Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1"

Transcript

1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013

2 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena točka x 0 (a,b), tako da je f (x 0 ) =

3 Dokaz Vsaka odvedljiva funkcija je tudi zvezna, zvezna funkcija pa na zaprtem intervalu zavzame svoj minimum f(x m ) = m in svoj maksimum f(x M ) = M. Če je m = M, je funkcija f konstantna in zato f (x) = 0 za vsak x [a,b]. Če pa je m < M, potem je x m x M in zato vsaj eno izmed števil x m, x M leži na intervalu (a,b), saj je f(a) = f(b). Označimo to število z x 0 (a,b). Odvedljiva funkcija f ima potem v točki x 0 lokalni ekstrem in zato je po Fermatovem izreku f (x 0 ) = 0.

4 Izrek (Lagrangeov izrek) Naj bo f : [a,b] R odvedljiva funkcija. Potem obstaja vsaj ena točka x 0 (a,b), tako da je f (x 0 ) = f(b) f(a). b a

5 Dokaz Definiramo funkcijo g(x) = f(x) f(b) f(a) (x a). b a Ker je f odvedljiva funkcija, je tudi g odvedljiva funkcija. Izračunamo g(a) = f(a) f(b) f(a) (a a) = f(a) b a in g(b) = f(b) f(b) f(a) (b a) b a = f(b) f(b)+f(a) = f(a).

6 Torej ima funkcija g v krajiščih intervala [a, b] enake vrdnosti in zato po Rollovem izreku obstaja x 0 (a,b), tako da je g (x 0 ) = 0. Ker je g (x) = f (x) f(b) f(a) b a in g (x 0 ) = 0, je f (x 0 ) = f(b) f(a). b a

7 Izrek Naj bo f : [a,b] R odvedljiva funkcija in naj bo f (x) = 0 za vsak x [a,b]. Potem je f konstantna funkcija. Dokaz Naj bo x [a,b] poljuben. Za funkcijo f na intervalu [x,b] uporabimo Lagarangeov izrek, torej obstaja tak x 0 (x,b), da je f (x 0 ) = f(b) f(x) b x. Ker je f (x 0 ) = 0, je f(x) = f(b) za vsak x [a,b], torej je f konstantna funkcija.

8 Izrek Naj bosta funkciji f,g: [a,b] R odvedljivi in naj bo f (x) = g (x) za vsak x [a,b]. Potem obstaja konstanta c R, tako da je f(x) = g(x)+c. Dokaz Definiramo funkcijo h(x) = f(x) g(x). Potem je h (x) = f (x) g (x) = 0 za vsak x [a,b]. Po prejšnjem izreku je h konstantna funkcija, torej je h(x) = c oziroma f(x) = g(x)+c za vsak x [a,b].

9 Ekstremi funkcij Vemo, da za odvedljivo funkcijo f, ki ima v točki x 0 ekstrem, velja, da je x 0 njena stacionarna točka. Da je torej f (x 0 ) = 0. Pokazali smo tudi, da to ni zadosten pogoj za nastop ekstrema. V nadaljevanju bomo zapisali izreka, ki nam povesta, kdaj ima odvedljiva funkcija v stacionarni točki ekstrem.

10 Izrek Naj bo f : [a,b] R odvedljiva funkcija in x 0 (a,b) stacionarna točka funkcije f. Če prvi odvod funkcije f v stacionarni točki x 0 spremeni predznak, potem ima funkcija f v x 0 lokalni ekstrem. Če ima prvi odvod funkcije f povsod v okolici stacionarne točke x 0, razen v x 0, isti predznak, potem funkcija f v x 0 nima lokalnega ekstrema.

11 Dokaz Naj bo x 0 stacionarna točka in naj obstaja tak δ > 0, da je f (x) < 0 za vsak x (x 0 δ,x 0 ) in f (x) > 0 za vsak x (x 0,x 0 +δ). Potem je funkcija f na intervalu (x 0 δ,x 0 ) padajoča in na intervalu (x 0,x 0 +δ) naraščajoča. Torej je v x 0 lokalni minimum. Podoben razmislek velja za lokalni maksimum.

