Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις."

Transcript

1 C:\Documens nd Seings\kpig\Deskop\ G S 6.doc Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις. Στα υποδείγματα με πολυωνυμικά κατανεμημένες διαχρονικές επιδράσεις υποθέτουμε ότι η μορφή της επίδρασης της μεταλητής στις τιμές της μεταλητής ακολουθεί κάποια συγκεκριμένη συμπεριφορά και όχι μια εκ των προτέρων ακαθόριστη συμπεριφορά μορφή όπως γίνεται στα υποδείγματα των διαχρονικών επιδράσεων που αναπτύξαμε στην αρχή αυτού του κεφαλαίου. Για να γίνουμε περισσότερο συγκεκριμένοι στο απλό υπόδειγμα των διαχρονικά κατανεμημένων επιδράσεων: ε... M m Διαχρονικές Επιδράσεις της μεταλητής στις τιμές της μεταλητής f z z z z o Σχεδιάγραμμα. Πολυωνυμική Μορφή των Διαχρονικών Επιδράσεων της μεταλητής στην μεταλητή. Υποθέτουμε ότι οι συντελεστές,,,..., m προέρχονται από μια πολυωνυμική κατανομή της μορφής: f... με,,,..., m Η σχέση είναι ένα πολυώνυμο αθμού το οποίο χρησιμεύει για να προσεγγίσουμε τους συντελεστές,,,..., m που εκφράζουν τις διαχρονικές επιδράσεις της ερμηνευτικής μεταλητής στην διαμόρφωση των τιμών της ερμηνευμένης μεταλητής. Στο Σχεδιάγραμμα παρουσιάζουμε μια τέτοια πιθανή μορφή αντίδρασης της εξαρτημένης μεταλητής σε μια μεταολή της ερμηνευτικής ανεξάρτητης μεταλητής. Με άση τα παραπάνω η γενική μορφή ενός υποδείγματος με πολυωνυμικά κατανεμημένες χρονικές επιδράσεις θα μπορούσε να γραφεί ως εξής: ε 4 ή... M m m ε ο 5 --

2 C:\Documens nd Seings\kpig\Deskop\ G S 6.doc όπου,,,,..., m,,,...,γ, o f o ,,,, m είναι παράμετροι υπό εκτίμηση. Η Μέθοδος Εκτίμησης των Παραμέτρων του Υποδείγματος. Για δεδομένο αριθμό χρονικών υστερήσεων m και τον αθμό του πολυώνυμου m γ ε ο με την υπόθεση ότι : f o... ν το υπόδειγμα μπορεί να εκτιμηθεί με την μέθοδο των απλών ελάχιστων τετραγώνων. Έστω ότι ο αθμός του πολυωνύμου είναι και ο αριθμός των χρονικών επιδράσεων είναι m5, τότε μπορούμε να προσεγγίσουμε τους συντελεστές των χρονικών υστερήσεων ως εξής: f 8 Έτσι για,,,..., s5 οι συντελεστές των χρονικών υστερήσεων θα μπορούσαν να προκύψουν ως εξής: ƒ α ƒ α α α α 9 ƒ α α α α 5 : : : : : : : : : : : : : : : : : : 5 ƒ5 α 5α 5 α 5 α Αντικαθιστούμε τους συντελεστές στο γ s 5 ε ο μπορούμε να λάουμε: α ε γ α α α α α - α α α α - : α sα s α s α -5 ε Μετά από μερική επεξεργασία μπορούμε να εκτιμήσουμε τους συντελεστές ως εξής : γ α α α

