Μία γενίκευση της Αριθμητικής και της Γεωμετρικής προόδου - Ο Σταθμικός μέσος ως γενικός μέσος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μία γενίκευση της Αριθμητικής και της Γεωμετρικής προόδου - Ο Σταθμικός μέσος ως γενικός μέσος"

Transcript

1 Μί γείκευση της Αιθμητικής κι της Γεμετικής πόδυ - Ο Στθμικός μέσς ς γεικός μέσς Δ. Πγιώτης Λ. Θεδόπυς Σχικός Σύμυς κάδυ ΠΕ0 Πείηψη Στη εγσί υτή μεετάτι η ειδική κτηγί τ κυθιώ όπυ κάθε ός εκτός πό τ πώτ πκύπτει πό τ πηγύμεό τυ υτός ππσισθεί με έ στθεό ιθμό κι στη συέχει στ γιόμε πυ πκύπτει πστεθεί ές επίσης στθεός ιθμός. Οι κυθίες υτές πτεύ γείκευση της ιθμητικής κι της γεμετικής πόδυ. Έ σημτικό πτέεσμ της έευς υτής είι η άδειξη της γεικότητς τυ στθμικύ μέσυ. Έτσι ιπό κι ι τεις μέσι πυ σχετίζτι με τις πόδυς δηδή ιθμητικός γεμετικός κι μικός είι στθμικί μέσι όπυ ι συτεεστές ύτητς ίζτι με συγκεκιμέ τόπ. Εισγγή Η ιί διδσκί στ σχεί πυσιάζει μί ιδιίτεη δυμική διότι στη διάκειά της τάσστι πόψεις κι γεικά συτεείτι η μάθηση. Γι υτό ιπό τ κίμ της τάξης πέπει είι θετικό κι η μφή της διδσκίς τέτι ώστε εξσφίζετι υσιστική ηεπίδση τόσ μετξύ τυ εκπιδευτικύ κι τ μθητώ όσ κι μετξύ τ μθητώ. Οι μθητές θ πέπει μπύ εκφάζυ εεύθε τις πίες κι τις πόψεις τυς. Κτά τ σχικό έτς στ μάθημ της Άγες στη Β Λυκείυ κι συγκεκιμέ στη. η πί φέετι στη έι της κυθίς ύσμε στ μάθημ μί άσκηση η πί ζητύσε τη εύεση τύ δμικύ τύπυ της κυθίς πυ είι τύπς. Στη συέχει ότ έκ εισγγή στη ιθμητική πόδ πάη με τ ισμό της ιθμητικής πόδυ έδσ κι τ ισμό της γεμετικής γι σύγκιση κι συσχέτιση ώστε ι μθητές πμημεύσυ κύτε τυς δύ ισμύς σύμφ με τη «Θεί Επεξεγσίς Πηφιώ». Τότε ές μθητής της τάξης πεμίτς μυ είπε: «Κύιε η κυθί με τύπ: πυ ήκμε στη άσκηση πυ ύσμε πι είι μικτή πόδς;» Τυ πάτησ δε ς εξής: «Από ότι γίζ τέτιες κυθίες δε έχυ μεετηθεί ειδικά κι επμές είι ικτό τ θέμ γι εξεεύηση». Πότει μάιστ στυς μθητές όπις θέει σχηθεί με τ θέμ υτό φυσικά κι με τη δική μυ κθδήγηση. Βέι κές δε σχήθηκε διότι δύσκ ές μθητής κτπιάετι με έ θέμ πυ φήετι στη πιετική τυ επιγή. Εμέ όμς με πημάτισε η ιδέ κι η πτήηση τυ μθητή κι ότ ήκ χό σχήθηκ με τη εξεεύηση τυ ππά θέμτς τ πτεέσμτ της πίς πυσιάζτι στη πύσ εγσί. Γι τη πόδση της έις τ κυθιώ υτώ πτεί κι χησιμπιώ τ ό «γεική

2 πόδς» κτ γί πς τη ιθμητική κι γεμετική πόδ. Είι φεό ότι η γεική πόδς πτεεί τη γείκευση της ιθμητικής κι της γεμετικής πόδυ. Απέφυγ τ ό «γεική πόδς» διότι δε πτεεί γείκευση της μικής πόδυ κι όπς πδεικύετι στιχεί της συτάει κείς κι στη μική πόδ! Οισμός: Μι κυθί IN θ τη έμε γεική πόδ υπάχυ πγμτικί ιθμί κι με 0 τέτιι ώστε γι κάθε IN ισχύει:. Τ ιθμό θ τo έμε συτεεστή της πόδυ κι τ στθεό ό της πόδυ. Ειδικότε 0 κι 0 τότε η πόδς έγετι γεμετική κι ιθμός όγς της πόδυ εώ τότε η πόδς έγετι ιθμητική κι διφά της πόδυ. Ο γεικός ός μις γεικής πόδυ συτήσει τ κι Με τ δμικό τύπ μις γεικής πόδυ μπύμε με διδχικά ήμτ ίσκυμε πιδήπτε ό της. Μπύμε όμς υπγίσυμε τ ιστό ό της πόδυ υτής κι συτήσει τ ιθμώ κι. Σύμφ ιπό με τ ισμό της γεικής πόδυ έχυμε:.. Α τότε πσθέττς κτά μέη τις ισότητες υτές πκύπτει τύπς της ιθμητικής πόδυ: Α τότε πσθέττς στ μέη τ ππά ιστήτ τ ό πίυμε:

3 .. Εκτεώτς στη συέχει τις πάξεις στ δεύτε μέη τ ππά ιστήτ πη της πώτης πκύπτυ ι πκάτ ισότητες:... Τές ππσιάζτς κτά μέη τις ισότητες υτές πίυμε: - Ά ιστός ός μις γεικής πόδυ με πώτ ό τ συτεεστή κι στθεό ό είι:

4 - πυ είι γ- Πτηύμε ότι γι 0 κι πίυμε στός τύπς της γεμετικής πόδυ. Ισχύει η πκάτ πότση. Πότση: Κάθε κυθί με τύπ γεική πόδς. IN με 0 κι είι Απόδειξη Έχυμε: Ά η κυθί -. είι γεική πόδς με συτεεστή κι Άθισμ διδχικώ ό γεικής πόδυ Θ υπγίσυμε τώ τ άθισμ τ πώτ ό μις γεικής πόδυ. Σύμφ με τ ισμό της γεικής πόδυ έχυμε:.. Α τότε ς γστό ισχύει: S [ ] Α τότε πσθέττς κτά μέη τις ππά ισότητες πίυμε: S S

5 5 Ατικθιστώτς στη τεευτί ισότητ τ S με S έχυμε: S S S S S S S S Ά τ άθισμ τ πώτ ό μις γεικής πόδυ είι: S [ ] Γι 0 κι πίυμε S πυ είι τύπς πυ μς δίει τ άθισμ τ πώτ ό γεμετικής πόδυ με πώτ ό τ κι όγ. Πι πχήσυμε στη μεέτη τυ γεικύ μέσυ πυ πυσιάζει κι τ μεγύτε εδιφέ ς δύμε έ πάδειγμ εφμγής τ ππά σε μί άσκηση. Η άσκηση πυ κυθεί είι μί τππίηση της άσκησης της σείδς 08 τυ σχικύ ιίυ της άγες της Β Λυκείυ. Εφμγή: Τ ψυγεί εός φτηγύ πειέχει 0 l εό. Αδειάζυμε 5 l εό κι τ τικθιστύμε με l τιπηκτικό κι l εό. Ύστε δειάζυμε πάι 5 l τυ μείγμτς κι τ τικθιστύμε με l τιπηκτικό κι l εό κ..κ. Α D η πσότητ τυ εύ στ ψυγεί φύ εφμστεί η διδικσί φές είτε τ δμικό τύπ της κυθίς D κι στη συέχει εκφάσετε τ ιστό ό της κυθίς υτής συτήσει τυ.

