Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ"

Transcript

1 Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

2 Γενικές Γραμμές Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί Ημιαθροιστής - Ημιαφαιρέτης Πλήρης Αθροιστής - Πλήρης Αφαιρέτης Αθροιστής Διάδοσης Κρατούμενου Επαναληπτικές Διατάξεις Λογικής Αθροιστής Πρόβλεψης Κρατούμενου Αριθμητική και Λογική Μονάδα Πολλαπλασιαστής Μετρητής Πλήθους στην Είσοδό του Βλέπε: Βιβλίο Wakerly Παράγραφοι 2., 2.2, 2.3, 2.4, 2.5., 2.5.2, 2.5.3, 2.5.4, 2.6., 2.6.3, 2.6.4, 2.6.5, 2.8, 5.9.2, 5.0., 5.0.2, 5.0.3, 5.0.4, 5.0.5, 5.. Βιβλίο Mano Παράγραφοι.4,.5,.6, 4.5, 4.7

3

4

5 Μη Προσημασμένοι Ακέραιοι Αριθμοί Β=0 Β=2 Β=6 Β=0 Β=2 Β= Α Β C D E F βάρη 8 4 2

6 Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί σε Απεικόνιση Συμπληρώματος ως προς 2 δεκαδικός χωρίς πρόσημο δυαδικός συμπλήρωμα ως προς 2 δεκαδικός με πρόσημο Απεικόνιση σε 4 ψηφία δεκαδικός χωρίς πρόσημο δυαδικός συμπλήρωμα ως προς 2 δεκαδικός με πρόσημο βάρη βάρη Το MSB έχει αρνητικό βάρος και δηλώνει το πρόσημο (0=θετικός, =αρνητικός)

7 Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί σε Απεικόνιση Συμπληρώματος ως προς 2 Γενική περίπτωση απεικόνισης σε n ψηφία Το ψηφίο του πρόσημου έχει αρνητικό βάρος απεικονίζονται το πολύ 2 n ακέραιοι (integer) αριθμοί υπάρχει μία μόνο απεικόνιση του 0 υπάρχουν 2 n- - δυνατοί συνδυασμοί 0 και, που έχουν το MSB μηδέν και απεικονίζουν τους θετικούς ακέραιους αριθμούς από το μέχρι το 2 n- - υπάρχουν 2 n- δυνατοί συνδυασμοί 0 και, που έχουν το MSB ένα και απεικονίζουν τους αρνητικούς ακέραιους αριθμούς από το - μέχρι το -2 n- υπάρχει ένας παραπάνω αρνητικός αριθμός, ο -2 n-, που δεν έχει θετικό συμπλήρωμα (τον 2 n- )

8 Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί σε Απεικόνιση Συμπληρώματος ως προς 2 Πώς προκύπτει το συμπλήρωμα ως προς 2 ; 0 = 000 παίρνουμε τα συμπληρωματικά ψηφία (απεικόνιση συμπληρώματος ως προς ) προσθέτουμε το αγνοούμε το κρατούμενο, εάν υπάρχει 0 0 = = 000 συμπληρωματικά ψηφία = = = -8 0 το κρατούμενο αγνοείται Υπερχείλιση: δεν υπάρχει +8

9 Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί σε Απεικόνιση Συμπληρώματος ως προς 2 Επέκταση πρόσημου (sign extension) από n ψηφία σε m ψηφία (m>n) : εάν ο αριθμός είναι θετικός (το MSB είναι μηδέν), βάζουμε m-n μηδέν αριστερά του αριθμού π.χ. 00 σε 000 (= ) εάν ο αριθμός είναι αρνητικός (το MSB είναι ένα), βάζουμε m-n ένααριστεράτουαριθμού π.χ. σε (= -), 00 σε 00 (= -4)

10 Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί σε Απεικόνιση Συμπληρώματος ως προς 2 Πώς γίνεται η πρόσθεση ; για κάθε βάρος προσθέτουμε τα ψηφία του ιδίου βάρους μαζί με το κρατούμενο του προηγούμενου βάρους, εάν υπάρχει, ξεκινώντας με κρατούμενο μηδέν (0) αγνοούμε το κρατούμενο που παράγεται από τα MSB, εάν υπάρχει ενδιάμεσα κρατούμενα (-2) + (+) (-) (-2) + (+2) 0 το κρατούμενο αγνοείται

11 Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί σε Απεικόνιση Συμπληρώματος ως προς 2 Πώς γίνεται η αφαίρεση ; παίρνουμε το συμπλήρωμα του αφαιρετέου και το προσθέτουμε στο μειωτέο, ή παίρνουμε τα συμπληρωματικά ψηφία του αφαιρετέου για κάθε βάρος προσθέτουμε τα ψηφία του ιδίου βάρους μαζί με το κρατούμενο του προηγούμενου βάρους, εάν υπάρχει, ξεκινώντας με κρατούμενο ένα () αγνοούμε το κρατούμενο που παράγεται από τα MSB, εάν υπάρχει (-2) - (-) (-) (-2) - (-2)

12 Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί σε Απεικόνιση Συμπληρώματος ως προς 2 Υπερχείλιση (overflow) συμβαίνει όταν το αποτέλεσμα της πρόσθεσης είναι ένας αριθμός μεγαλύτερος από 2 n- - ή μικρότερος από -2 n- συμβαίνει όταν η πρόσθεση γίνεται σε δύο αριθμούς που έχουν το ίδιο πρόσημο (η αφαίρεση ανάγεται σε πρόσθεση) το πρόσημο του αποτελέσματος είναι διαφορετικό από το πρόσημο των αριθμών που προσθέτουμε (+3) + (+6) (+9) (-3) -(+6) = (-7) (-9) 0 = (+7)

13 Άσκηση 9.. Να δώσετε την απεικόνιση σε 6 δυαδικά ψηφία του συμπληρώματος ως προς 2 των προσημασμένων δεκαδικών αριθμών +32, +3, +, 0, -, -3, -32, όπου είναι δυνατή αυτή η απεικόνιση. 2. Να εκτελέσετε τις πράξεις: και Σε ποιους δεκαδικούς αριθμούς αντιστοιχούν οι δυαδικοί ακέραιοι αριθμοί σε απεικόνιση συμπληρώματος ως προς 2 που μετέχουν στις πιο πάνω πράξεις.

