4. POLARIZAREA TRANZISTOARELOR BIPOLARE

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4. POLARIZAREA TRANZISTOARELOR BIPOLARE"

Transcript

1 4 POLAZAA ANZSOALO POLA ircuitul de polarizare are rolul de a poziţiona într-un punct de pe caracteristica statică, numit Punct Static de uncţionare (PS) ezultă că circuitul de polarizare trebuie să asigure polarizarea directă a joncţiunii şi polarizarea inversă sau directă a joncţiunii, după cum trebuie să lucreze în AN, respectiv în saturaţie În general, circuitele de polarizare sunt concepute pentru funcţionarea în AN rebuie remarcat de la început faptul că parametrii au dispersii mari (chiar şi în cadrul exemplarelor de acelaşi tip, după cum s-a arătat în paragraful 3), ceea ce reduce rolul caracteristicilor statice la unul mai degrabă calitativ decât cantitativ În special în conexiunea, dispersia mărimilor v (relativ puţin importantă), (cu dispersii foarte mari) face practic inutilizabile caracteristicile statice şi Studiul polarizării cuprinde două probleme: Analiza circuitului, în care se porneşte de la un circuit de polarizare şi se cere stabilirea (calculul) PS lui; Proiectarea circuitului, care este problema inversă: se precizează PS ul şi se cere un circuit de polarizare care să-l realizeze ventual, se poate impune şi structura schemei circuitului, dar în cele mai multe cazuri aceasta este aleasă de proiectant, în funcţie de cerinţele suplimentare în legătură cu stabilitatea sau abaterea termică În general, oricare din cele două probleme se abordează cu acelaşi algoritm: ) Se desenează schema circuitului; ) Se notează tensiunile la bornele (de obicei şi ) şi curenţii, folosind de obicei convenţia de stabilire a sensurilor pozitive de la receptoare; 3) Se scriu teoremele lui Kirchhoff şi ecuaţiile specifice, de obicei (34) sau (347), obţinându-se astfel un sistem de ecuaţii; 4) Se rezolvă sistemul, ale cărui soluţii vor fi mărimile cerute în problemă 4 D POLAZA ZSO ÎN AZĂ Schema circuitului este prezentată în figura 4a ezistorul asigură polarizarea directă a joncţiunii ircuitul poate funcţiona atât în AN, cât şi în saturaţie Joncţiunea fiind polarizată direct, se poate aproxima ct γ a) b) ig 4 Polarizarea cu rezistor în bază a) Schema circuitului de polarizare cu rezistor în bază b) Poziţionarea PS-lui pe caracteristica statică de ieşire Aplicând teorema a doua a lui Kirchhoff pe ochiul,,,, masă, rezultă curentul : (4) 4

2 egimul de lucru al se poate stabili în urma calculului curentului corespunzător saturaţiei: sat (4) sat În funcţie de valorile calculate ale curenţilor, şi de valoarea sat, pot exista două situaţii: Dacă sat, atunci va lucra în saturaţie, curentul de colector putând fi aproximat cu valoarea calculată anterior (în care s-a neglijat valoarea tensiunii, presupusă de valoare mult mai mică faţă de tensiunea de alimentare) sat Dacă < sat, atunci va lucra în AN, curentul de colector putând fi calculat cu ajutorul relaţiei (34) sau (347) ezultă ecuaţiile circuitului, conform funcţionării în AN: ( ) (43) Sistemul de ecuaţii (43) poate fi folosit în ambele tipuri de probleme Astfel, la proiectare se cunosc valorile mărimilor ce caracterizează PS-ul (,, ), de obicei şi tensiunea de alimentare, şi se determină valorile rezistenţelor de polarizare, şi În prealabil însă se alege un tranzistor, adică o valoare a factorului de amplificare, Se impune precizarea că principalul criteriu în alegerea îl constituie puterea disipată, ce nu poate depăşi valoarea maximală P d max, indicată în catalog Puterea disipată în montaj este: PD (44) şi trebuie îndeplinită condiţia: PD P dmax (45) Din punct de vedere grafic, dependenţa (44) reprezintă o hiperbolă în planul v, i, astfel că intuitiv se poate spune că PS-ul trebuie să fie situat sub hiperbola de disipaţie maximă, după cum se poate urmări şi în figura 4b În cazul problemei de analiză, se cunosc valorile elementelor schemei (rezistoare, parametrii, tensiunea de alimentare observaţie: negativă!), soluţiile sistemului (43) fiind coordonatele PS-ului P(,, ) Acesta poate fi plasat pe caracteristica statică de ieşire, după cum se prezintă în figura 4b Din punct de vedere geometric, rezultă că PS-ul este intersecţia dintre caracteristica statică pentru curentul determinat cu (364 ) şi dreapta de sarcină, (364 3 ) Dreapta de sarcină reprezintă teorema a doua a lui Kirchhoff pentru ochiul de ieşire:,,,, masă Analizând resiile (364 ) şi (364 3 ) prin prisma dispersiilor parametrilor, se poate observa că PS-ul prezintă o accentuată instabilitate Astfel, curentul fiind proporţional cu, va prezenta o dispersie asemănătoare cu acesta, iar tensiunea, proporţională cu, va fi caracterizată şi ea de o dispersie, însă în sens contrar celei a curentului de colector Adică, dacă creşte datorită creşterii lui, se va micşora În figura 4b, acesta se traduce într-o urcare a PS-ului P, adică o evoluţie către zona de saturaţie În concluzie, schema este foarte simplă, dar prezintă câteva inconveniente majore: 4

3 Dificultăţi la punerea în funcţiune, deoarece trebuie ales (sortat) un cu cât mai apropiat de valoarea ce a fost conserată la calcule Dificultăţi la depanare: dacă trebuie înlocuit, atunci acesta trebuie de asemenea să fie sortat după În plus, este puţin probabil ca depanatorul să cunoască valoarea ce trebuie să o caute nstabilitate a PS-ului, datorită variaţiei lui (de exemplu creşterea cu creşterea temperaturii) Aceste dezavantaje majore se impun categoric în faţa avantajului simplităţii, astfel că acest circuit de polarizare practic nu este folosit pentru funcţionarea în AN În cazul funcţionării în saturaţie, ecuaţiile ce descriu funcţionarea circuitului sunt: sat (46) sat sat ensiunea, ce nu depăşeşte, poate fi neglijată dacă tensiunea de alimentare este sat suficient de mare, de obicei pentru ( < ) > În cazul problemei de proiectare, ştiindu-se valoarea curentului sat şi a tensiunii de alimentare, se alege un şi se va determina din (367 ), astfel încât condiţia sat să fie îndeplinită în cazul cel mai defavorabil (pentru valoarea minimă din catalog a lui ) cât mai aproape de egalitate În acest fel, valoarea reală fiind cel mai probabil mai mare, efectul asupra funcţionării va fi favorabil, micşorându-se tensiunea rebuie totuşi subliniat faptul că o valoare foarte mare a lui poate avea (şi) efecte defavorabile, deoarece poate provoca saturarea profundă a, ceea ce creşte conserabil durata de blocare, limitând astfel frecvenţa semnalului de comandă ce se aplică în bază Practic, o astfel de schemă poate fi folosită în aplicaţii de comutaţie la frecvenţă mică rmătoarea etapă ar fi determinarea valorii, dar de regulă aceasta este rezistenţa echivalentă a elementului comutat cu ajutorul, astfel că este cunoscută ezultă că, practic, proiectarea se reduce la alegerea şi calculul rezistorului Problema de analiză este la fel de simplă: valoarea curenţilor şi au fost determinate în momentul deciziei asupra regimului de lucru, deci în acel context s-a stabilit şi PS-ul Se impune precizarea că în cazul unui saturat, relaţia i i îşi pierde consistenţa, întrucât curentul de bază poate creşte După cum s-a precizat mai sus, din conserente ce ţin de timpul de blocare al, este recomandabil ca relaţia sat să fie satisfăcută cât mai aproape de egalitate În acest caz, curenţii i şi i pot fi aproximaţi ca fiind egali şi în cazul funcţionării în regimul de saturaţie În concluzie, determinarea PS-ului se face cu ajutorul următorului algoritm: ) Se determină cu ajutorul relaţiei (4); ) Se determină valoarea curentului de saturaţie cu ajutorul relaţiei (4) şi se dece regimul de lucru al schemei; 3) În funcţie de regimul de lucru, se rezolvă sistemul (43) sau (46) rebuie remarcat faptul că determinarea regimului de lucru este aplicabil oricărei scheme de polarizare Se modifică numai structura relaţiei de tip (4) 43

4 După cum se poate remarca, circuitul prezentat nu este deosebit de util în aplicaţii practice, având un domeniu relativ restrâns în care poate fi folosit cu succes Din acest motiv s-au căutat soluţii pentru îmbunătăţirea funcţionării, câteva dintre ele fiind prezentate în continuare 4 D POLAZA DOĂ SS Schema circuitului este prezentată în figura 4 Sursa de tensiune, împreună cu rezistorul asigură polarizarea directă a joncţiunii ircuitul poate funcţiona atât în AN, cât şi în saturaţie Joncţiunea fiind polarizată direct, se poate aproxima γ ct Prezenţa în circuit a rezistenţei poate avea un efect favorabil din punctul de vedere al stabilităţii curentului, la funcţionarea în AN alitativ, această influenţă poate fi licată prin faptul că tensiunea în bază, este practic constantă, iar cea din emitor,, proporţională cu curentul i i Prin urmare, variaţia curentului va produce o variaţie în sens contrar a tensiunii, ceea ce va determina revenirea curentului către valoarea iniţială onserând în AN, rezultă că este valabilă (347) Aplicând teoremele lui Kirchhoff: a doua pe ochiul,,,,, masă ( ochiul de intrare ) şi prima în conformitate cu (44), se obţin resiile curenţilor: 44 ( ) ( ) ( ) ( ) ig 4 Polarizarea cu două surse ( ) ( ) ( ) A treia componentă a PS-ului se obţine cu ajutorul dreptei de sarcină (teorema a doua a lui Kirchhoff pe ochiul de ieşire :,,,, masă): ( ) (47) De obicei se poate neglija curentul, astfel că se obţin resiile: ( ) (48) ( ) ( ) Analizând resia curentului (48 ) şi ţinând cont că >> se pot constata următoarele:, aproximaţie cu atât mai bună cu cât are o valoare mai mare; Dacă << ( ), (49) atunci se poate folosi aproximarea: ( ) (4) ( ) Prin urmare, printr-o proiectare judicioasă, circuitul din figura 4 poate asigura o valoare a curentului dependentă practic numai de componentele pasive ale circuitului (deci reproductibil în cazul schimbării tranzistorului) u alte cuvinte, este independent de parametrii (în special de ) Dacă la proiectare se asigură îndeplinirea condiţiei (49)

