ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011"

Transcript

1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. π.μ.)

2 . Μια αγορά αποτελείται κατά 0% από μια μετοχή Α με απόδοση RA και κατά 80% από μια μετοχή Β με απόδοση RB. Αν σa = 0%, σb = 0%, ρa,b = - 0,8, να βρεθεί το βα. (Α) - 0,800 (Β) - 0,57 (Γ) - 0, (Δ) 0, (Ε) 0,57. Επενδυτής καταθέτει μονάδα στην αρχή κάθε έτους για έτη συνολικά. Ο τόκος του καταβάλλεται συνεχώς με ένταση ανατοκισμού t = +ln(t) για 0 t. Ο συσσωρευμένος τόκος κάθε έτους επανεπενδύεται με i=0% στο τέλος κάθε έτους. Ποιο το συνολικό ύψος των τόκων στο τέλος των ετών? (Α) 9,05 (B) 9,50 (Γ) 9,95 (Δ),85 (Ε) 6,. Οι σημερινές τιμές δύο ομολογιών χωρίς τοκομερίδια που λήγουν σε και έτη είναι =0,98 και =0,9 αντίστοιχα. Το επιτόκιο πρόσω P P (forwrd rte) f είναι ίσο με %. Να βρεθούν τα f και s. (Α) f =,9% και s =,55% (Β) f =,55% και s =,9% (Γ) f =,9% και s =,9% (Δ) f =,75% και s =,55% (Ε) f =,55% και s =,55%

3 . Ποια η παρούσα αξία ληξιπρόθεσμης ράντας που πληρώνει / () κάθε τρίμηνο για 9 έτη με i = 0% ; () () () (Α).5 8 με i= 5% (B) 8 με i= 5% (Γ) 9 με i= 0% (Δ).5 με i= 5% (Ε) με i= 0% () 8 () 9 5. Οι τιμές ομολόγου χωρίς τοκομερίδια διαρκείας, 9 και μηνών είναι P αντίστοιχα P =0,99, =0,96555 και P =0,9. Ταυτόχρονα, ένα () ετήσιο ομόλογο με τριμηνιαία κουπόνια r =0, τιμάται,095. Να βρεθούν τα s P (τιμή ομολόγου διαρκείας 6 μηνών χωρίς τοκομερίδια) και P (αντίστοιχο προς το διάρθρωση των επιτοκίων. spot rte) που είναι συμβατά με την δοθείσα (Α) P =0,977 και s =5,9% (Β) P = 0,9857 και s =,9% (Γ) P =0,9757 και s = 5,0% (Δ) P = 0,9867 και s =,7% (Ε) P =0,9767 και s =,8% 6. Δίδεται Z wx ( w) Y, όπου οι τ.μ Χ και Υ είναι τέλεια συσχετισμένες θετικά με σχ < συ. Να βρεθεί η τιμή του w που ελαχιστοποιεί το Z. (Α) X (Β) Y (Γ) X X Y (Δ) Y Y X X (Ε) X Y

4 7. Εάν στο πρότυπο Blck-Scholes, S=K=, r=0, σ= και T το χρονικό σημείο άσκησης ενός Ευρωπαϊκού δικαιώματος πώλησης με τιμή P=P(Τ), να βρεθεί dp η τιμή P και η παράγωγος. dt T (Α) P = N ( ) και T (Β) P = N ( ) και T (Γ) P = N ( ) και T (Δ) P = N( ) και T (Ε) P = N( ) και dp = * dt e T 8 dp =- * dt e T 8 dp =- * dt e T 8 dp =- * dt e T 8 dp =- * dt e T 8 8. Να βρεθεί η παρούσα αξία, καταβολών ύψους μονάδας τις χρονικές στιγμές t = 5,8,, ύψους μονάδων τις χρονικές στιγμές t =,7,0 και ύψους μονάδων τις χρονικές στιγμές t =,6,9. (Α) 9 S 0 (Β) 9 S 0 (Γ) 9 S 0 (Δ) 0 S (Ε) 0 S

5 9. Να βρεθεί η διαφορά t t, όπου t η μέση διάρκεια της χρηματοροής που αποτελείται από 0 μονάδες στο t=0, 0 μονάδες στο t= και 5 μονάδες στο t=6 με i 0,0% και η μέση διάρκεια της ίδιας χρηματοροής αν το t επιτόκιο ανέρθει στο i 5,5%. (Α) 0, (Β) 0, (Γ) 0,9 (Δ) 0,7 (Ε) 0,5 0. Ένα συμβόλαιο μελλοντικής εκπλήρωσης (forwrd ) προβλέπει την αγορά, μετά από μήνες, ενός ομολόγου με κουπόνια σε,6 και 9 μήνες ύψους x το κάθε ένα. Η τρέχουσα τιμή του ομολόγου είναι 00 και η τιμή του συμβολαίου (forwrd price) είναι 95.Εάν η ακίνδυνη ένταση ανατοκισμού μηνης, 6μηνης, 9μηνης και μηνης διάρκειας είναι %,5%,6% και 7% αντίστοιχα, να βρεθεί το x. (Α),5 (Β),05 (Γ),9 (Δ),5 (Ε),5. Δίνεται συνάρτηση συσσώρευσης Α(t), με ένταση ανατοκισμού t =, 0<t<. Επίσης δίνεται συνάρτηση συσσώρευσης Β (t), με ένταση t ανατοκισμού t t =, 0<t<. Επενδύουμε ίδιο κεφάλαιο Κ, και με Α(t) t και με Β(t) την ίδια χρονική στιγμή t=0. Να βρεθεί η χρονική στιγμή t κατά την οποία μεγιστοποιείται η διαφορά του συσσωρευμένου κεφαλαίου μεταξύ των επενδύσεων. (Α) t= 0.75 (B) t= 0.70 (Γ) t= 0.50 (Δ) t= 0.0 (Ε) t= 0.5

6 . Η διαφορά ανάμεσα στην σημερινή τιμή του δικαιώματος πώλησης μιας μετοχής που δεν δίνει μέρισμα σε ένα έτος και του δικαιώματος αγοράς της ίδιας μετοχής σε ένα έτος είναι 0,06. Η ακίνδυνη ένταση ανατοκισμού είναι 5%. Ποιά η σημερινή τιμή της μετοχής εάν η τιμή άσκησης των δικαιωμάτων (strike price) είναι 50; (Α) 5,0 (Β) 5,5 (Γ) 6,5 (Δ) 7,0 (Ε) 7,5. Χαρτοφυλάκιο Ρ αποτελείται από ποσοστό x στοιχείου με μ= 0%, σ=0% και ποσοστό -x στοιχείου με μ=5%, σ=0%. Τα δύο στοιχεία είναι αρνητικά συσχετισμένα με συντελεστή ρ=-0,. Εάν r f = 5% να βρεθεί το ποσοστό xs που μεγιστοποιεί το δείκτη Shrpe του χαρτοφυλακίου Ρ. (Α) / (Β) / (Γ) / (Δ) / (Ε) /. Μια ομολογία με διάρκεια 0 έτη, καταβάλλει κουπόνι ίσο προς 7 μονάδες μόνο για τα πρώτα 5 έτη και στην συνέχεια δεν καταβάλλει πλέον κουπόνι. Αν η τρέχουσα τιμή της ομολογίας είναι 95, για αξία εξαγοράς στην λήξη ίση προς 00, ποιο το ετήσιο αποτελεσματικό επιτόκιο που θα κερδίσει από αυτήν την επένδυση ο κάτοχός της; (Α),5% (Β),50% (Γ),65% (Δ),70% (Ε),75%