6 Λύση Έστ D η πσότητ τυ εύ στ ψυγεί τυ φτηγύ φύ εφμστεί η διδικσί φές. Κτά τη επόμεη φά εφμγής της διδικσίς είι πφές ότι η πσότητ τυ εύ στ ψυγεί θ είι: 7 D D 8 Πτηύμε ιπό ότι η κυθί D είι γεική πόδς με 7 D κι. 8 Επμές σύμφ με τ τύπ ιστός ός της συτήσει τυ είι: D D Ο γεικός μέσς Αφήσμε τη μεέτη τυ γεικύ μέσυ γι τ τές όγ της σπυδιότητς πυ πυσιάζει η έι υτή. Έστ γ τεις διδχικί όι μις γεικής πόδυ. Έχυμε: a γ & Α φιέσυμε τ μέη της πό τ μέη της πίυμε: γ γ γ γ Τώ Α - τότε είι γ κι Α - τότε

7 7 γ Ατίστφ. Έστ κι γ τεις ιθμί. Έχυμε τις πειπτώσεις:. Α γ κι τότε πδεικύετι ότι ι ιθμί κι γ είι διδχικί όι γεικής πόδυ με - κι.. Α γ τότε πφώς ι ιθμί κι γ είι διδχικί όι γεικής πόδυ. Στη πείπτση υτή ι ιθμί κι δε ίζτι μσήμτ.. Α κι υπάχει πγμτικός ιθμός IR { 0} τέτις ώστε ισχύει: γ τότε ι ιθμί κι γ είι διδχικί όι γεικής πόδυ. Πάγμτι πό τη σχέση φύ πκύπτει ότι γ 5. Θέττς πίυμε: γ 5 γ κι έχυμε: γ γ γ γ γ γ γ γ Ά ι ιθμί συτεεστή κι στθεό ό κι γ είι διδχικί όι γεικής πόδυ με γ. Οισμός: Έστ κι γ δύ πγμτικί ιθμί κι ές θετικός πγμτικός ιθμός. Ο ιθμός γ θ έγετι γεικός μέσς τ ιθμώ κι γ με συτεεστή. Πτήηση: Εμηεύτς τ γεικό μέσ δύ ιθμώ κι γ με συτεεστή ότ γ φέυμε τ εξής:

8 8. Ότ φεόμστε στ γεικό μέσ δύ ιθμώ η σειά με τη πί θ φέυμε τυς δύ ιθμύς δε μπεί είι τυχί διότι άς είι γεικός μέσς τ ιθμώ κι γ με συτεεστή κι άς τ ιθμώ γ κι. γ. Ο γεικός μέσς τ ιθμώ κι γ είι άμεσ στυς ιθμύς κι γ κι τυτίζετι με τ στθμικό μέσ υτώ με συτεεστές - ύτητς κι τίστιχ. γ. Α γεικός μέσς τ ιθμώ κι γ με συτεεστή τότε ιθμός διφέει πό τ όσ πό τ γ Πάδειγμ: Γι τυς ιθμύς 5 κι 9 ισχύει:. Ά ι ιθμί υτί είι διδχικί όι γεικής πόδυ με γ κι 5 8 Γι επήθευση έχυμε: 5 κι 9 Τ είι γεικός μέσς τ ιθμώ 5 κι 9 με συτεεστή δηδή τ διπάσι τυ 5 0 διφέει πό τ όσ διφέει τ διπάσι τυ πό τ 9. Α 5 τότε ιστός ός της πόδυ υτής σύμφ με τ τύπ είι: 5. Αιθμητικός γεμετικός κι μικός μέσς ς γεικί μέσι Ο ιθμητικός μέσς δύ ιθμώ κι είι γεικός μέσς υτώ με. Αυτό είι μεόμε φύ μί ιθμητική πόδς είι κι γεική με. Τ ίδι ισχύει κι γι τ γεμετικό μέσ δηδή γεμετικός μέσς δύ θετικώ ιθμώ κι πυ είι ιθμός είι γεικός μέσς τ ιθμώ υτώ με συτεεστή: φύ ι ιθμί κι είι διδχικί όι γεμετικής πόδυ πυ είι κι γεική πόδς. Πάγμτι έχυμε:

9 9 Μετά πό υτά γειέτι τ εώτημ: Μήπς ισχύει τ ίδι κι γι τ μικό μέσ δύ μόσημ ιθμώ κι ; Ως γστό μικός μέσς τ ιθμώ υτώ είι ιθμός: Εύκ η ππά πάστση μπεί γφτεί ς εξής: Πτηύμε ιπό ότι κι μικός μέσς δύ μόσημ ιθμώ κι είι γεικός μέσς υτώ με συτεεστή. Σημείση: Υπάχυ κι άι μέσι με ιδιίτεη μσί όπς π. χ. τιμικός μέσς δύ μόσημ ιθμώ κι πυ είι ιθμός. Απ- δεικύετι εύκ ότι κι τιμικός μέσς δύ μόσημ ιθμώ κι είι γεικός μέσς υτώ με συτεεστή. Αξίζει κόμη φεθεί ότι δύ θετικώ ιθμώ κι γεμετικός μέσς είι επίσης στθμικός μέσς υτώ με συτεεστές ύτητς κι μικός με κι κι τιμικός με κι τίστιχ. Αγεική πόδς κι μική πόδς Στη συέχει τ εώτημ πυ τίθετι είι: Μήπς μί μική πόδς είι κι γεική; Θ πσπθήσυμε πτήσυμε σ υτό τ εώτημ μέσ πό έ πάδειγμ. Έστ η κυθί:

10 0 8 0 Είι πφές ότι η κυθί υτή πτεεί μική πόδ. Έτσι τ είι μικός μέσς τ ιθμώ κι Σύμφ με τ ππά τ. θ είι γεικός μέσς τ ιθμώ κι με συτεεστή: πυ εύκ επηθεύετι ότι ισχύει δηδή: Ά ι ιθμί κι είι διδχικί όι γεικής πόδυ με γ 8 κι Γι επήθευση έχυμε: κι Όμς Ά η κυθί: δε είι γεική πόδς. Κάθε τιάδ διδχικώ ό της όμς όπς είδμε είι διδχικί όι γεικής πόδυ. Η τιμή τυ είι διφετική γι κάθε τιάδ κι γι υτό μί μική πόδς δε είι γεική. Γεικά κι γ είι διδχικί όι μις

11 μικής πόδυ τότε ι ιθμί υτί πτεύ διδχικύς όυς μις γεικής πόδυ με. Εδιφέ πυσιάζει η πότση πυ κυθεί η γ πί πτεεί τίστφη πότση της ππά. Πότση: Έστ μί κυθί κάθε ΙΝ ι όι κι ΙΝ με 0 γι κάθε ΙΝ. Α γι πτεύ διδχικύς όυς μις γε- ικής πόδυ με τότε η κυθί ΙΝ είι μική πόδς. Απόδειξη Ακεί πδείξυμε ότι η κυθί ΙΝ είι ιθμητική πόδς. Έχυμε: Αφύ ι ιθμί κι είι διδχικί όι γεικής πόδυ με έπετι ότι διότι τότε φύ ι ιθμί δη- κι είι διδχικί όι γεικής πόδυ θ ήτ δή θ είχμε άτπ. Επμές είι: πό όπυ πίυμε: Επειδή η τεευτί ισότητ ισχύει γι κάθε ΙΝ έπετι ότι η διφά δύ διδχικώ ό της κυθίς ΙΝ είι στθεή. Ά η κυθί υτή είι ιθμητική πόδς πότε η κυθί ΙΝ είι μική πόδς.

12 Ο στθμικός μέσς ς γεικός μέσς Είδμε πι πά ότι τόσ γεμετικός μέσς όσ κι μικός δύ θετικώ ιθμώ είι ι στθμικί μέσι τ ιθμώ υτώ με άγυς συτεεστές ύτητς. Τ εώτημ πυ τίθετι τώ είι μήπς υτό μπεί γεικευθεί κι γι με > θετικύς ιθμύς; Η πάτηση δίετι στ επόμε θεώημ. Θεώημ I: Έστ με θετικί πγμτικί ιθμί. Υπάχυ θετικί ιθμί κι τέτιι ώστε γεμετικός μέσς G κι μικός μέσς Η τ ιθμώ εκφάζτι ς ε- ξής: G κι H Απόδειξη Α θέσυμε: τότε εύκ πδεικύετι ππσιάζτς χιστί ότι ισχύει: γεμετικός μέσς. G Επίσης θέσυμε: έχυμε:

13 H μικόςμέσς. Από τ ππά θεώημ πκύπτει ότι στθμικός μέσς είι γεικός μέσς. Επμές ιθμητικός γεμετικός κι μικός μέσς ιθμώ είι ειδικές πειπτώσεις υτύ. Αξίζει σημειθεί κόμη πς η έι τυ στθμικύ μέσυ είι σύμφη με τη έι της μέσης τιμής στη Θεί Πιθτήτ κι γεικά με τη έι της μέσης τιμής. Πτηύμε τώ ότι με είι πγμτικί ιθμί ό- πυ δε είι όι ίσι μετξύ τυς κι τότε ισχύει: θετικί πγμτικί ιθμί min < < ma δηδή είι ιθμί πυ δε είι όι ίσι μετξύ τυς τότε στθμικός μέσς υτώ με τίστιχ άη είι ές ιθμός άμεσ στ μικότε κι στ μεγύτε πό υτύς. Σύμφ με τ επόμε θεώημ ισχύει κι τ τίστφ τυ ππά συμπεάσμτς δηδή έχυμε πγμτικύς ιθμύς πυ δε είι όι ίσι μετξύ τυς τότε πισδήπτε ιθμός πυ είι άμεσ στ μικότε κι στ μεγύτε πό υτύς μπεί πτεέσει στθμικό μέσ υτώ με κάπι τίστιχ άη. Έχυμε ιπό τ θεώημ: ΘεώημII: Έστ με πγμτικί ιθμί με. Α < τότε γι κάθε o IR με < o < υπάχυ θετικί πγμτικί ιθμί τέτιι ώστε: o Απόδειξη Θέτυμε κι