5 în cazul cel mai defavorabil, adică la valoarea minimă sa lui specificată în catalog, rezultă că o valoare mai mare a acestui parametru va avea un efect favorabil, asigurând aproximări mai bune în relaţiile (49) şi (4) De asemenea, din (4) rezultă că, la funcţionarea în AN, curentul nu depinde de ircuitul poate fi interpretat ca un generator de curent constant în rezistenţa (de sarcină), valoarea curentului fiind stabilită de, conform (4) rebuie subliniat încă o dată că funcţionarea ca generator de curent constant nu este posibilă decât cu condiţia funcţionării în AN, adică pentru valori ale curentului: sat < sat (4) elaţia (4) trebuie însă privită cu anumite rezerve, nu numai datorită neglijării tensiunii sat, ci mai ales datorită posibilităţii curentului de a creşte, astfel încât condiţia de cvasiegalitate între i şi i să nu mai fie întru totul acceptabilă, cu excepţia funcţionării la limita saturaţiei otuşi, se impune precizarea că circuitul în discuţie este destinat funcţionării în AN Din acest motiv, relaţia (4) trebuie privită mai degrabă ca furnizând valoarea limită a rezistenţei ce asigură funcţionarea în AN, adică funcţionarea ca generator de curent constant, cu valoarea dată de (4): < < < (4) 47 4 Întrucât în (4) s-a neglijat valoarea sat 45, este bine ca aceasta să fie cât mai bine realizată (nu la limita egalităţii) u ajutorul resiei curentului de bază (48 ) se poate calcula tensiunea în bază, ( ) : (43) ( 48 ) ( ) Ţinând cont de (49) şi de valoarea redusă a tensiunii, rezultă că primul termen din (43) poate fi neglijat, având numitorul mare şi numărătorul mic, iar pentru al doilea termen numitorul poate fi aproximat cu unitatea ezultă o valoare cvasiconstantă a tensiunii în baza : (44) Procesul de limitare a variaţiei curentului poate fi demonstrat şi calitativ Se notează: : (45) În ipoteza creşterii curentului (de exemplu, datorită variaţiei parametrului ), rezultă: ( ) ( ) (46) În cazul scăderii curentului, se obţine un şir asemănător de deducţii calitative, sensurile de variaţie fiind schimbate ezultă că la tendinţa de variaţie a curentului într-un sens oarecare, circuitul răspunde printr-o comandă ce-l face să varieze în sens contrar Acest mecanism se numeşte reacţie negativă În cazul de faţă, rezistenţa se spune că realizează o reacţie negativă (serie, de curent) în cc 43 D POLAZA DZO ZS ÎN AZĂ Din analiza prezentată în paragraful 4 se pot observa efectele favorabile ale introducerii în circuitul emitorului a rezistenţei Schema ca atare prezintă însă inconvenientul

6 folosirii a două surse de tensiune, şi, astfel că nu se foloseşte în practică (poate doar în montaje erimentale) Din acest motiv s-a şi renunţat la prezentarea problemei de proiectare n circuit de polarizare ce este utilizat în multe aplicaţii practice este cel cu divizor rezistiv în bază şi rezistenţă în emitor şi are schema prezentată în figura 43 aza este polarizată de la sursa prin intermediul divizorului rezistiv de tensiune format din rezistoarele şi, în rest schema fiind entică cu ce prezentată în paragraful precedent Se poate spune că sursa de tensiune a fost înlocuită de divizorul rezistiv, lucru pe deplin justificat, după cum se va vedea în continuare ircuitul este conceput pentru a funcţiona în AN Joncţiunea fiind polarizată direct, se poate aproxima γ ct ig 43 urentul poate fi aflat rap utilizând teorema lui Polarizarea cu divizor în bază hevenin (teorema generatorului echivalent de tensiune): PQ PQ (47) ZPQ ZPQ în care: PQ este curentul prin ramura conectată între bornele P şi Q ale circuitului; Z PQ este impedanţa conectată pe ramura dintre bornele P şi Q (ramura prin care circulă curentul PQ ); PQ este tensiunea în gol (tensiunea între bornele P şi Q ale circuitului, fără sarcina Z PQ ); Z PQ este impedanţa echivalentă a circuitului în gol şi pasivizat, calculată faţă de bornele P şi Q În cazul de faţă, nodul P este baza a tranzistorului, iar nodul Q este masa ensiunea PQ şi impedanţa Z PQ se calculează pe circuitul în gol, respectiv în gol şi pasivizat a) b) ig 44 ircuite pentru calculul mărimilor hevenin a) ircuitul în gol b) ircuitul în gol şi pasivizat ircuitul în gol se obţine prin întreruperea legăturii între bază şi divizorul de tensiune, iar cel în gol şi pasivizat prin scurtcircuitarea la masă a tensiunii de alimentare, după cum se poate observa şi din figura 44 ezultă: 46

7 ensiunea în gol (figura 44a) tensiunea pe rezistenţa : (48) mpedanţa reţelei în gol şi pasivizate (figura 44b) se poate observa că în această situaţie rezistenţele şi sunt în paralel faţă de bază şi masă: (49) onform (48), este event că reţeaua (divizorul rezistiv de tensiune), poate fi echivalat în bază cu o sursă de tensiune cu valoarea, având rezistenţa internă u alte cuvinte, schema de polarizare din figura 43 este echivalentă cu cea din figura 4, valorile sursei şi a rezistenţei fiind, respectiv În aceste condiţii, problema analizei circuitului se poate consera încheiată, toate conseraţiile prezentate în paragraful 4 fiind valabile şi în contextul de faţă În continuare se va trata problema proiectării circuitului uncţionarea schemei de polarizare (a unui în AN) cu divizor în bază şi rezistenţă în emitor poate fi înţeleasă intuitiv în modul următor: reţeaua, trebuie să fie divizor de tensiune, adică tensiunea trebuie să fie practic constantă Deoarece în nodul bazei (figura 43) se scriu relaţiile: (4) rezultă că trebuie îndeplinită condiţia: : divizor >> (4) Altfel spus, sursa de tensiune trebuie să fie cât mai puţin influenţată de consum (să nu simtă curentul ) În aceste condiţii potenţialul bazei poate fi conserat constant, fiind determinat de valorile rezistenţelor şi de tensiunea de alimentare, conform relaţiei (48) În acest caz, curentul emitorului, (care este cvasiegal cu, curentul colectorului) este determinat de potenţialul bazei (tensiunea ) şi de, conform (4), fiind practic independent de parametrii tranzistorului urentul de bază este şi va fi dependent de valoarea lui Se poate observa că din acest punct de vedere, circuitul de polarizare cu rezistor în bază şi cel cu divizor în bază au comportări opuse: la primul era independent şi dependent de, la al doilea situaţia fiind inversată Schema funcţionează corect dacă în cazul cel mai defavorabil ( are valoarea minimă specificată în catalog), condiţia divizor >> încă este satisfăcută Se spune că tranzistorul îşi extrage din "sursa de tensiune" curentul de bază necesar producerii curentului de colector (cu valoarea stabilită de circuitul exterior) Îndeplinirea condiţiei (49) este echivalentă cu îndeplinirea condiţiei (4), deoarece teorema lui hevenin reprezintă practic legea lui Ohm pe întregul circuit, în care Z PQ este rezistenţa internă a sursei PQ După cum se ştie, tensiunea electromotoare a unei surse de tensiune este aproximativ egală cu tensiunea la borne dacă rezistenţa sa internă este neglijabilă faţă de rezistenţa consumatorului (sursa nu simte consumatorul conectat la ieşire), deci (4) reprezintă tocmai această condiţie Ţinând cont de faptul că rezistenţa internă a sursei este (49) 47

8 şi de echivalenţa între schemele din figurile 4 şi 43, devine eventă şi echivalenţa între (49) şi (4) Orice calcul de proiectare începe cu alegerea tranzistorului Aceasta se face astfel încât tranzistorul ales să suporte condiţiile de lucru impuse de PS: < max < (4) max PD < Pd max unde, max max, P d max reprezintă valorile maximale ale mărimilor respective şi sunt specificate în catalog În aceste condiţii, conserând relaţiile (47), (48), (49), (4), (48), (49) şi echivalenţa între schemele din figurile 4 şi 43,se obţin următoarele relaţii: ( ) (43) ( ) << ( ) u ajutorul primelor patru se formează un sistem de 4 ecuaţii cu 6 necunoscute (,,,,, ) Pentru rezolvare trebuie să se adopte valori pentru două dintre rezistenţe De regulă, se aleg rezistenţele şi, astfel încât să fie satisfăcută inecuaţia (43 5 ), conserând cazul cel mai defavorabil, adică pentru valoarea minimă a factorului, specificată în catalog pentru tranzistorul ales Aşa cum s-a arătat, îndeplinirea condiţiei respective este echivalentă cu faptul că reţeaua, este divizor în bază ezultă că circuitul se poate dimensiona utilizând următorul algoritm: ) Se alege, de regulă astfel încât % ( ) min ) Se alege o valoare pentru astfel încât 3) Se calculează tensiunea, din ecuaţia (43 3 ): [ ( ) ] 4) Se calculează rezistenţele şi din sistemul de ecuaţii, dedus din (43): 5) Se calculează, din ecuaţia (43 ): 6) Se calculează puterile rezistenţelor; 7) Se aleg valori standardizate pentru rezistenţe (cele mai apropiate de valorile calculate); 48