7 5. Επενδυτής λαμβάνει τα εξής δάνεια : στην αρχή του ου έτους και στην αρχή του ου έτους με κοινό επιτόκιο i=7%. Τα παραπάνω ποσά αμέσως μόλις ληφθούν, επενδύονται. Αρχίζουν να αποφέρουν ετήσια έσοδα πληρωτέα συνεχώς (pyble continully) από το τέλος του ου έτους και για 0 έτη συνολικά. Τα έσοδα χρησιμοποιούνται αποκλειστικά για την αποπληρωμή των δανείων. Μόλις αποπληρωθούν τα δάνεια, την χρονική t, τα έσοδα από τότε και μετά επενδύονται σε τραπεζικό λογαριασμό με επιτόκιο j= 6%. Ποιο το τελικό ποσό του λογαριασμού στο τέλος των ετών από σήμερα? (Α)., (Β) 0.88,95 (Γ) ,50 (Δ) ,6 (Ε) Η σ.π.π. της έντασης ανατοκισμού είναι f ( ) ~ U(0,0), δηλαδή 0 f ( ),0 0. Να βρεθεί η E(( I) ) και το ισοδύναμο σταθερό 0 0 δ που παράγει στην 0ετία συσσώρευση ίση με E(( I) ). 0 (Α) E(( I ) ) *(exp(000) ) *ln( *(exp(000) )) 000, (Β) E (( I ) ) *(exp(0) ), *ln( *(exp(00) )) (Γ) E(( I ) ) *exp(0) *(exp(0) )) 0, ln( 00 0 (Δ) E(( I ) ) *exp(00) *ln( *(exp(00) )) 00, (Ε) E(( I ) ) *(exp(00) ) 00, 0 *ln( *(exp(00) 00 ))

8 7. Για δύο 0ετή ομόλογα τα οποία εκδίδονται ταυτόχρονα και καταβάλλουν εξαμηνιαία κουπόνια, ισχύει: C 000 F μονάδες και C 000 F μονάδες αντίστοιχα. Τα δύο αυτά ομόλογα αποφέρουν την ίδια απόδοση στον κάτοχο τους. Η έκπτωση κατά την έκδοση του ο ομολόγου είναι μισή της υπεραξίας κατά την έκδοση του ου ομολόγου. Το κεφάλαιο που περιέχεται στο 0 ο κουπόνι για το ο ομόλογο, είναι 0 μονάδες. Το κουπόνι του ου ομολόγου είναι 50 μονάδες. Να βρεθεί η απόδοση μετατρέψιμη εξαμηνιαίως. i i () (Α),76% () (Ε) 5,6% i () (Β),8% i () (Γ),9% i () (Δ) 5,5% 8. Να απλοποιηθεί η παράσταση d i d i d i d 5 i 5... (Α) δ (i-d) (B) δ (i+d) (Γ) δ (d-i) (Δ) δi (E) δd 9. Ένα δάνειο εξοφλείται σε 0 έτη με επιτόκιο i και φθίνουσες ετήσιες δόσεις, καταβαλλόμενες στο τέλος κάθε έτους, ύψους 0,9,8,,,,. Εάν Χ και Υ είναι ο τόκος που περιέχεται στην η και 6 η δόση αντίστοιχα, ποιο από τα παρακάτω είναι ίσο με v 5 ; (Α) (Ε) (Β) 5 5 (Γ) 5 5 (Δ) 5 5

9 0. Περιουσιακά στοιχεία με παρούσα αξία A 00 καλύπτουν υποχρεώσεις με παρούσα αξία L 90 και μέση διάρκεια 0. Να υπολογιστεί η μέση διάρκεια t που θα πρέπει να έχουν τα περιουσιακά στοιχεία ώστε εάν A η ένταση ανατοκισμού δ αυξηθεί κατά %, το μέγεθος A L να παραμείνει σταθερό. t L (Α) t 0, 0 A (Β) t 9, 5 A (Γ) t 9, 0 A (Δ) t 8, 5 A (Ε) t 8, 0 A. Σε μια αγορά που ισχύει το CAPM, ποιές από τις παρακάτω περιπτώσεις είναι πιθανές: Ι. Αναμενόμενη Απόδοση Τυπική Απόκλιση Μετοχή Χ 0% 8% Μετοχή Υ 5% % ΙΙ. Αναμενόμενη Βήτα Απόδοση Μετοχή Χ 0% 0,8 Μετοχή Υ 5% 0,5 ΙΙΙ. Αναμενόμενη Βήτα Απόδοση Χωρίς ρίσκο 5% 0 Αγορά (Μ) 5% Μετοχή Χ 9%, (Α) Μόνο η Ι (Β) Μόνο η ΙΙ (Γ) Μόνο η ΙΙΙ (Δ) Καμία (Ε) Όλες

10 . Στο τέλος κάθε περιόδου, μια μετοχή με σημερινή τιμή 00 θα έχει ποσοστιαία αύξηση 0% ή ποσοστιαία μείωση 0%. Εάν η ακίνδυνη ένταση ανατοκισμού είναι 5%, να υπολογίσετε την σημερινή τιμή F 0 (Forwrd Price) ενός νέου συμβολαίου μελλοντικής εκπλήρωσης (forwrd) επί της εν λόγω μετοχής που λήγει σε περιόδους. (Α) F 0, 5 0 (Β)F 05, 5 0 (Γ)F 00, 5 0 (Δ) F 99, 5 (Ε) 0 F 95, 5 0. Δάνειο εξοφλείται με 0 ίσες δόσεις ύψους. Ο δανεισθείς αδυνατεί να καταβάλλει τις δόσεις υπ αριθμόν, και.συμφωνείται η αποπληρωμή του υπολειπόμενου ποσού δανείου με 7 ίσες αυξημένες δόσεις (δηλαδή χωρίς παράταση της αρχικής διάρκειας του δανείου). Να βρεθεί το ύψος κάθε νέας αυξημένης δόσης. (Α) 0 7 (Β) 7 0 *( i) (Γ) 6 0 *( i) (Δ) *( 0 i) 6 (Ε) *( 0 i) 7

11 . Δάνειο ύψους L εξοφλείται με -n- σταθερές δόσεις L. Ο τόκος n που περιέχεται στην κ-δόση, κ=,,,n, είναι L*( ). Ποιο από n n τα παρακάτω είναι ίσο με το επιτόκιο; (Α) (n ) (Β) (n ) (n ) (Γ) ( n )(n ) (Δ) (n ) n(n ) (Ε) n( n )(n )

12 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟNΟΜΙΑΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΠΡΩΪΝΩΝ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟΔΟΥ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΦΕΒΡΟΥΑΡΙΟΥ 0. B.Δ. Δ.Β. Β 5.Δ. A 6.Ε 5. Δ 7.Δ 6. Δ 8.Β 7. Α 9.Α 8.Δ 0.Γ 9.Β.Α 0.Γ.Α.Ε.Ε.Ε.Γ

13

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ 9 π.μ. π.μ. .......

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 01 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 01 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (1 π.μ. π.μ.)

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 2013

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 013 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (1 π.μ.