14 Θ εκφάσυμε τ συτεεστή συτήσει τ i i κι τ j j 0 ώστε ισχύει η ισότητ τυ συμπεάσμτς. Έχυμε: Ατικθιστώτς στη τεευτί ισότητ τυς ιθμύς i i πίυμε: Πφώς ισχύει:.. Συεπώς < < Επίσης είι κι 0 < πότε πό τη πίυμε: > Είι πφές τώ ότι ι ιθμί επηθεύυ τη ισότητ τυ συμπεάσμτς κι υτό κηώει τη πόδειξη τυ θεήμτς. Πάδειγμ: Έστ ι ιθμί κι 0. Θ ύμε συτεεστές κι ώστε τ 9 είι στθμικός μέσς τ ιθμώ υτώ με συτεεστές ύτητς τυς ιθμύς κι τίστιχ. Πάγμτι θέσυμε κι τότε σύμφ με τ πηγύμε θεώημ θ είι:

15 Εύκ επηθεύετι στη συέχει ότι ισχύει ισχυισμός μς δηδή: Ά στθμικός μέσς τ ιθμώ κι 0 με συτεεστές ύτητς κι 8 τίστιχ είι τ 9. Σχόι: Τ θεώημ ΙΙ είι γεικότε τυ θεήμτς Ι διότι κι γεμετικός μέσς θετικώ ιθμώ πυ δε είι όι ίσι μετξύ τυς ά κι μικός μέσς υτώ είι άμεσ στ μικότε κι στ μεγύτε πό υτύς τυς - ιθμύς. Επμές τ θεώημ Ι μπεί θεηθεί ς πόισμ τυ θεήμτς ΙΙ. Επειδή όμς τ θεώημ Ι φέετι σε δύ πύ γστύς μέσυς χκτήισ τη πότση υτή ς θεώημ. Ακόμη πό τις πδείξεις τ ππά θεημάτ πκύπτει ότι ι συτεεστές ύτητς τ ιθμώ γι κάθε στθμικό μέσ υτώ δε είι μδικί. 5 Ε π ί γ ς Επειδή μεικά πό τ πτεέσμτ της εγσίς υτής μπύ τ πάγυ κι ι ίδιι ι μθητές με τη κθδήγησή μς θ μπύσε δθεί η μεέτη εός μέυς τυ ππά θέμτς ς δημιυγική εευητική εγσί σε μθητές της Β Λυκείυ. Μπύ πχθύ κι ίες σκήσεις τίστιχες τ σκήσε της ιθμητικής κι της γεμετικής πόδυ. Ακόμη η εγσί υτή μπεί πτεέσει κι πάδειγμ γι άες δημιυγικές εευητικές εγσίες όπυ φμή γι τη εκπόησή τυς ίσς πτεέσυ πτηήσεις ή άθη μθητώ. Κό είι δίυμε τη ευκιί στυς μθητές γι εξεεύηση κι πειμτισμό. Με τ υστηό κι φμιστικό τόπ διδσκίς πυσιάζετι τ τεικό πϊό εώ η πεί της σκέψης πυ δηγεί στ πτέεσμ πκύπτετι. Ατίθετ η εξεεύηση κι πειμτισμός ηθύ τυς μθητές γίσυ τη μφιά κι τη γητεί της έευς κι της επιστημικής κάυψης! Αάγ πτέεσμ μπύμε έχυμε κι ότ γώυμε τη διδσκί μς με τη μφή της κθδηγύμεης κάυψης. Ας μη ξεχάμε ότι ι μθητές δε είι κεά δχεί πυ πέπει τ γεμίσυμε με γώσεις. Είι πσπικότητες με κάπι υπόθ γώσε στ πί στηιχθύ μπύ πάγυ πές φές τη έ γώση. Τές με τη εγσί υτή ι μθητές θ δυ τ τόπ κι τ ό της γείκευσης μις έις εός τύπυ ή εός θεήμτς. Έτσι θ κτήσυ κύτε τη γεική μφή εξίσσης ευθείς τη γείκευση τυ Πυθγείυ Θεήμτς κθώς

16 κι τ όμ τ συημιτό πυ πτεεί τη ειί διτύπση τυ Πυθγείυ θεήμτς κι τ θεημάτ ξείς κι μείς γίς. Επίσης κό είι στη Γεμετί της Β Λυκείυ ύυμε κι τη άσκηση της σείδς 0 πυ είι τ θεώημ Stewart κι κθδηγύμε κτάη τυς μθητές ώστε συμπείυ ότι τ θεώημ υτό πτεεί γείκευση τυ υ θεήμτς τ διμέσ.

1o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ ( ) Αριθµητική τιµή του πολυώνυµου ( ) Το πολυώνυµο ( ) = = =.

1o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ ( ) Αριθµητική τιµή του πολυώνυµου ( ) Το πολυώνυµο ( ) = = =. ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ Πλυώυµ τυ x λέγετι κάθε πράστση της µρφής : x + x ++ x+ όπυ,,,, είι στθερί πργµτικί ριθµί κι φυσικός ριθµός Τ πλυώυµ τυ x συµβλίζυµε: f( x ), g( x ), f x = x + x ++ x+ h x,, πότε γράφυµε:

Διαβάστε περισσότερα

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1 Ε Λ Λ Η Ν Ι Κ Η Η Μ Ο Κ Ρ Α Τ Ι Α Υ ΠΟΥ ΡΓΕΙΟ ΕΘΝ. ΠΑ Ι ΕΙΑ Σ & ΘΡΗΣ Κ/Τ Ω ΕΝΙΑ ΙΟΣ ΙΟΙΚΗΤ ΙΚΟΣ Τ ΟΜ ΕΑ Σ Σ ΠΟΥ Ω Ν ΕΠΙΜ ΟΡΦΩ Σ ΗΣ ΚΑ Ι ΚΑ ΙΝΟΤ ΟΜ ΙΩ Ν /ΝΣ Η Σ ΠΟΥ Ω Τ µ ή µ α Α Α. Πα π α δ ρ έ ο υ 37

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 11ς (Π, (-ά) ) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 11ς (Π, (-ά) ) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι Ίσ Τρίω όχι Ψευδοΐσ ι ημοσιεύτηε στο περιοδιό «φ» τ.5 008 ημ. Ι. Μπουάης Σχ. Σύμουλος Μθημτιώ Οι ερωτήσεις τω μθητώ μς είι σφλώς πάτ ευπρόσδετες λλά πρέπει ι τις εθρρύουμε με άθε τρόπο. Όχι μόο ιτί ζωτεύου

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 16ς (Φ, Χ, (ό)) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 16ς (Φ, Χ, (ό))

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 12ς (Π, (ίς- )) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 12ς (Π, (ίς- )) ΣΥΓΓΡΑΦΕΙΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 49 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α

ΜΑΘΗΜΑ 49 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α 4. ΜΑΘΗΜΑ 49 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α Έστω συνάρτηση f συνεχής στ R κι ( ) είξτε ότι 3 g() ( 3 ) f (t)dt i Υπάρχει έν τυλάχιστν ξ (3, ) ώστε Θέτυµε h() f (t)dt Η g() γράφετι g() g() f (t)dt (t )dt, R

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΣΗΜΕΙΩΣΕΙΣ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Εμδό προλικού χωρίου Έστω ότι θέλουμε ρούμε

Διαβάστε περισσότερα

Βόμβα στην Καρδιά της Ελληνικής Οικονομίας

Βόμβα στην Καρδιά της Ελληνικής Οικονομίας Restart Λθεμπό Κπύ: Βόμβ τη Κδ της Εηής Ομίς Γης Αθδης Δευθυτής Χημ/ώ & Τεωεώ Θεμτω Νέμβς 2015, Θείη Ο δς τω πώ τη εηή μί Κθ έδ ττύ πϋπγμύ (2014)* 47 δ. Ευώ 100% 6δ πό Εδό Φό Κτωης (ΕΦΚ) ΦΠΑ πό Κπ Πϊότ

Διαβάστε περισσότερα

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό.