3 C:\Documens nd Seings\kpig\Deskop\ G S 6.doc α ε Δημιουργώντας τις μεταλητές,,, w i ανάλογα με τον αθμό του πολυωνύμου i w w w w τότε το ασικό υπόδειγμα των διαχρονικά κατανεμημένων υστερήσεων γράφεται ως εξής: α αw αw αw αwε Το παραπάνω υπόδειγμα μπορεί πλέον να εκτιμηθεί με την μέθοδο των απλών ελαχίστων τετραγώνων. ˆ, ˆ, ˆ και ˆ Η μέθοδος των απλών ελάχιστων τετραγώνων μπορεί να εφαρμοσθεί ως εξής: Αν είναι κάποιες ελάχιστων τετραγώνων εκτιμήσεις των παραμέτρων,, και τότε αυτές μπορούν να εκτιμηθούν ελαχιστοποιώντας το άθροισμα : ˆ, ˆ, ˆˆ T ˆ ˆ ˆ ˆ min w w w Έχοντας εκτιμήσει τις παραμέτρους i με i,,..., m, έστω i για i,,..., m, μπορούμε να εκτιμήσουμε τις παραμέτρους ως εξής: ƒ o για,,,,.,5 Αναλυτικότερα η παραπάνω σχέση μπορεί για,,, να γράφεί ως εξής: ˆ f ˆ ˆ ˆ ˆ Για ˆ f ˆ ˆ ˆ ˆ ˆ ˆ ˆ Για ˆ f ˆ ˆ ˆ ˆ ˆ 4ˆ 8ˆ Για Εναλλακτικά το παραπάνω υπόδειγμα θα μπορούσε να γραφεί και ώς εξής: i w i i ε όπου s 5 i τ τ τ w i για ι,,..., και s 5 i τ τ τ w i για i,,, είναι η μετασχηματισμένη μεταλητή ασισμένη στην ανεξάρτητη μεταλητή σε σχέση πάντοτε και με την παράμετρο. Επιπλέον αντικαθιστώντας τις σταθμίσεις s 5 i τ τ τ w i τό αρχικό υπόδειγμα μπορεί να γραφεί ώς: m i γ τ τ i ι τ ε --

4 C:\Documens nd Seings\kpig\Deskop\ G S 6.doc ˆ f ˆ ˆ ˆ ˆ ˆ 9ˆ 7ˆ Για Αν για παράδειγμα έχουμε ένα πολυώνυμο δευτέρου αθμού και οι εκτιμήσεις των παραμέτρων,,, και είναι: ˆ 4.6 ˆ 4.8 ˆ 6.7 ˆ.57 Τότε οι υπό εκτίμηση επιδράσεις μιας μεταολής της μεταλητής ως εξής: ˆ f ˆ ˆ ˆ ˆ ˆ 4.8 Για Για Για στην μεταλητή ˆ f ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ f ˆ ˆ ˆ ˆ ˆ ˆ 4ˆ θα υπολογισθεί Για ˆ f ˆ ˆ ˆ ˆ ˆ 9ˆ

5 C:\Documens nd Seings\kpig\Deskop\ G S 6.doc Αριθμητική Εφαρμογή. Για να γίνει μια αριθμητική παρουσίαση της εκτίμησης και της χρησιμοποίησης των υποδειγμάτων με Πολυωνυμικές Κατανεμημένες Διαχρονικές Επιδράσεις, στον Πίνακα παρουσιάζουμε 8 παρατηρήσεις για δύο μεταλητές και, για να εκτιμήσουμε ένα υπόδειγμα μορφής: ε Έχοντας υποθέσει ότι οι συντελεστές,, και προσεγγίζουν μη πολυωνυμική κατανομή της μορφής :,,,fααα Πόλυώνυμο ου αθμού ΠΙΝΑΚΑΣ : Στοιχεία για τις μεταλητές και του υποδείγματος. Πηγή: Υποθετικά Δεδομένα. 99: 994: : : : : : 46 4 : 5 PCON YD Χρονοδιάγραμμα : Γραφική παρουσίαση των δεδομένων στον Πίνακα 5. Με άση τα παραπάνω έχουμε να εκτιμήσουμε ένα υπόδειγμα με m χρονικές επιδράσεις, με 4 συντελεστές χρονικά κατανεμημένων υστερήσεων οι οποίες προσεγγίζονται με ένα πολυωνυμικό δευτέρου αθμού. -4-