9 8) Se reface calculul PS-ului utilizând valorile standardizate ale rezistenţelor adoptate la pasul anterior; 9) În cazul apariţiei unor erori inacceptabile, se adoptă alte valori pentru rezistenţe şi se reia pasul anterior 44 NLNŢA MPA ASPA NŢONĂ ANZSOALO 44 ariaţia PS-ului cu temperatura Din studiul circuitelor de polarizare prezentate în paragraful anterior, se poate observa că în general curentul de colector, se poate scrie: (,, ) (44) oate variabilele din (44) sunt influenţate de temperatură Astfel, după cum s-a prezentat la studiul joncţiunii pn, tensiunea şi curentul variază cu temperatura Pentru un, variaţiile acestor parametri sunt după cum urmează: ensiunea scade cu creşterea temperaturii, o valoare medie a coeficientului de variaţie termică putând fi conserată: o d m / pentru pnp : α v (45) o d m / pentru npn urentul creşte o dată cu creşterea temperaturii: în intervalul 5 o o, valoarea curentului se dublează: la creşterea temperaturii cu o în cazul cu Si; la creşterea temperaturii cu o în cazul cu Ge Pentru cu Si lucrând la temperaturi sub o se poate neglija influenţa 49 Dacă nu se specifică în catalog, coeficientul de variaţie termică al factorului de amplificare poate fi estimat cu ajutorul relaţiei empirice: d ( ) : α : d K o ( ) K (46) o unde 5 şi pentru cu Si K o 5 pentru cu Ge ariaţia curentului cu temperatura se obţine diferenţiind resia (44): d d d d (47) În relaţia (47) derivatele parţiale în raport cu temperatura reprezintă sau se pot calcula cu ajutorul variaţiilor mărimilor respective (prezentate mai sus), iar derivatele parţiale ale curentului, care se mai numesc şi sensibilităţi, se calculează cu ajutorul resiei (44), specifică fiecărui circuit de polarizare în parte Astfel, mărimea: S (48) este sensibilitatea curentului de colector în raport cu şi se mai numeşte şi factor de stabilizare vent, S este o mărime adimensională Similar, mărimea: S (49)

10 ma este sensibilitatea curentului în raport cu şi se măsoară în, iar mărimea: S (43) este sensibilitatea curentului în raport cu şi se măsoară în ma În practică, variaţia infinitezimală a curentului din (47) se aproximează cu una finită, deriva termică fiind calculată cu relaţia: Δ S S S Δ (43) vent, în (43) s-a ţinut cont şi de definiţiile sensibilităţilor (48), (49) şi (43) elaţia (43) este adevărată cu condiţia unei variaţii liniare a curentului cu temperatura, lucru ce nu este adevărat ezultă că această formulă se poate aplica numai dacă intervalul Δ este suficient de mic, astfel încât aproximaţia liniară să introducă erori minime xperimental se constată că pentru circuitele uzuale de polarizare, (43) dă rezultate o satisfăcătoare pentru Δ, limita inferioară corespunzând circuitelor mai instabile, iar cea superioară circuitelor mai stabile la variaţia temperaturii Dacă trebuie studiată deriva termică pentru un interval Δ mai mare, este bine să se lucreze succesiv pe mai multe subintervale mai mici 44 Metode de stabilizare termică a PS-ului Problema stabilizării (insensibilizării) termice a PS-ului este una din problemele critice care apar la circuitele cu dispozitive semiconductoare Se subînţelege că cea care variază este temperatura joncţiunilor Două sunt cauzele ce provoacă variaţia temperaturii joncţiunilor şi anume: Încălzirea tranzistorului datorită curentului ce-l parcurge (efect Joule - Lenz); ariaţia temperaturii ambiante Pentru stabilizarea termică a PS-ului este suficientă minimizarea variaţiei curentului, aceasta atrăgând după sine şi stabilizarea tensiunii, deoarece cele două mărimi sunt legate între ele prin teorema a doua a lui Kirchhoff scrisă pe ochiul de ieşire (dreapta de sarcină) În principiu, sunt două tipuri de metode de stabilizare termică, liniare şi neliniare 44 Metode liniare de stabilizare Aceste metode constau în introducerea unor rezistenţe convenabile în circuitul de polarizare După cum s-a arătat în (46), introducerea rezistenţei în schema din figura 4 (ca şi în schema cu divizor rezistiv în bază, din figura 43 cele două scheme fiind echivalente) face ca circuitul să se opună variaţiei curentului de emitor ezultă că va avea un efect favorabil şi în contextul limitării variaţiei termice a curentului (adiţional efectului favorabil faţă de dispersia, inclusiv deriva termică, a parametrului ) În toate circuitele ce vor fi prezentate, mecanismul de reglare (stabilizare termică) va fi bazat pe acelaşi principiu, adică realizează o reacţie negativă ) n prim exemplu de circuit de polarizare care asigură o stabilizare termică este prezentat în figura 45 După cum se poate observa, tensiunea de polarizare a bazei este Se pot scrie relaţiile: 4

11 (43) ( ) În relaţia (43 ) se poate observa că şi variază în sensuri opuse (creşterea uneia provoacă scăderea celeilalte) ezultă că: ig 45 ircuit de polarizare cu (433) ( 43 ) ( 43 ) ( 434 ) reacţie negativă de tensiune În (433) au fost conserate valorile absolute ale tensiunilor întrucât la un pnp toate tensiunile sunt negative eacţia negativă (de tensiune) este realizată de rezistenţa, care are şi rolul de a asigura curentul Neglijând curentul şi aproximând, din (43) rezultă: (434) Din (434) rezultă că dacă: << (435) atunci schema realizează şi stabilizarea PS-ului în raport cu variaţiile lui În această situaţie însă, ţinând cont şi de faptul că tensiunea de alimentare în mod uzual nu depăşeşte valori de ordinul 5, tensiunea este mică (în jurul valorii ), ceea ce constituie (sau poate constitui) un dezavantaj al schemei din figura 45 ezultă că schema este recomandabilă cu precădere aplicaţiilor de comutaţie ) În figura 46 se prezintă o variantă a circuitului anterior, diferenţa între ele fiind introducerea rezistenţei în emitorul În acest sens, este de aşteptat ca circuitul să acţioneze asupra curentului din două direcţii, adică atât prin mecanismul descris în (46), cât şi prin cel descris de (433) Astfel, ţinând cont de ecuaţiile: ( ) (436) ig 46 ircuit de polarizare cu dublă reacţie negativă (de tensiune şi de curent) şi că, la creşterea temperaturii va avea loc mărirea curentului, tensiunea se micşorează atât ca urmare a micşorării tensiunii, conform (436 4 ), cât şi ca urmare a măririi tensiunii, conform (436 3 ) Micşorarea tensiunii provoacă micşorarea tensiunii, conform (436 ) ceea ce atrage după sine micşorarea curentului Deoarece există într-adevăr două constrângeri 4

12 asupra curentului, schema prezentată este mai eficientă din punctul de vedere al compensării termice faţă de schema din figura Metode neliniare de stabilizare Aceste metode constau în introducerea în circuitul de polarizare a unor elemente neliniare (diode, diode Zener, termistoare), urmărindu-se ca prin variaţia cu temperatura a unui parametru caracteristic să se compenseze tendinţa de variaţie a curentului ) n prim exemplu de circuit este prezentat în figura 47 În circuitul de polarizare s-a introdus dioda D, confecţionată din acelaşi material ca şi, şi caracterizată de curentul rezual La creşterea temperaturii ambiante, circuitul acţionează în felul următor: (437) Alegerea diodei se face ţinând cont de ecuaţiile: ig 47 ircuit de compensare termică ( ) (438) cu diodă ( )( ) ( ) ezultă valoarea curentului rezual al diodei: (439) Derivând (439) în raport cu temperatura, se obţine şi valoarea necesară pentru al diodei, astfel încât se poate alege din catalog o diodă (sau mai multe, ce pot fi legate în paralel) cu parametrii cât mai apropiaţi de cei calculaţi La derivare se vor consera ca variabile doar şi, întrucât scopul este menţinerea constantă a lui, deci Dacă în (438) nu se neglijează, atunci variaţia sa va apare şi în calculul ) O altă variantă de circuit este prezentată în figura 48, în care dioda s-a înlocuit cu un termistor de tip N (Negative emperature oefficient) La creşterea temperaturii ambiante, circuitul acţionează în felul următor: (44) h Presupunând că reţeaua de polarizare a bazei este un divizor rezistiv de tensiune, resia curentului de colector va fi (48 ): (44) ( ) În (44), elementele ce depind de temperatură sunt şi, cu variaţii în conformitate cu (45) şi (46), (prin intermediul rezistenţei termistorului ): şi (deoarece ) 4

13 a) b) ig 48 ompensarea termică a variaţiei curentului de colector cu ajutorul unui termistor a) schema circuitului b) variante de ajustare a rezistenţei termistorului Se pot face următoarele observaţii: Pentru a se obţine cvasiindependenţa curentului de, la proiectare se impune << reşterea temperaturii favorizează îndeplinirea condiţia ( ) acestei condiţii, deoarece (termistorul fiind de tip N,) şi în consecinţă se micşorează, iar se măreşte reşterea parametru la creşterea temperaturii ezultă că aproximarea (4) este favorizată de creşterea temperaturii, astfel încât trebuie să compenseze numai variaţia tensiunii Ţinând cont de resia tensiunii, (4) devine: cu temperatura asigură micşorarea dependenţei curentului de acest (44) mpunând condiţia de compensare, d (443) se obţine: ( ) d d d ( ) ezultă coeficientul termic al termistorului: ( ) (444) Asupra termistoarelor se impune precizarea că în cataloage nu se specifică valoarea coeficientului de variaţie termică ezultă că acesta trebuie estimat, cel mai bine prin ricarea curbei într-un domeniu de temperaturi semnificativ pentru aplicaţia ce se proiectează În scopul asigurării îndeplinirii condiţiei de compensare (444), termistorul se poate înlocui cu una din configuraţiile din figura 48b O variantă a circuitului poate fi cea fără rezistenţă în emitor ( ) În această situaţie nu poate fi compensată decât influenţa tensiunii asupra derivei termice a curentului Din relaţia (teorema a doua a lui Kirchhoff): 43