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2009 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 24 ΦΕΒΡΟΥΑΡΙΟΥ 2009

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2009 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 24 ΦΕΒΡΟΥΑΡΙΟΥ 2009 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 009 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΦΕΒΡΟΥΑΡΙΟΥ 009 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ.

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (12

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2004

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2004 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 8 ΙΑΝΟΥΑΡΙΟΥ 004 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9 π.μ.) . Αν δ t,

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ FW.PR09 Όνομα: Επίθετο: Ημερομηνία: 4//07 Πρωί: x Απόγευμα: Θεματική ενότητα: Αρχές Οικονομίας και Χρηματοοικονομικά Μαθηματικά FW.PR09 / FW.PR09. Δίνεται ένταση ανατοκισμού t = την ράντα s 0.0t για 0

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ FW.PR09 Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: x Θεματική ενότητα: Αρχές Οικονομίας και Χρηματοοικονομικά Μαθηματικά FW.PR09 /6 FW.PR09 Θέμα ο α) Η παρούσα αξία μιας διηνεκούς ράντας που πληρώνει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΜΒΑΝΤΑ ΖΩΗΣ & ΘΑΝΑΤΟΥ ΙΟΥΛΙΟΣ 0 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΟΥΛΙΟΥ 0 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 4 ΙΟΥΛΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. μ.)

Διαβάστε περισσότερα

ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΕΠΙΠΕΔΟΥ Δ - ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ (έκδοση )

ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΕΠΙΠΕΔΟΥ Δ - ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ (έκδοση ) ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΕΠΙΠΕΔΟΥ Δ - ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ (έκδοση 18.4.2016) 440. Για μια κατάθεση 100 με ετήσιο επιτόκιο 12% και τριμηνιαίο ανατοκισμό, η ετήσια πραγματική απόδοση είναι : α) 12,42%

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2005 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 25 ΙΑΝΟΥΑΡΙΟΥ 2005

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2005 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 25 ΙΑΝΟΥΑΡΙΟΥ 2005 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 005 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 5 ΙΑΝΟΥΑΡΙΟΥ 005 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9 π.μ.) . Την /,

Διαβάστε περισσότερα

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1 γ Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31 Άσκηση η 2 η Εργασία ΔEO3 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ3 Η επιχείρηση Α εκδίδει σήμερα ομολογία ονομαστικής αξίας.000 με ετήσιο επιτόκιο έκδοσης 7%. Το

Διαβάστε περισσότερα

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1. Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 1

Asset & Liability Management Διάλεξη 1 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη Η μέτρηση και η αντιμετώπιση του επιτοκιακού κινδύνου Μιχάλης Ανθρωπέλος anthopel@unipi.g

Διαβάστε περισσότερα

και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115

και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115 . Η πιθανότητα ο () να ζήσει για τουλάχιστον χρόνια είναι κατά 0% μεγαλύτερη από την πιθανότητα ο (+) να ζήσει για τουλάχιστον χρόνια. Αν / 0, 4, 9 / 0, και 0, 48 να βρεθεί η τιμή του Α) 0,048 Β) 0,88

Διαβάστε περισσότερα

1 2,55 1.250 3,19 0,870 2,78 2 2,55 1.562 3,98 0,756 3,01 3 2,55 1.953 4,98 0,658 3,28

1 2,55 1.250 3,19 0,870 2,78 2 2,55 1.562 3,98 0,756 3,01 3 2,55 1.953 4,98 0,658 3,28 Άσκηση 1 Η κατασκευαστική εταιρία Κ εξετάζει την περίπτωση αγοράς μετοχών της εταιρίας «Ε» με πληρωμή σε μετρητά. Κατά τη διάρκεια της χρήσης που μόλις ολοκληρώθηκε, η «Ε» είχε κέρδη ανά μετοχή 4,25 και

Διαβάστε περισσότερα

Διαχείριση Χαρτοφυλακίου ΟΕΕ. Σεμινάριο

Διαχείριση Χαρτοφυλακίου ΟΕΕ. Σεμινάριο Διαχείριση Χαρτοφυλακίου ΟΕΕ Σεμινάριο 1 Ενότητες Διαχείριση Χαρτοφυλακίου ΚΙΝΔΥΝΟΣ ΟΜΟΛΟΓΙΕΣ ΜΕΤΟΧΕΣ ΚΙΝΔΥΝΟΣ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΥΠΟΔΕΙΓΜΑΤΑ ΜΕΤΡΑ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΑΠΟΔΟΣΗΣ ΧΑΡΤΟΦΥΛΑΚΙΟΥ 2 ΠΑΡΑΔΕΙΓΜΑ 1 Ένας

Διαβάστε περισσότερα

Θέμα 1 (1) Γνωρίζουμε ότι η αξία του προθεσμιακού συμβολαίου δίνεται από

Θέμα 1 (1) Γνωρίζουμε ότι η αξία του προθεσμιακού συμβολαίου δίνεται από 1 ΔΕΟ31 - Λύση 3ης γραπτής εργασίας 2013-14 Θέμα 1 (1) Γνωρίζουμε ότι η αξία του προθεσμιακού συμβολαίου δίνεται από f ( S I ) Ke t t t r( T t) Aρχικά βρίσκουμε τη παρούσα αξία των μερισμάτων που πληρώνει

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ Όνομα: Επίθετο: Ημερομηνία: 13/7/2016 Πρωί: x Απόγευμα: Θεματική ενότητα: Χρηματοοικονομικά Πρότυπα, Κωδ. Αε 1. Στις χρονικές στιγμές 1 και 2 θα πληρωθεί από 1 αντίστοιχα. Ποιο επιτόκιο εξασφαλίζει ότι

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΔΕΟ31 Λύση 2 ης γραπτής εργασίας

ΔΕΟ31 Λύση 2 ης γραπτής εργασίας 1 ΔΕΟ31 Λύση 2 ης γραπτής εργασίας 2015-16 Προσοχή! Όλες οι εργασίες ελέγχονται για αντιγραφή. Μελετήστε προσεκτικά και δώστε τη δική σας λύση ΘΕΜΑ 1 ο Α) Αρχικά θα πρέπει να υπολογίσουμε τη μηνιαία πραγματοποιηθείσα

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016 Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: X Θεματική ενότητα: () 1. Α. Με επιτόκιο i=3,5% και πίνακα θνησιμότητας με q 108 =1, υπολογίστε το A και το (), χρησιμοποιώντας την υπόθεση της ομοιόμορφης κατανομής

Διαβάστε περισσότερα

Κεφάλαιο , 05. Τέλος το ποσό της τελευταίας κατάθεσης (συμπλήρωση του 17 ου έτους) θα τοκισθεί μόνο για 1 έτος

Κεφάλαιο , 05. Τέλος το ποσό της τελευταίας κατάθεσης (συμπλήρωση του 17 ου έτους) θα τοκισθεί μόνο για 1 έτος Κεφάλαιο 5 5. Ράντες 5.. Εισαγωγικές έννοιες και ορισμοί Είναι σύνηθες στις μέρες μας να καταθέτουν οι γονείς κάποιο ποσό για τα παιδιά τους σε μηνιαία, εξαμηνιαία ή ετήσια βάση έτσι ώστε να συσσωρευτεί

Διαβάστε περισσότερα

Άσκηση 2 Να βρεθεί η πραγματοποιηθείσα απόδοση της προηγούμενης άσκησης, υποθέτοντας ότι τα τοκομερίδια πληρώνονται δύο φορές το έτος.