12 Če pa obstaja tak δ > 0, da je da je f (x) < 0 za vsak x (x 0 δ,x 0 ) (x 0,x 0 +δ), potem je funkcija f levo in desno od stacionarne točke padajoča. Podobno, če je f (x) > 0 za vsak x (x 0 δ,x 0 ) (x 0,x 0 +δ), potem je funkcija f levo in desno od stacionarne točke naraščajoča. Torej v tem primeru funkcija f v stacionarni točki nima lokalnega ekstrema.

13 Definicija Funkcija f je konveksna na intervalu [a,b], če za vsak [c,d] [a,b] in vsak x [c,d] velja f(x) f(c)+ f(d) f(c) (x c). d c Torej graf funkcije f na intervalu [c,d] leži pod premico skozi točki (c,f(c)), (d,f(d)).

14 Definicija Funkcija f je konkavna na intervalu [a,b], če za vsak [c,d] [a,b] in vsak x [c,d] velja f(x) f(c)+ f(d) f(c) (x c). d c Torej graf funkcije f na intervalu [c,d] leži nad premico skozi točki (c,f(c)), (d,f(d)).

15 Definicija Točka x 0 je prevoj funkcije f, če se v točki x 0 funkcija f spremeni iz konveksne v konkavno ali obratno

16 Izrek Naj bo f : [a,b] R dvakrat odvedljiva funkcija. Če je f (x) > 0 za vsak x (a,b), potem je f konveksna na intervalu [a, b]. Če je f (x) < 0 za vsak x (a,b), potem je f konkavna na intervalu [a, b]. Če je f (x 0 ) = 0 in drugi odvod pri prehodi skozi točko x 0 spremeni predznak, je x 0 prevoj funkcije f.

17 Izrek Naj bo f : [a,b] R dvakrat odvedljiva funkcija in naj bo x 0 (a,b) stacionarna točka funkcije f. Če je f (x 0 ) > 0, potem je v stacionarni točki x 0 lokalni minimum. Če je f (x 0 ) < 0, potem je v stacionarni točki lokalni maksimum.

18 Dokaz Denimo, da je f (x 0 ) > 0. Potem je f (x) naraščajoča funkcija in ker je f (x 0 ) = 0, levo od x 0 velja f (x) < 0, desno od x 0 pa velja f (x) > 0. Torej prvi odvod v stacionarni točki spremeni predznak iz negativnega v pozitivnega, zato je v x 0 lokalni minimum. Podobno za lokalni maksimum.

19

20 Ekstrem zvezne funkcije na zaprtem intervalu Naj bo f : [a,b] R zvezna funkcija na zaprtem intervalu [a,b]. Potem smo pokazali, da funkcija f na tem intervalu zavzame največjo in najmanjšo vrednost. Če je funkcija odvedljiva, je točka, v kateri je ekstrem, stacionarna točka. Lahko pa je ekstrem tudi v krajiščih intervala ali tam, kjer funkcija sploh ni odvedljiva.

21 Primer Določimo vse ekstreme funkcije f(x) = (x 2 +x +2)(x 2 +x 2). Stacionarne točke so: x 1 = 0, x 2 = 1 2, x 3 = 1.

22 Primer Metoda najmanjših kvadratov: f(x) = (x a 1 ) (x a n ) 2 x = a a n n

23 L Hospitalovo pravilo Lahko se zgodi, da funkcija f v neki točki x 0 ni definirana, kljub temu pa obstaja limita funkcije f v točki x 0. Če definiramo vrednost funkcije f v točki x 0 s predpisom f(x 0 ) = lim x x0 f(x), potem pravimo, da smo odpravili nedoločenost funkcije f v točki x 0.

24 Pri odpravljanju nedoločenosti v točki x 0 funkcije f, ki jo lahko zapišemo v obliki f(x) = u(x) v(x), pri čemer je u(x 0 ) = v(x 0 ) = 0, si pomagamo z L Hospitalovim pravilom.