14 (445) rezultă prin diferenţiere în raport cu temperatura (se neglijează variaţia curentului ): ezultă condiţia de compensare: ( ) (446) ircuitele din figurile 47 şi 48 acţionează cu precădere la variaţia temperaturii ambiante Pentru a le face sensibile şi la variaţia temperaturii joncţiunii trebuie asigurat cuplajul termic între elementele de compensare şi na din posibilităţile de realizare a acestui dezerat este de a se monta şi elementul de compensare pe acelaşi radiator 443 omparaţie între metodele liniare şi cele neliniare După cum s-a văzut, metodele neliniare asigură compensarea derivei termice cu precădere la variaţia temperaturii ambiante Din acest punct de vedere, metodele liniare sunt universale, ale acţionând la efectul creşterii temperaturii (creşterea curentului ) indiferent de cauzele acesteia; în plus, se reduce conserabil şi efectul dispersiei parametrului Metodele liniare însă nu pot (nici măcar principial) să asigure compensarea totală a derivei termice, ci doar menţinerea ei în limite (teoretic oricât de) rezonabile într-un interval Δ specificat În compensaţie, metodele liniare prezintă avantajul simplităţii calculelor de proiectare De asemenea, punerea în funcţiune şi/sau depanarea unor astfel de montaje nu comportă reglaje foarte dificile Metodele neliniare pot (cel puţin principial) să asigure compensarea totală a derivei termice, indiferent de mărimea intervalului Δ, cu preţul unui proces de calcul mai complicat şi mai ales a necesităţii unor reglaje meticuloase la punerea în funcţiune sau la depanarea montajului Din acest motiv, aceste metode sunt în general evitate la producţia de serie otuşi, posibilitatea compensării totale în ipoteza similitudinii caracteristicilor materialelor semiconductoare folosite la construcţia dispozitivelor face ca metodele neliniare să fie deosebit de eficiente în cazul circuitelor integrate 45 APLAŢ 45 Se dă montajul din figura 49a, având caracteristicile statice de ieşire şi de intrare prezentate în figura 49b, respectiv 49c Să se determine PS-ul Se dau: ; Ω; MΩ; ig 49 44

15 ezolvare Se determină mai întâi valoarea maximă posibilă (valoarea de saturaţie) a curentului de colector (cu saturat) sat S 5mA urentul de bază: (447) urentul de colector: dacă S, atunci S ( saturat) dacă S, atunci ( in AN) ensiunea colector - emitor: (448) Deoarece joncţiunea este polarizată direct prin intermediul rezistenţei, iar este din Si, se poate aproxima: γ,6 γ,6 9,4μA actorul de amplificare se estimează din caracteristica statică de ieşire, observând că o creştere a curentului de bază Δi 5μA provoacă o creştere a curentului de colector Δ i ma ezultă că: Δi ma 4 Δi 5μA 3 4 9,4 3,76mA < S 5mA 7,5,48 Observaţii: Mărind valoarea rezistenţei, se va micşora valoarea curentului S xemplu: Ω S,5mA În această situaţie, deoarece,9ma >,5mA S, rezultă că S,5mA, funcţionând în regim de saturaţie Având la dispoziţie cs ale, problema poate fi rezolvată şi prin metoda grafoanalitică Astfel construind în planul cs de intrare (obs: slab influenţată de v ) dreapta de sarcină corespunzătoare ecuaţiei (447) se obţine,5 şi 9,5μA onstruind în planul cs de ieşire dreapta de sarcină corespunzătoare ecuaţiei (448) şi intersectând-o cu cs corespunzătoare curentului al circuitului 4 ( 9,5μA ), se obţine 4mA ezultă că în PS, > 4 3 9,5 După efectuarea acestui calcul grafo-analitic, se poate determina valoarea factorului de amplificare în PS-ul găsit: 45

16 ( ) α 4 um se neglijează, rezultă: 4,95 45 În circuitul din figura 4, are următorii parametrii:,6, şi [ ; ] Să se determine poziţia PS-ului în planul cs de ieşire i i ( v ) Presupunând variabil, să se determine plaja de valori pe care le poate avea aceasta astfel încât să funcţioneze în AN Se dau: Ω; Ω; Ω ; 8 ig 4 ig 4 ezolvare arianta Se foloseşte echivalarea hevenin, descrisă în paragraful 43 ensiunea în gol (cu baza deconectată) este: : ( 8) 6 3 ezistenţa echivalentă a reţelei în gol şi pasivizată (, adică se poate consera că borna de alimentare este la masă), M este: : 6,67Ω 3 Se poate observa cu uşurinţă că dacă baza este deconectată şi alimentarea este la masă, atunci între bază şi masă se "văd" rezistenţele şi în paralel Prin urmare, divizorul rezistiv, este echivalent cu o sursă de tensiune având rezistenţa internă Se obţine schema echivalentă din figura 4 Pentru această configuraţie, se poate scrie următorul sistem de ecuaţii: ( K pe ochiul baza emitor) ( K pe ochiul colector emitor) (449) cuaţia (449 ) reprezintă din punct de vedere grafic dreapta de sarcină în planul (i, v ) al cs de ieşire Se obţine: 46

17 ( ) ( ) Se poate observa independenţa curentului de valoarea rezistenţei, dacă funcţionează în AN este valabilă relaţia (449 4 ) Numeric se obţine:,59ma pentru şi,64ma pentru De asemenea, se poate observa slaba dependenţă (cvasiindependenţa) a curentului de colector,, de valoarea factorului de amplificare, Din punct de vedere matematic, această independenţă se asigură prin îndeplinirea condiţiilor: >> (45) ( ) >> Aceasta echivalează cu neglijarea căderii de tensiune pe (rezistenţa internă a sursei de tensiune ) şi cu aproximarea Deoarece >> şi adică, rezultă: 6,6,7mA În concluzie, se poate spune că schema de polarizare (în AN) a cu divizor rezistiv în bază şi rezistenţă în emitor reprezintă practic un generator de curent constant, având ca sarcină rezistenţa aloarea curentului este stabilită de elementele de polarizare a (,, ), fiind practic independentă de parametrii tranzistorului Dacă, atunci ecuaţia dreptei de sarcină devine: ( ) eprezentarea grafică a dreptei de sarcină se poate vedea în figura 4 PS-ul se va găsi pe această dreaptă, la curenţi cuprinşi între,59 şi,64ma u,6ma, se obţine: ( ) 7,6 Limitele între care poate varia se determină astfel: valoarea minimă este, iar valoarea maximă se calculează astfel încât să nu intre în saturaţie onserând sat,5, condiţia sat ig 4 conduce la: sat 4,63Ω 47

18 Pentru 4,63Ω, se obţine poziţia extremă a dreptei de sarcină, figurată cu max linie punctată în figura 4 arianta Se porneşte de la presupunerea că reţeaua, asigură un divizor de tensiune ce polarizează baza Aceasta revine la a presupune că este neglijabil faţă de curenţii, (figura 4) astfel încât deoarece << ; << Justeţea acestei presupuneri urmează să fie verificată după calcularea curentului Dacă : divizor 6 ircuitul este descris de sistemul de ecuaţii: (45) Se poate observa că ecuaţia (45 ) diferă de (449 ) doar prin absenţa termenului Deoarece s-a arătat la prima metodă că neglij 3area acestui termen se poate face dacă se îndeplinesc condiţiile (45), se poate trage concluzia că îndeplinirea acestora este echivalentă cu a spune că polarizarea bazei se face printr-un divizor (rezistiv) de tensiune Mai mult, se poate spune că rezultă practic independent de parametrii tranzistorului (în special de ) dacă şi numai dacă baza este polarizată printr-un divizor (rezistiv) de tensiune Sistemul fiind acelaşi cu cel obţinut la prima metodă, soluţia va fi:,7ma ; Se verifică îndeplinirea condiţiei divizor >> în cazul cel mai defavorabil, adică atunci când este maxim, deci pentru min : 8 divizor,6ma 3 Se observă că, într-adevăr divizor >>, deci calculele (făcute în această ipoteză) sunt corecte Observaţii: uncţionarea schemei de polarizare (a unui în AN) cu divizor în bază şi rezistenţă în emitor poate fi înţeleasă intuitiv în modul următor: Dacă reţeaua, este divizor de tensiune (adică divizor >> ),atunci potenţialul bazei poate fi conserat constant şi este determinat de valorile rezistenţelor şi de tensiunea de alimentare, În acest caz, curentul emitorului, (care este practic egal cu, curentul colectorului) este determinat de potenţialul bazei (tensiunea ) şi de, deci este practic independent de tranzistor urentul de bază, i, este şi va fi dependent de valoarea lui Schema funcţionează corect dacă în cazul cel mai defavorabil ( are valoarea minimă specificată în catalog), condiţia divizor >> încă este satisfăcută 48

19 Se spune că tranzistorul îşi extrage din "sursa de tensiune" curentul de bază necesar producerii curentului de colector stabilit de circuitul exterior aloarea curentului fiind practic independentă de parametrii tranzistorului, rezultă că înlocuirea acestuia cu altul de acelaşi tip nu afectează PS-ul ( va rămâne practic nemodificat) Datorită avantajelor prezentate, cvasitotalitatea schemelor de polarizare de acest tip sunt proiectate astfel încât condiţia (45) să fie îndeplinită (adică, să fie divizor de tensiune) Se poate observa cu uşurinţă că neîndeplinirea condiţiei (45) conduce pe de o parte la calcule mai complicate şi, pe de altă parte, la dezavantajul major al dependenţei curentului de parametrii tranzistorului ndependenţa curentului i de rezistenţa de sarcină (în cazul funcţionării tranzistorului în AN) poate fi observată şi astfel: Se presupune că creşte dintr-o cauză oarecare, atunci: ct Se observă că tendinţei de variaţie a curentului într-un sens, schema îi răspunde cu o comandă de variaţie în sensul contrar, aducându-l astfel la valoarea iniţială ste un exemplu de reglaj automat a valorii unei mărimi O cauză ce ar putea determina creşterea curentului poate fi o creştere a temperaturii joncţiunilor tranzistorului ezultă că are un efect favorabil şi din acest punct de vedere, asigurând variaţii mici ale curentului într-un interval prestabilit de temperatură Dacă este întreruptă, atunci schema devine cea din figura 43 creşte faţă de valoarea corespunzătoare prezenţei în schemă a rezistenţei La proiectare trebuie avut în vedere acest fenomen; şi se vor dimensiona ig 43 astfel încât: < maxim admisibil aloarea maxim admisibil este dată în cataloage 453 ig 44 ig 45 Să se dimensioneze rezistenţele circuitului din figura 44, astfel încât să lucreze la temperatura θ 5 în PS-ul (ma, -4) Se admit variaţii ale de maxim ± % în 49