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό. Ε. 5. Γεωμετρική Πρόοδος Απρίτητες γώσεις Θεωρίς Γεωμετρική πρόοδος Γεωμετρική Πρόοδο (Γ.Π.) οομάζουμε μι κολουθί κάθε όρος της προκύπτει πό το προηγούμεό του με πολλπλσισμό επί το ίδιο πάτοτε μη μηδεικό

Διαβάστε περισσότερα

Ορισμός : Ακολουθία ονομάζεται κάθε συνάρτηση με πεδίο ορισμού το σύνολο Ν* των θετικών ακεραίων και παίρνει τιμές στο R. a: Ν* R

Ορισμός : Ακολουθία ονομάζεται κάθε συνάρτηση με πεδίο ορισμού το σύνολο Ν* των θετικών ακεραίων και παίρνει τιμές στο R. a: Ν* R 64 Aκοουθίες Ορισμός : Ακοουθί οομάζετι κάθε συάρτηση με πεδίο ορισμού το σύοο Ν* τω θετικώ κερίω κι πίρει τιμές στο R. a: Ν* R H τιμή μί κοουθίς στο συμβοίζετι με Αδρομικός Τύπος Ακοουθίς: Οομάζετι μί

Διαβάστε περισσότερα

Θεωρήματα και προτάσεις με τις αποδείξεις τους

Θεωρήματα και προτάσεις με τις αποδείξεις τους Θεωρήμτ κι προτάσεις με τις ποδείξεις τους Μιγδικοί Ιδιότητες συζυγώ: Α i κι i δ γ είι δυο μιγδικοί ριθμοί, τότε: 3 4 Αποδεικύοτι με εφρμογή του ορισμού κι πράξεις Γι πράδειγμ έχουμε: i δ γ δi γ i i i

Διαβάστε περισσότερα

Ορισμος Μια ακολουθια ονομαζεται αριθμητικη προοδος, αν και μονο αν, υπαρχει ω, τετοιος ωστε για κάθε ν να ισχυει: α. ν ν

Ορισμος Μια ακολουθια ονομαζεται αριθμητικη προοδος, αν και μονο αν, υπαρχει ω, τετοιος ωστε για κάθε ν να ισχυει: α. ν ν AΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Α κ ο λ ο υ θ ι ε ς Ορισμος. Ν δειχτει οτι + 0 0. Ποτε ισχυει το ισο; Κθε συρτηση. A :, β * θετικοι οομζετι, συγκριετι κολουθι τους ριθμους πργμτικω Α = ριθμω. + β, Β = β + β. * Η τιμη

Διαβάστε περισσότερα

ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ

ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ 09.00 -.00 5 ZE MI WA 0 0 0 9 0,95 9 ΑΓ ΓΕ ΠΑ 0 0 0 0 0 0 95 ΑΔ ΡΟ ΙΩ 0 0 0 0 0 0 97 ΑΙ ΚΩ ΠΑ 0 0 0 0 0 0 5 507 ΑΛ ΕΥ ΤΖ 0 0 0 0 0 0 6 99 ΑΝ ΟΡ ΚΩ 7 5 0 0 0,65 7 95 ΑΝ ΙΩ ΟΡ 9 9 9 6

Διαβάστε περισσότερα

Επαναληπτικά θέµατα Θεωρίας Γ Λυκείου

Επαναληπτικά θέµατα Θεωρίας Γ Λυκείου Επληπτικά θέµτ Θεωρίς Γ Λυκείου Α i κι γ δi είι δυο µιγδικοί ριθµοί τότε: 3 4 Οι ιδιότητες υτές µπορού ποδειχτού µε εκτέλεση τω πράξεω Γι πράδειγµ έχουµε: i γ δi γ δ i γ δ i i γδi Οι πρπάω ιδιότητες κι

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 14ης ΝΟΕΜΒΡΙΟΥ 2003 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ II

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 14ης ΝΟΕΜΒΡΙΟΥ 2003 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ II Ν. 55(ΙΙ)/2003 ΠΑΑΤΗΜΑ ΠΩΤ ΤΗΣ ΠΙΣΗΜΗΣ ΦΗΜΙΔΑΣ ΤΗΣ ΔΗΜΚΑΤΙΑΣ Α. 3770 τς 14ς ΝΜΒΙΥ 2003 ΝΜΘΣΙΑ ΜΣ II πεί Συμπλμτικύ Πϋπλγισμύ τς Αχής Λιμένν Κύπυ Νόμς (Α. 1) τυ 2003 εκδίδετι με δμσίευσ στν πίσμ φμείδ τς

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Τός 3ς (Β, - Γ, ) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 3ς (Β, - Γ, ) ΣΥΓΓΡΑΦΕΙΣ

Διαβάστε περισσότερα

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε Ἦχος Νη α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε στη η και ε πι κα α θε ε ε ε δρα α λοι οι µων ου ουκ ε ε κα θι ι σε ε ε

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑΤΑ (των οποίων πρέπει να ξέρουμε & τις αποδείξεις) από το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου

ΘΕΩΡΗΜΑΤΑ (των οποίων πρέπει να ξέρουμε & τις αποδείξεις) από το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου Θεωρήμτ θετικής-τεχολογικής κτεύθυσης ΘΕΩΡΗΜΑΤΑ (τω οποίω πρέπει ξέρουμε & τις ποδείξεις πό το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου υ υ όπου υ το υπόλοιπο της διίρεσης του με

Διαβάστε περισσότερα

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx Λογάριθμοι Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έοι του λογάριθμου Έστω η εξίσωση θ, 0, θ 0. Η εξίσωση υτή έχει μοδική λύση φού η εκθετική συάρτηση f είι γησίως μοότοη κι το θ ήκει στο σύολο τιμώ της. Τη μοδική

Διαβάστε περισσότερα

JEAN-CHARLES BLATZ 02XD34455 01RE52755

JEAN-CHARLES BLATZ 02XD34455 01RE52755 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ ΤΩΝ ΕΝ Ι ΑΜ ΕΣ ΩΝ ΟΙ Κ ΟΝΟΜ Ι Κ ΩΝ Κ ΑΤΑΣ ΤΑΣ ΕΩΝ ΤΗΣ ΕΤΑΙ ΡΙ ΑΣ Κ ΑΙ ΤΟΥ ΟΜ Ι ΛΟΥ Α Τρίµηνο 2005 ΑΝΩΝΥΜΟΣ Γ ΕΝΙ Κ Η ΕΤ ΑΙ Ρ Ι Α Τ ΣΙ ΜΕΝΤ ΩΝ Η Ρ ΑΚ Λ Η Σ ΑΡ. ΜΗ Τ Ρ. Α.Ε. : 13576/06/Β/86/096

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ)

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Ελευθέρις Πρωταάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Να βρείτε την τιµή των αραστάσεων: o o συν 90 + ηµ 0 -σφ75 α) A =, ηµ o o 0 + συν 80

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 5 : Δίνετι η πργωγίσιμη συνάρτηση, με πεδί ρισμύ κι σύνλ τιμών

Διαβάστε περισσότερα

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο Ἐκλογή ἀργοσύντοµος εἰς τὴν Ἁγίν Κυρικήν, κὶ εἰς ἑτέρς Γυνίκς Μάρτυρς. Μέλος Ἰωάννου Ἀ. Νέγρη. Ἦχος Νη ε Κ ι δυ υ υ υ ν µι ις Α λ λη λου ου ου ι ι ι ι ο Θε ος η η µων κ τ φυ γη η κι δυ υ υ ν µις βο η θο

Διαβάστε περισσότερα

ΜΑΡΙΑ ΓΚΟΥΝΤΑΡΟΠΟΥΛΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΡΙΑ ΓΚΟΥΝΤΑΡΟΠΟΥΛΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η διυσμτική κτί του θροίσμτος τω μιγδικώ i κι γ δi είι το άθροισμ τω διυσμτικώ κτίω τους Α M κι M γ δ είι οι εικόες τω i κι γ δi τιστοίχως

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ 3.2. (Η/Ν Υπερεντάσεως Κατευθύνσεως)

ΕΦΑΡΜΟΓΗ 3.2. (Η/Ν Υπερεντάσεως Κατευθύνσεως) ΕΦΑΡΜΟΓΗ.. (Η/Ν Υπερεντάσεως Κτευθύνσεως) Γι τν Υ/Σ ζεύξεως (Β) της εφρµγής.1 πυ τρφδτείτι πό τν Υ/Σ 15/k (Α) µέσω δύ όµιων ενέριων γρµµών ώστε σε περίπτωση σφάλµτς σε µί πό τις δύ ν µην δικόπτετι η τρφδότηση

Διαβάστε περισσότερα

Ε.Ε. Παρ. I(II) 1565 Ν. 42(II)/2000 Αρ. 3441,

Ε.Ε. Παρ. I(II) 1565 Ν. 42(II)/2000 Αρ. 3441, .. Π. I(II) 1565 Ν. 42(II)/ Α. 441, 27.10. πεί Συμπλημτιύ Πϋπλγισμύ της πιτπής Κεφλιγάς Νόμς (Α. 2) τυ, εδίδετι με δημσίευση στην πίσημη φημείδ της Κυπιής Δημτίς σύμφν με τ Αθ 52 τυ Συντάγμτς. Αιθμός 42(11)

Διαβάστε περισσότερα

[ ] ( ) [( ) ] ( ) υ

[ ] ( ) [( ) ] ( ) υ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ) Α Θέτω στη συάρτηση ι οπότε έχω () ( ) Η εξίσωση γίετι η Α η Α δε ισχύει η Α ι ( ) ( ) ( ) τότε ( ) [ ] ( ) Διρίω τις περιπτώσεις άρ δε ισχύει τότε ( ) άρ