25 Izrek (L Hospitalov izrek) Naj bosta funkciji u in v odvedljivi v okolici točke a in naj bo u(a) = v(a) = 0. V tej okolici naj za x a velja v(x) 0 in v (x) 0. u Če obstaja lim (x) x a v (x), potem obstaja tudi lim x a u(x) v(x) in velja u(x) lim x a v(x) = lim u (x) x a v (x).

26 Dokaz Naj bo x > a element dovolj majhne okolice števila a. Označimo k = u(x) v(x) in definiramo funkcijo g(t) = u(t) kv(t) za vsak t [a,x]. Potem je g(a) = u(a) kv(a) = 0 in g(x) = u(x) kv(x) = 0. Funkcija g zadošča na intervalu [a, x] pogojem Rollovega izreka, zato obstaja taka točka x 0 (a,x), da je g (x 0 ) = 0.

27 Ker je g (t) = u (t) kv (t) in g (x 0 ) = 0, sledi, da je u (x 0 ) kv (x 0 ) = 0, in zato u(x) v(x) = u (x 0 ) v (x 0 ). Ko gre x a, gre tudi x 0 a in v limiti dobimo željeno enakost.

28 Primer Izračunajmo x 3 1 lim x 1 x 2 1 sinx in lim x 0 x

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika 1 Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 21. april 2008 102 Poglavje 4 Odvod 4.1 Definicija odvoda Naj bo funkcija f definirana na intervalu (a, b) in x 0 točka s tega intervala. Vzemimo

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Funkcije dveh in več spremenljivk

Funkcije dveh in več spremenljivk Poglavje 3 Funkcije dveh in več spremenljivk 3.1 Osnovni pojmi Definicija 3.1.1. Funkcija dveh spremenljivk je preslikava, ki vsaki točki (x, y) ravninske množice D priredi realno število z = f(x, y),

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 215 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

Realne funkcije. Elementarne funkcije. Polinomi in racionalne funkcije. Eksponentna funkcija a x : R R + FKKT Matematika 1

Realne funkcije. Elementarne funkcije. Polinomi in racionalne funkcije. Eksponentna funkcija a x : R R + FKKT Matematika 1 Realne funkcije Funkcija f denirana simetri nem intervalu D = ( a, a) ali D = [ a, a] (i) je soda, e velja f(x) = f( x), x D; (ii) je liha, e velja f(x) = f( x), x D. Naj bo f denirana D f in x 1, x 2

Διαβάστε περισσότερα

II. LIMITA IN ZVEZNOST FUNKCIJ

II. LIMITA IN ZVEZNOST FUNKCIJ II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Διαβάστε περισσότερα

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil.

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil. Zaporedja števil V matematiki in fiziki pogosto operiramo s približnimi vrednostmi neke količine. Pri numeričnemu računanju lahko npr. število π aproksimiramo s števili, ki imajo samo končno mnogo neničelnih

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Uporabna matematika za naravoslovce

Uporabna matematika za naravoslovce Uporabna matematika za naravoslovce Zapiski predavanj Študijski programi: Aplikativna kineziologija, Biodiverziteta Študijsko leto 203/4 doc.dr. Barbara Boldin Fakulteta za matematiko, naravoslovje in

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k,

D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, Linearna funkcija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, n ᄀ. k smerni koeficient n začetna vrednost D f, Z f Definicijsko območje linearne funkcije so vsa realna števila. Zaloga

Διαβάστε περισσότερα

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Množico vseh funkcijskih vrednosti, ki jih pri tem dobimo, imenujemo zaloga vrednosti funkcije f. Oznaka: Z f

Množico vseh funkcijskih vrednosti, ki jih pri tem dobimo, imenujemo zaloga vrednosti funkcije f. Oznaka: Z f Funkcije Funkcija f : A B (funkcija iz množice A v množico B) je predpis (pravilo, postopek, preslikava, formula,..), ki danemu podatku x A priredi funkcijsko vrednost f (x) B. Množica A je množica vseh

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Računalniško vodeni procesi I

Računalniško vodeni procesi I Šolski center Velenje Višja strokovna šola Velenje Trg mladosti 3, 33 Velenje Računalniško vodeni procesi I Osnove višješolske matematike Interno gradivo - druga, popravljena izdaja Robert Meolic. september