14 Άσκηση 9.2. Ένας 8-ψήφιος επεξεργαστής ποιους ακέραιους δυαδικούς αριθμούς: (α) προσημασμένους σε απεικόνιση συμπληρώματος ως προς 2, και (β) μη προσημασμένους επεξεργάζεται χωρίς να παρουσιαστεί το φαινόμενο της υπερχείλισης; 2. Να κάνετε την αντίστοιχη πρόσθεση και αφαίρεση μεταξύ των προσημασμένων δεκαδικών αριθμών +20 και -8 λαμβάνοντας υπόψη ότι αυτοί αποθηκεύονται σε έναν 8-ψήφιο καταχωρητή σε απεικόνιση συμπληρώματος ως προς 2. Τί παρατηρείτε;

15

16

17 X Υ Ημιαθροιστής, Half-Adder (HA) S=Χ Υ C out =ΧΥ AND-OR X Y S C out Χ Υ S C out C out S = Χ Υ = Χ Υ+ ΧΥ C out = ΧΥ X HA S Y S=sum C=carry

18 Χ Υ 0 C in Χ Υ Χ 0 C in Y 0 C in Πλήρης Aθροιστής, Full-Adder (FA) 0 0 S S = Χ Υ C in = Χ Υ C in + Χ ΥC in +ΧΥ C in +ΧΥC in C out = Χ ΥC in + ΧΥ C in + ΧΥC in +ΧΥC in = ΧΥ + ΧC in + ΥC in 0 0 C out C out X Y C in C out S Το αποτέλεσμα (C out,s) είναι ο αντίστοιχος μη προσημασμένος ακέραιος διψήφιος αριθμός X FA S Y C in S=sum C=carry

19 C in Πλήρης Αθροιστής από Ημιαθροιστές 0 Χ Υ 0 0 S ΗΑ ΗΑ 0 C out S = Χ Υ C in C out = ΧΥ+(Χ Υ)C in = ΧΥ+(Χ Y+XY )C in = ΧΥ+Χ YC in +XY C in = Υ(X+Χ C in )+X(Y+Y C in ) = Υ(X+C in )+X(Y+C in ) = XY+YC in +XC in

20

21 X Υ Ημιαφαιρέτης, Half-Subtracter (HS) D=Χ Υ B out =Χ Υ AND-OR X Y D B out Χ Υ 0 0 D B out B out D = Χ Υ = Χ Υ+ ΧΥ B out = Χ Υ X HS D Y D=difference B=borrow

22 Πλήρης Aφαιρέτης, Full-Subtracter (FS) Χ Υ B in 0 Χ Υ 0 Χ B in Y B in 0 0 D = Χ Υ B in = Χ Υ B in +Χ ΥB in +ΧΥ B in +ΧΥB in B out = Χ Υ B in +Χ ΥB in +Χ ΥB in +ΧΥB in = Χ Υ+Χ B in +ΥB in 0 D B out B out X Y B in B out D Το αποτέλεσμα (B out,d) είναι ο αντίστοιχος προσημασμένος ακέραιος διψήφιος αριθμός X FS D Y B in D=difference B=borrow

23 Πλήρης Αθροιστής/Aφαιρέτης με Επιλογή (πρώτη προσέγγιση) Πλήρης Αθροιστής Πλήρης Αφαιρέτης με βάση τον Πλήρη Αθροιστή Πλήρης Αθροιστής/Αφαιρέτης S = Χ Υ C in C out = ΧΥ+ΧC in +ΥC in D = Χ Υ B in B out = Χ Υ+Χ B in +ΥB in E X Y C out X FΑ S Y C in D = Χ Υ B in B out = Χ Υ+Χ B in +ΥB in B out X FΑ Y Β in C out E FΑ S C in D Αθροιστής (Ε=0) Αφαιρέτης (Ε=)

24 Πλήρης Αθροιστής/Aφαιρέτης με Επιλογή Πλήρης Αθροιστής (δεύτερη προσέγγιση) Πλήρης Αφαιρέτης με βάση τον Πλήρη Αθροιστή Πλήρης Αθροιστής/Αφαιρέτης S = Χ Υ C in C out = ΧΥ+ΧC in +ΥC in D = Χ Υ B in B out = Χ Υ+Χ B in +ΥB in X Y E C out X FΑ S Y C in D = Χ Υ B in B out = ΧΥ +ΧB in +Υ B in B out X Y FΑ Β in C out FΑ S C in D Αθροιστής (Ε=0) Αφαιρέτης (Ε=) Συμπληρωματική είσοδος και έξοδος κρατούμενου κατά την αφαίρεση Επομένως, αρχικό κρατούμενο C 0 =

25 Aθροιστής Διάδοσης Κρατούμενου Ripple-Carry Adder (RCA) X 3 Y 3 X 2 Y 2 X Y X 0 Y 0 C 4 FA C 3 FA C 2 FA C FA C 0 0 S 3 S 2 S S 0 4 ψηφία το κρατούμενο αγνοείται σε απεικόνιση συμπληρώματος ως προς 2 C 3 C 2 C 0 X 3 X 2 X X 0 + Y 3 Y 2 Y Y 0 C 4 S 3 S 2 S S 0 αντικαθίσταται με ΗΑ