Άσκηση 2 Να βρεθεί η πραγματοποιηθείσα απόδοση της προηγούμενης άσκησης, υποθέτοντας ότι τα τοκομερίδια πληρώνονται δύο φορές το έτος. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 4 Άσκηση 1 Η ομολογία Β εκδόθηκε στο παρελθόν και έχει διάρκεια ζωής τρία ακόμη έτη. Η ονομαστική της αξία είναι 1.000 ευρώ και το εκδοτικό της επιτόκιο είναι 8%. Τα τοκομερίδια πληρώνονται

Διαβάστε περισσότερα

1. Αν 1. x (Β) (Α) (Γ) (Ε) 2 (Δ)

1. Αν 1. x (Β) (Α) (Γ) (Ε) 2 (Δ) . Αν 4 x, 4 4 d d (Α) x x (Β) x x (Γ) x x x (Δ) x (Ε) x x . Δάνειο ύψους εξοφλείται με τρεις ληξιπρόθεσμες δόσεις, α αι α. Το ποσό τόου σε άθε δόση είναι σταθερό αι ίσο με β. Να βρεθούν τα α αι β αι το

Διαβάστε περισσότερα

Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011

Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 14 ΙΟΥΛΙΟΥ 2011 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ. 12 µ.) Σελίδα 1 από

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 1: Κεφαλαιοποίηση Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

β) Αν στο παραπάνω ερώτημα, ο λογαριασμός ήταν σύνθετου τόκου με j(12)=3%, ποιό είναι το ποσό που θα έπρεπε να καταθέσει ;

β) Αν στο παραπάνω ερώτημα, ο λογαριασμός ήταν σύνθετου τόκου με j(12)=3%, ποιό είναι το ποσό που θα έπρεπε να καταθέσει ; Άσκηση 1 α) Κάνει κάποιος κατάθεση ποσού 5 χιλ. σε λογαριασμό απλού τόκου με ετήσιο επιτόκιο 4%. Μετά από 3 μήνες κάνει ανάληψη 3 χιλ. και μετά από άλλους 7 μήνες επιθυμεί να κάνει μία κατάθεση, έτσι ώστε

Διαβάστε περισσότερα

MANAGEMENT OF FINANCIAL INSTITUTIONS ΔΙΑΛΕΞΗ: ΣΤΑΘΜΙΣΜΕΝΗ ΔΙΑΡΚΕΙΑ (DURATION) Τμήμα Χρηματοοικονομικής

MANAGEMENT OF FINANCIAL INSTITUTIONS ΔΙΑΛΕΞΗ: ΣΤΑΘΜΙΣΜΕΝΗ ΔΙΑΡΚΕΙΑ (DURATION) Τμήμα Χρηματοοικονομικής MNGEMENT OF FINNI INSTITUTIONS ΔΙΑΛΕΞΗ: ΣΤΑΘΜΙΣΜΕΝΗ ΔΙΑΡΚΕΙΑ (URTION) Πανεπιστήμιο Πειραιώς Τμήμα Χρηματοοικονομικής Γκ. Χαρδούβελης ΠΕΡΙΕΧΟΜΕΝΑ Παράδειγμα Σταθμισμένης Διάρκειας (uaion) Σταθμισμένη Διάρκεια

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ & : ΔΕΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ & : ΔΕΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 41 Αγορές Χρήματος & Κεφαλαίου Ακαδ. Έτος: 1-1 Θέμα 1 α) Ο επενδυτής μπορεί να εκμεταλλευτεί τις

Διαβάστε περισσότερα

Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό

Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό 2. ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ 1 Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό διάστηµα θέλουµε. Εκτός

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΕΡΩΤΗΣΗ. (5 μονάδες) Θέλετε να αξιολογήσετε τέσσερα ομόλογα. Όλα τα ομόλογα έχουν 0 χρόνια μέχρι την λήξη και ονομαστική αξία.000. Το ομόλογο Α έχει κουπόνι με ετήσια απόδοση % το οποίο παραμένει σταθερό

Διαβάστε περισσότερα

Χρηματοοικονομική Ι. Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Χρηματοοικονομική Ι. Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι Χρηματοοικονομική Ι Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Γραπτή Εργασία 3 Παράγωγα Αξιόγραφα. Γενικές οδηγίες

Γραπτή Εργασία 3 Παράγωγα Αξιόγραφα. Γενικές οδηγίες ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ 31 Χρηματοοικονομική ιοίκηση Ακαδημαϊκό Έτος: 2011-2012 Γραπτή Εργασία 3 Παράγωγα Αξιόγραφα Γενικές

Διαβάστε περισσότερα

Ράντες. Χρήση ραντών. Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας

Ράντες. Χρήση ραντών. Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας Ράντες Χρήση ραντών Έννοια ράντας Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας Χρήση περιοδικών κεφαλαίων (ράντες) Σχηματισμός κεφαλαίου με ισόποσες καταθέσεις Εξόφληση χρέους με δόσεις Μηνιαίες

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016 Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: 1. Μια ισόβια ασφάλιση, με ασφαλισμένο κεφάλαιο ύψους 1, πληρωτέο τη χρονική στιγμή του θανάτου του (x), περιλαμβάνει πρόσθετη κάλυψη (rider),

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΑΠΟΦΑΣΕΩΝ

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΑΠΟΦΑΣΕΩΝ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΑΠΟΦΑΣΕΩΝ 8 Ο εξάμηνο Χημικών Μηχανικών Δανάη Διακουλάκη, Καθηγήτρια ΕΜΠ diak@chemeng.ntua.gr Άγγελος Τσακανίκας, Επ. καθηγητής ΕΜΠ atsaka@central.ntua.gr ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

Διαβάστε περισσότερα

ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Κόστος κεφαλαίου κόστος ευκαιρίας των κεφαλαίων Υποθέσεις υπολογισμού Στάδια υπολογισμού Πηγές χρηματοδότησης (κεφαλαίου)

ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Κόστος κεφαλαίου κόστος ευκαιρίας των κεφαλαίων Υποθέσεις υπολογισμού Στάδια υπολογισμού Πηγές χρηματοδότησης (κεφαλαίου) ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Κόστος κεφαλαίου Ορισμός: είναι το κόστος ευκαιρίας των κεφαλαίων που έχουν όλοι οι επενδυτές της εταιρείας (μέτοχοι και δανειστές) Κόστος ευκαιρίας: είναι η απόδοση της καλύτερης εναλλακτικής

Διαβάστε περισσότερα

ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ

ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ Κεφάλαιο 1: Το θεωρητικό υπόβαθρο της διαδικασίας λήψεως αποφάσεων και η χρονική αξία του χρήµατος Κεφάλαιο 2: Η καθαρή παρούσα αξία ως κριτήριο επενδυτικών

Διαβάστε περισσότερα

Γ ΤΟΜΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ. Άσκηση 1 (τελικές 2011 θέμα 3)

Γ ΤΟΜΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ. Άσκηση 1 (τελικές 2011 θέμα 3) Γ ΤΟΜΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Άσκηση 1 (τελικές 2011 θέμα 3) Ένας επενδυτής έχει αγοράσει μία μετοχή. Για να προστατευτεί από πιθανή μικρή πτώση της τιμής της μετοχής λαμβάνει θέση αγοράς σε ένα δικαίωμα