20 următoarele condiţii:,6,7,, na (dispersia parametrilor), θ θ ± 3 ( θ ) ; Se dau: d m d ; O d dθ temperaturii cu o ; θ se dublează la fiecare creştere a ezolvare niţial se va rezolva problema într-un caz mai simplu: nu se iau în conserare efectele variaţiei temperaturii arianta onserând reţeaua de polarizare a bazei (, ) un divizor de tensiune şi folosind aproximarea, se obţine un sistem de 4 ecuaţii cu 6 necunoscute (,,,,, ): ( ) (45) ( ) << ( ) S-a folosit echivalarea hevenin în bază (figura 45) Pentru rezolvare trebuie să se adopte valorile pentru două dintre rezistenţe De regulă, se aleg rezistenţele şi, astfel încât să fie satisfăcută inecuaţia (45 5 ) Aşa cum s-a văzut la problema anterioară, îndeplinirea condiţiei respective este echivalentă cu faptul că reţeaua, este divizor în bază De regulă, se adoptă astfel încât ; % ma Ω ondiţia ( ) ( ) Ω << trebuie satisfăcută în cazul cel mai defavorabil, deci pentru min Se adoptă Ω << Ω Ω ( ) [ ( ) ] [ ( ) ] ( ),6,7 ezistenţele şi se află din sistemul de ecuaţii, dedus din (45): ( ) 4

21 57Ω Ω Din ecuaţia (45 ) rezultă: 5Ω Se vor alege valori standardizate pentru rezistenţe: 5,Ω, Ω, 56Ω, Ω Puterile rezistenţelor: 6 P 5 5,mW P P mw,6,mw,6 P,5mW 56 În concluzie, se pot adopta rezistenţe având puterea nominală 5, Ω /,5W ; 4 P n,5w Se obţine: Ω /,5W ; 56Ω /,5W ; Ω /,5W Deoarece unele valori standardizate adoptate diferă de valorile calculate ale rezistenţelor, se recalculează PS-ul: 56 9,88Ω 56,76 56,76,6,4mA ( ) 9,88 ( ) ( 5, ),4 3,66 Se observă o variaţie mai mică de % a valorilor mărimilor ce definesc PS-ul onserând acceptabilă această situaţie, calculul este încheiat Dacă variaţia mărimilor caracteristice PS-ului este inacceptabil de mare, atunci trebuie schimbate valorile standardizate adoptate pentru rezistenţe arianta Se poate consera că reţeaua, este divizor în bază dacă >> Deoarece (figura 44) ezultă relaţiile: ( ) Din nou s-a obţinut un sistem de 4 ecuaţii cu 6 necunoscute (,,,,, )

22 Se vor adopta valori pentru şi Ω, ca şi la varianta ma μa Pentru se va adopta o valoare astfel încât >> ie μa,mω Ω μa,6,6 Deoarece:, rezultă: ( ),6 6 Ω 6 84 Ω 4 5 Ω Printr-un calcul similar cu cel prezentat la varianta, se obţin puterile nominale ale rezistenţilor alorile standardizate ale rezistenţelor: 5, Ω /,5W; Ω /,5W ; 8Ω /,5W ; 6Ω /,5W a şi la varianta, urmează recalcularea PS-ului cu valorile standardizate adoptate pentru rezistenţe, în scopul determinării influenţei asupra PS-ului a abaterilor valorilor standardizate faţă de cele calculate Dacă abaterile vor fi prea mari, atunci trebuie adoptate alte valori standardizate pentru rezistenţe În continuare, se va prezenta proiectarea circuitului în condiţiile variaţiei temperaturii în domeniul indicat onform cerinţelor problemei, trebuie ca [,9;, ]ma ; ezultă că: max :,ma ; min :,9 ma ; Δ, ma Dispersiile parametrilor,, nu sunt corelate între ele De aceea, se va face o proiectare bazată pe cazurile cele mai nefavorabile onform schemei echivalente hevenin (figura 45 ), există relaţiile: (453) ( ) Se obţin resiile: 4

23 ( )( ) ( ) ( ) ( ) alorile extreme ale parametrilor sunt: d 3 ( θ) ( θ ) ( θmax θ ),6 3,54 min min d d 3 ( θ) ( θ ) ( θ min θ ),7 ( 3),76 max max d d min ( θ) min ( ) ( θ min θ ) ( 3) 7 dθ d max ( θ) max ( θ ) ( θmax θ ) 3 6 dθ Dacă se dublează la fiecare creştere a temperaturii cu, atunci se poate scrie: θθ θ θ ezultă: θmin θ 3 ( θ) ( θ ) na,5na min min 8 θ θ max 3 ( θ) ( θ ) max max 8nA În aceste condiţii, se obţin următoarele valori extreme (cazuri cele mai defavorabile): pentru : este minim pentru este maxim pentru pentru şi : ( ) este minim pentru ( ) este maxim pentru, max, max min, min, min, min max,, max, max min min max Se poate observa că s-au obţinut condiţii contradictorii: pentru ca să fie minim trebuie ca şi să fie minime dar minim se obţine pentru max Se pot observa şi contradicţii referitoare la Din acest motiv, un calcul riguros nu poate fi făcut decât prin merodele specifice analizei matematice Se va estima diferenţiala curentului, se vor aproxima mărimile infinitezimale prin diferenţe finite, obţinându-se astfel o relaţie suplimentară, ce va fi ataşată sistemului de ecuaţii (453) Din (453) rezultă: 43

24 44 d d d d d Δ Δ Δ Δ unde ma, Δ (impus de tema de proiectare) Δ Δ Δ 79,875nA,5 8,,54, min max min max (calculate din dispersiile parametrilor în urma variaţiei temperaturii dată în tema de proiectare) Se calculează sensibilităţile: [ ] [ ] [ ] [ ] [ ] [ ] Din aceste relaţii rezultă variaţia curentului : [ ] Δ Δ Δ Δ u această condiţie suplimentară, împreună cu condiţia ca reţeaua, să fie divizor de tensiune în baza tranzistorului <<, sistemul (453) devine:

25 ( ) ( ) (454) ( ) ( ) Δ Δ Δ [ ( ) ] ( ) ( ) Δ ( ) ( min ) S-a conserat că îndeplinirea condiţiei de divizor este îndeplinită pentru o valoare de ori mai mică decât ( ) în cazul cel mai defavorabil, adică pentru min Din ecuaţiile (454 3 ), (454 4 ), (454 5 ), (454 7 ), (454 8 ), se obţine următorul sistem de ecuaţii, cu necunoscutele şi : ( ) ( ) min ( min ) [ ] Δ Δ ( ) (455) min Δ ( ) Δ min ( min ) Soluţia ecuaţiei (455 ) este: Δ ( ) min ( ) (456) ( ) [ ] Δ min Δ ( ) Δ min După calculul rezistenţei, din ecuaţia (454 ), respectiv (454 8 ) se calculează valorile tensiunii şi a rezistenţei În continuare se calculează valorile rezistenţelor şi din sistemul format din ecuaţiile (454 ) şi (454 ): În sfârşit, din ecuaţia (454 6 ) calculează valoarea rezistenţei : ( ) 45

26 Înlocuind datele numerice se obţin rezultatele:,4ω ; 3,8 ; 7,5Ω 5,98Ω; 5,37Ω,564Ω Printr-un calcul analog cu cel prezentat în partea întâi, se pot determina puterile nominale ale rezistenţelor, obţinându-se aceeaşi valoare: P n,5w Se adoptă valorile standardizate:,4ω /,5W 5Ω /,5W ; 5Ω /,5W,5Ω /,5W În continuare, se recalculează PS-ul (ca în partea întâi) şi eventual se aleg alte valori ale rezistenţelor Observaţii: Se poate observa că impunerea compensării termice într-un interval relativ mare de temperatură atrage după sine mărirea valorii rezistenţei (căderea de tensiune se poate observa că devine aproximativ % ) alculul prezentat este unul exact (şi în consecinţă suficient de complicat), deoarece nu s-a neglijat nicio influenţă asupra derivei termice a curentului După cum s-a prezentat în paragraful 4, schema asigurând o cvasiindependenţă de a PS-ului, influenţa acestui parametru poate fi neglijată, cu condiţia conserării cazului cel mai nefavorabil, adică cea mai mică valoare în domeniul de temperatură impus În cazul de faţă, aceasta este 7 De asemenea, influenţa curentului poate fi neglijată Justeţea acestei afirmaţii poate fi probată calculându-se deriva termică a curentului corespunzătoare variaţiilor parametrilor şi (coeficienţii variabilelor Δ şi Δ în resia (456), sau, altfel spus, sensibilităţile respective) Ţinând cont de acestea, calculul poate fi simplificat foarte mult, conserând numai influenţa tensiunii asupra derivei termice Astfel, conform relaţiei aproximative: şi ţinând cont că ct, rezultă: Δ Δ ( max ) ( min ), Δ,Ω 3 Δ ( max ) ( min ), Se constată că s-a obţinut o valoare foarte apropiată de cea furnizată de calculul exact Δ xpresia poate fi obţinută şi direct din (456), neglijându-se Δ influenţele datorate dispersiei termice a parametrilor şi (în conformitate cu cele arătate mai sus) şi aproximând alculaţi PS-ul şi variaţia curentului la o creştere a temperaturii cu Δ θ 5, pentru tranzistorul conectat în schema din figura 46 Se dau:, 3,Ω, Ω, Ω, 4,3Ω La temperatura ambiantă, are următorii parametri: 6,, 4nA

27 47 ezolvare Metoda rmărind schema şi notaţiile din figura 46, dacă se aplică teoremele lui Kirchoff rezultă următorul sistem de 7 ecuaţii cu 7 necunoscute (,,,,,, ): : : Din ecuaţiile a-5-a şi a-6-a rezultă resia curentului : (457) ig 46