26 ΑφαιρέτηςΔιάδοσηςΚρατούμενου Ripple-Carry Subtracter (RCS) X 3 Y 3 X 2 Y 2 X Y X 0 Y 0 B 4 FS B 3 FS B 2 FS B FS B 0 0 D 3 D 2 D D 0 4 ψηφία B 3 B 2 B 0 X 3 X 2 X X 0 -Y 3 Y 2 Y Y 0 αντικαθίσταται με ΗS B 4 D 3 D 2 D D 0

27 ΑφαιρέτηςΔιάδοσηςΚρατούμενου Ripple-Carry Subtracter (RCS) C 4 X 3 Y 3 FA C 3 X 2 Y 2 FA C 2 X Y FA C X 0 Y 0 FA C 0 S 3 S 2 S S 0 4 ψηφία το κρατούμενο αγνοείται X-Y = X+Y + B 3 B 2 B 0 X 3 X 2 X X 0 -Y 3 Y 2 Y Y 0 B 4 D 3 D 2 D D 0 C C 3 2 C X X 3 2 X X 0 + Y 3 Y 2 Y Y 0 C 4 S S 3 2 S S 0 Χρησιμοποιείται σε πράξεις μεταξύ προσημασμένων ακέραιων δυαδικών αριθμών σε απεικόνιση συμπληρώματος ως προς 2 καθώς, και σε πράξεις μη προσημασμένων ακέραιων δυαδικών αριθμών, όπως προκύπτει από τη δεύτερη προσέγγιση του πλήρη αφαιρέτη που βασίζεται σε πλήρη αθροιστή

28 Αθροιστής/Αφαιρέτης Διάδοσης Κρατούμενου με Επιλογή και Υπερχείλιση Αθροιστής (Ε=0) και Αφαιρέτης (Ε=) Χ 3 Υ 3 Χ 2 Υ 2 Χ Υ Χ 0 Υ 0 E Υ 3 * Υ 2 * Υ * Υ 0 * C 4 FΑ C 3 FΑ C 2 FΑ C FΑ C 0 OV S 3 S 2 S S 0 Overflow (X 3 = Y 3 * = S 3 C 3 C 4 ) να γίνει επαλήθευση 4 ψηφία Η υπερχείλιση λαμβάνεται υπόψη μόνο στις πράξεις μεταξύ προσημασμένων ακέραιων δυαδικών αριθμών σε απεικόνιση συμπληρώματος ως προς 2

29 Aθροιστής Διάδοσης Κρατούμενου Ripple-Carry Adder (RC Adder) X 3 Y 3 X 2 Y 2 X Y X 0 Y 0 C 4 FA C 3 FA C 2 FA C FA C 0 0 S 3 S 2 S S 0 4 ψηφία C 3 C 2 C 0 X 3 X 2 X X 0 + Y 3 Y 2 Y Y 0 C 4 S 3 S 2 S S 0 καθυστέρηση διάδοσης : t RCA = t XYCout + 2 x t CinCout + t CinS το κρατούμενο πρέπει να διαδοθεί μέσα από όλους τους πλήρεις αθροιστές

30 κύριες είσοδοι κύριες έξοδοι Eπαναληπτικές Διατάξεις Λογικής PI n- PO n- (Iterative Logic Arrays) PI n-2 C n PI C n- PI C n-2 C C CO CI CO CI.. PI 0 CO CI PO PO PO PO n-2 PI 0 PO 0 Αποτελούνται από n ίδιες βασικές μονάδες, που τοποθετούνται η μία δίπλα στην άλλη. Οι οριζόντιες έξοδοι CO της μίας μονάδας συνδέονται με τις αντίστοιχες οριζόντιες εισόδους CI της επόμενης μονάδας. Στις οριζόντιες εισόδους της πρώτης μονάδας βάζουμε μία αρχική τιμή C 0. Οι κάθετοι είσοδοι PI είναιοικύριεςείσοδοιτου κυκλώματος, το οποίο μπορεί να έχει και κάθετες εξόδους PO, εκτός από την οριζόντια έξοδο C n, (βλέπε αθροιστής ριπής κρατούμενου)

31

32

33 Aθροιστής Πρόβλεψης Κρατούμενου Carry Look-Ahead Adder (CLA Adder) Χ i Υ i HS i S i Χ i- X 0 Y i- Y 0.. κύκλωμα πρόβλεψης κρατουμένου C i C i S i = HS i C i C i = F(X 0 -X i-, Y 0 -Y i-, C 0 ) C 0 Η βαθμίδα i που παράγει το άθροισμα βάρους 2 i

34 Aθροιστής Πρόβλεψης Κρατούμενου Carry Look-Ahead Adder (CLA Adder) Κύκλωμα πρόβλεψης κρατούμενου C i (i>0) το κρατούμενο C i είναι, εάν Χ i- = Υ i- = (ανεξάρτητα από τις τιμές των Χ 0 -Χ i-2, Υ 0 -Υ i-2 και C 0 ) X i Y i X i- = AND Y i- = carry C i- = 0/ Ορίζεται η συνάρτηση γέννησης κρατούμενου (carry generate) HS i C i = G i- = Χ i- Υ i- Εάν G i- =, τότε C i = S i Η βαθμίδα i που παράγει το άθροισμα βάρους 2 i