6 C:\Documens nd Seings\kpig\Deskop\ G S 6.doc -5- Εφ όσον γνωρίζουμε τον αθμό του Πολυωνύμου τότε μπορούν οι συντελεστές χρονικών επιδράσεων,,, μπορούν να γραφούν ως εξής: Π Με άση την παραπάνω σχέση, μπορούμε να γράψουμε τους συντελεστές χρονικών υστερήσεων: Π4 Αντικαθιστώντας τις παραπάνω σχέσεις στο αρχικό υπόδειγμα Π, λαμάνοντας: Μετά από μια σειρά από απλούς μετασχηματισμούς, λαμάνουμε: Μπορούμε να εκτιμήσουμε τις παραμέτρους του παραπάνω υποδείγματος εφαρμόζοντας την απλή μέθοδο των ελαχίστων τετραγώνων ως εξής: Δημιουργούμε τις μεταλητές,, i w i Wo--- W--- W-4-9- Οι τρεις αυτές μεταλητές παρουσιάζονται αριθμητικά με άση τα δεδομένα του Πίνακα, στον Πίνακα Π. Έχοντας αυτές τις μεταλητές το υπό εκτίμηση πλέον υπόδειγμα θα είναι: o w w w ε Π8 Από αυτές τις εκτιμήσεις μπορούμε να λάουμε τους συντελεστές χρονικών υστερήσεων ως εξής:,,,fzααzαz Χρονική. Επίδραση. Συντελεστές Χρονικών Υστερήσεων f f 4 f 9 f

7 C:\Documens nd Seings\kpig\Deskop\ G S 6.doc o ˆ, ˆ, ˆ και ˆ Η μέθοδος των απλών ελάχιστων τετραγώνων μπορεί να εφαρμοσθεί ως εξής: Αν είναι κάποιες ελάχιστων τετραγώνων εκτιμήσεις των παραμέτρων,, και τότε αυτές μπορούν να εκτιμηθούν ελαχιστοποιώντας το άθροισμα : ˆ, ˆ, ˆˆ T ˆ ˆ ˆ ˆ min w w w Η ελαχιστοποίηση του παραπάνω αθροίσματος μπορεί να γίνει αλγερικά εφαρμόζοντας την αλγερική προσέγγιση της μεθόδου των απλών ελάχιστων τετραγώνων λαμάνοντας:

8 C:\Documens nd Seings\kpig\Deskop\ G S 6.doc Πίνακας :Δημιουργία των μετασχηματισθέντων μεταλητών wo, w και w. Έτος Υ Χ Wo--- W--- W : 994: : : : : : : Πηγή: Εκτιμήσεις μας. Με άση τα παραπάνω το υπό εκτίμηση υπόδειγμα θα είναι: Σταθερά ε ε ε ε ε w ε [ ] [ ][ ] Το υπό εκτίμηση υπόδειγμα υπό μορφή μητρών γράφεται ως εξής W ε Στο παράρτημα αυτού του,,, και μέρους παρουσιάζουμε αναλυτικά την διαδικασία εκτίμησης των παραμέτρων. Από την εφαρμογή της μεθόδου των ελαχίστων τετραγώνων προέκυψε ότι: ˆ w 6.7w.57w -7-

9 C:\Documens nd Seings\kpig\Deskop\ G S 6.doc ΣχεΔιάγραμμα : Οι εκτιμηθέντες Συντελεστές Χρονικών Επιδράσεων. \ Θα πρέπει να επισημάνουμε ότι το υπόδειγμα αυτό έχει εκτιμηθεί γνωρίζοντας από πριν ότι ο αριθμός των χρονικών επιδράσεων είναι m και ότι η κατανομή των συντελεστών ακολουθούν ένα πολυώνυμο δευτέρου αθμού. Στην πραγματικότητα όμως αυτά στα δύο μεγέθη δεν είναι γνωστά εκ των προτέρων. Μπορούμε όμως να τα υπολογίσουμε με άση τις επαναληπτικές διαδικασίες. Στο αμέσως επόμενο μέρος παρουσιάζουμε την διαδικασία εκτίμησης ταυτόχρονα των παραμέτρων m και του υποδείγματος με πολυωνυμικά κατανεμημένες επιδράσεις. -8-

10 C:\Documens nd Seings\kpig\Deskop\ G S 6.doc -9-

Άσκηση Οικονομετρίας ΙΙ. . (Υποδείγματα με Διαχρονικά Κατανεμημένες Επιδράσεις 1 )

Άσκηση Οικονομετρίας ΙΙ. . (Υποδείγματα με Διαχρονικά Κατανεμημένες Επιδράσεις 1 ) Άσκηση Οικονομετρίας ΙΙ.. (Υποδείγματα με ιαχρονικά Κατανεμημένες Επιδράσεις ) Περιεχόμενα. Γενικά. Οικονομετρικά Υποδείγματα με ιαχρονικά Κατανεμημένες Επιδράσεις. Η Αντίδραση της Μέσης Τιμής της Αμόλυβδης

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος.

ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. :\Documens and Seings\kpig\Deskop\basikh askhsh aaaa.doc ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΕΞΕΙΔΙΚΕΥΣΗ-ΕΚΤΙΜΗΣΗ-ΑΝΑΛΥΣΗ- ΠΡΟΒΛΕΨΗ- ΣΕΝΑΡΙΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟ

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. x x

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. x x ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, --, ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ Βαρούτης Ποια είναι η γενική μορφή των πολυωνύμων παρεμβολής των μεθόδων Newto και grge; Τα πολυώνυμα παρεμβολής

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι.

ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΙΚΑΙΟΣ ΤΣΕΡΚΕΖΟΣ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ . ΒΑΣΙΚΗ ΑΣΚΗΣΗ. Έχετε στην διάθεση σας ( Πίνακας ) στιχεία από

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. C:\WINDOWS\Επιφάνεια εργασίας\kkkk\kef_2.doc

ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. C:\WINDOWS\Επιφάνεια εργασίας\kkkk\kef_2.doc ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ Στατικά Σχήματα Αλληλεξαρτήσεων Σε ένα Στατικό Οικονομετρικό Υπόδειγμα οι διαχρονικές αλληλεπιδράσεις μεταξύ των μεταβλητών του εξαντλούνται εντός μιας χρονικής

Διαβάστε περισσότερα

Γενική μορφή. β β β β. i=1,2,,n ο αριθμός των παρατηρήσεων k ο αριθμός των ανεξάρτητων μεταβλητών 2 1,2

Γενική μορφή. β β β β. i=1,2,,n ο αριθμός των παρατηρήσεων k ο αριθμός των ανεξάρτητων μεταβλητών 2 1,2 Γενική μορφή Y = + + +... + + u,, k k, =,,,n ο αριθμός των παρατηρήσεων k ο αριθμός των ανεξάρτητων μεταλητών Y = + Y,,... k, u Y,,... k, u Y=, =, =, u= Y, n, n... n k, n k un u = Y ή = ΔY Δ Το αντιπροσωπεύει

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ . ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ (RANK REGRESSION).1 Μονότονη Παλινδρόμηση (Monotonic Regression) Από τη γραφική παράσταση των δεδομένων του προηγουμένου προβλήματος παρατηρούμε ότι τα ζευγάρια (Χ i, i )

Διαβάστε περισσότερα

Σηµειώσεις Οικονοµετρίας Ι.. ικαίος Τσερκέζος

Σηµειώσεις Οικονοµετρίας Ι.. ικαίος Τσερκέζος Ο ΚΕΦΑΛΑΙΙΟ 33 Η ΣΣΥΜΜΕΕΤΤΑΒΛΗΤΤΟΤΤΗΤΤΑ ΤΤΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΜΕΕΓΓΕΕΘΩΝ.. (ΣΣΥΣΣΧΕΕΤΤΙ ( ΙΣΣΗ) ) Γραµµική και Μη Γραµµική Συσχέτιση. Συντελεστής Αυτοσυσχέτισης. Μνήµη Χρονοσειρών. 8 7 6 F F F3 F4 F5 F6 F7

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

x,f με j 012,,,...,n x,x S x f S x είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S x S x y y Μέθοδος κυβικών splines: Έστω ότι έχουμε τα δεδομένα

x,f με j 012,,,...,n x,x S x f S x είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S x S x y y Μέθοδος κυβικών splines: Έστω ότι έχουμε τα δεδομένα Μέθοδος κυβικών sples: Έστω ότι έχουμε τα δεδομένα,f με,,,...,,. Για κάθε διάστημα βρίσκουμε ένα πολυώνυμο παρεμβολής 3 ης τάξης S,,..., έτσι ώστε να ισχύουν τα παρακάτω: Συνθήκη Α: S f, S f S Συνθήκη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. C:\Documents and Settings\ioanna\Desktop\ioan_1\Skef_2.doc

ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. C:\Documents and Settings\ioanna\Desktop\ioan_1\Skef_2.doc ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ Στατικά Σχήµατα Αλληλεξαρτήσεων Σε ένα Στατικό Οικονοµετρικό Υπόδειγµα οι διαχρονικές