Διαβάστε περισσότερα

ΗΛ. ΣΕΛΙΔΟΠΟΙΗΣΗ - ΕΚΤΥΠΩΣΗ - ΒΙΒΛΙΟΔΕΣΙΑ «ΛΥΧΝΙΑ», Αδραβίδας 7, 13671 Χαμόμυλο Αχαρνών τηλ.: 210 34 10 436, fax: 210 34 25 967

ΗΛ. ΣΕΛΙΔΟΠΟΙΗΣΗ - ΕΚΤΥΠΩΣΗ - ΒΙΒΛΙΟΔΕΣΙΑ «ΛΥΧΝΙΑ», Αδραβίδας 7, 13671 Χαμόμυλο Αχαρνών τηλ.: 210 34 10 436, fax: 210 34 25 967 ΒΙΟΛΟΓΙΑ είς δ ι ςπ ή κ ι Γε Υ Ο Ι ΚΕ Υ Λ Γ είς Πιδ τς Γ ής Γεικ ς ί γ ς ιολο θτή. όσ τ β Β µ ς τ τ οµ ριλ ύλς οσιτό στ λήρ κ ίο πε ς λ β ι έ στ πρ π Το β εξετ ε τρόπο ού στ ς τ ί µ κοπ. θεωρ γρµµέ ου

Διαβάστε περισσότερα

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ Επιμέλει - Κ Μυλωάκης Ν δείξετε ότι: ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ i γ δi γ δ δ γ i Γι το πολλπλσισμό δύο μιγδικώ i κι γ δi έχουμε: i γ δi γ δi i γ δi γ δi γi i δi γ δi γi δi γ δi γi δ γ δ

Διαβάστε περισσότερα

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο 0 ΜΑΘΗΜΑ.4. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ.4.. Συνέχει συνάρτησης στ o Ορισμός: Μι συνάρτηση f/α νμάζετι συνεχής στ σημεί Α, ότν υπάρχει τ lim f () ι είνι: lim f() = f( ) ΙΣΟΔΥΝΑΜΟΣ ΟΡΙΣΜΟΣ Ότν υπάρχει δ > 0 ώστε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα Ορισμό ΚΕΦΑΛΑΙΟ Αόριστ & Ορισμέν Ολκλήρωμ Αρχική-Πράγυσ Πράγυσ ή Αρχική ή Αντιπράγωγ μι συνάρτηση f, σε έν διάστημ Δ νμάζετι η πργωγίσιμη συνάρτηση F γι την πί ισχύει F ( ) = f ( ) γι κάθε Ξ D π.χ. π.χ.

Διαβάστε περισσότερα

Εργαστήριο Άλγεβρας Συμπληρωματικές Προτάσεις και Αποδείξεις στην Άλγεβρα της Α Λυκείου

Εργαστήριο Άλγεβρας Συμπληρωματικές Προτάσεις και Αποδείξεις στην Άλγεβρα της Α Λυκείου Συμπληρωμτικές Προτάσεις κι Αποδείξεις στη Άλγεβρ της Α Λυκείου Μπορεί πρχθεί κι διεμηθεί ελεύθερ ρκεί διτηρηθεί η μορφή του. Προλεγόμε Η διδσκλί ποδείξεω στη Άλγεβρ της Α Τάξης μπορεί υποβοηθηθεί ο δάσκλος

Διαβάστε περισσότερα

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό ΤΠΟΤΡΓΔΗΟ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ, ΠΟΛΗΣΗΜΟΤ ΚΑΗ ΑΘΛΖΣΗΜΟΤ Η.Σ.Τ.Δ. «ΓΗΟΦΑΝΣΟ» Αή Δί Ζίο Γήο Μί Μά Ηί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 7ο (Σ, Τ, Φ, Υ, Φ,Φ Χ, Πά) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 7ο (Σ, Τ,

Διαβάστε περισσότερα

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ Ρίζες πργμτικώ ριθμώ Τετργωική ρίζ πργμτικού ριθμού Ορισμός: Η τετργωική ρίζ εός μη ρητικού ριθμού είι ο μη ρητικός ριθμός β που ότ υψωθεί στο τετράγωο μς δίει το, δηλδή: = β β =,, β Πρτήρηση: Η ορίζετι

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» TAΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΥΝΑΜΕΙΣ - ΤΑΥΤΟΤΗΤΕΣ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ (Μέρος πρώτο) ΒΑΣΙΚΗ ΘΕΩΡΙΑ

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» TAΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΥΝΑΜΕΙΣ - ΤΑΥΤΟΤΗΤΕΣ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ (Μέρος πρώτο) ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» TAΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΥΝΑΜΕΙΣ - ΤΑΥΤΟΤΗΤΕΣ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ (Μέρος πρώτο) ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΥΝΑΜΕΙΣ Α είι ές πργτικός ριθός κι ές φυσικός εγλύτερος

Διαβάστε περισσότερα

(.: EGF/2014/009 EL/Sprider Stores)

(.: EGF/2014/009 EL/Sprider Stores) INFORMATICS DEVELOPMEN T AGENCY Digitally signed by INFORMATICS DEVELOPMENT AGENCY ΑΝΑΡΤΗΤΕΑ ΣΤΟ Α ΚΤΥΟ Date: 2015.08.04 15:53:37 EEST Reason: Location: Athens ΑΔΑ: ΩΛ0Π465Θ1Ω-ΣΓΛ Ε Η Η Η Α Α ΓΕ Ε ΓΑ Α,

Διαβάστε περισσότερα

Η Ε Β ΕΘΕ 20 α υα ί υ 2014 Ε ΗΓΗ Η «Ε Γ Ω ΧΕ Ω : πα χ μ π π π αμ χ α α απ υ α π χ α μα ;» Φ : μ Β.. ΕΘΕ, φ α μ υ Θ α ία, π μ α ί α, f.alexakos@yahoo.gr Γ μα α : π π ΓΕΩ ΕΕ. Ε, μ Β μ α ΕΕ/.Β. Θ α ία, goumas.kostas@gmail.com

Διαβάστε περισσότερα

5 3 (iii) Όταν έχει εστίες τα σηµεία Ε ( 5, 0), Ε( 5, 0) και διέρχεται από το 5 = = 144, C : β = α = 5 3 α =.6 64 = 1. y = α β. ( γ 2 (5.

5 3 (iii) Όταν έχει εστίες τα σηµεία Ε ( 5, 0), Ε( 5, 0) και διέρχεται από το 5 = = 144, C : β = α = 5 3 α =.6 64 = 1. y = α β. ( γ 2 (5. . Ασκήσεις σχοικού ιίου σείδς A Οµάδς. Ν είτε την εξίσωση της υπεοής σε κθεµιά πό τις πκάτω πειπτώσεις : (i) Ότν έχει εστίες τ σηµεί Ε (, 0), Ε(, 0) κι κουφές τ σηµεί Α(5, 0) κι Α ( 5, 0). (ii) Ότν έχει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 00 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ : Θεωρύμε τυς μιγαδικύς αριθμύς α) z(t) + z(t) = z(t)

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΤΕΤΑΡΤΗ 20 MAΪΟΥ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΤΕΤΑΡΤΗ 20 MAΪΟΥ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΕΤΑΡΤΗ 0 MAΪΟΥ 01 Λύσεις τω θεμάτω Έκδοση

Διαβάστε περισσότερα

Τι μπορεί να δει κάποιος στο μουσείο της Ι.Μ. Μεγάλου Μετεώρου

Τι μπορεί να δει κάποιος στο μουσείο της Ι.Μ. Μεγάλου Μετεώρου 18/05/2019 Τι μπορεί να δει κάποιος στο μουσείο της Ι.Μ. Μεγάλου Μετεώρου / Ιερές Μονές Η μο νή του Με γά λου Με τε ώ ρου δι α μόρ φω σε μί α σει ρά α πό πε ρι κα λείς μου σεια κούς χώ ρους, για την α

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αγγή Εί Ηίς Δής Μί Μά Ιί Αύ Εγέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 17ς (Χ, (ό) Ω,) Εγέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 17ς (Χ, (ό)

Διαβάστε περισσότερα

ΚΑΝΟΝΙΣ ΜΟ Ι ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1 / 8 SCALE IC TRA CK ΕΛ. Μ. Ε

ΚΑΝΟΝΙΣ ΜΟ Ι ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1 / 8 SCALE IC TRA CK ΕΛ. Μ. Ε ΚΑΝΟΝΙΣ ΜΟ Ι ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1 / 8 SCALE IC TRA CK ΕΛ. Μ. Ε. 2 0 1 9 Κλ ά δο ς θερ µ ι κώ ν τη λ εκα τ ευθυ νό µ εν ω ν α υ το κι νή τω ν. Υπ εύ θυνο ς Κ λ ά δ ο υ Ζωτιαδης Κωστας bo d @ e l - m e. gr

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Θεωρία ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Θεωρία ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχλγικής Κτεύθυσης Μθημτικά Γ Λυκείυ Θεωρί ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: inf@iliasks.gr www.iliasks.gr Τ σύλ C τω μιγδικώ ριθμώ Τ σύλ C τω