Διαβάστε περισσότερα

4 e. υ (Γ) υ (Δ) 1 (Ε) 1+ i

4 e. υ (Γ) υ (Δ) 1 (Ε) 1+ i . Αν τα 4 6 8 δ, i, d, i και d αντιτοιχούν όλα το ίδιο αποτελεματικό επιτόκιο, τότε i 6 i 6 4 4 d 4 8 d 8 6 4 e δ (Α) 3 υ (Β) υ (Γ) υ (Δ) (Ε) + i . Ένα 0ετές αφαλιτικό προϊόν εγγυάται απόδοη 7% τα πρώτα

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Κεφάλαιο 1 Η ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Επιτόκιο: είναι η αμοιβή του κεφαλαίου για κάθε μονάδα χρόνου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεµατική Ενότητα: ΔΕΟ 31 Χρηµατοοικονοµική Διοίκηση Ακαδηµαϊκό Έτος: 2013-2014 Γραπτή Εργασία 3 Παράγωγα Αξιόγραφα

Διαβάστε περισσότερα

Κεφάλαιο Δάνεια Γενικά Δάνεια εξοφλητέα εφάπαξ Αν οι τόκοι καταβάλλονται στο τέλος κάθε περιόδου

Κεφάλαιο Δάνεια Γενικά Δάνεια εξοφλητέα εφάπαξ Αν οι τόκοι καταβάλλονται στο τέλος κάθε περιόδου Κεφάλαιο 6 6. Δάνεια 6.. Γενικά Το σημαντικότερο και σίγουρα το πιο διαδεδομένο κεφάλαιο των οικονομικών μαθηματικών είναι αυτό των δανείων. Κράτη, δημόσιοι οργανισμοί, επιχειρήσεις αλλά και ιδιώτες χρειάζονται

Διαβάστε περισσότερα

Διάφορες αποδόσεις και Αποτίμηση Ομολόγων

Διάφορες αποδόσεις και Αποτίμηση Ομολόγων Διάφορες αποδόσεις και Αποτίμηση Ομολόγων Α. Διάφοροι ορισμοί απόδοσης ή επιτοκίων Spot rate Spot rate: ορίζεται ως η απόδοση του ομολόγου του ομολόγου χωρίς τοκομερίδιο. Αποτελεί συγχρόνως και την απόδοση

Διαβάστε περισσότερα

Τεχνοοικονομική Μελέτη

Τεχνοοικονομική Μελέτη Τμήμα Μηχανολόγων Μηχανικών Τεχνοοικονομική Μελέτη Ενότητα 9: Κόστος κεφαλαίου - Χρηματορροές Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 3 ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 3 ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Προεξοφλητικό επιτόκιο Η χρονική αξία του χρήματος είναι το κόστος ευκαιρίας του κεφαλαίου της επιχείρησης. Το προεξοφλητικό επιτόκιο ή επιτόκιο αναγωγής σε παρούσα

Διαβάστε περισσότερα

ΔΕΟ 31 1 η γραπτή εργασία Τελική έκδοση με παρατηρήσεις

ΔΕΟ 31 1 η γραπτή εργασία Τελική έκδοση με παρατηρήσεις ΔΕΟ 31 1 η γραπτή εργασία 2013-14 - Τελική έκδοση με παρατηρήσεις ΠΡΟΣΟΧΗ! Αποτελεί υποδειγματική λύση. απάντηση! 1 Μελετήστε τη λύση και δώστε τη δική σας ΘΕΜΑ 1 Ο Επένδυση Α Για την επένδυση Α γνωρίζουμε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013 Τρίτη Γραπτή Εργασία Γενικές οδηγίες για την εργασία Όλες οι ερωτήσεις

Διαβάστε περισσότερα

ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ-ΔΕΟ41-ΙΟΥΝΙΟΣ 2007

ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ-ΔΕΟ41-ΙΟΥΝΙΟΣ 2007 1 Πειραιεύς, 23 Ιουνίου 20076 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ-ΔΕΟ41-ΙΟΥΝΙΟΣ 2007 Απαντήστε σε 3 από τα 4 θέματα (Άριστα 100 μονάδες) Θέμα 1. Α) Υποθέσατε ότι το trading desk της Citibank ανακοινώνει τα ακόλουθα στοιχεία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΤΙΣΤΑΘΜΙΣΗΣ ΤΟΥ ΚΙΝΔΥΝΟΥ ΤΩΝ ΕΠΙΤΟΚΙΩΝ

ΚΕΦΑΛΑΙΟ 11 ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΤΙΣΤΑΘΜΙΣΗΣ ΤΟΥ ΚΙΝΔΥΝΟΥ ΤΩΝ ΕΠΙΤΟΚΙΩΝ ΚΕΦΑΛΑΙΟ 11 ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΤΙΣΤΑΘΜΙΣΗΣ ΤΟΥ ΚΙΝΔΥΝΟΥ ΤΩΝ ΕΠΙΤΟΚΙΩΝ Εισαγωγή Αν μια τράπεζα θέλει να μειώσει τις διακυμάνσεις των κερδών που προέρχονται από τις μεταβολές των επιτοκίων θα πρέπει να έχει ένα

Διαβάστε περισσότερα

Άριστη Κεφαλαιακή Δομή www.onlineclassroom.gr Είναι η διάρθρωση των μακροπρόθεσμων κεφαλαίων της επιχείρησης η οποία μεγιστοποιεί την αξία της επιχείρησης, τον πλούτο των μετόχων της και εφόσον είναι εισηγμένη

Διαβάστε περισσότερα

εκτοκιζόµενοι τόκοι ενσωµατώνονται στο κεφάλαιο και ανατοκίζονται. Εφαρµόζεται τ και 4 1=

εκτοκιζόµενοι τόκοι ενσωµατώνονται στο κεφάλαιο και ανατοκίζονται. Εφαρµόζεται τ και 4 1= ΑΣΚΗΣΗ Έστω τραπεζική κατάθεση ταµιευτηρίου µε ετήσιο επιτόκιο 8%. Ποιο είναι το πραγµατικό (effective) ετήσιο επιτόκιο, αν ο εκτοκισµός γίνεται κάθε τρίµηνο (εξάµηνο); Το πραγµατικό επιτόκιο είναι η ετήσια

Διαβάστε περισσότερα

(3) ... (2) Ο συντελεστής Προεξόφλησης (ΣΠΑ) υπολογίζεται από τον Πίνακα Π.2. στο Παράρτηµα.

(3) ... (2) Ο συντελεστής Προεξόφλησης (ΣΠΑ) υπολογίζεται από τον Πίνακα Π.2. στο Παράρτηµα. ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Α.Α.Δράκος 2015-2016 ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΟΝΤΑ ΣΤΗ ΧΡΗΜΑΤΟΔΟΤΙΚΗ ΔΙΟΙΚΗΣΗ 1 1 ο ΣΕΤ. ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ ΚΑΙ ΤΡΑΠΕΖΙΚΑ ΔΑΝΕΙΑ

Διαβάστε περισσότερα

C n = D [(l + r) n - 1]/r. D = C n r/[(l + r) n - 1]

C n = D [(l + r) n - 1]/r. D = C n r/[(l + r) n - 1] Ο υπολογισμός των δόσεων που οφείλει ένας δανειζόμενος στον δανειστή του, για την εξόφληση ενός χρέους, βασίζεται στις προηγούμενες εξισώσεις και εξαρτάται από την ημερομηνία αξιολόγησης. Σε αυτές τις

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 4: Ανατοκισμός Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Βασικές έννοιες οικονομικής αξιολόγησης

Βασικές έννοιες οικονομικής αξιολόγησης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Βιομηχανικής και Ενεργειακής Οικονομίας ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΙΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΑΠΟΦΑΣΕΩΝ 8 ο Εξάμηνο Βασικές έννοιες οικονομικής αξιολόγησης

Διαβάστε περισσότερα

Ράντες. - Κατανόηση και χρησιμοποίηση μιας σειράς πληρωμών που ονομάζεται ράντα.