35 Aθροιστής Πρόβλεψης Κρατούμενου Carry Look-Ahead Adder (CLA Adder) Κύκλωμα πρόβλεψης κρατούμενου C i (i>0) το κρατούμενο C i είναι, εάν C i- = και Χ i- = ήυ i- = X i Y i (X i- = OR Y i- =) AND C i- = carry Ορίζεται η συνάρτηση διάδοσης κρατούμενου (carry propagate) HS i C i = P i- = Χ i- + Υ i- Εάν C i- P i- =, τότε C i = S i Η βαθμίδα i που παράγει το άθροισμα βάρους 2 i

36 Aθροιστής Πρόβλεψης Κρατούμενου Carry Look-Ahead Adder (CLA Adder) Για κάθε βάρος 2 i-, oρίζονται οι συναρτήσεις : η συνάρτηση γέννησης κρατούμενου - G i- = Χ i- Υ i- (carry generate) η συνάρτηση διάδοσης κρατούμενου - P i- = Χ i- +Υ i- (carry propagate) από τις οποίες προσδιορίζεται το κρατούμενο C i βάρους 2 i, σύμφωνα με τις σχέσεις: C i = G i- + C i- P i- ή C i = P i- (G i- + C i- ) Ισχύει γιατί εάν G i- = τότε P i- =

37 Aθροιστής Πρόβλεψης Κρατούμενου Carry Look-Ahead Adder (CLA Adder) Κύκλωμα πρόβλεψης κρατούμενου C i σε 3 επίπεδα G i- = Χ i- Υ i- P i- = Χ i- +Υ i- C i = G i- + C i- P i- C = G 0 + C 0 P 0 C 2 = G + C P = G + (G 0 + C 0 P 0 ) P = G + G 0 P + C 0 P 0 P

38 Aθροιστής Πρόβλεψης Κρατούμενου Carry Look-Ahead Adder (CLA Adder) Κύκλωμα πρόβλεψης κρατούμενου C i σε 3 επίπεδα G i- = Χ i- Υ i- P i- = Χ i- +Υ i- C i = G i- + C i- P i- C 3 = G 2 + C 2 P 2 = G 2 + (G + G 0 P + C 0 P 0 P ) P 2 = G 2 + G P 2 + G 0 P P 2 + C 0 P 0 P P 2 C 4 = G 3 + C 3 P 3 = G 3 + (G 2 + G P 2 + G 0 P P 2 + C 0 P 0 P P 2 ) P 3 = G 3 + G 2 P 3 + G P 2 P 3 + G 0 P P 2 P 3 + C 0 P 0 P P 2 P 3

39 Aθροιστής Πρόβλεψης Κρατούμενου Carry Look-Ahead Adder (CLA Adder) Κύκλωμα πρόβλεψης κρατούμενου C i σε 3 επίπεδα G i- = Χ i- Υ i- C i = P i- (G i- + C i- ) P i- = Χ i- +Υ i- C = P 0 (G 0 + C 0 ) C 2 = P (G + C ) = P (G + P 0 (G 0 + C 0 )) = P (G + P 0 ) (G + G 0 + C 0 )

40 Aθροιστής Πρόβλεψης Κρατούμενου Carry Look-Ahead Adder (CLA Adder) Κύκλωμα πρόβλεψης κρατούμενου C i σε 3 επίπεδα G i- = Χ i- Υ i- P i- = Χ i- +Υ i- C i = P i- (G i- + C i- ) C 3 = P 2 (G 2 +C 2 ) = P 2 (G 2 +P (G +P 0 ) (G +G 0 +C 0 )) = P 2 (G 2 +P ) (G 2 +G +P 0 ) (G 2 +G +G 0 +C 0 ) C 4 = P 3 (G 3 +C 3 ) = P 3 (G 3 +P 2 (G 2 +P ) (G 2 +G +P 0 ) (G 2 +G +G 0 +C 0 )) = P 3 (G 3 +P 2 ) (G 3 +G 2 +P ) (G 3 +G 2 +G +P 0 ) (G 3 +G 2 +G +G 0 +C 0 ))

41 Aθροιστής Πρόβλεψης Κρατούμενου Carry Look-Ahead Adder (CLA Adder) Παραγωγή ημιαθροίσματος HS i από G i και P i HS i = G i P i Απόδειξη: HS i = Χ i Υ i = Χ i Υ i +Χ i Υ i = Χ i Υ i +Y i Υ i +Χ i Υ i +Χ i X i = (Χ i +Y i )Υ i +(Υ i +X i )Χ i = (Χ i +Y i ) (Χ i +Y i ) = (Χ i Y i ) (Χ i +Y i ) = G i P i

42 Aθροιστής Πρόβλεψης Κρατούμενου Carry Look-Ahead Adder (CLA Adder) Προς κύκλωμα πρόβλεψης κρατούμενου C k, k > i Χ i G i HS i S i Υ i P i H βαθμίδα i που παράγει το άθροισμα βάρους 2 i G i- G 0 P i- P 0 C 0.. κύκλωμα πρόβλεψης κρατουμένου C i C i HS i = G i P i C i = F(G 0 -G i-, P 0 -P i-, C 0 )

43 MSI κύκλωμα : 74x283 Aθροιστής Πρόβλεψης Κρατούμενου 4 Ψηφίων A 0 A A 2 A 3 Β 0 B Β 2 Β C C 4 74x S 0 S S 2 S 3 8 GND 6 V cc

44 MSI κύκλωμα : 74x283 Aθροιστής Πρόβλεψης Κρατούμενου 4 Ψηφίων C 4 C 4 Β 3 G 3 HS 3 A 3 P 3 S 3 Β 2 A 2 B A Β 0 A 0 C 3 G 2 HS 2 P 2 G P G 0 C 2 HS C HS 0 P C 0 0 C 0 S 2 S S 0 υλοποιήσεις AND-OR-INV