Διαβάστε περισσότερα

Απόφα η α έ π ωτέ α/ο έ ζιθθί/φ ζθζ/γί-7-2015 «Μ Η Τ Ω Α

Απόφα η α έ π ωτέ α/ο έ ζιθθί/φ ζθζ/γί-7-2015 «Μ Η Τ Ω Α Η Η ΗΜ ΑΤ Α Γ ΜΩ Μ ΤΑΦ Ω Τ Τ Ω 2 0 1 5 α α α Μητ ω ο ηπτ ατα ευα τ Με ετητ Απόφα η α έ π ωτέ α/ο έ ζιθθί/φ ζθζ/γί-7-2015 Χ Γ Α Α Χ Μ «Μ Η Τ Ω Α Τ Τ Ω Τ Χ Ω Γ Ω» Χ ΓΑ Α Χ Μ Μ Η Τ Ω Α Τ Τ Ω Τ Χ Ω Γ Ω Ά ο

Διαβάστε περισσότερα

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό ΤΠΟΤΡΓΔΗΟ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΩΝ, ΠΟΛΗΣΗΜΟΤ ΚΑΗ ΑΘΛΖΣΗΜΟΤ Η.Σ.Τ.Δ. «ΓΗΟΦΑΝΣΟ» Αή Δί Ζίο Γήο Μί Μά Ηί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 4ο (Λ, - Μ, - Ν, - Ξ,) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 4ο (Λ, - Μ, -

Διαβάστε περισσότερα

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Η Έοι του Ορίου Ορισμός Ότ οι τιμές μις συάρτησης f προσεγγίζου όσο θέλουμε έ πργμτικό ριθμό, κθώς το προσεγγίζει με οποιοδήποτε τρόπο το ριθμό, τότε γράφουμε:

Διαβάστε περισσότερα

Σύνοψη του προγράμματος EU Kids Online: Τελική Έκθεση

Σύνοψη του προγράμματος EU Kids Online: Τελική Έκθεση Σύψη τυ πγάμμτς EU Kids Online: Τεική Έκθεση Sonia Livingstone and Leslie Haddon Συτιστής, EU Kids Online London School of Economics and Political Science ύις 2009 www.eukidsonline.net Εισγωγή Κθώς τ 75%

Διαβάστε περισσότερα

20/5/ /5/ /5/ /5/2005

20/5/ /5/ /5/ /5/2005 ΜΕΤΑΦΟΡΙΚΕΣ ΕΠ ΙΧ ΕΙΡΗ ΣΕΙΣ FINDA Α.Ε. ΥΠΟ Ε Κ Κ Α Θ Α Ρ Ι Σ Η ΟΙΚΟΝΟΜΙΚΕΣ ΚΑ Τ Α ΣΤ Α ΣΕΙΣ Γ ΙΑ Τ Η Ν Χ Ρ Η ΣΗ Π ΟΥ ΕΛ Η Ξ Ε Τ Η Ν 19.5.2006 ΠΕΡΙΕΧΟΜΕΝΑ Έ κ θ εσ η Eλέ γ χ ο υ Ε λεγ κ τ ώ ν 3 Κ α τ ά

Διαβάστε περισσότερα

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Αποδείξεις Θεωρίς Γ Λυκείου Κτεύθυσης Θέμ 1 ο [σελ 167 σχ. Βιβλίου] P 1 Έστω το πολυώυμο Έχουμε 1 1 1 lim P lim... AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj Qwφιertuiopasdfghjklzερυυξnmηq σwωψertuςiopasdρfghjklzcvbn mqwertuiopasdfghjklzcvbnφγιmλι qπςπζwωeτrtuτioρμpκaλsdfghςj ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnmqwertuiopasdfghjklz ΤΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΔΕΙΞΕΙΣ

Διαβάστε περισσότερα

Μετρικές σχέσεις σε τυχαίο τρίγωνο

Μετρικές σχέσεις σε τυχαίο τρίγωνο 5 Μετρικές σχέσεις σε τυχί τρίγων Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµ I (Γενίκευση τυ Πυθγρείυ θεωρήµτς γι πλευρά πυ βρίσκετι πένντι πό ξεί γωνί) Τ τετράγων πλευράς τριγώνυ, πυ βρίσκετι πένντι πό ξεί

Διαβάστε περισσότερα

Κ Ω Ν Ι Κ Ε Σ Τ Ο Μ Ε Σ

Κ Ω Ν Ι Κ Ε Σ Τ Ο Μ Ε Σ Κ Ω Ν Ι Κ Ε Σ Τ Ο Μ Ε Σ T Α Ξ Η Β Θετική-Τενική κτεύθυνση Ε Ν Ο Τ Η Τ Α η: Πρσέιση σικών θεµάτων Θέµ : Πές φρές συνντάµε θέµτ πυ έυν ν κάνυν µε την ευθεί κ ν τέµνει κωνικές τµές κύκ-πρή-έειη-υπερή στ σηµεί

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Τός 2ς (Α,α (αααώ-)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 2ς (Α,α (αααώ-)) ΣΥΓΓΡΑΦΕΙΣ

Διαβάστε περισσότερα

+ 4 µε x >0. x = f(x) f(t) dt. Άρα από κριτήριο παρεµβολής lim f(t) dt = 4.

+ 4 µε x >0. x = f(x) f(t) dt. Άρα από κριτήριο παρεµβολής lim f(t) dt = 4. 993 ΘΕΜΑΤΑ. ίετι η συάρτηση f() = + + µε >. ) Ν εξετάσετε τη µοοτοί της συάρτησης f. β) Ν υπολογίσετε το lim f(t) dt. + + ) Έχουµε f () = () + ( + ) ( + ) + = + (+ ) ( + ) = - 3 + + = - 3 . + +

Διαβάστε περισσότερα

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ.

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ. σελ. 13 σελ. 17 σελ. 21 σελ. 49 σελ. 79 σελ. 185 σελ. 263 σελ. 323 σελ. 393 σελ. 453 σελ. 483 σελ. 509 σελ. 517 Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Τός 10ς (Ξ, Ο,) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 10ς

Διαβάστε περισσότερα

Μαθηµατικά Ιβ Σελίδα 1 από 7

Μαθηµατικά Ιβ Σελίδα 1 από 7 Μθηµτικά Ι Σείδ πό 7 Μάθηµ ο ΠΙΝΑΚΕΣ, ΠΡΑΞΕΙΣ ΠΙΝΑΚΩΝ Θεωρί : Γρµµική Άγερ : εδάφι κι, σε -7 Τ πρδείγµτ που τιστοιχού στη ύη έχου διδχθεί Ασκήσεις :, σε 3 ; 3, 4, 5, 6, 7, 8, σε 7 κι, σε 8 Λυµέες Ασκήσεις

Διαβάστε περισσότερα

ΟΡΙΑ - ΣΥΝΕΧΕΙΑ. Πόσα είδη ορίων υπάρχουν; Τι είναι το +, - ; Τι ονοµάζουµε γειτονιά ή περιοχή του x o ; Τι ονοµάζουµε γειτονιά του +, - ;

ΟΡΙΑ - ΣΥΝΕΧΕΙΑ. Πόσα είδη ορίων υπάρχουν; Τι είναι το +, - ; Τι ονοµάζουµε γειτονιά ή περιοχή του x o ; Τι ονοµάζουµε γειτονιά του +, - ; ΟΡΙΑ - ΣΥΝΕΧΕΙΑ Πόσ είδη ορίω υπάρχου; Υπάρχει όριο στο κι είι πργµτικός ριθµός (πεπερσµέο) Υπάρχει όριο στο κι είι, - (µη πεπερσµέο) Υπάρχει όριο στο ή - κι είι πργµτικός ριθµός. Υπάρχει όριο στο ή -

Διαβάστε περισσότερα

ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - ΚΑΡΑ ΣΑ ΒΒ ΟΓ ΠΟ Υ ΑΝ ΑΣΤΑΣΙΟΣ

ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - ΚΑΡΑ ΣΑ ΒΒ ΟΓ ΠΟ Υ ΑΝ ΑΣΤΑΣΙΟΣ ΤΕΧΝ Οη ΟΓ ΙΚ Ο Ε Κ ΠΟ ΙΔ ΕΥ ΤΙ ΚΟ ΙΔΡΥΜΟ ΚΟΒΟΠΑΕ ΕΧΟΠΗ ΔΙϋΙ ΚΗ ΕΗ Σ ΚΑΙ Ο Ι ΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ηο ΓΙ ΣΤ ΙΚ ΗΣ ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - Καθηγητή ΚΑΡΑ ΣΑ ΒΒ

Διαβάστε περισσότερα

Δ Ι Α Τ Ρ Ο Φ Η Κ Α Ι Ε Ξ Ε Τ Α Σ Ε Ι Σ

Δ Ι Α Τ Ρ Ο Φ Η Κ Α Ι Ε Ξ Ε Τ Α Σ Ε Ι Σ Δ Ι Α Τ Ρ Ο Φ Η Κ Α Ι Ε Ξ Ε Τ Α Σ Ε Ι Σ H π ι κ ρ ή α λ ή θ ε ι α ε ί ν α ι ό τ ι κ α ι σ τ ο π α ρ ε λ θ ό ν κ α ι σ τ ο π α ρ ό ν κ α ι σ τ ο μ έ λ λ ο ν π ο λ ύ λ ί γ ο ι α ν α κ ά λ υ ψ α ν, α ν α