Ράντες. - Κατανόηση και χρησιμοποίηση μιας σειράς πληρωμών που ονομάζεται ράντα. Ράντες Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι - Αρχική αξία - Τελική αξία - Δόση ή όρος - Περίοδος - Διάρκεια (συμβολισμός n) - Διηνεκής ράντα - Κλασματική ράντα ΣΤΟΧΟΙ - Κατανόηση και χρησιμοποίηση

Διαβάστε περισσότερα

Χρηματοοικονομική Διοίκηση

Χρηματοοικονομική Διοίκηση Χρηματοοικονομική Διοίκηση Ενότητα 2: Ράντες Γιανναράκης Γρηγόρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...13 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...13 ΜΕΡΟΣ Ι: ΕΙΣΑΓΩΓΗ... 17 1 ΤΙ ΕΙΝΑΙ Η ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ;... 19 Το διευθυντικό στέλεχος ως αντιπρόσωπος...22 Ο κίνδυνος σε σχέση με τα κέρδη...24 Βασικές δεξιότητες της χρηματοοικονομικής

Διαβάστε περισσότερα

Άσκηση (τελικές 2009).onlineclassroom.gr Η Τράπεζα DIX CREDITS έχει τον ακόλουθο ισολογισμό σε τρέχουσες τιμές της αγοράς. Ενεργητικό σε 000 ευρώ Υποχρεώσεις και Καθαρή Θέση σε 000 Διαθέσιμα 125.000 Καταθέσεις

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΘΕΜΑ 4 Υποθέστε ότι είστε ο διαχειριστής του αµοιβαίου κεφαλαίου ΑΠΟΛΛΩΝ το οποίο εξειδικεύεται σε µετοχές µεγάλης κεφαλαιοποίησης εσωτερικού. Έπειτα από την πρόσφατη ανοδική πορεία του Χρηματιστηρίου

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ FV Η συνάρτηση αυτή υπολογίζει την μελλοντική αξία μιας επένδυσης βάσει περιοδικών, σταθερών πληρωμών και σταθερού επιτοκίου. =FV(επιτόκιο; αριθμός περιόδων; δόση αποπληρωμής; παρούσα

Διαβάστε περισσότερα

Β E ln { 1+0,8i. 17. H συνάρτηση κόστους ασφαλιστικής επιχείρησης Α είναι f(t)=500t για

Β E ln { 1+0,8i. 17. H συνάρτηση κόστους ασφαλιστικής επιχείρησης Α είναι f(t)=500t για 1. Ποια από τα παρακάτω περιλαμβάνονται υποχρεωτικά στα στοιχεία που χορηγούνται πριν τη σύναψη ασφαλιστικής σύμβασης : Ι. το κράτος-μέλος καταγωγής της επιχείρησης ή το κράτος-μέλος στο οποίο βρίσκεται

Διαβάστε περισσότερα

Έτος 1 Έτος 2 Έτος 3 Έτος 4 Έτος 5 Εισπράξεις 270.000 300.000 350.000 500.000 580.000

Έτος 1 Έτος 2 Έτος 3 Έτος 4 Έτος 5 Εισπράξεις 270.000 300.000 350.000 500.000 580.000 Θέμα 1 0 Η εταιρία ΑΒΓ σχεδιάζει να επενδύσει σήμερα (στο έτος 0), σε ένα έργο το οποίο θα έχει αρχικό κόστος 00.000, διάρκεια ζωής 5 έτη και αναμένεται να δώσει τις ακόλουθες εισπράξεις: Έτος 1 Έτος 2

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 9: Διηνεκείς Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

3. ΔΑΝΕΙΑ. Αποσβέσεις Leasing Αγορά Ομολογιακά Δάνεια

3. ΔΑΝΕΙΑ. Αποσβέσεις Leasing Αγορά Ομολογιακά Δάνεια 3. ΔΑΝΕΙΑ Αποσβέσεις Leasing Αγορά Ομολογιακά Δάνεια 38 3. ΔΑΝΕΙΑ Κριτήρια Αξιολόγησης Επενδύσεων 3.1 Χρήσιμες Εφαρμογές Τα δάνεια χωρίζονται σε δύο κατηγορίες τα ενιαία ή αδιαίρετα και τα ομολογιακά.

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 2

Asset & Liability Management Διάλεξη 2 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asse & Liabiliy Managemen Διάλεξη 2 Η μέτρηση και η αντιμετώπιση του επιτοκιακού κινδύνου (συνέχεια) Μιχάλης Ανθρωπέλος anhropel@unipi.gr

Διαβάστε περισσότερα

Ασκήσεις Χρηµατοοικονοµικής ιοίκησης

Ασκήσεις Χρηµατοοικονοµικής ιοίκησης Ασκήσεις Χρηµατοοικονοµικής ιοίκησης. Εξετάζετε δύο αµοιβαία αποκλειόµενες επενδύσεις, µε τις ακόλουθες Καθαρές Ταµειακές Ροές. Κάθε επένδυση διαρκεί τρία έτη. Α Β Τ 0 (.000) (2.000) Τ 629,326.79,245 Τ

Διαβάστε περισσότερα

Εσωτερικός βαθμός απόδοσης

Εσωτερικός βαθμός απόδοσης Εσωτερικός βαθμός απόδοσης Διεθνώς ονομάζεται internal rate of return, και συμβολίζεται με IRR. Με τη μέθοδο αυτή δεν χρησιμοποιούμε επιτόκιο υπολογισμού της αξίας της επένδυσης, αλλά υπολογίζουμε το επιτόκιο

Διαβάστε περισσότερα

ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ

ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Παράδειγµα 1 Να βρεθεί ο τόκος κεφαλαίου 100.000 ευρώ, το οποίο τοκίστηκε µε ετήσιο επιτόκιο 12% για 2 χρόνια. Απάντηση: Ο τόκος ανέρχεται σε I = (100.000 0,12 2=) 24.000 ευρώ

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

ΛΟΓΙΣΤΙΚΗ Ι. Γενική Εισαγωγή ΠΡΟΒΛΕΨΕΙΣ. 1. Γενική Εισαγωγή. 2. Λογιστική Απεικόνιση o Τοκοφόρες και μη Υποχρεώσεις ΛΟΓΙΣΤΙΚΗ ΥΠΟΧΡΕΩΣΕΩΝ