45 MSI κύκλωμα : 74x283 Aθροιστής Ομαδικής Διάδοσης Κρατούμενου 6 Ψηφίων A 5 -Α 2 B 5 -B 2 A -Α 8 B -B 8 A 7 -Α 4 B 7 -B 4 A 3 -Α 0 B 3 -B 0 C 5 C 2 C 8 74x283 74x283 74x283 74x283 C 4 C 0 S 5 -S 2 S -S 8 S 7 -S 4 S 3 -S 0 Επαναληπτική Διάταξη Λογικής

46

47 Αριθμητική και Λογική Μονάδα A B Invert_A πύλες XOR πύλες XOR Invert_B S0, S λογική μονάδα αθροιστής C in C out Overflow L/Α Επεξεργαστής ARM6 πολυπλέκτης 2 σε F δένδρο OR Negative (MSB) Zero (active low)

48 Αριθμητική και Λογική Μονάδα Μπορεί να χρησιμοποιηθεί οποιαδήποτε υλοποίηση αθροιστή Το σήμα ελέγχου L/A επιλέγει μεταξύ αριθμητικών πράξεων (για L/A =0) και λογικών πράξεων (για L/A =) Τα σήματα ελέγχου S, S0, Invert_B, Invert_A επιλέγουν μία από 2 λογικές πράξεις Τα σήματα ελέγχου Invert_B, Invert_A επιλέγουν μία από τις 3 πρακτικές αριθμητικές πράξεις Το κρατούμενο εξόδου C out χρησιμοποιείται σε εντολές αριθμητικών πράξεων με κρατούμενο Τα σήματα C out, Overflow, Negative, Zero χρησιμοποιούνται σε εντολές διακλάδωσης με συνθήκη

49 Αριθμητική και Λογική Μονάδα Λογική Μονάδα Invert_A (ia) A i B i Invert_B (ib) S0 S 0 0 MUX MUX 0 MUX Ηβαθμίδαi της Λογικής Μονάδας

50 Αριθμητική και Λογική Μονάδα Λογικές Πράξεις ib ia s s0 2 Λογικές Πράξεις (L/A =) (AB) (A+B) A + B 0 0 A A+B 0 0 AB 0 0 (A + B) 0 A A +B 0 0 A B 0 0 (A + B) 0 A 0 0 A+B 0 AB 0 A + B A Οι υπόλοιπες λογικές πράξεις F = B, F = B, F = 0 και F = υλοποιούνται έμμεσα με κατάλληλες τιμές στις εισόδους Α και Β

51 Αριθμητική και Λογική Μονάδα Αριθμητικές Πράξεις ib ia s s0 0 0 x x 0 x x 0 x x A plus B plus C in not A plus B plus C in A plus not B plus C in 3 Αριθμητικές Πράξεις (L/A =0) Εάν C in =, τότε Β minus A Εάν C in =, τότε A minus B Οι 3 πρακτικές αριθμητικές πράξεις μεταξύ ακεραίων για απεικόνιση συμπληρώματος ως προς 2

52

53 Πολλαπλασιασμός x0 y0 p00 4 x 4 y3 y2 y y0 x3 x2 x x0 p03 p02 p0 p00 p3 p2 p p0 p23 p22 p2 p20 p33 p32 p3 p30 z7 z6 z5 z4 z3 z2 z z0

54 Πολλαπλασιαστής Διάσωσης Κρατούμενου (Carry-Save Array Multiplier) p2 p2 p03 p20 p p02 p0 p0 p00 FA FA HA p22 p3 p30 FA FA HA p32 p23 p3 FA FA HA p33 FA FA HA z7 z6 z5 z4 z3 z2 z z0

55 Άσκηση 9.3 Να σχεδιάσετε το λογικό κύκλωμα που μετρά το πλήθος των στην είσοδό του και παράγει τον αντίστοιχο δυαδικό αριθμό στην έξοδό του, για την περίπτωση που ο αριθμός των εισόδων είναι 7, χρησιμοποιώντας μόνο πλήρεις αθροιστές FAs x 6 x 5 x 4 x 3 x 2 x x 0 Παράδειγμα: Εάν Χ=0000 τότε Υ=0? y 2 y y 0

56 Άσκηση 9.3 Χρήσιμες παρατηρήσεις:. Οι FAs και HAs μετρούντοπλήθοςτων στην είσοδό τους και παράγουν τον αντίστοιχο δυαδικό αριθμό στην έξοδό τους. 2. Εάν όλες οι είσοδοι των FAs και HAs έχουν το ίδιο βάρος 2 w, τότε η έξοδος S έχει το ίδιο βάρος 2 w, ενώ οι έξοδος C έχει βάρος 2 w+. Βάρος εισόδων 2 0 = x 6 x 5 x 4 x 3 x 2 x x 0? Βάρος εξόδων 2 2 =4, 2 =2, 2 0 =, αντίστοιχα y 2 y y 0

1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Άθροιση + + + + a +b 2c+s + Κρατούµενο προηγούµενης βαθµίδας κρατούµενο άθροισµα Μεταφέρεται στην επόµενη βαθµίδα σηµαντικότητας

Διαβάστε περισσότερα

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3 ΑΣΚΗΣΗ 5 ΑΘΡΟΙΣΤΕΣ - ΑΦΑΙΡΕΤΕΣ 5.1. ΣΚΟΠΟΣ Η πραγματοποίηση της αριθμητικής πρόσθεσης και αφαίρεσης με λογικά κυκλώματα. 5.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ: Κάθε σύστημα αρίθμησης χαρακτηρίζεται

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Αντικείμενο της άσκησης: Λογική και μεθοδολογία σχεδίασης αριθμητικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB.. Αθροιστές. Σχεδίαση

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση υαδική Πρόσθεση

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Αριθμητικά Συστήματα. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Αριθμητικά Συστήματα. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Αριθμητικά Συστήματα Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αριθμητικά Συστήματα Δεκαδικό Σύστημα: Βάση το 10, ψηφία 10 και συντελεστές

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΔΥΑΣΤΙΚΗ ΛΟΓΙΚΗ 2017, Δρ. Ηρακλής Σπηλιώτης Συνδυαστικά και ακολουθιακά κυκλώματα Τα λογικά κυκλώματα χωρίζονται σε συνδυαστικά (combinatorial) και ακολουθιακά (sequential).