Διαβάστε περισσότερα

Računski del izpita pri predmetu MATEMATIKA I

Računski del izpita pri predmetu MATEMATIKA I Kemijska tehnologija Visokošolski strokovni program Računski del izpita pri predmetu MATEMATIKA I 29. 8. 2013 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument. Ugasni in odstrani mobilni telefon.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Derivacija funkcije Materijali za nastavu iz Matematike 1

Derivacija funkcije Materijali za nastavu iz Matematike 1 Derivacija funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 45 Definicija derivacije funkcije Neka je funkcija f definirana u okolini točke x 0 i

Διαβάστε περισσότερα

Izpit sestavlja 4-5 vprašanj. Vsako ima več podvprašanj.

Izpit sestavlja 4-5 vprašanj. Vsako ima več podvprašanj. PRIMERI IZPITNIH VPRAŠANJ IZ MATEMATIKE JAKA CIMPRIČ, OKTOBER 2004 Izpit sestavlja 4-5 vprašanj. Vsako ima več podvprašanj. 1. Kombinatorika 1.1. Množice in relacije. (1) (Množice) (a) Kako si množice

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

PRIMER UPORABE FUNKCIJ 2. FUNKCIJE ENE SPREMENLJIVKE DEFINICIJA IN LASTNOSTI FUNKCIJE. Upogibni moment. M(X )=F A x qx2 2

PRIMER UPORABE FUNKCIJ 2. FUNKCIJE ENE SPREMENLJIVKE DEFINICIJA IN LASTNOSTI FUNKCIJE. Upogibni moment. M(X )=F A x qx2 2 3 4 PRIMER UPORABE FUNKCIJ Upogibni moment 2. FUNKCIJE ENE SPREMENLJIVKE T (x) =F A qx M(X )=F A x qx2 2 1 2 DEFINICIJA IN LASTNOSTI FUNKCIJE Naj bosta A in B neprazni množici. Enolična funkcija f : A

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a

Διαβάστε περισσότερα

DARJA POTOƒAR, FMF

DARJA POTOƒAR, FMF 7. ²olska ura Tema: Ponovitev Oblika: vaje B 1 Kotne funkcije v pravokotnem trikotniku: A V α A 1 B 1 sin α = AA 1 V A = BB 1 V B cos α = V B 1 V B = V A 1 V A tan α = sin α cos α cos α cot α = sin α =

Διαβάστε περισσότερα

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

Matematika 1. Jaka Cimprič

Matematika 1. Jaka Cimprič Matematika 1 Jaka Cimprič Predgovor Pričujoči učbenik je namenjen študentom tistih univerzitetnih programov, ki vključujejo samo eno leto matematike. Nastala je na podlagi izkušenj, ki jih imam s poučevanjem

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Dragi polinom, kje so tvoje ničle?

Dragi polinom, kje so tvoje ničle? 1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.

Διαβάστε περισσότερα

11.5 Metoda karakteristik za hiperbolične PDE

11.5 Metoda karakteristik za hiperbolične PDE 11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,

Διαβάστε περισσότερα

3.1 Reševanje nelinearnih sistemov

3.1 Reševanje nelinearnih sistemov 3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n

Διαβάστε περισσότερα

Definicija 1. Naj bo f : D odp R funkcija. Funkcija F : D odp R je primitivna funkcija funkcije f, če je odvedljiva in če velja F = f.

Definicija 1. Naj bo f : D odp R funkcija. Funkcija F : D odp R je primitivna funkcija funkcije f, če je odvedljiva in če velja F = f. Nedoločeni integral V tem razdelku si bomo pogledali operacijo, ki je na nek način inverzna odvajanju. Za dano funkcijo bomo poskušali poiskati neko drugo funkcijo, katere odvod bo ravno dana funkcija.

Διαβάστε περισσότερα

Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R.

Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R. II. FUNKCIJE 1. Osnovni pojmi 2. Sestavljanje funkcij 3. Pregled elementarnih funkcij 4. Zveznost Kaj je funkcija? Definicija Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA II Maribor, 2016 Kazalo Uvod v linearno algebro 1 1.1 Matrike................................ 1 1.2 Računanje

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

8. Posplošeni problem lastnih vrednosti

8. Posplošeni problem lastnih vrednosti 8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki

Διαβάστε περισσότερα

Kateri logični shemi imajo matematični izreki? Matematični izreki imajo logično zgradbo implikacije(a=>b) ali zgradbo ekvivalence(a b)

Kateri logični shemi imajo matematični izreki? Matematični izreki imajo logično zgradbo implikacije(a=>b) ali zgradbo ekvivalence(a b) Matematika za inženirje 1 Vprašanja iz uvodnega poglavja Zapišite,kdaj je pravilna katera od logičnih operacij: disjunkcija, konjunkcija, implikacija in ekvivalenca. -Disjunkcija je pravilna (vsaj ena

Διαβάστε περισσότερα

(Ne)rešljiva Rubikova kocka in grupe

(Ne)rešljiva Rubikova kocka in grupe (Ne)rešljiva Rubikova kocka in grupe Maša Lah, Sabina Boršić, Klara Drofenik Mentor: Rok Gregorič Matematično raziskovalno srečanje 24. avgust 2016 Povzetek Cilj našega projekta je bil ugotoviti kriterij

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko: 4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah

Διαβάστε περισσότερα

VAJE IZ MATEMATIKE 2 za smer Praktična matematika. Martin Raič

VAJE IZ MATEMATIKE 2 za smer Praktična matematika. Martin Raič VAJE IZ MATEMATIKE za smer Praktična matematika Martin Raič Datum zadnje spremembe: 3. januar 7 Kazalo. Ponovitev elementarnih integralov 3. Metrični prostori 5 3. Fourierove vrste 4. Funkcije več spremenljivk

Διαβάστε περισσότερα

Bernoullijevo zaporedje neodvisnih poskusov

Bernoullijevo zaporedje neodvisnih poskusov A. Jurišić in V. Batagelj: Verjetnostni račun in statistika 45 Bernoullijevo zaporedje neodvisnih poskusov O zaporedju neodvisnih poskusov X 1, X 2,, X n, govorimo tedaj, ko so verjetnosti izidov v enem

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

predavatelj: doc. Andreja Drobni Vidic

predavatelj: doc. Andreja Drobni Vidic 1 RE ITVE 5. DOMAƒE NALOGE - TOTP - modul MATEMATIKA predavaelj: doc. Andreja Drobni Vidic UPORABA ODVODOV IN INTEGRALI Diferencialni ra un je omogo il re²evanje nalog, za kaere je pred em kazalo, da presegajo

Διαβάστε περισσότερα

10. poglavje. Kode za overjanje

10. poglavje. Kode za overjanje 10. poglavje Kode za overjanje (angl. Authentication Codes) Uvod Računanje verjetnosti prevare Kombinatorične ocene pravokotne škatje (ang. orthogonal arrays, OA) konstrukcije in ocene za OA Karakterizaciji

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

Osnovni teoremi diferencijalnog računa

Osnovni teoremi diferencijalnog računa Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Tena Pavić Osnovni teoremi diferencijalnog računa Završni rad Osijek, 2009. Sveučilište J.J. Strossmayera u Osijeku

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Univerza v Mariboru. Uporaba matematičnih metod v logistiki 1 Priročnik

Univerza v Mariboru. Uporaba matematičnih metod v logistiki 1 Priročnik Univerza v Mariboru Fakulteta za logistiko Uporaba matematičnih metod v logistiki 1 Priročnik BOJANA ZALAR Celje 2009 Izdala: Fakulteta za logistiko Univerze v Mariboru Naslov: Uporaba matematičnih metod

Διαβάστε περισσότερα

KOTNI FUNKCIJI SINUS IN COSINUS

KOTNI FUNKCIJI SINUS IN COSINUS Univerza v Ljubljani Fakulteta za matematiko in fiziko KOTNI FUNKCIJI SINUS IN COSINUS Seminarska naloga pri predmetu Komuniciranje v matematiki Avtor: Zalka Selak Mentor: prof. dr. Tomaţ Pisanski KAZALO:

Διαβάστε περισσότερα

Programi v Matlabu za predmet numerične metode

Programi v Matlabu za predmet numerične metode Programi v Matlabu za predmet numerične metode 18. 04 2002 1 1 Reševanje nelinearnih enačb Napisali bomo program za reševanje nelinearnih enačb z uporabo posameznih metod. Rešujete nelinearne enačbe oblike

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ

ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ Όρια συναρτήσεων. Άσκηση. Ποιό είναι το σύνολο στο οποίο έχει νόημα και ποιό το σύνολο στο οποίο ισχύει καθεμιά από τις ανισότητες: x+2 > 00, > 000, < < ; x 2 x

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

POLINOMI ČETRTE STOPNJE IN ZLATI REZ

POLINOMI ČETRTE STOPNJE IN ZLATI REZ UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Smer (Matematika UN-BO) - 1. stopnja Belma Delić POLINOMI ČETRTE STOPNJE IN ZLATI REZ Delo seminarja 1 Mentor: prof. dr. Milan Hladnik Ljubljana,

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

VVR,EF Zagreb. November 24, 2009

VVR,EF Zagreb. November 24, 2009 November 24, 2009 Homogena funkcija Parcijalna elastičnost Eulerov teorem Druge parcijalne derivacije Interpretacija Lagrangeovog množitelja Ako je (x, y) R 2 uredjeni par realnih brojeva, onda je s (x,

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Posplošena električna dominacija

Posplošena električna dominacija Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Aleš Omerzel Posplošena električna dominacija DIPLOMSKO DELO UNIVERZITETNI ŠTUDIJSKI PROGRAM PRVE STOPNJE

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι

Σημειώσεις Ανάλυσης Ι Σημειώσεις Ανάλυσης Ι 6. Συναρτήσεις Πρωταρχική έννοια στη φυσική είναι η έννοια της συνάρτησης. Π.χ. η θέση ενός σωματιδίου ως συνάρτηση του χρόνου x = f(t) ή x(t). Στη πρώτη περίπτωση προσδιορίζουμε

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x.

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x. ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Ορισός (Τυχαία Μεταβλητή). Οοάζουε τυχαία εταβλητή (τ..) κάθε απεικόιση Χ: Ω για τη οποία το σύολο { ω Ω : Χ(ω) x} έχει προσδιορίσιη πιθαότητα για κάθε x. Τούτο σηαίει ότι η ατίστροφη

Διαβάστε περισσότερα

( pol funkcije), horizontalna ili kosa.

( pol funkcije), horizontalna ili kosa. 4. ANALIZA TOKA FUNKCIJE, EKSTREMI 4. Opci pojmovi Nultocke funkcije - su tocke u kojima je funkcija jednak nula. Za razlomljenu racionalnu funkciju, je kada je brojnik nula. Polovi funkcije - su tocke

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

VAJE IZ MATEMATIKE 2 za smer Praktična matematika. Martin Raič

VAJE IZ MATEMATIKE 2 za smer Praktična matematika. Martin Raič VAJE IZ MATEMATIKE za smer Praktična matematika Martin Raič Datum zadnje spremembe:. maj 4 Kazalo. Ponovitev elementarnih integralov. Metrični prostori 4 3. Fourierove vrste 9 4. Funkcije več spremenljivk

Διαβάστε περισσότερα

Polgrupe i grupe (1) Razišči strukturo asledjih grupoidov: (a) S = R za operacijo x y = x + y + xy, { [ ] 1 x (b) S = 0 1 x R za operacijo možeje matrik, (c) S = R 3 za operacijo vektorski produkt, (d)

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

III. ODVODI FUNKCIJ ENE REALNE SPREMENLJIVKE

III. ODVODI FUNKCIJ ENE REALNE SPREMENLJIVKE III. ODVODI FUNKCIJ ENE REALNE SPREMENLJIVKE 1. Odvjnje funkcij ene spremenljivke Odvjnje je en njpomembnejši opercij n funkcij. Z uporbo odvod, kdr le-t obstj, lko veliko bolje spoznmo vedenje funkcje

Διαβάστε περισσότερα

Čas reševanja je 75 minut. 1. [15] Poišči vsa kompleksna števila z, za katera velja. z 2 +2 z +2 i 2 = Im. 1 2i

Čas reševanja je 75 minut. 1. [15] Poišči vsa kompleksna števila z, za katera velja. z 2 +2 z +2 i 2 = Im. 1 2i Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument. Ugasni in odstrani mobilni telefon.