ΛΟΓΙΣΤΙΚΗ Ι. Γενική Εισαγωγή ΠΡΟΒΛΕΨΕΙΣ. 1. Γενική Εισαγωγή. 2. Λογιστική Απεικόνιση o Τοκοφόρες και μη Υποχρεώσεις ΛΟΓΙΣΤΙΚΗ ΥΠΟΧΡΕΩΣΕΩΝ ΛΟΓΙΣΤΙΚΗ Ι ΛΟΓΙΣΤΙΚΗ ΥΠΟΧΡΕΩΣΕΩΝ T.E.I Κρή, Σχολή Διοίκησης & Οικονομίας Μεταπτυχιακό Δίπλωμα Ειδίκευσης στη Λογιστική και στην Ελεγκτική Χειμερινό Εξάμηνο 2012-2013 ΖΗΣΗΣ Β.,, Ph. D. ΛΟΓΙΣΤΙΚΗ ΥΠΟΧΡΕΩΣΕΩΝ

Διαβάστε περισσότερα

Άρα η θεωρητική αξία του γραμματίου σήμερα με εφαρμογή του προαναφερομένου τύπου (1) θα είναι

Άρα η θεωρητική αξία του γραμματίου σήμερα με εφαρμογή του προαναφερομένου τύπου (1) θα είναι Ομάδα Α Θέμα 1 ο Έστω ότι ένας επενδυτής αποταμιευτής αγοράζει σήμερα ένα έντοκο γραμμάτιο διάρκειας 180 ημερών, που εκδόθηκε πριν από 60 ημέρες. Η ετήσια απόδοση του είναι 5%. Το δημόσιο οφείλει να του

Διαβάστε περισσότερα

Δρ. Α.Α.Δράκος,Αναπλ.Καθηγητής Χρηµατοδοτικής Διοίκησης Δρ. Β. Γ. Μπαµπαλός, ΠΔ ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΟΝΤΩΝ ΣΤΗ ΧΡΗΜΑΤΟΔΟΤΙΚΗ ΔΙΟΙΚΗΣΗ 1

Δρ. Α.Α.Δράκος,Αναπλ.Καθηγητής Χρηµατοδοτικής Διοίκησης Δρ. Β. Γ. Μπαµπαλός, ΠΔ ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΟΝΤΩΝ ΣΤΗ ΧΡΗΜΑΤΟΔΟΤΙΚΗ ΔΙΟΙΚΗΣΗ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Δρ. Α.Α.Δράκος,Αναπλ.Καθηγητής Χρηµατοδοτικής Διοίκησης Δρ. Β. Γ. Μπαµπαλός, ΠΔ 47 216-217 ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΟΝΤΩΝ ΣΤΗ ΧΡΗΜΑΤΟΔΟΤΙΚΗ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Δρ. ΑΘΙΑΝΟΣ Καθηγητής ΣΕΡΡΕΣ, ΙΟΥΝΙΟΣ 2015

Διαβάστε περισσότερα

ΜΈΤΡΗΣΗ ΠΟΣΟΣΤΟΎ ΑΠΌΔΟΣΗΣ ΕΠΈΝΔΥΣΗΣ

ΜΈΤΡΗΣΗ ΠΟΣΟΣΤΟΎ ΑΠΌΔΟΣΗΣ ΕΠΈΝΔΥΣΗΣ ΜΈΤΡΗΣΗ ΠΟΣΟΣΤΟΎ ΑΠΌΔΟΣΗΣ ΕΠΈΝΔΥΣΗΣ Η επένδυση μπορεί επίσης να ορισθεί ως η απόκτηση ενός περιουσιακού στοιχείου (π.χ. χρηματοδοτικού τίτλου) με την προσδοκία να αποφέρει μια ικανοποιητική απόδοση. Η

Διαβάστε περισσότερα

Πίνακας περιεχομένων. Κεφάλαιο 1 Λειτουργίες βάσης δεδομένων Κεφάλαιο 2 Συγκεντρωτικοί πίνακες Πρόλογος... 11

Πίνακας περιεχομένων. Κεφάλαιο 1 Λειτουργίες βάσης δεδομένων Κεφάλαιο 2 Συγκεντρωτικοί πίνακες Πρόλογος... 11 Πίνακας περιεχομένων Πρόλογος... 11 Κεφάλαιο 1 Λειτουργίες βάσης δεδομένων...13 1.1 Εισαγωγή... 13 1.2 Δημιουργία βάσης δεδομένων... 14 1.3 Ταξινόμηση βάσης δεδομένων... 16 1.4 Μερικά αθροίσματα... 20

Διαβάστε περισσότερα

11.1.1 Χρονική αξία του χρήματος

11.1.1 Χρονική αξία του χρήματος Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΕΡΩΤΗΣΗ 3 (25 μονάδες) www.onlineclassroom.gr Το τμήμα έρευνας μιας χρηματιστηριακής εταιρείας συλλέγοντας δεδομένα και αναλύοντας τα κατέληξε ότι για τις παρακάτω μετοχές που διαπραγματεύονται στο χρηματιστήριο

Διαβάστε περισσότερα

Με την βοήθεια του Microsoft Excel μεταφέρουμε τα παραδείγματα σε ένα φύλλο εργασίας και στην συνέχεια λύνουμε την άσκηση που ακολουθεί.

Με την βοήθεια του Microsoft Excel μεταφέρουμε τα παραδείγματα σε ένα φύλλο εργασίας και στην συνέχεια λύνουμε την άσκηση που ακολουθεί. Εργαστήριο 9 ο Με την βοήθεια του Microsoft Excel μεταφέρουμε τα παραδείγματα σε ένα φύλλο εργασίας και στην συνέχεια λύνουμε την άσκηση που ακολουθεί. NPER Αποδίδει το πλήθος των περιόδων μιας επένδυσης,

Διαβάστε περισσότερα

Β. Τα μερίσματα θα αυξάνονται συνεχώς με ένα σταθερό ρυθμό 5% ανά έτος.

Β. Τα μερίσματα θα αυξάνονται συνεχώς με ένα σταθερό ρυθμό 5% ανά έτος. Τελικές 009 Θέμα 4 Η οικονομική διεύθυνση της «ΓΒΑ ΑΕ» εξετάζει την αξία των κοινών μετοχών της εταιρίας. Το τελευταίο μέρισμα που διανεμήθηκε () ήταν 6 ανά μετοχή. Έχει εκτιμηθεί ότι ο συστηματικός κίνδυνος

Διαβάστε περισσότερα

Αποτελεσματικό ονομάζεται το χαρτοφυλάκιο το οποίο έχει τη μεγαλύτερη απόδοση για δεδομένο επίπεδο κινδύνου ή το μικρότερο κίνδυνο για δεδομένο επίπεδο απόδοσης. Το σύνολο των αποτελεσματικών χαρτοφυλακίων

Διαβάστε περισσότερα

Ομόλογα (Τίτλοι σταθερού εισοδήματος, δικαιώματα και υποχρεώσεις) 1 δ Για τα ομόλογα μηδενικού τοκομεριδίου (zero coupon bonds) ισχύει ότι:

Ομόλογα (Τίτλοι σταθερού εισοδήματος, δικαιώματα και υποχρεώσεις) 1 δ Για τα ομόλογα μηδενικού τοκομεριδίου (zero coupon bonds) ισχύει ότι: Ομόλογα (Τίτλοι σταθερού εισοδήματος, δικαιώματα και υποχρεώσεις) 1 δ Για τα ομόλογα μηδενικού τοκομεριδίου (zero coupon bonds) ισχύει ότι: α Συναλλάσσονται συνήθως υπέρ το άρτιο. β Καλύπτουν στον επενδυτή