Διαβάστε περισσότερα

4 Ο προσδιορισμός του εισοδήματος: Οι κρατικές δαπάνες και οι φόροι

4 Ο προσδιορισμός του εισοδήματος: Οι κρατικές δαπάνες και οι φόροι 4 Ο προσδιορισμός του εισοδήματος: Οι κρατικές δαπάνες και οι φόροι Σκοπός Το κεφάλαιο αυτό επεκτείνει την ανάλυση του προσδιορισμού του εισοδήματος προσθέτοντας δύο σημαντικές μεταλητές, δηλ. τις κρατικές

Διαβάστε περισσότερα

y ενός προϊόντος. Στο (Χρονο)Διάγραμμα G. δίδουμε την

y ενός προϊόντος. Στο (Χρονο)Διάγραμμα G. δίδουμε την Τά Υποδείγματα με ιαχρονικά Κατενεμημένες Επιδράσεις. (DISTRIBUTED LAG MODELS). Εξειδίκευση Υποδειγμάτων με ιαχρονικά Κατανεμημένες Χρονικά Επιδράσεις Πρόκειται για την απλούστερη μορφή ενός Υποδείγματος

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση. Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 8ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 8ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 8ο Επιλογή του αριθμού των χρονικών υστερήσεων Στις περισσότερες οικονομικές χρονικές σειρές υπάρχει υψηλή συσχέτιση μεταξύ της τρέχουσας

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου Επιμέλεια Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο Μ.Ε. "ΑΙΧΜΗ" Κ. Καρτάλη 28 Βόλος τηλ. 242 32598 Φροντιστήριο Μ. Ε. «ΑΙΧΜΗ» Μαθηματικά Προσανατολισμού

Διαβάστε περισσότερα

Y Y ... y nx1. nx1

Y Y ... y nx1. nx1 6 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΠΙΚΑΚΩΝ Η χρησιμοποίηση και ο συμβολισμός πινάκων απλοποιεί σημαντικά τα αποτελέσματα της γραμμικής παλινδρόμησης, ιδίως στην περίπτωση της πολλαπλής παλινδρόμησης Γενικά,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΕΣ ΠΑΛΙΝΔΡΟΜΗΣΕΙΣ

ΜΗ ΓΡΑΜΜΙΚΕΣ ΠΑΛΙΝΔΡΟΜΗΣΕΙΣ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 7--05 ΜΗ ΓΡΑΜΜΙΚΕΣ ΠΑΛΙΝΔΡΟΜΗΣΕΙΣ Μ-Ν ΝΤΥΚΕΝ Αναζήτηση της κατάλληλης σχέσης μεταξύ της εξαρτημένης Υ και ανεξάρτητης μεταβλητής Χ Η σχέση μεταξύ της εξαρτημένης μεταβλητής Υ

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr III Όριο Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό,

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΜΕΛΟΣ ΤΗΣ ΔΙΕΘΝΟΥΣ ΚΑΙ ΕΥΡΩΠΑΪΚΗΣ ΕΤΑΙΡΕΙΑΣ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ (RSAI, ERSA) Οικονομική Κρίση και Πολιτικές Ανάπτυξης και Συνοχής 10ο Τακτικό Επιστημονικό

Διαβάστε περισσότερα

Εισαγωγή στην Γραμμική Παλινδρόμηση

Εισαγωγή στην Γραμμική Παλινδρόμηση ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 13-11-015 Εισαγωγή στην Γραμμική Παλινδρόμηση Γραμμική σχέση μεταξύ μεταβλητών Αν. Καθ. Μαρί-Νοέλ Ντυκέν Στόχος Πολύ συχνά, η Τ.Μ. που εξετάζουμε π.χ. η κατανάλωση των νοικοκυριών

Διαβάστε περισσότερα

Επαυξημένος έλεγχος Dickey - Fuller (ADF)

Επαυξημένος έλεγχος Dickey - Fuller (ADF) ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

1 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΑΛΓΟΡΙΘΜΟΙ

1 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΑΛΓΟΡΙΘΜΟΙ Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2017-2018 Τομέας Συστημάτων Παραγωγής Εξάμηνο A Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης 03 ΟΚΤ 2017 ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΗΝ

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

Οικονομετρία. Ετεροσκεδαστικότητα Μέθοδοι εκτίμησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης

Οικονομετρία. Ετεροσκεδαστικότητα Μέθοδοι εκτίμησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης Οικονομετρία Ετεροσκεδαστικότητα Μέθοδοι εκτίμησης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση της μεθόδου εκτίμησης των Γενικευμένων Ελαχίστων

Διαβάστε περισσότερα

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1 I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα

Διαβάστε περισσότερα

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην

Διαβάστε περισσότερα

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001 Άλγεβρα Γενικής Παιδείας Β Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.. Α.. Έστω η πολυωνυµική εξίσωση α ν x ν + α ν- x ν- +... + α x + α 0 0, µε ακέραιους συντελεστές. Αν ο ακέραιος ρ 0 είναι ρίζα της εξίσωσης,

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ Β. Ολοκλήρωση κατά παράγοντες Γενικά η μέθοδος αυτή εφαρμόζεται όταν έχουμε γινόμενο δύο συναρτήσεων Εκφράζεται με τον τύπο της παραγοντικής ολοκλήρωσης: f()g ()d= f()g() - f ()g()d

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

Οικονοµετρικό Υπόδειγµα. Γράφηµα Ροής 1.

Οικονοµετρικό Υπόδειγµα. Γράφηµα Ροής 1. ΕΙΣΑΓΩΓΗ. Μία από τις βασικότερες λειτουργίες της οικονοµετρικής µεθοδολογίας είναι η Συγκεκριµενοποίηση των αλληλεπιδράσεων µεταξύ των διαφόρων οικονοµικών µεγεθών. Η Συγκεκριµενοποίηση αυτή αναφέρεται

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α

Διαβάστε περισσότερα

ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΛΥΣΕΙΣ ΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση (α) Οι συνορθωμένες συντεταγμένες του σημείου P είναι: ˆ 358.47 m, ˆ 4.46 m (β) Η a-psteriri εκτίμηση της μεταβλητότητας

Διαβάστε περισσότερα

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με 5. ΑΚΟΛΟΥΘΙΕΣ Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών,,,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο καλείται πρώτος όρος της ακολουθίας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής

Διαβάστε περισσότερα

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x Γενικά Μαθηματικά Κεφάλαιο Εισαγωγή Αριθμοί Φυσικοί 0,,,3, Ακέραιοι 0,,, 3, Ρητοί,, 0 Πραγματικοί Αν, με, :: x, :: x, :: x, :: x, :: x, :: x, :: x, :: x Συνάρτηση Κάθε διαδικασία αντιστοίχησης η οποία

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.03: Μέθοδοι Ολοκλήρωσης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό. ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY Αν μια συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο, τότε είναι και συνεχής στο σημείο αυτό Αν μια συνάρτηση f είναι συνεχής σ ένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21 Περιεχόμενα Πρόλογος... 15 Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης... 19 1 Αντικείμενο της οικονομετρίας... 21 1.1 Τι είναι η οικονομετρία... 21 1.2 Σκοποί της οικονομετρίας... 24 1.3 Οικονομετρική

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΥΠΟΔΕΙΓΜΑΤΑ ΚΙΝΗΤΟΥ ΜΕΣΟΥ MA(q) ΚΑΙ ΜΙΚΤΑ ΥΠΟΔΕΙΓΜΑΤΑ ARMA (p,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

Παραβιάσεις των κλασσικών υποθέσεων. ο εκτιμητής LS είναι: Οι βασικές ιδιότητες του εκτιμητή είναι:

Παραβιάσεις των κλασσικών υποθέσεων. ο εκτιμητής LS είναι: Οι βασικές ιδιότητες του εκτιμητή είναι: Παραιάσεις των κλασσικών υποθέσεων Στο γραμμικό υπόδειγμα y = x+ u, =,,, ο εκτιμητής LS είναι: ˆ x y = = x = Οι ασικές ιδιότητες του εκτιμητή είναι: ˆ ( ) Var =, αμεροληψία, ˆ σ = x = Επιπλέον αν δεν έχουμε