Διαβάστε περισσότερα

Η δομή του κάθε μαθήματος:

Η δομή του κάθε μαθήματος: Γ λώσσ Γ Untitled-2 1 ύ κ ι τ Δηµ 21/6/2017 10:10:37 πμ Η δμή τυ κάθε μθήμτς: 1. Μικρής έκτσης δισκευή τυ κειμέυ τυ σχλικύ βιβλίυ με δικριτό τ βσικό γρμμτικό φιόμε. 2. Ερωτήσεις κτόησης τυ κειμέυ (πρφρική

Διαβάστε περισσότερα

E.E. Παρ. Ι(ΙΙ) Αρ. 3710, Ν. 29(ΙΙ)/2003

E.E. Παρ. Ι(ΙΙ) Αρ. 3710, Ν. 29(ΙΙ)/2003 EE Π Ι(ΙΙ) Α 7, 5 554 Ν 9(ΙΙ)/ πεί Πϋπλγσμύ τυ Τμείυ γ την Ανέγεση Κυπκύ υσείυ γ τ Έτς Νόμς τυ εκδίδετ με δημσίευση στην πίσημη φημείδ της Κυπκής Δημκτίς σύμφν με τ Αθ 5 τυ Συντάγμτς Πίμ 6 τυ 987 Συνπτκός

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρµόζουµε τις ιδιότητες των ορίων. Ουσιαστικά κάνουµε αντικατάσταση. lim 3x 4x+ 8 = = =

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρµόζουµε τις ιδιότητες των ορίων. Ουσιαστικά κάνουµε αντικατάσταση. lim 3x 4x+ 8 = = = ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ Να βρείτε τα παρακάτω όρια: α ( 4 8) + 6 + 8 Απλές περιπτώσεις Εφαρµόζυµε τις ιδιότητες των ρίων Ουσιαστικά κάνυµε αντικατάσταση α 4+ 8 = 4 + 8= + 4+ 8= 9 8 8 = = 4 + 6 = + 6= Αν f( )

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ 355 ΕΕΡΡΩΤΤΗΣΣΕΕΙΙΣΣ ΑΑΠΟ ΤΤΗΝ ΥΥΛΛΗ ΤΤΗΣΣ ΤΤΑΑΞΞΗΣΣ Οι πέτε κλύτεροι φίλοι σς είι το Τι, ιτί, Πού, Πότε κι Πώς. Ότ χρειάζεστε συμουλές, ρτείστε Τι; ρτείστε ιτί; ρτείστε Πού; Πότε κι Πώς κι μη ρτάτε κέ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ 355 ΕΕΡΡΩΤΤΗΣΣΕΕΙΙΣΣ ΑΑΠΟ ΤΤΗΝ ΥΥΛΛΗ ΤΤΗΣΣ ΤΤΑΑΞΞΗΣΣ Οι πέτε κλύτεροι φίλοι σς είι το Τι, ιτί, Πού, Πότε κι Πώς. Ότ χρειάζεστε συμβουλές, ρτείστε Τι; ρτείστε ιτί; ρτείστε Πού; Πότε κι Πώς κι μη ρτάτε κέ

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 1ης ΙΟΥΛΙΟΥ 1994 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ II

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 1ης ΙΟΥΛΙΟΥ 1994 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ II Ν. 55()/94 ΠΑΑΤΑ ΠΩΤ ΤΣ ΕΠΣΣ ΕΕΔΑΣ ΤΣ ΔΚΑΤΑΣ Α. 2889 της 1ης ΥΛΥ 1994 ΝΘΕΣΑ ΕΣ II πεί Συμπλημτκύ Πϋπλγμύ Νόμς (Α. 19) τυ 1994 εκδίδετ με δημίευη τη Επίημη Εφημείδ της Κυπκής Δημκτίς ύμφ με τ Άθ 52 τυ Συτάγμτς.

Διαβάστε περισσότερα

ΤΖΕΜΠΕΛΙΚΟΥ ΚΑΤΕΡΙΝΑ ΜΑΘΗΜΑΤΙΚΟΣ

ΤΖΕΜΠΕΛΙΚΟΥ ΚΑΤΕΡΙΝΑ ΜΑΘΗΜΑΤΙΚΟΣ ΘΕΜΑ Α, είι µιγδικοί ριθµοί, τότε κι κι επειδή η τελευτί σχέση ισχύει, θ ισχύει κι η ισοδύη ρχικική. Αάλογ ποδεικύετι κι η δεύτερη ιδιότητ ΘΕΜΑ Όριο πολυωυµικής συάρτησης Α -... P πολυώυµο του κι R, δείξετε

Διαβάστε περισσότερα

! ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ

! ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ ! ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ: 0 < 0 ΙΔΙΟΤΗΤΕΣ ΑΠΟΛΥΤΩΝ ΤΙΜΩΝ 1. 0 Όλες οι πόλυς τιμές είι θετικές ή μηδέ ( 0 0). 3.. Οι τίθετοι ριθμοί (ποσότης) έχου τη ίδι πόλυτη τιμή. 5. 6. θ ±θ με θ >

Διαβάστε περισσότερα

Η θεωρία στα Μαθηματικά κατεύθυνσης

Η θεωρία στα Μαθηματικά κατεύθυνσης Η θεωρί στ Μθημτικά κτεύθυσης Σελίδ πό 3 Ορισμοί Ιδιότητες - Προτάσεις Θεωρήμτ Αποδείξεις Α Μιγδικοί ριθμοί Πότε δυο μιγδικοί είι ίσοι κι πότε ές μιγδικός είι ίσος με ; Δύο μιγδικοί ριθμοί i κι γ δi είι

Διαβάστε περισσότερα

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΘΡΗΚΔΤΜΑΣΧΝ, ΠΟΛΙΣΙΜΟΤ ΚΑΙ ΑΘΛΗΣΙΜΟΤ Ι.Σ.Τ.Δ. «ΓΙΟΦΑΝΣΟ» Αή Δί Ηίο Γήο Μί Μά Ιί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 1ο (Α, Β,) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 1ο (Α, Β,) ΤΓΓΡΑΦΔΙ Αή Δί,

Διαβάστε περισσότερα

1816 Ν. 34(ΙΙ)/2001 (2) Μέσα σε ένα μήνα από την έγκριση του Υπουργού Εργασίας και Κοινωνικών Ασφαλίσεων σύμφωνα με το εδάφιο (1) του άρθρου αυτού,

1816 Ν. 34(ΙΙ)/2001 (2) Μέσα σε ένα μήνα από την έγκριση του Υπουργού Εργασίας και Κοινωνικών Ασφαλίσεων σύμφωνα με το εδάφιο (1) του άρθρου αυτού, .. Π I(II) ' 8 ' 5 N. 4(II)/2001 Α. 496, 4.5.2001 πεί Πϋπλγισμί) τυ Τμείυ τυ Κέντυ πγγελμτικής Απκτάστσης Ατόμν με Ανπηίες γι τ έτς 2001 Νόμς τυ 2001 εκίετι με ημσίευση στην πίσημη φημεί της Κυπικής Δημκτίς

Διαβάστε περισσότερα

ΟΡΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ( ) Στο σχήμα 1, έχουμε τη γραφική παράσταση της συνάρτησης (1) και παρατηρούμε ότι όσο το x πλησιάζει στο xο = 2 από τα μικρά ( x

ΟΡΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ( ) Στο σχήμα 1, έχουμε τη γραφική παράσταση της συνάρτησης (1) και παρατηρούμε ότι όσο το x πλησιάζει στο xο = 2 από τα μικρά ( x Πγόσμι χωριό γνώσης ΟΡΙΑ ΣΥΝΑΡΤΗΣΕΩΝ 9 ΜΑΘΗΜΑ 2.9. ΟΡΙΑ ΣΥΝΑΡΤΗΣΕΩΝ 2.9.. Έννι τυ ρίυ Θεωρύμε τη συνάρτηση: x+, x 2 f ( x ) = x 2, x > 2 / [,4] () Έστω x 2. Η τιμή υτή πυ περιέχετι στ πεδί ρισμύ της συνάρτησης,

Διαβάστε περισσότερα

Π α σα πνο η αι νε σα τω τον Κυ ρι. Π α σα πνο η αι νε σα α τω τον. Ἕτερον. Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη.