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση

Διαβάστε περισσότερα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Λογική Σχεδίαση Ψηφιακών Συστημάτων Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδικοί Αριθμοί Η γενική αναπαράσταση ενός οποιουδήποτε

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

4.1 Θεωρητική εισαγωγή

4.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας

Διαβάστε περισσότερα

Αθροιστές. Ημιαθροιστής

Αθροιστές. Ημιαθροιστής Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 9: Σχεδιασµός Συνδυαστικών Κυκλωµάτων ΙΙ (Κεφάλαιο 5) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Περιεχόμενα Μαθήματος Συστήματα αρίθμησης Πύλες Διάγραμμα ροής-ψευδοκώδικας Python Συστήματα Αρίθμησης Δεκαδικό σύστημα Οι άνθρωποι χρησιμοποιούν το περίφημο «θεσιακό,

Διαβάστε περισσότερα

Ψηφιακή Λογική και Σχεδίαση

Ψηφιακή Λογική και Σχεδίαση Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Οργάνωση Η/Υ. Γιώργος Δημητρίου. Μάθημα 2 ο Σύντομη Επανάληψη. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής

Οργάνωση Η/Υ. Γιώργος Δημητρίου. Μάθημα 2 ο Σύντομη Επανάληψη. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής Γιώργος Δημητρίου Μάθημα 2 ο Σύντομη Επανάληψη Από την Εισαγωγή στους Η/Υ Γλώσσες Μηχανής Πεδία εντολής Μέθοδοι διευθυνσιοδότησης Αρχιτεκτονικές συνόλου εντολών Κύκλος εντολής Αλγόριθμοι/Υλικό Αριθμητικών

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

Ψηφιακά Κυκλώματα (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Ψηφιακά Κυκλώματα (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά Κυκλώματα ( ο μέρος) ΜΥΥ-6 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά κυκλώματα Οι δύο λογικές τιμές, αντιστοιχούν σε ηλεκτρικές τάσεις Υλοποιούνται με τρανζίστορ ή διόδους: ελεγχόμενοι διακόπτες

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Συνδυαστική Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ψηφιακά Κυκλώματα Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά (combinational)

Διαβάστε περισσότερα

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής. Οργάνωση Η/Υ. Γιώργος ηµητρίου. Μάθηµα 2 ο Σύντοµη Επανάληψη

Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής. Οργάνωση Η/Υ. Γιώργος ηµητρίου. Μάθηµα 2 ο Σύντοµη Επανάληψη Γιώργος ηµητρίου Μάθηµα 2 ο Σύντοµη Επανάληψη Από την Εισαγωγή στους Η/Υ Γλώσσες Μηχανής n Πεδία εντολής n Μέθοδοι διευθυνσιοδότησης n Αρχιτεκτονικές συνόλου εντολών n Κύκλος εντολής Αλγόριθµοι/Υλικό Αριθµητικών

Διαβάστε περισσότερα

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων

Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Οργάνωση Η/Υ Ενότητα 3η: Αριθμητικές Πράξεις και Μονοπάτι Επεξεργασίας Δεδομένων Άσκηση 1: Δείξτε πώς μπορούμε να υλοποιήσουμε ένα

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Σ ή. : υαδικά. Ε ό. ή Ενότητα

Σ ή. : υαδικά. Ε ό. ή Ενότητα 1η Θεµατική Θ ή Ενότητα Ε ό : υαδικά δ ά Συστήµατα Σ ή Μονάδα Ελέγχου Ψηφιακοί Υπολογιστές Αριθµητική Μονάδα Κρυφή Μνήµη Μονάδα Μνήµης ιαχείριση Μονάδων Ι/Ο ίσκοι Οθόνες ικτυακές Μονάδες Πληκτρολόγιο,

Διαβάστε περισσότερα

Ψηφιακοί Υπολογιστές

Ψηφιακοί Υπολογιστές 1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία

Διαβάστε περισσότερα

Εργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI

Εργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Οργάνωση Η/Υ. Γιώργος ηµητρίου. Μάθηµα 3 ο. Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων

Οργάνωση Η/Υ. Γιώργος ηµητρίου. Μάθηµα 3 ο. Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων Γιώργος ηµητρίου Μάθηµα 3 ο Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων Μονάδα Επεξεργασίας εδοµένων Υποµονάδες πράξεων n Αριθµητική/Λογική Μονάδα (ΑΛΜ - ALU): Βασικές αριθµητικές

Διαβάστε περισσότερα

Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας

Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Μονάδα Επεξεργασίας Δεδομένων Μονάδα

Διαβάστε περισσότερα

Αριθµητική υπολογιστών

Αριθµητική υπολογιστών Αριθµητική υπολογιστών Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #03 1 εκαδικό σύστηµα αρίθµησης Βάση το 10. 10 ψηφία: 0 1 2 3 4 5 6 7 8 9 1 δεκαδικό ψηφίο εκφράζει 1 από 10 πιθανές επιλογές

Διαβάστε περισσότερα

HY430 Εργαστήριο Ψηφιακών Κυκλωμάτων.