28 u ajutorul acesteia se pot determina toate celelalte necunoscute: ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( ) (458) Metoda ezolvarea sistemului de ecuaţii din cadrul metodei precedente (aplicând teoremele lui Kirchoff) este laborioasă O abordare mai elegantă constă în aplicarea unei echivalări hevenin în baza tranzistorului Schema circuitului în gol este prezentată în figura 47, iar cea a circuitului în gol şi pasivizat în figura 48 ig 47 ig 48 ig 49 ensiunea în gol (cu baza deconectată) este: 4,3,75 4,3 5, (459) ezistenţa echivalentă a reţelei în gol, pasivizată (, adică se conseră că borna de alimentare este la masă), calculată între punctul şi masă este: ( ) 4,3 7, ( ) 3,67Ω (46) 3,4 u acestea se obţine un circuitul echivalent hevenin din figura 49, asemănător cu cel din figura 45, dar corespunzător unui de tip npn ezultă că se vor scrie relaţii asemănătoare cu (453): ( ) (46) ( ) ( ) Se poate observa cu uşurinţă că, înlocuind şi cu resiile lor din (459) şi (46), se obţine resia curentului din relaţia (457) 48

29 xpresia curentului de colector este: ( ) ( ) ( ) (46) ( ) iar a tensiunii : unde curentul trebuie calculat, fie cu ajutorul resiei (458 6 ), fie cu ajutorul relaţiei Numeric, se obţin valorile: 5,6μA,3mA ( )( ),9mA PS : P (,3mA; 5,97) 4,7μA,53mA 5,97 Pentru calculul derivei termice, trebuie determinate mai întâi sensibilităţile S, S şi S : 4 A S 977 ( ) ( )( ) 7 S,8 A [ ( ) ] ( )( ) S 4,59 ( ) aloarea derivei termice pentru Δ θ este: Δ S S S 4,59,7 9 9,77 4,8 49 3,8 7 μa,7 5 aloarea procentuală este: Δ 6,7 % Δ, r 3,3 Admiţând variaţia liniară a derivei termice în domeniul de temperatură propus, rezultă abaterea totală: % Δ Δ Δθ, 5 % r r Se poate observa mărimea cel puţin acceptabilă a derivei termice, obţinută cu o valoare mică a căderii de tensiune (mai mică decât % ) xplicaţia constă în faptul că relaţia de quasi-independenţă a curentului de parametrii tranzistorului, << ( ) este bine îndeplinită de componentele schemei De asemenea, se poate observa că în acest caz tendinţa de variaţie a curentului este contracarată prin două căi (reacţii negative), micşorarea tensiunii în bază ( ) şi mărirea tensiunii emitorului ( ): u u

30 Se poate spune că schema analizată reprezintă o îmbunătăţire a celei din problema 453, soluţia fiind simplă: realizarea unui divizor de polarizare a bazei alimentat de la 455 Schema din figura 4 corespunde unei surse standard de curent continuu folosită în structura internă a circuitelor integrate () liniare ( >,ma) alculaţi curentul o, debitat de circuit (tranzistoarele sunt entice) Aplicaţie numerică: 5,,3Ω, Ω, 3 3,3Ω ezolvare Dacă schema face parte din structura liniare, atunci cele două tranzistoare vor avea caracteristici quasi-entice (fiind realizate la propriu din acelaşi material) şi, de asemenea, cuplajul termic între ele va fi quasi-perfect, oricum mult mai bun decât cel realizabil cu ig 4 cel mai performant radiator ce s-ar putea imagina În aceste condiţii, rezultă că :, Neglijând curenţii din bazele celor două tranzistoare, rezultă relaţiile evente: (463) o o urentul rezultă imediat: 3 u acestea, resia curentului de ieşire devine: o 3 Dacă >>, atunci aceasta din urmă poate fi neglijată (event că în acest caz nici deriva termică a tensiunii nu va influenţa semnificativ valoarea curentului ), astfel că resia curentului de ieşire se va scrie sub forma: o 3 Datorită acestui fapt, circuitul se mai numeşte si oglindă de curent (curentul de ieşire este oglindirea celui de intrare, într-un raport fixat de cele două rezistenţe) Numeric:,3 5 o,5ma,3 3,3 Observaţie: Dacă nu se acceptă aproximările prezentate, problema se poate rezolva mai exact, dar cu calcule mai complicate Astfel, neglijând în continuare curenţii, se scriu relaţiile: S S S 43, unde s-au folosit notaţiile:, fiind curentul invers (de saturaţie al joncţiunii );

31 , tensiunea termică e De asemenea, s-au folosit resiile dependenţei curent tensiune pentru joncţiuni pn (joncţiunile ) aflate în conducţie ezultă: ln S ln S onform (463 ) şi neglijând curentul, se obţin ecuaţiile: ln ln S S ( 3 ) ln S Sistemul este format din două ecuaţii transcendente Din a doua se poate determina curentul (de exemplu prin metoda aproximaţiilor succesive), iar apoi din prima se determină valoarea curentului de ieşire, o Se poate observa însă că prima ecuaţie se poate pune sub forma: ln ln um 6m e pentru, ma, obţinându-se astfel aceeaşi resie a curentului de ieşire ca şi prin metoda simplificată ste remarcabil însă că prin această metodă se poate determina valoarea curentului de ieşire să în cazuri limită ale circuitului, ca de exemplu Soluţiile ecuaţiilor menţionate obţinute în MathAD, pentru valorile menţionate în enunţ şi presupunând o na, sunt:,3ω o,59ma o 99μA, dar cu o compensare termică mai slabă 456 Determinaţi PS-urile tranzistoarelor circuitului din figura 4 (etajul diferenţial) ranzistoarele sunt sunt caracterizate de următorii parametri:, ;,6 ; S 5 A ; S A Aplicaţie numerică: 5Ω ; 5Ω ; 4,7Ω ; 5 ; 43 ig 4

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

Polarizarea tranzistoarelor bipolare

Polarizarea tranzistoarelor bipolare Polarizarea tranzistoarelor bipolare 1. ntroducere Tranzistorul bipolar poate funcţiona în 4 regiuni diferite şi anume regiunea activă normala RAN, regiunea activă inversă, regiunea de blocare şi regiunea

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

CAPITOLUL 3. STABILIZATOARE DE TENSIUNE

CAPITOLUL 3. STABILIZATOARE DE TENSIUNE CAPTOLL 3. STABLZATOAE DE TENSNE 3.1. GENEALTĂȚ PVND STABLZATOAE DE TENSNE. Stabilizatoarele de tensiune sunt circuite electronice care furnizează la ieșire (pe rezistența de sarcină) o tensiune continuă

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

Circuite cu diode în conducţie permanentă

Circuite cu diode în conducţie permanentă Circuite cu diode în conducţie permanentă Curentul prin diodă şi tensiunea pe diodă sunt legate prin ecuaţia de funcţionare a diodei o cădere de tensiune pe diodă determină valoarea curentului prin ea

Διαβάστε περισσότερα

Figura 1. Caracteristica de funcţionare a modelului liniar pe porţiuni al diodei semiconductoare..

Figura 1. Caracteristica de funcţionare a modelului liniar pe porţiuni al diodei semiconductoare.. I. Modelarea funcţionării diodei semiconductoare prin modele liniare pe porţiuni În modelul liniar al diodei semiconductoare, se ţine cont de comportamentul acesteia atât în regiunea de conducţie inversă,

Διαβάστε περισσότερα

Tranzistoare bipolare cu joncţiuni

Tranzistoare bipolare cu joncţiuni Tranzistoare bipolare cu joncţiuni 1. Noţiuni introductive Tranzistorul bipolar cu joncţiuni, pe scurt, tranzistorul bipolar, este un dispozitiv semiconductor cu trei terminale, furnizat de către producători

Διαβάστε περισσότερα

2.3. Tranzistorul bipolar

2.3. Tranzistorul bipolar 2.3. Tranzistorul bipolar 2.3.1. Structură şi simboluri Tranzistorul bipolar este un dispozitiv format din 3 straturi de material semiconductor şi are trei electrozi conectati la acestea. Construcţia şi

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Capitolul 3 3. TRANZITORUL BIPOLAR CU JONCŢIUNI Principiul de funcţionare al tranzistorului bipolar cu joncţiuni

Capitolul 3 3. TRANZITORUL BIPOLAR CU JONCŢIUNI Principiul de funcţionare al tranzistorului bipolar cu joncţiuni apitolul 3 3. TRANZTORUL POLAR U JONŢUN Tranzistoarele reprezintă cea mai importantă clasă de dispozitive electronice, deoarece au proprietatea de a amplifica semnalele electrice. În funcţionarea tranzistorului

Διαβάστε περισσότερα

Lucrarea nr. 5 STABILIZATOARE DE TENSIUNE. 1. Scopurile lucrării: 2. Consideraţii teoretice. 2.1 Stabilizatorul derivaţie

Lucrarea nr. 5 STABILIZATOARE DE TENSIUNE. 1. Scopurile lucrării: 2. Consideraţii teoretice. 2.1 Stabilizatorul derivaţie Lucrarea nr. 5 STABILIZATOARE DE TENSIUNE 1. Scopurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare serie şi derivaţie; -

Διαβάστε περισσότερα

Dioda Zener şi stabilizatoare de tensiune continuă

Dioda Zener şi stabilizatoare de tensiune continuă Laborator 2 Dioda Zener şi stabilizatoare de tensiune continuă Se vor studia dioda Zener şi stabilizatoarele de tensiune continua cu diodă Zener şi cu diodă Zener si tranzistor serie. Pentru diodă se va

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

i R i Z D 1 Fig. 1 T 1 Fig. 2

i R i Z D 1 Fig. 1 T 1 Fig. 2 TABILIZATOAE DE TENINE ELECTONICĂ Lucrarea nr. 5 TABILIZATOAE DE TENINE 1. copurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare

Διαβάστε περισσότερα

Lucrarea de laborator nr.6 STABILIZATOR DE TENSIUNE CU REACŢIE ÎN BAZA CIRCUITELOR INTEGRATE

Lucrarea de laborator nr.6 STABILIZATOR DE TENSIUNE CU REACŢIE ÎN BAZA CIRCUITELOR INTEGRATE Lucrarea de laborator nr.6 TABILIZATOR DE TENIUNE CU REACŢIE ÎN BAZA CIRCUITELOR INTEGRATE 6.1. copul lucrării: familiarizarea cu principiul de funcţionare şi metodele de ridicare a parametrilor de bază