Π α σα πνο η αι νε σα τω τον Κυ ρι. Π α σα πνο η αι νε σα α τω τον. Ἕτερον. Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη. Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη. Κυ ρι ε ε λε η σον Ἦχος Πα Α µην Π α σα πνο η αι νε σα τω τον Κυ ρι ον Ἕτερον. Π α σα πνο η αι νε σα α τω τον Κυ υ ρι ι ον 1 ΙΩΑΝΝΟΥ Α. ΝΕΓΡΗ

Διαβάστε περισσότερα

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο

Διαβάστε περισσότερα

Κεφάλαιο 1ο 55 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ) αν είναι σωστές ή με (Λ) αν είναι λανθασμένες:

Κεφάλαιο 1ο 55 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ) αν είναι σωστές ή με (Λ) αν είναι λανθασμένες: Κεφάλιο ο Ερωτήσεις Κτόησης Ν χρκτηρίσετε τις πρκάτω προτάσεις με (Σ) είι σωστές ή με (Λ) είι λθσμέες: ) Γι κάθε ριθμό ισχύει + + + 4 β) Γι κάθε ριθμό ισχύει 4 γ) Οι ριθμοί (-) 6 κι - 6 είι τίθετοι δ)

Διαβάστε περισσότερα

Εάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt

Εάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt Μία ιστρία στην ΕΞΝΓΚΣΜΕΝΗ ΤΛΝΤΩΣΗ Κατά την περσινή σχλική χρνιά, στα πλαίσια της Π.Δ.Σ. πρσπάησα, αντί να λύσ ασκήσεις πυ μπρεί να υπάρχυν σε πλλά ιαφρετικά εξσχλικά βιβλία, να εάν ι μαητές μυ έχυν πραγματικά

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 8ς (Λ, - Μ, (-ήα)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 8ς (Λ,

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ Ο

ΤΥΠΟΛΟΓΙΟ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ Ο ΤΥΠΟΛΟΓΙΟ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ Ο ΟΡΙΣΜΟΣ : Mι υθί έετι ριθµητιή πρόδς, άθε όρς της πρύπτει πό τ πρηύµε τυ µε πρόσθεση τυ ίδιυ πάττε ριθµύ. Ο ριθµός υτός συµίζετι µε ι έετι διφρά της πρόδυ. + Εύρεση όρυ

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Τός 4ς (Δ, Ε, (-αί)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 4ς (Δ, Ε, (-αί)) ΣΥΓΓΡΑΦΕΙΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους.

ΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - - ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ο.. Οι πράξεις πρόσθεση κι πολλπλσισµός κι οι ιδιότητές τους. Πρόσθεση Πολλπλσισµός Ιδιότητ.. Ατιµετθετική (γ)()γ (γ)()γ Προσετιρική (γ)γ Επιµεριστική 0. Ουδέτερο

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 7ς (Κ, (έα-)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 7ς (Κ, (έα-))

Διαβάστε περισσότερα

Φροντιστήρια 2001-ΟΡΟΣΗΜΟ

Φροντιστήρια 2001-ΟΡΟΣΗΜΟ Φροτιστήρι -ΟΡΟΣΗΜΟ ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Επιμέλει: Σεμσίρης Αριστείδης -- Φροτιστήρι -ΟΡΟΣΗΜΟ - - Φροτιστήρι -ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Περιέχει Συοπτική Θεωρί Μεθοδολογί Ασκήσεω Λυμέες Ασκήσεις Λυμέ

Διαβάστε περισσότερα

«Αυτοεκτίμηση και Αυτοαντίληψη σε Έλληνες και αλλοδαπούς μαθητές της Ε Δημοτικού και βαθμός ανταπόκρισης στις προσδοκίες των γονέων τους»

«Αυτοεκτίμηση και Αυτοαντίληψη σε Έλληνες και αλλοδαπούς μαθητές της Ε Δημοτικού και βαθμός ανταπόκρισης στις προσδοκίες των γονέων τους» Πεπιστήμιο Πτρ Σχοή Αθρπιστικ κι Κοιικ Επιστημ Πιδγγικό Τμήμ Δημοτικής Εκπίδευσης Θέμ πτυχικής εργσίς : «Αυτοεκτίμηση κι Αυτοτίηψη σε Έηες κι οδπούς μθητές της Ε Δημοτικού κι βθμός τπόκρισης στις προσδοκίες

Διαβάστε περισσότερα

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΕΡ ΓΑ ΤO ΤΕ ΧΝΙ ΤΩΩΝ ΕΡ ΓO ΣΤΑ ΣΙ ΩΩΝ ΤΣΙ ΜΕ ΝΤO ΛΙ ΘΩΩΝ, ΤΣΙ

Διαβάστε περισσότερα

Π γ Σ Σ Δ Σ Σθ κ π Π Λ ψ Σ τ Σ α απ τ Π ε γε κφ Π α τ σι κ δ τ τε τ α Θ ε α Ι Θ μ α α επ Θ μια τ υ α φ τ σε γ α τα με ε τ α αγαπ μ α τ τ μα Πα π Λ ι δ

Π γ Σ Σ Δ Σ Σθ κ π Π Λ ψ Σ τ Σ α απ τ Π ε γε κφ Π α τ σι κ δ τ τε τ α Θ ε α Ι Θ μ α α επ Θ μια τ υ α φ τ σε γ α τα με ε τ α αγαπ μ α τ τ μα Πα π Λ ι δ Π γ Σ Σ Δ Σ Σθ κ π Π Λ ψ Σ τ Σ α απ τ Π ε γε κφ Π α τ σι κ δ τ τε τ α Θ ε α Ι Θ μ α α επ Θ μια τ υ α φ τ σε γ α τα με ε τ α αγαπ μ α τ τ μα Πα π Λ ι δε α φ π δα γει π σδ τα α με α ε δ Πεδ α τ Θ σ εια α

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Τι οομάζετι πληθυσμός μις σττιστικής έρευς; Οομάζετι το σύολο τω τικειμέω (έμψυχω ή άψυχω γι τ οποί συλλέγοτι στοιχεί.. Τι οομάζετι άτομο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ 1 01 Θετικοί ριθοί λέοτι οι ριθοί που έχου προστά τους το πρόσηο () 02 Αρητικοί ριθοί λέοτι οι ριθοί που έχου προστά τους το πρόσηο () 03 Το ηδέ είι θετικός ριθός. 04 Οόσηοι

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

1.1.Οι πράξεις και οι ιδιότητές τους ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ

1.1.Οι πράξεις και οι ιδιότητές τους ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ Ζωοδόχου Πηγς Σλμί Τηλ 466- /4644..Οι πράξεις ι οι ιδιότητές τους i Στο προομστεός λάσμτος ΑΠΑΓΟΡΕΥΕΤΑΙ έχουμε το μηδέ γιτί το λάσμ δε ορίζετι.,.π.χ: δε ορίζετι i Ότ ο ριθμητς εός λάσμτος είι ίσος με το

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 6ς (Κ,, (- ία)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 6ς (Κ,, (-ία))

Διαβάστε περισσότερα

ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ (Επλήψεις Συμπληρώσεις) Εισγωγή Στο Γυμάσιο μάθμε ότι οι πργμτικοί ριθμοί ποτελούτι πό τους ρητούς κι τους άρρητους ριθμούς κι πριστάοτι με

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ Παγκόσμι χωριό γνώσης ΕΝΟΤΗΤΑ 3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ 3 ΜΑΘΗΜΑ Σκπός Σκπός της ενότητας είναι ρισμός της παραγώγυ και τυ ρυθμύ μεταβλής καθώς και

Διαβάστε περισσότερα

1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x

1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 7 6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ Στο σχήμ 4 έχουμε τη γρφιή πράστση μις συάρτησης οτά στο Πρτηρούμε ότι, θώς το ιούμεο με οποιοδήποτε τρόπο πάω στο άξο πλησιάζει το πργμτιό ριθμό, οι

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΘΕΩΡΗΜΑ ROLLE ΚΑΙ Θ.Μ.Τ ΑΣΚΗΣΕΙΣ. Ασκήσεις ύο θέσεις x, x Ρίζες εξίσωσης Ανισότητες

ΜΑΘΗΜΑ ΘΕΩΡΗΜΑ ROLLE ΚΑΙ Θ.Μ.Τ ΑΣΚΗΣΕΙΣ. Ασκήσεις ύο θέσεις x, x Ρίζες εξίσωσης Ανισότητες ΜΑΘΗΜΑ 8.5 ΘΕΩΡΗΜΑ ROLLE ΚΑΙ Θ.Μ.Τ ΑΣΚΗΣΕΙΣ Ασκήσεις ύ θέσεις, Ρίζες εξίσωσης Ανισότητες. Η συνάρτηση f είναι συνεχής στ διάστηµα [α, β] και παραγωγίσιµη στ (α, β) µε f(α) β και f(β) α. Να απδείξετε ότι

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Τός 1ς (Α,α (-αάα)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 1ς (Α,α (-αάα)) ΣΥΓΓΡΑΦΕΙΣ

Διαβάστε περισσότερα

1.5 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ

1.5 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 57 5 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ Όριο κι διάτξη Γι το όριο κι τη διάτξη οδεικύετι ότι ισχύου τ ρκάτω θεωρήμτ ΘΕΩΡΗΜΑ ο Α >, τότε > κοτά στο Σχ 8 Α

Διαβάστε περισσότερα