Διαβάστε περισσότερα

ΕΜΠΕΙΡΙΚΟΙ ΕΛΕΓΧΟΙ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ

ΕΜΠΕΙΡΙΚΟΙ ΕΛΕΓΧΟΙ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ Kεφάλαιο 4 ΕΜΠΕΙΡΙΚΟΙ ΕΛΕΓΧΟΙ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ Εισαγωγή Οι λόγοι για τους οποίους το νεοκλασικό υπόδειγμα εξωγενούς τεχνολογικής προόδου έγινε τόσο δημοφιλές στην οικονομική θεωρία είναι, πρώτον,

Διαβάστε περισσότερα

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1) Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων Γρεβενά Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Ιδιότητες εκτιμώμενης ευθείας παλινδρόμησης με τη μέθοδο των ελαχίστων

Διαβάστε περισσότερα

Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;

Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι; Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Οι συναρτήσεις που θα διαπραγματευτούμε θεωρούνται ότι είναι ολοκληρώσιμες με την έννοια που καθόρισε ο Riemann. Η συνάρτηση

Οι συναρτήσεις που θα διαπραγματευτούμε θεωρούνται ότι είναι ολοκληρώσιμες με την έννοια που καθόρισε ο Riemann. Η συνάρτηση . Αριθμητική ολοκλήρωση Η αριθμητική ολοκλήρωση αφορά την εύρεση της τιμής ενός ορισμένου ολοκληρώματος. Η αρχή αυτής της προσπάθειας ανάγεται στην αρχαιότητα και ένα παράδειγμα είναι ο διαμερισμός (quadrature)

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Mέτρα (παράμετροι) θέσεως

Mέτρα (παράμετροι) θέσεως Mέτρα (παράμετροι) θέσεως Είδη παραμέτρων Σκοπός μέτρων θέσεως Μέτρα θέσεως Αριθμητικός μέσος Επικρατούσα τιμή Διάμεσος Τεταρτημόρια Σύντομη περιγραφή Το πρώτο βήμα της ανάλυσης των δεδομένων, είναι η

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 Βιομαθηματικά BIO-56 Ολοκλήρωση Ντίνα Λύκα Εαρινό Εξάμηνο, 03 lik@biology.uo.gr Ορισμός αντιπαραγώγου ή πρωτεύουσας ή αρχικής συνάρτησης Μια συνάρτηση F ονομάζεται αντιπαράγωγος της σε ένα διάστημα Ι,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Μη γραµµικά υποδείγµατα παλινδρόµησης Έστω µία συνάρτηση f = f(x 1,..., X K ) των µεταβλητών X 1,...,

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.10: Αναπτύγματα σε Σειρά Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.10: Αναπτύγματα

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Ποιους αριθµούς ονοµάζουµε οµόσηµους και ποιους ετερόσηµους; Ποιους αριθµούς ονοµάζουµε ακέραιους; Ποιους αριθµούς ονοµάζουµε ρητούς; Τι ονοµάζουµε απόλυτη τιµή ενός ρητού αριθµού; Τι παριστάνει η απόλυτη

Διαβάστε περισσότερα

ΠΡΟΣΑΡΤΗΜΑ IΙΙ (III-1.1) όπου x i η τιµή της µέτρησης i και Ν ο αριθµός των µετρήσεων.

ΠΡΟΣΑΡΤΗΜΑ IΙΙ (III-1.1) όπου x i η τιµή της µέτρησης i και Ν ο αριθµός των µετρήσεων. ΠΡΟΣΑΡΤΗΜΑ IΙΙ IΙΙ-1. Αξιολόγηση Αναλυτικών εδοµένων ύο όροι που χρησιµοποιούνται ευρύτατα στη διερεύνηση της αξιοπιστίας των δεδοµένων είναι η επαναληψιµότητα (precson) και η ακρίβεια (accurac). Επαναληψιµότητα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2007-08 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα

ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» 1 2.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ιδιότητες των πράξεων Στους πραγματικούς αριθμούς ορίστηκαν οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και με την οήθειά τους η αφαίρεση και η διαίρεση. Για

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $) Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή

Διαβάστε περισσότερα

5 ΠΡΟΟΔΟΙ 5.1 ΑΚΟΛΟΥΘΙΕΣ. Η έννοια της ακολουθίας

5 ΠΡΟΟΔΟΙ 5.1 ΑΚΟΛΟΥΘΙΕΣ. Η έννοια της ακολουθίας 5 ΠΡΟΟΔΟΙ 5.1 ΑΚΟΛΟΥΘΙΕΣ Η έννοια της ακολουθίας Ας υποθέσουμε ότι καταθέτουμε στην τράπεζα ένα κεφάλαιο 10000 ευρώ με ανατοκισμό ανά έτος και με επιτόκιο 2%. Αυτό σημαίνει ότι σε ένα χρόνο οι τόκοι που

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού

Διαβάστε περισσότερα

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...