HY430 Εργαστήριο Ψηφιακών Κυκλωμάτων. HY430 Εργαστήριο Ψηφιακών Κυκλωμάτων Διδάσκων: Χ. Σωτηρίου, Βοηθός: (θα ανακοινωθεί) http://inf-server.inf.uth.gr/courses/ce430/ 1 Περιεχόμενα Κυκλώματα Πρόσθεσης Half-adder Full-Adder Σειριακό Κρατούμενο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 10: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Εισαγωγικές έννοιες ψηφιακής λογικής

Διαβάστε περισσότερα

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Γενικές Γραμμές Δυαδικοί Αριθμοί έναντι Δυαδικών Κωδίκων Δυαδικοί Αποκωδικοποιητές Υλοποίηση Συνδυαστικής Λογικής με Δυαδικό Αποκωδικοποιητή

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ

ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ Γιώργος Δημητρίου Μάθημα 4 ο ΜΣ Εφαρμοσμένη ληροφορική ΜΟΝΑΔΑ ΕΕΞΕΡΓΑΣΙΑΣ ΔΕΔΟΜΕΝΩΝ Υπομονάδες πράξεων Αριθμητική/Λογική Μονάδα (ΑΛΜ - ALU): Βασικές αριθμητικές πράξεις Λογικές

Διαβάστε περισσότερα

Ενότητα 4 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΔΥΟ ΕΠΙΠΕΔΩΝ

Ενότητα 4 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΔΥΟ ΕΠΙΠΕΔΩΝ Ενότητα 4 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΔΥΟ ΕΠΙΠΕΔΩΝ Γενικές Γραμμές Λογικές Συναρτήσεις 2 Επιπέδων Συμπλήρωμα Λογικής Συνάρτησης Πίνακας Αλήθειας Κανονική Μορφή Αθροίσματος Γινομένων Λίστα Ελαχιστόρων

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6

ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Bits & Bytes Bit: η μικρότερη μονάδα πληροφορίας μία από δύο πιθανές καταστάσεις (ναι / όχι, αληθές / ψευδές, n / ff) κωδικοποίηση σε 0 ή 1 δυαδικό σύστημα

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών

Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό

Διαβάστε περισσότερα

Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή

Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY

EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY ΠANEΠIΣTHMIO ΠATPΩN TMHMA MHX H/ Y & ΠΛHPOΦOPIKHΣ TOMEAΣ YΛIKOY KAI APXITEKTONIKHΣ YΠOΛOΓIΣTΩN Εργαστήριο Θεωρίας Κυκλωμάτων, Ηλεκτρονικών & Λογικού Σχεδιασμού EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY

Διαβάστε περισσότερα

Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση Δεδομένων ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση δεδομένων Κατάλληλη συμβολική αναπαράσταση δεδομένων, για απλοποίηση βασικών πράξεων, όπως πρόσθεση Πόσο εύκολο είναι

Διαβάστε περισσότερα

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II 3 η Εργαστηριακή Άσκηση Σχεδίαση και Υλοποίηση μίας ALU δύο εισόδων VHDL Εργαστήριο_2 2012-2013 1 Άδειες Χρήσης Το παρόν υλικό διατίθεται με τους όρους της άδειας

Διαβάστε περισσότερα

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης 5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI υαδικός Αθροιστής & Αφαιρέτης A i B i FA S i C i C i+1 D Σειριακός Αθροιστής Σειριακός Αθροιστής: απαιτεί 1 πλήρη αθροιστή, 1 στοιχείο µνήµης και παράγει

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

Σχεδίαση Βασικών Κυκλωµάτων. Χρ. Καβουσιανός. Επίκουρος Καθηγητής

Σχεδίαση Βασικών Κυκλωµάτων. Χρ. Καβουσιανός. Επίκουρος Καθηγητής Σχεδίαση Βασικών Κυκλωµάτων Χρ. Καβουσιανός Επίκουρος Καθηγητής Εισαγωγή Τα αριθµητικά κυκλώµατα χρησιµοποιούνται ευρέως στην σχεδίαση συστηµάτων. Data Paths Επεξεργαστές ASICs Κυρίαρχες Αριθµητικές Πράξεις:

Διαβάστε περισσότερα

Λύσεις Ασκήσεων ΣΕΙΡΑ 1 η. Πρόσημο και μέγεθος

Λύσεις Ασκήσεων ΣΕΙΡΑ 1 η. Πρόσημο και μέγεθος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΕΞΑΜΗΝΟ: 1 ο /2015-16 ΤΜΗΜΑ: ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ Καθηγητής: Θ. Τσιλιγκιρίδης Άσκηση 1η Περιεχόμενα μνήμης Λύσεις

Διαβάστε περισσότερα

Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα

Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα επαναληπτικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα 1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2

Διαβάστε περισσότερα

Αριθμητική Υπολογιστών (Κεφάλαιο 3)

Αριθμητική Υπολογιστών (Κεφάλαιο 3) ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 9 Αριθμητική Υπολογιστών (Κεφάλαιο 3) Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Αριθμητική για υπολογιστές

Διαβάστε περισσότερα

7. ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ

7. ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ 7. ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΗΜΙΑΘΡΟΙΣΤΗΣ ΠΛΗΡΗΣ ΑΘΡΟΙΣΤΗΣ ΗΜΙΑΦΑΙΡΕΤΗΣ ΠΛΗΡΗΣ ΑΦΑΙΡΕΤΗΣ ΠΑΡΑΛΛΗΛΟΣ