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO LJUBLJANA, 2014 2 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA Študijska smer: Fizika in matematika SANDRA BOLTA

Διαβάστε περισσότερα

Zbirka rešenih izpitnih nalog iz numeričnih metod

Zbirka rešenih izpitnih nalog iz numeričnih metod Zbirka rešenih izpitnih nalog iz numeričnih metod Borut Jurčič - Zlobec Andrej Perne Univerza v Ljubljani Fakulteta za elektrotehniko Ljubljana 6 Kazalo Iterativno reševanje nelinearnih enačb 4 Navadna

Διαβάστε περισσότερα

Žiga Virk REŠENE NALOGE IZ UVODA V DIFERENCIALNO GEOMETRIJO

Žiga Virk REŠENE NALOGE IZ UVODA V DIFERENCIALNO GEOMETRIJO Žiga Virk REŠENE NALOGE IZ UVODA V DIFERENCIALNO GEOMETRIJO Ljubljana 2015 ii naslov: REŠENE NALOGE IZ UVODA V DIFERENCIALNO GEOME- TRIJO avtorske pravice: Žiga Virk izdaja: prva izdaja založnik: samozaložba

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Jaka Cimprič, Jasna Prezelj REŠENE NALOGE IZ ANALIZE 4

Jaka Cimprič, Jasna Prezelj REŠENE NALOGE IZ ANALIZE 4 Jaka Cimprič, Jasna Prezelj REŠENE NALOGE IZ ANALIZE 4 Ljubljana naslov: REŠENE NALOGE IZ ANALIZE IV avtorske pravice: Jaka Cimprič, Jasna Prezelj izdaja: prva izdaja založnik: samozaložba Jaka Cimprič

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

Diagonalni gra. 1 Predstavitev diagonalnih grafov. Zvone Klun. Maj 2007

Diagonalni gra. 1 Predstavitev diagonalnih grafov. Zvone Klun. Maj 2007 Diagonalni gra Zvone Klun Maj 2007 1 Predstavitev diagonalnih grafov Graf je diagonalen (ang. chordal), e ima vsak cikel dolºine 4 ali ve diagonalo. Kjer je diagonala (ang. chord) povezava med dvema vozli²

Διαβάστε περισσότερα

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης 1/8 Κατάλληλες εσωτερικές μονάδες *HVZ4S18CB3V *HVZ8S18CB3V *HVZ16S18CB3V Σημειώσεις (*5) *4/8* 4P41673-1 - 215.4 2/8 Ρυθμίσεις χρήστη Προκαθορισμένες τιμές Θερμοκρασία χώρου 7.4.1.1 Άνεση (θέρμανση) R/W

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Skripta za vaje iz Matematike II (UNI + VSP) Ljubljana, determinante Determinanta det A je število, prirejeno

Διαβάστε περισσότερα

LJUDSKA UNIVERZA NOVA GORICA. MATEMATIKA 1 2. del. EKONOMSKI TEHNIK PTI gradivo za interno uporabo. Pripravila: Mateja Strnad Šolsko leto 2011/12

LJUDSKA UNIVERZA NOVA GORICA. MATEMATIKA 1 2. del. EKONOMSKI TEHNIK PTI gradivo za interno uporabo. Pripravila: Mateja Strnad Šolsko leto 2011/12 LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA 1 2. del EKONOMSKI TEHNIK PTI gradivo za interno uporabo Pripravila: Mateja Strnad Šolsko leto 2011/12 KAZALO 1 POLINOMI... 1 1.1 Polinomi VAJE... 1 1.2 Operacije

Διαβάστε περισσότερα