Διαβάστε περισσότερα

x από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα:

x από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα: ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0 05, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0 Ημερομηνία παράδοσης εργασίας: 9 0 Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

H ΧΡΗΣΙΜΟΤΗΤΑ ΕΝΟΣ ΥΝΑΜΙΚΟΥ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΤΟΧΑΣΤΙΚΩΝ

H ΧΡΗΣΙΜΟΤΗΤΑ ΕΝΟΣ ΥΝΑΜΙΚΟΥ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΤΟΧΑΣΤΙΚΩΝ H ΧΡΗΣΙΜΟΤΗΤΑ ΕΝΟΣ ΥΝΑΜΙΚΟΥ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΤΟΧΑΣΤΙΚΩΝ ΕΞΙΣΩΣΕΩΝ. ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΒΑΣΗ ΤΑ ΥΝΑΜΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΠΡΟΒΛΕΨΕΙΣ. Μία από τις χρησιµότερες εφαρµοές της χρήσης ενός οικονοµετρικού

Διαβάστε περισσότερα

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε Ανάλυση Γ Λυκείου όριο συνάρτησης στο ο Ιδιότητες των ορίων Όριο και διάταξη ΘΕΩΡΗΜΑ ο Αν f >, τότε f > κοντά στο Αν f

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Τύποι Παραγώγισης *** Ολοκλήρωσης

Τύποι Παραγώγισης *** Ολοκλήρωσης Τύποι Παραγώγισης *** Ολοκλήρωσης f( f ( f ( Κανόνες Παραγώγισης και Ολοκλήρωσης 0 0 C (f±g)'=f '±g' 0 X+C (f. g) '=f 'g+fg' 0 KX+C (cf) '=cf ' + X c (f ν )'=νf ν-. f ' + n + c, n - f f g fg g g n n. n-

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: «ΕΦΑΡΜΟΓΕΣ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΕ ΔΙΑΦΟΡΑ ΔΕΔΟΜΕΝΑ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: «ΕΦΑΡΜΟΓΕΣ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΕ ΔΙΑΦΟΡΑ ΔΕΔΟΜΕΝΑ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ» ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΩΝ ΠΟΥΔΩΝ ΤΜΗΜΑΤΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΗ ΠΑΝΕΠΙΤΗΜΙΟ ΜΑΕΔΟΝΙΑ - Α.Τ.Ε.Ι ΟΖΑΝΗ ΔΙΠΛΩΜΑΤΙΗ ΕΡΓΑΙΑ ΘΕΜΑ: «ΕΦΑΡΜΟΓΕ ΟΙΟΝΟΜΕΤΡΙΑ Ε ΔΙΑΦΟΡΑ ΔΕΔΟΜΕΝΑ ΤΗ ΕΛΛΗΝΙΗ ΟΙΟΝΟΜΙΑ» ΦΟΙΤΗΤΗ: ΛΙΑΠΗ ΑΛΕΞΑΝΔΡΟ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Εισαγωγή Οι γεννήτριες συναρτήσεις είναι ένα από τα ισχυρά εργαλεία για μια ενοποιημένη αντιμετώπιση πολλών κατηγοριών προβλημάτων απαρίθμησης Ο Lplce έθεσε πρώτος τις

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Γραφικές παραστάσεις Μαρία Κατσικίνη E-mail: katsiki@auth.gr Web: users.auth.gr/katsiki Παρουσίαση αποτελεσμάτων με τη μορφή πινάκων Πίνακας : χρόνος και ταχύτητα του κινητού

Διαβάστε περισσότερα

Διαφορικές εξισώσεις

Διαφορικές εξισώσεις Διαφορικές εξισώσεις Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικές εξισώσεις τεχνικές 73 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyos.gr 3 / 0 / 0 6 εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΑΓΙΟΥ ΝΙΚΟΛΑΟΥ Τμήμα Διοίκησης Επιχειρήσεων Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ Παλινδρόμηση

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω

Διαβάστε περισσότερα