον; οποτε οι γωνιες 3 3 Aν α, β

Διαβάστε περισσότερα