Διαβάστε περισσότερα

Lucrarea 7. Polarizarea tranzistorului bipolar

Lucrarea 7. Polarizarea tranzistorului bipolar Scopul lucrării a. Introducerea unor noţiuni elementare despre funcţionarea tranzistoarelor bipolare b. Identificarea prin măsurători a regiunilor de funcţioare ale tranzistorului bipolar. c. Prezentarea

Διαβάστε περισσότερα

CIRCUITE LOGICE CU TB

CIRCUITE LOGICE CU TB CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune

Διαβάστε περισσότερα

11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite

Διαβάστε περισσότερα

11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

4.2. CONEXIUNILE TRANZISTORULUI BIPOLAR CONEXIUNEA EMITOR COMUN CONEXIUNEA BAZĂ COMUNĂ CONEXIUNEA COLECTOR COMUN

4.2. CONEXIUNILE TRANZISTORULUI BIPOLAR CONEXIUNEA EMITOR COMUN CONEXIUNEA BAZĂ COMUNĂ CONEXIUNEA COLECTOR COMUN 4. TRANZISTORUL BIPOLAR 4.1. GENERALITĂŢI PRIVIND TRANZISTORUL BIPOLAR STRUCTURA ŞI SIMBOLUL TRANZISTORULUI BIPOLAR ÎNCAPSULAREA ŞI IDENTIFICAREA TERMINALELOR FAMILII UZUALE DE TRANZISTOARE BIPOLARE FUNCŢIONAREA

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

Lucrarea Nr. 7 Tranzistorul bipolar Caracteristici statice Determinarea unor parametri de interes

Lucrarea Nr. 7 Tranzistorul bipolar Caracteristici statice Determinarea unor parametri de interes Lucrarea Nr. 7 Tranzistorul bipolar aracteristici statice Determinarea unor parametri de interes A.Scopul lucrării - Determinarea experimentală a plajei mărimilor eletrice de la terminale în care T real

Διαβάστε περισσότερα

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN Montajul Experimental În laborator este realizat un amplificator cu tranzistor bipolar în conexiune cu emitorul comun (E.C.) cu o singură

Διαβάστε περισσότερα

PROBLEME DE ELECTRICITATE

PROBLEME DE ELECTRICITATE PROBLEME DE ELECTRICITATE 1. Două becuri B 1 şi B 2 au fost construite pentru a funcţiona normal la o tensiune U = 100 V, iar un al treilea bec B 3 pentru a funcţiona normal la o tensiune U = 200 V. Puterile

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1.

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1. Curentul alternativ 1. Voltmetrele din montajul din figura 1 indică tensiunile efective U = 193 V, U 1 = 60 V și U 2 = 180 V, frecvența tensiunii aplicate fiind ν = 50 Hz. Cunoscând că R 1 = 20 Ω, să se

Διαβάστε περισσότερα

Fig Stabilizatorul de tensiune continuă privit ca un cuadripol, a), şi caracteristica de ieşire ideală, b).

Fig Stabilizatorul de tensiune continuă privit ca un cuadripol, a), şi caracteristica de ieşire ideală, b). 6. STABILIZATOARE DE TENSIUNE LINIARE 6.1. Probleme generale 6.1.1. Definire si clasificare Un stabilizator de tensiune continuă este un circuit care, alimentat de la o sursă de tensiune continuă ce prezintă

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

TEORIA CIRCUITELOR ELECTRICE

TEORIA CIRCUITELOR ELECTRICE TEOA TEO EETE TE An - ETT S 9 onf. dr.ing.ec. laudia PĂA e-mail: laudia.pacurar@ethm.utcluj.ro TE EETE NAE ÎN EGM PEMANENT SNSODA /8 EZONANŢA ÎN TE EETE 3/8 ondiţia de realizare a rezonanţei ezonanţa =

Διαβάστε περισσότερα

Lucrarea 9. Analiza în regim variabil de semnal mic a unui circuit de amplificare cu tranzistor bipolar

Lucrarea 9. Analiza în regim variabil de semnal mic a unui circuit de amplificare cu tranzistor bipolar Scopul lucrării: determinarea parametrilor de semnal mic ai unui circuit de amplificare cu tranzistor bipolar. Cuprins I. Noţiuni introductive. II. Determinarea prin măsurători a parametrilor de funcţionare

Διαβάστε περισσότερα

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor 4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda

Διαβάστε περισσότερα

Fig Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30].

Fig Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30]. Fig.3.43. Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30]. Fig.3.44. Dependenţa curentului de fugă de raportul U/U R. I 0 este curentul de fugă la tensiunea nominală

Διαβάστε περισσότερα

Lucrarea Nr. 10 Stabilizatoare de tensiune

Lucrarea Nr. 10 Stabilizatoare de tensiune ucrarea Nr. 10 Stabilizatoare de tensiune Scopul lucrării - studiul funcţionării diferitelor tipuri de stabilizatoare de tensiune; - determinarea parametrilor de calitate ai stabilizatoarelor analizate;

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

wscopul lucrării: prezentarea modului de realizare şi de determinare a valorilor parametrilor generatoarelor de semnal.

wscopul lucrării: prezentarea modului de realizare şi de determinare a valorilor parametrilor generatoarelor de semnal. wscopul lucrării: prezentarea modului de realizare şi de determinare a valorilor parametrilor generatoarelor de semnal. Cuprins I. Generator de tensiune dreptunghiulară cu AO. II. Generator de tensiune

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: (

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: ( Exemple e probleme rezolvate pentru curs 0 DEEA Recapitulare formule e calcul puteri ale numărului 0 n m n+ m 0 = 0 n n m =0 m 0 0 n m n m ( ) n = 0 =0 0 0 n Problema. Să se calculeze: a. 0 9 0 b. ( 0

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

CIRCUITE CU DZ ȘI LED-URI

CIRCUITE CU DZ ȘI LED-URI CICUITE CU DZ ȘI LED-UI I. OBIECTIVE a) Determinarea caracteristicii curent-tensiune pentru diode Zener. b) Determinarea funcționării diodelor Zener în circuite de limitare. c) Determinarea modului de

Διαβάστε περισσότερα

STABILIZATOR DE TENSIUNE EXEMPLU DE PROIECTARE

STABILIZATOR DE TENSIUNE EXEMPLU DE PROIECTARE STABILIZATOR DE TENSIUNE EXEMPLU DE PROIECTARE Presupunem ca se doreste obtinerea unui stabilizator cu urmatoarele performante Tensiunea de iesire reglabila in intervalul: 15 0 V; Sarcina la iesire 3Ω;

Διαβάστε περισσότερα

Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic

Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Elemente de Electronică Analogică 35. Stabilizatoare de tensiune integrate STABILIZATOARE DE TENSIUNE INTEGRATE Stabilizatoarele

Διαβάστε περισσότερα

Electronică STUDIUL FENOMENULUI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE

Electronică STUDIUL FENOMENULUI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE STDIL FENOMENLI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE Energia electrică este transportată şi distribuită la consumatori sub formă de tensiune alternativă. În multe aplicaţii este însă necesară utilizarea

Διαβάστε περισσότερα

3 TRANZISTORUL BIPOLAR

3 TRANZISTORUL BIPOLAR S.D.Anghel - azele electronicii analogice şi digitale 3 TRANZSTORUL POLAR William Shockley fizician american, laureat al premiului Nobel în 1956 împreună cu J. ardeen şi W.H rattain. Au pus la punct tehnologia

Διαβάστε περισσότερα

Îndrumar de laborator Circuite Integrate Analogice

Îndrumar de laborator Circuite Integrate Analogice Îndrumar de laborator ircuite ntegrate Analogice Lucrarea SURSE E URENT Prezentare generală: Sursele de curent cu tranzistoare sunt utilizate atât ca elemente de polarizare cât şi ca sarcini active pentru

Διαβάστε περισσότερα

COMUTAREA TRANZISTORULUI BIPOLAR

COMUTAREA TRANZISTORULUI BIPOLAR Lucrarea nr. 2 COMUAREA RANZISORULUI BIPOLAR Cuprins I. Scopul lucrării II. III. IV. Noţiuni teoretice Desfăşurarea lucrării emă de casă 1 I. Scopul lucrării : Se studiază regimul de comutare al tranzistorului

Διαβάστε περισσότερα

STABILIZATOARE DE TENSIUNE REALIZATE CU CIRCUITE INTEGRATE ANALOGICE

STABILIZATOARE DE TENSIUNE REALIZATE CU CIRCUITE INTEGRATE ANALOGICE Cuprins CAPITOLL 8 STABILIZATOARE DE TENSINE REALIZATE C CIRCITE INTEGRATE ANALOGICE...220 8.1 Introducere...220 8.2 Stabilizatoare de tensiune realizate cu amplificatoare operaţionale...221 8.3 Stabilizatoare

Διαβάστε περισσότερα

TRANZISTORUL BIPOLAR. La modul cel mai simplu, tranzistorul bipor poate fi privit ca semiconductoare legate în serie.

TRANZISTORUL BIPOLAR. La modul cel mai simplu, tranzistorul bipor poate fi privit ca semiconductoare legate în serie. TANZISTOUL IPOLA La modul cel mai simplu, tranzistorul bipor poate fi privit ca semiconductoare legate în serie. două diode În partea de jos avem o zonă de semiconductor de tip n cu un contact metalic,

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

PROPRIETĂŢI GENERALE ALE COMPONENTELOR PASIVE

PROPRIETĂŢI GENERALE ALE COMPONENTELOR PASIVE Extras din culegerea de probleme versiunea 0. Capitolul OEĂŢ GEELE LE COMOEELO SVE În cadrul acestui paragraf se abordează o parte din parametrii componentelor pasive, comuni tuturor tipurilor acestor

Διαβάστε περισσότερα

Clasa a X-a, Producerea si utilizarea curentului electric continuu

Clasa a X-a, Producerea si utilizarea curentului electric continuu 1. Ce se întămplă cu numărul de electroni transportaţi pe secundă prin secţiunea unui conductor de cupru, legat la o sursă cu rezistenta internă neglijabilă dacă: a. dublăm tensiunea la capetele lui? b.