Διαβάστε περισσότερα

Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ

Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ Ενότητα 8 Η ΠΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ Γενικές Γραμμές Πύλες XOR και XNOR λοποιήσεις με AND-OR-INV Κώδικας Ισοτιμίας (Parity) Άρτια και Περιττή Συνάρτηση Κυκλώματα ανίχνευσης λαθών Συγκριτές

Διαβάστε περισσότερα

Παράρτηµα Γ. Τα Βασικά της Λογικής Σχεδίασης. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση

Παράρτηµα Γ. Τα Βασικά της Λογικής Σχεδίασης. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Παράρτηµα Γ Τα Βασικά της Λογικής Σχεδίασης ιαφάνειες διδασκαλίας του πρωτότυπου βιβλίου µεταφρασµένες στα ελληνικά και εµπλουτισµένες

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

"My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch

My Binary Logic Ένας προσομοιωτής λογικών πυλών στο Scratch "My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch Καραγιάννη Ελένη 1, Καραγιαννάκη Μαρία-Ελένη 2, Βασιλειάδης Αθανάσιος 3, Κωστουλίδης Αναστάσιος-Συμεών 4, Μουτεβελίδης Ιωάννης-Παναγιώτης 5,

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.tua.gr/ml232/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.tua.gr URL: http://users.tua.gr/leo Λογικές Πράξεις Λογικές Συναρτήσεις

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα Ακαδημαϊκό Έτος 2010 2011 Ημερομηνία Εξέτασης Κυριακή 26.6.2011 Ώρα Έναρξης Εξέτασης

Διαβάστε περισσότερα

Υπολογιστές και Πληροφορία 1

Υπολογιστές και Πληροφορία 1 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σκοπός του μαθήματος Λογικός Σχεδιασμός και Σχεδιασμός Η/Υ Εισαγωγή, Υπολογιστές και Πληροφορία Διδάσκουσα: Μαρία Κ. Μιχαήλ Βασικές έννοιες & εργαλεία που χρησιμοποιούνται

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Κώδικες

Αριθμητικά Συστήματα Κώδικες Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Συστήματα αρίθμησης Δυαδικό αριθμητικό

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Chapter 3 Αριθμητική Υπολογιστών

Chapter 3 Αριθμητική Υπολογιστών Chapter 3 Αριθμητική Υπολογιστών Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση), μετάφραση: Καθ. Εφαρμογών Νικόλαος Πετράκης, Τμήματος Ηλεκτρονικών Μηχανικών του Τ.Ε.Ι. Κρήτης. Τελευταία

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Σχεδίαση Ψηφιακών Συστημάτων. Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Σχεδίαση Ψηφιακών Συστημάτων. Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ᄃ Σχεδίαση Ψηφιακών Συστημάτων Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Καταχωρητές και Μετρητές 2. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Καταχωρητές και Μετρητές 2. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Καταχωρητές και Μετρητές Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Καταχωρητής: είναι μία ομάδα από δυαδικά κύτταρα αποθήκευσης

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ

ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch t / / h 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 3: Δυαδικά Συστήματα Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πρόλογος Το αντικείμενο της ψηφιακής σχεδίασης συστημάτων VLSI αποτελεί την αιχμή της σύγχρονης τεχνολογίας. Εξελίσσεται ταχύτατα, ίσως ταχύτερα από κάθε άλλο κλάδο της τεχνολογίας. Αποτελεί το όχημα όλης

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 3 Αριθµητική για υπολογιστές Ασκήσεις Η αρίθµηση των ασκήσεων είναι από την 4 η έκδοση του «Οργάνωση και Σχεδίαση

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ Οι έξοδοί τους είναι συναρτήσεις αποκλειστικά των εισόδων τους Χαρακτηρίζονται από μία καθυστέρηση στη διάδοση του σήματος της τάξης των ns Συνδιαστικά Κυκλώματα O ΣΥΓΚΡΙΤΗΣ Συγκρίνει

Διαβάστε περισσότερα

Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017

Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017 Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 4 : Πράξεις με bits Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Αποδοτική σχεδίαση Multiplier-Adder/Accumulator για αριθμούς σε μορφή

Διαβάστε περισσότερα

3. Πρόσθεση Πολλαπλασιασμός 4. Πρόσθεση στο πρότυπο ΙΕΕΕ Πολλαπλασιασμός στο πρότυπο ΙΕΕΕ

3. Πρόσθεση Πολλαπλασιασμός 4. Πρόσθεση στο πρότυπο ΙΕΕΕ Πολλαπλασιασμός στο πρότυπο ΙΕΕΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΙΠΕ Ο ΨΗΦΙΑΚΗΣ ΛΟΓΙΚΗΣ - ΙΙ Γ. Τσιατούχας 3 ο Κεφάλαιο 1. Γενική δομή CPU ιάρθρωση 2. Αριθμητική και λογική μονάδα 3. Πρόσθεση Πολλαπλασιασμός

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών πράξεων

Διαβάστε περισσότερα

Ψηφιακά Κυκλώματα Ι. Μάθημα 1: Δυαδικά συστήματα - Κώδικες. Λευτέρης Καπετανάκης

Ψηφιακά Κυκλώματα Ι. Μάθημα 1: Δυαδικά συστήματα - Κώδικες. Λευτέρης Καπετανάκης ΤΛ2002 Ψηφιακά Κυκλώματα Ι Μάθημα 1: Δυαδικά συστήματα - Κώδικες Λευτέρης Καπετανάκης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2011 ΤΛ-2002: L1 Slide 1 Ψηφιακά Συστήματα ΤΛ-2002:

Διαβάστε περισσότερα