Διαβάστε περισσότερα

ΔΙΑΧΩΡΙΣΜΟΣ ΚΙΝΔΥΝΟΥ Ο συνολικός κίνδυνος ή τυπική απόκλιση χωρίζεται σε : α) συστηματικό κίνδυνο δηλαδή ο κίνδυνος που οφείλεται στις οικονομικοπολιτικές (γενικές) συνθήκες της αγοράς β) μη συστηματικό

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-)

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-) ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-) 5. Ράντες 5.1.1.Ορισμοι- Κατηγορίες Ράντα ονομάζουμε σειρά κεφαλαίων που καταβάλλονται ανά ισα χρονικά διαστήματα. Για τα κεφάλαια αυτά ισχύει

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 11: ΔΑΝΕΙΑ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο υλοποιείται

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr Ερώτηση 1 Την 30 η Σεπτεμβρίου 2013, τα επιτόκια ενός έτους του γιεν Ιαπωνίας και της λίρας Αγγλίας είναι αντιστοίχως i = 1% και i = 4%, ενώ η ισοτιμία όψεως είναι 150 ανά λίρα (S 30-9-13 = 150/ ). Οι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ Μάθημα 7 Ζήτηση χρήματος Ζήτηση χρήματος! Όπως είδαμε στο προηγούμενο μάθημα η προσφορά χρήματος επηρεάζεται από την Κεντρική Τράπεζα και ως εκ τούτου είναι εξωγενώς δεδομένη!

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το

ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το εισόδημα Y, σύμφωνα με την σχέση: = P Y. Αν η τιμή αυξηθεί κατά %, να εκτιμηθεί πόσο πρέπει να

Διαβάστε περισσότερα

1-ΣΗΜΕΙΩΣΕΙΣ ΧΡΗΜΑΤΟΔΟΤΙΚΗΣ.

1-ΣΗΜΕΙΩΣΕΙΣ ΧΡΗΜΑΤΟΔΟΤΙΚΗΣ. Στην μελέτη μας χρησιμοποιούμε το αρχείο 1-ΣΗΜΕΙΩΣΕΙΣ ΧΡΗΜΑΤΟΔΟΤΙΚΗΣ.pdf και το αρχείο 1-X-ΛΥΣΕΙΣ ΣΗΜΕΙΩΣΕΩΝ.xls ΚΕΦΑΛΑΙΟ 1 ο Εισαγωγή στη Χρηματοοικονομική Διοίκηση (σελ.1-3) Σκοπός Η παροχή των απαιτούμενων

Διαβάστε περισσότερα

Διεθνείς Αγορές Χρήματος και Κεφαλαίου. Ομολογίες, Διάρκεια, Προθεσμιακά Επιτόκια, Ανταλλαγές Επιτοκίων

Διεθνείς Αγορές Χρήματος και Κεφαλαίου. Ομολογίες, Διάρκεια, Προθεσμιακά Επιτόκια, Ανταλλαγές Επιτοκίων Διεθνείς Αγορές Χρήματος και Κεφαλαίου Ομολογίες, Διάρκεια, Προθεσμιακά Επιτόκια, Ανταλλαγές Επιτοκίων 1 Η ομολογία είναι ένα εμπορικό έγγραφο, με το οποίο η εκδότρια εταιρεία αναγνωρίζει (ομολογεί) ότι

Διαβάστε περισσότερα

Α. ΠΕΡΙΟΥΣΙΑΚΗ ΚΑΤΑΣΤΑΣΗ ΤΡΕΧΟΥΣΑ ΤΙΜΗ ΜΟΝΑΔΟΣ ΣΕ ΕΥΡΩ

Α. ΠΕΡΙΟΥΣΙΑΚΗ ΚΑΤΑΣΤΑΣΗ ΤΡΕΧΟΥΣΑ ΤΙΜΗ ΜΟΝΑΔΟΣ ΣΕ ΕΥΡΩ ΑΜΟΙΒΑΙΟ ΚΕΦΑΛΑΙΟ ΤΤ ΕΛΤΑ ΟΜΟΛΟΓΙΩΝ ΕΣΩΤΕΡΙΚΟΥ (ΦΕΚ Β 860/30.06.2003) ΕΞΑΜΗΝΙΑΙΑ ΕΚΘΕΣΗ ΚΑΤA ΤΗΝ 30η ΙΟΥΝΙΟΥ 2013 (ΠΕΡΙΟΔΟΣ 01.01.2013-30.06.2013) Αρθρ. 77 & 11 Ν.4099/2012 (ΦΕΚ 250Α / 20.12.2012) Α. ΠΕΡΙΟΥΣΙΑΚΗ

Διαβάστε περισσότερα

Τελική ή μέλλουσα αξία (future value) ή τελικό κεφάλαιο

Τελική ή μέλλουσα αξία (future value) ή τελικό κεφάλαιο Όρος Τελική ή μέλλουσα αξία (future value) ή τελικό κεφάλαιο Απλός τόκος Έτος πολιτικό Έτος εμπορικό Έτος μικτό Τοκάριθμος Είδη καταθέσεων Συναλλαγματική Γραμμάτιο σε διαταγή Ονομαστική αξία Παρούσα αξία

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ F3W.PR09 Όνομα: Επίθετο: Ημερομηνία: //07 Πρωί: Απόγευμα: x Θεματική ενότητα: Ποσοτικοποίηση και Αναλογιστική Διαχείριση των Κινδύνων και Φερεγγυότητα ΚΑΛΗ ΕΠΙΤΥΧΙΑ! F3W.PR09 /5 F3W.PR09 Θέμα α) Ποια η

Διαβάστε περισσότερα

ΚΤΡ. - 2.900 1.250 1.900 1.585 1.280 Π.ΚΤΡ. - 2.900 1.147 1.599 1.224 907 Κ.Π.Α. 1.977

ΚΤΡ. - 2.900 1.250 1.900 1.585 1.280 Π.ΚΤΡ. - 2.900 1.147 1.599 1.224 907 Κ.Π.Α. 1.977 1.Έχετε να επιλέξτε για την κατάθεση ενός ποσού 150 Euro, στην τράπεζα Αλφα µε σταθερό επιτόκιο 10% για 5 έτη και ανατοκισµό στο τέλος κάθε έτους, και την κατάθεση 148 Euro στην τράπεζα Βήτα µε το ίδιο

Διαβάστε περισσότερα

, όταν ο χρόνος αντιστοιχεί σε ακέραιες περιόδους

, όταν ο χρόνος αντιστοιχεί σε ακέραιες περιόδους Τμήμα Διεθνούς Εμπορίου Οικονομικά Μαθηματικά Καλογηράτου Ζ. Μονοβασίλης Θ. ΑΝΑΤΟΚΙΣΜΟΣ 4.. Εισαγωγή Στον σύνθετο τόκο (ή ανατοκισμό), στο τέλος κάθε περιόδου, ο τόκος και το κεφάλαιο αθροίζονται και το

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e =

ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e = ΑΣΚΗΣΕΙΣ Να συµπληρωθεί ο παρακάτω πίνακας 47 48 49 50 5 l 348480 299692 d 43306 q 0.0 0.2 0.5 2 3 4 5 Η ένταση θνησιµότητας µ +t, 0 t, αλλάζει σε µ +t - c, όπου το c είναι θετικός σταθερός αριθµός. Να

Διαβάστε περισσότερα