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

3.5. STABILIZATOARE DE TENSIUNE CU CIRCUITE INTEGRATE.

3.5. STABILIZATOARE DE TENSIUNE CU CIRCUITE INTEGRATE. 3.5. STABILIZATOARE DE TENSIUNE CU CIRCUITE INTEGRATE. 3.5.1 STABILIZATOARE DE TENSIUNE CU AMPLIFICATOARE OPERAȚIONALE. Principalele caracteristici a unui stabilizator de tensiune sunt: factorul de stabilizare

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα

L6. PUNŢI DE CURENT ALTERNATIV

L6. PUNŢI DE CURENT ALTERNATIV niversitatea POLITEHNI din Timişoara epartamentul Măsurări şi Electronică Optică 6.1. Introducere teoretică L6. PNŢI E ENT LTENTIV Punţile de curent alternativ permit măsurarea impedanţelor. Măsurarea

Διαβάστε περισσότερα

Diode semiconductoare şi redresoare monofazate

Diode semiconductoare şi redresoare monofazate Laborator 1 Diode semiconductoare şi redresoare monofazate Se vor studia dioda redresoare şi redresorul monofazat cu şi fără filtru C. Pentru diodă se va determina experimental dependenţa curent-tensiune

Διαβάστε περισσότερα

1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE

1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE 1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE REZISTOARELOR 1.2. MARCAREA REZISTOARELOR MARCARE DIRECTĂ PRIN

Διαβάστε περισσότερα

TRANSFORMATOARE MONOFAZATE DE SIGURANŢĂ ŞI ÎN CARCASĂ

TRANSFORMATOARE MONOFAZATE DE SIGURANŢĂ ŞI ÎN CARCASĂ TRANSFORMATOARE MONOFAZATE DE SIGURANŢĂ ŞI ÎN CARCASĂ Transformatoare de siguranţă Este un transformator destinat să alimenteze un circuit la maximum 50V (asigură siguranţă de funcţionare la tensiune foarte

Διαβάστε περισσότερα

MOTOARE DE CURENT CONTINUU

MOTOARE DE CURENT CONTINUU MOTOARE DE CURENT CONTINUU În ultimul timp motoarele de curent continuu au revenit în actualitate, deşi motorul asincron este folosit în circa 95% din sistemele de acţionare electromecanică. Această revenire

Διαβάστε περισσότερα

PROBLEME - CIRCUITE ELECTRICE

PROBLEME - CIRCUITE ELECTRICE LEGEA LU OHM LEGLE LU KCHHOFF POBLEME - CCUTE ELECTCE POBLEMA 0 / Se dau : 0 Ω 0 Ω 0 Ω 0 Ω V V Se cer : ezisten a echivalent ntensitatea curentului Ampermetru ezolvare : Calculez rezisten a, i rezisten

Διαβάστε περισσότερα

GENERATOR DE IMPULSURI DREPTUNGHIULARE. - exemplu de proiectare -

GENERATOR DE IMPULSURI DREPTUNGHIULARE. - exemplu de proiectare - GENERATOR DE IMPULSURI DREPTUNGHIULARE - exemplu de proiectare - Presupunem ca se doreste obtinerea unui oscilator cu urmatoarele date de proiectare: Frecventa de oscilatie reglabila in intervalul 2 5

Διαβάστε περισσότερα

LIMITĂRI STATICE ALE AMPLIFICATOARELOR OPERAłIONALE

LIMITĂRI STATICE ALE AMPLIFICATOARELOR OPERAłIONALE LMTĂ STATCE ALE AMPLFCATOAELO OPEAłNALE 5 La un AO ideal dacă valoarea de curent continuu a tensiunii de intrare este zero atunci şi la ieşire valoarea de c.c. a tensiunii este tot zero. Această limitare

Διαβάστε περισσότερα

DIODA SEMICONDUCTOARE

DIODA SEMICONDUCTOARE Lucrarea nr. 1 IO SEMICONUCTORE I. Scopul lucrării II. Noţiuni teoretice III. esfăşurarea lucrării IV. Temă de casă V. Simulări VI. nexă 1 I. Scopul lucrării Scopul lucrării constă în ridicarea caracteristicilor

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

. TEMPOIZATOUL LM.. GENEALITĂŢI ircuitul de temporizare LM este un circuit integrat utilizat în foarte multe aplicaţii. În fig... sunt prezentate schema internă şi capsulele integratului LM. ()V+ LM Masă

Διαβάστε περισσότερα

N 1 U 2. Fig. 3.1 Transformatorul

N 1 U 2. Fig. 3.1 Transformatorul SRSE ŞI CIRCITE DE ALIMETARE 3. TRASFORMATORL 3. Principiul transformatorului Transformatorul este un aparat electrotehnic static, bazat pe fenomenul inducţiei electromagnetice, construit pentru a primi

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Maşina sincronă. Probleme

Maşina sincronă. Probleme Probleme de generator sincron 1) Un generator sincron trifazat pentru alimentare de rezervă, antrenat de un motor diesel, are p = 3 perechi de poli, tensiunea nominală (de linie) U n = 380V, puterea nominala

Διαβάστε περισσότερα

PARAMETRII AMPLIFICATOARELOR OPERAŢIONALE

PARAMETRII AMPLIFICATOARELOR OPERAŢIONALE 3 PARAMETRII AMPLIFICATOARELOR OPERAŢIONALE 3.1 STRUCTURA INTERNĂ DE PRINCIPIU A AMPLIFICATOARELOR OPERAŢIONALE Amplificatorul operaţional (AO) real, prezentând limitări, diferă de cel ideal. Pentru a

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

7 AMPLIFICATORUL OPERAŢIONAL

7 AMPLIFICATORUL OPERAŢIONAL S.D.Anghel - Bazele electronicii analogice şi digitale 7 AMPLIFICATOUL OPEAŢIONAL 7. Electronica amplificatorului operaţional 7.. Amplificatorul diferenţial Amplificatorul operaţional (AO) este un circuit

Διαβάστε περισσότερα

F I Ş Ă D E L U C R U 5

F I Ş Ă D E L U C R U 5 F I Ş Ă D E L U C R U 5 UNITATEA DE ÎNVĂŢARE:STABILIZATOARE DE TENSIUNE TEMA: STABILIZATOARE DE TENSIUNE CU TRANZISTOARE BIPOLARE.. STABILIZATOR DE TENSIUNE SERIE A. Prezentarea montajului 8V Uce - V 3.647

Διαβάστε περισσότερα

2.2.1 Măsurători asupra semnalelor digitale

2.2.1 Măsurători asupra semnalelor digitale Lucrarea 2 Măsurători asupra semnalelor digitale 2.1 Obiective Lucrarea are ca obiectiv fixarea cunoştinţelor dobândite în lucrarea anterioară: Familiarizarea cu aparatele de laborator (generatorul de

Διαβάστε περισσότερα

I C I E E B C V CB V EB NAB N DE. b x LUCRAREA NR. 6 TRANZISTORUL BIPOLAR. 1. Structură şi procese fizice în TB convenţional

I C I E E B C V CB V EB NAB N DE. b x LUCRAREA NR. 6 TRANZISTORUL BIPOLAR. 1. Structură şi procese fizice în TB convenţional LUCRAREA NR. 6 TRANZISTORUL BIPOLAR 1. Structură şi procese fizice în TB convenţional Tranzistorul bipolar (TB) convenţional reprezintă un dispozitiv semiconductor cu trei terminale, a cărui funcţie principală

Διαβάστε περισσότερα

AMPLIFICATORUL OPERAŢIONAL REAL - EFECTE DE CURENT CONTINUU

AMPLIFICATORUL OPERAŢIONAL REAL - EFECTE DE CURENT CONTINUU Cuprins CAPITOLUL 4 AMPLIFICATORUL OPERAŢIONAL REAL - EFECTE DE CURENT CONTINUU...38 4. Introducere...38 4.2 Modelul la foarte joasă frecvenţă al amplficatorului operaţional...38 4.3 Amplificatorul neinversor.

Διαβάστε περισσότερα

4. Tranzistoare bipolare 4.1 Structură şi procese fizice in tranzistorul bipolar (TB)

4. Tranzistoare bipolare 4.1 Structură şi procese fizice in tranzistorul bipolar (TB) apitolul 4 Tranzistoare bipolare 4. Tranzistoare bipolare 4.1 Structură şi procese fizice in tranzistorul bipolar (T) Tranzistorul este un dispozitiv electronic activ, cu trei terminale, care realizează

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme Capitolul Diode semiconductoare 3. În fig. 3 este preentat un filtru utiliat după un redresor bialternanţă. La bornele condensatorului

Διαβάστε περισσότερα

Se prezintă în continuare anumiţi termeni specifici din teoria convertoarelor.

Se prezintă în continuare anumiţi termeni specifici din teoria convertoarelor. Aparate Electronice de Măsurare şi Control PRELEGEREA 5 Prelegerea nr. 5 Terminologie şi parametri specifici convertoarelor N/A şi A/N Se prezintă în continuare anumiţi termeni specifici din teoria convertoarelor.

Διαβάστε περισσότερα

W-metru. R unde: I.C.Boghitoiu, Electronica peste tot, Editura Albatros, 1985

W-metru. R unde: I.C.Boghitoiu, Electronica peste tot, Editura Albatros, 1985 W-metru I.C.Boghitoiu, Electronica peste tot, Editura Albatros, 95 n amplificator de audiofrecventa de putere poate fi considerat drept un generator de energie electrica, deoarece la bornele sale de iesire,

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate

Διαβάστε περισσότερα

Lucrarea Nr. 10 Etaje cu două tranzistoare

Lucrarea Nr. 10 Etaje cu două tranzistoare Lucrarea Nr. 0 Etaje cu două tranzistoare. Polarizarea în RAN A.Scopul lucrării - Determinarea unor PSF-uri optime pentru tranzistoarele etajului - Obervarea influenţei neîmperecherii tranzistoarelor în

Διαβάστε περισσότερα

Lucrarea 5. Sursa de tensiune continuă cu diode

Lucrarea 5. Sursa de tensiune continuă cu diode Cuprins I. Noţiuni teoretice: sursa de tensiune continuă, redresoare de tensiune, stabilizatoare de tensiune II. Modul de lucru: Realizarea practică a unui redresor de tensiune monoalternanţă. Realizarea

Διαβάστε περισσότερα