Μία γενίκευση της Αριθμητικής και της Γεωμετρικής προόδου - Ο Σταθμικός μέσος ως γενικός μέσος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μία γενίκευση της Αριθμητικής και της Γεωμετρικής προόδου - Ο Σταθμικός μέσος ως γενικός μέσος"

Transcript

1 Μί γείκευση της Αιθμητικής κι της Γεμετικής πόδυ - Ο Στθμικός μέσς ς γεικός μέσς Δ. Πγιώτης Λ. Θεδόπυς Σχικός Σύμυς κάδυ ΠΕ0 Πείηψη Στη εγσί υτή μεετάτι η ειδική κτηγί τ κυθιώ όπυ κάθε ός εκτός πό τ πώτ πκύπτει πό τ πηγύμεό τυ υτός ππσισθεί με έ στθεό ιθμό κι στη συέχει στ γιόμε πυ πκύπτει πστεθεί ές επίσης στθεός ιθμός. Οι κυθίες υτές πτεύ γείκευση της ιθμητικής κι της γεμετικής πόδυ. Έ σημτικό πτέεσμ της έευς υτής είι η άδειξη της γεικότητς τυ στθμικύ μέσυ. Έτσι ιπό κι ι τεις μέσι πυ σχετίζτι με τις πόδυς δηδή ιθμητικός γεμετικός κι μικός είι στθμικί μέσι όπυ ι συτεεστές ύτητς ίζτι με συγκεκιμέ τόπ. Εισγγή Η ιί διδσκί στ σχεί πυσιάζει μί ιδιίτεη δυμική διότι στη διάκειά της τάσστι πόψεις κι γεικά συτεείτι η μάθηση. Γι υτό ιπό τ κίμ της τάξης πέπει είι θετικό κι η μφή της διδσκίς τέτι ώστε εξσφίζετι υσιστική ηεπίδση τόσ μετξύ τυ εκπιδευτικύ κι τ μθητώ όσ κι μετξύ τ μθητώ. Οι μθητές θ πέπει μπύ εκφάζυ εεύθε τις πίες κι τις πόψεις τυς. Κτά τ σχικό έτς στ μάθημ της Άγες στη Β Λυκείυ κι συγκεκιμέ στη. η πί φέετι στη έι της κυθίς ύσμε στ μάθημ μί άσκηση η πί ζητύσε τη εύεση τύ δμικύ τύπυ της κυθίς πυ είι τύπς. Στη συέχει ότ έκ εισγγή στη ιθμητική πόδ πάη με τ ισμό της ιθμητικής πόδυ έδσ κι τ ισμό της γεμετικής γι σύγκιση κι συσχέτιση ώστε ι μθητές πμημεύσυ κύτε τυς δύ ισμύς σύμφ με τη «Θεί Επεξεγσίς Πηφιώ». Τότε ές μθητής της τάξης πεμίτς μυ είπε: «Κύιε η κυθί με τύπ: πυ ήκμε στη άσκηση πυ ύσμε πι είι μικτή πόδς;» Τυ πάτησ δε ς εξής: «Από ότι γίζ τέτιες κυθίες δε έχυ μεετηθεί ειδικά κι επμές είι ικτό τ θέμ γι εξεεύηση». Πότει μάιστ στυς μθητές όπις θέει σχηθεί με τ θέμ υτό φυσικά κι με τη δική μυ κθδήγηση. Βέι κές δε σχήθηκε διότι δύσκ ές μθητής κτπιάετι με έ θέμ πυ φήετι στη πιετική τυ επιγή. Εμέ όμς με πημάτισε η ιδέ κι η πτήηση τυ μθητή κι ότ ήκ χό σχήθηκ με τη εξεεύηση τυ ππά θέμτς τ πτεέσμτ της πίς πυσιάζτι στη πύσ εγσί. Γι τη πόδση της έις τ κυθιώ υτώ πτεί κι χησιμπιώ τ ό «γεική

2 πόδς» κτ γί πς τη ιθμητική κι γεμετική πόδ. Είι φεό ότι η γεική πόδς πτεεί τη γείκευση της ιθμητικής κι της γεμετικής πόδυ. Απέφυγ τ ό «γεική πόδς» διότι δε πτεεί γείκευση της μικής πόδυ κι όπς πδεικύετι στιχεί της συτάει κείς κι στη μική πόδ! Οισμός: Μι κυθί IN θ τη έμε γεική πόδ υπάχυ πγμτικί ιθμί κι με 0 τέτιι ώστε γι κάθε IN ισχύει:. Τ ιθμό θ τo έμε συτεεστή της πόδυ κι τ στθεό ό της πόδυ. Ειδικότε 0 κι 0 τότε η πόδς έγετι γεμετική κι ιθμός όγς της πόδυ εώ τότε η πόδς έγετι ιθμητική κι διφά της πόδυ. Ο γεικός ός μις γεικής πόδυ συτήσει τ κι Με τ δμικό τύπ μις γεικής πόδυ μπύμε με διδχικά ήμτ ίσκυμε πιδήπτε ό της. Μπύμε όμς υπγίσυμε τ ιστό ό της πόδυ υτής κι συτήσει τ ιθμώ κι. Σύμφ ιπό με τ ισμό της γεικής πόδυ έχυμε:.. Α τότε πσθέττς κτά μέη τις ισότητες υτές πκύπτει τύπς της ιθμητικής πόδυ: Α τότε πσθέττς στ μέη τ ππά ιστήτ τ ό πίυμε:

3 .. Εκτεώτς στη συέχει τις πάξεις στ δεύτε μέη τ ππά ιστήτ πη της πώτης πκύπτυ ι πκάτ ισότητες:... Τές ππσιάζτς κτά μέη τις ισότητες υτές πίυμε: - Ά ιστός ός μις γεικής πόδυ με πώτ ό τ συτεεστή κι στθεό ό είι:

4 - πυ είι γ- Πτηύμε ότι γι 0 κι πίυμε στός τύπς της γεμετικής πόδυ. Ισχύει η πκάτ πότση. Πότση: Κάθε κυθί με τύπ γεική πόδς. IN με 0 κι είι Απόδειξη Έχυμε: Ά η κυθί -. είι γεική πόδς με συτεεστή κι Άθισμ διδχικώ ό γεικής πόδυ Θ υπγίσυμε τώ τ άθισμ τ πώτ ό μις γεικής πόδυ. Σύμφ με τ ισμό της γεικής πόδυ έχυμε:.. Α τότε ς γστό ισχύει: S [ ] Α τότε πσθέττς κτά μέη τις ππά ισότητες πίυμε: S S

5 5 Ατικθιστώτς στη τεευτί ισότητ τ S με S έχυμε: S S S S S S S S Ά τ άθισμ τ πώτ ό μις γεικής πόδυ είι: S [ ] Γι 0 κι πίυμε S πυ είι τύπς πυ μς δίει τ άθισμ τ πώτ ό γεμετικής πόδυ με πώτ ό τ κι όγ. Πι πχήσυμε στη μεέτη τυ γεικύ μέσυ πυ πυσιάζει κι τ μεγύτε εδιφέ ς δύμε έ πάδειγμ εφμγής τ ππά σε μί άσκηση. Η άσκηση πυ κυθεί είι μί τππίηση της άσκησης της σείδς 08 τυ σχικύ ιίυ της άγες της Β Λυκείυ. Εφμγή: Τ ψυγεί εός φτηγύ πειέχει 0 l εό. Αδειάζυμε 5 l εό κι τ τικθιστύμε με l τιπηκτικό κι l εό. Ύστε δειάζυμε πάι 5 l τυ μείγμτς κι τ τικθιστύμε με l τιπηκτικό κι l εό κ..κ. Α D η πσότητ τυ εύ στ ψυγεί φύ εφμστεί η διδικσί φές είτε τ δμικό τύπ της κυθίς D κι στη συέχει εκφάσετε τ ιστό ό της κυθίς υτής συτήσει τυ.

6 Λύση Έστ D η πσότητ τυ εύ στ ψυγεί τυ φτηγύ φύ εφμστεί η διδικσί φές. Κτά τη επόμεη φά εφμγής της διδικσίς είι πφές ότι η πσότητ τυ εύ στ ψυγεί θ είι: 7 D D 8 Πτηύμε ιπό ότι η κυθί D είι γεική πόδς με 7 D κι. 8 Επμές σύμφ με τ τύπ ιστός ός της συτήσει τυ είι: D D Ο γεικός μέσς Αφήσμε τη μεέτη τυ γεικύ μέσυ γι τ τές όγ της σπυδιότητς πυ πυσιάζει η έι υτή. Έστ γ τεις διδχικί όι μις γεικής πόδυ. Έχυμε: a γ & Α φιέσυμε τ μέη της πό τ μέη της πίυμε: γ γ γ γ Τώ Α - τότε είι γ κι Α - τότε

7 7 γ Ατίστφ. Έστ κι γ τεις ιθμί. Έχυμε τις πειπτώσεις:. Α γ κι τότε πδεικύετι ότι ι ιθμί κι γ είι διδχικί όι γεικής πόδυ με - κι.. Α γ τότε πφώς ι ιθμί κι γ είι διδχικί όι γεικής πόδυ. Στη πείπτση υτή ι ιθμί κι δε ίζτι μσήμτ.. Α κι υπάχει πγμτικός ιθμός IR { 0} τέτις ώστε ισχύει: γ τότε ι ιθμί κι γ είι διδχικί όι γεικής πόδυ. Πάγμτι πό τη σχέση φύ πκύπτει ότι γ 5. Θέττς πίυμε: γ 5 γ κι έχυμε: γ γ γ γ γ γ γ γ Ά ι ιθμί συτεεστή κι στθεό ό κι γ είι διδχικί όι γεικής πόδυ με γ. Οισμός: Έστ κι γ δύ πγμτικί ιθμί κι ές θετικός πγμτικός ιθμός. Ο ιθμός γ θ έγετι γεικός μέσς τ ιθμώ κι γ με συτεεστή. Πτήηση: Εμηεύτς τ γεικό μέσ δύ ιθμώ κι γ με συτεεστή ότ γ φέυμε τ εξής:

8 8. Ότ φεόμστε στ γεικό μέσ δύ ιθμώ η σειά με τη πί θ φέυμε τυς δύ ιθμύς δε μπεί είι τυχί διότι άς είι γεικός μέσς τ ιθμώ κι γ με συτεεστή κι άς τ ιθμώ γ κι. γ. Ο γεικός μέσς τ ιθμώ κι γ είι άμεσ στυς ιθμύς κι γ κι τυτίζετι με τ στθμικό μέσ υτώ με συτεεστές - ύτητς κι τίστιχ. γ. Α γεικός μέσς τ ιθμώ κι γ με συτεεστή τότε ιθμός διφέει πό τ όσ πό τ γ Πάδειγμ: Γι τυς ιθμύς 5 κι 9 ισχύει:. Ά ι ιθμί υτί είι διδχικί όι γεικής πόδυ με γ κι 5 8 Γι επήθευση έχυμε: 5 κι 9 Τ είι γεικός μέσς τ ιθμώ 5 κι 9 με συτεεστή δηδή τ διπάσι τυ 5 0 διφέει πό τ όσ διφέει τ διπάσι τυ πό τ 9. Α 5 τότε ιστός ός της πόδυ υτής σύμφ με τ τύπ είι: 5. Αιθμητικός γεμετικός κι μικός μέσς ς γεικί μέσι Ο ιθμητικός μέσς δύ ιθμώ κι είι γεικός μέσς υτώ με. Αυτό είι μεόμε φύ μί ιθμητική πόδς είι κι γεική με. Τ ίδι ισχύει κι γι τ γεμετικό μέσ δηδή γεμετικός μέσς δύ θετικώ ιθμώ κι πυ είι ιθμός είι γεικός μέσς τ ιθμώ υτώ με συτεεστή: φύ ι ιθμί κι είι διδχικί όι γεμετικής πόδυ πυ είι κι γεική πόδς. Πάγμτι έχυμε:

9 9 Μετά πό υτά γειέτι τ εώτημ: Μήπς ισχύει τ ίδι κι γι τ μικό μέσ δύ μόσημ ιθμώ κι ; Ως γστό μικός μέσς τ ιθμώ υτώ είι ιθμός: Εύκ η ππά πάστση μπεί γφτεί ς εξής: Πτηύμε ιπό ότι κι μικός μέσς δύ μόσημ ιθμώ κι είι γεικός μέσς υτώ με συτεεστή. Σημείση: Υπάχυ κι άι μέσι με ιδιίτεη μσί όπς π. χ. τιμικός μέσς δύ μόσημ ιθμώ κι πυ είι ιθμός. Απ- δεικύετι εύκ ότι κι τιμικός μέσς δύ μόσημ ιθμώ κι είι γεικός μέσς υτώ με συτεεστή. Αξίζει κόμη φεθεί ότι δύ θετικώ ιθμώ κι γεμετικός μέσς είι επίσης στθμικός μέσς υτώ με συτεεστές ύτητς κι μικός με κι κι τιμικός με κι τίστιχ. Αγεική πόδς κι μική πόδς Στη συέχει τ εώτημ πυ τίθετι είι: Μήπς μί μική πόδς είι κι γεική; Θ πσπθήσυμε πτήσυμε σ υτό τ εώτημ μέσ πό έ πάδειγμ. Έστ η κυθί:

10 0 8 0 Είι πφές ότι η κυθί υτή πτεεί μική πόδ. Έτσι τ είι μικός μέσς τ ιθμώ κι Σύμφ με τ ππά τ. θ είι γεικός μέσς τ ιθμώ κι με συτεεστή: πυ εύκ επηθεύετι ότι ισχύει δηδή: Ά ι ιθμί κι είι διδχικί όι γεικής πόδυ με γ 8 κι Γι επήθευση έχυμε: κι Όμς Ά η κυθί: δε είι γεική πόδς. Κάθε τιάδ διδχικώ ό της όμς όπς είδμε είι διδχικί όι γεικής πόδυ. Η τιμή τυ είι διφετική γι κάθε τιάδ κι γι υτό μί μική πόδς δε είι γεική. Γεικά κι γ είι διδχικί όι μις

11 μικής πόδυ τότε ι ιθμί υτί πτεύ διδχικύς όυς μις γεικής πόδυ με. Εδιφέ πυσιάζει η πότση πυ κυθεί η γ πί πτεεί τίστφη πότση της ππά. Πότση: Έστ μί κυθί κάθε ΙΝ ι όι κι ΙΝ με 0 γι κάθε ΙΝ. Α γι πτεύ διδχικύς όυς μις γε- ικής πόδυ με τότε η κυθί ΙΝ είι μική πόδς. Απόδειξη Ακεί πδείξυμε ότι η κυθί ΙΝ είι ιθμητική πόδς. Έχυμε: Αφύ ι ιθμί κι είι διδχικί όι γεικής πόδυ με έπετι ότι διότι τότε φύ ι ιθμί δη- κι είι διδχικί όι γεικής πόδυ θ ήτ δή θ είχμε άτπ. Επμές είι: πό όπυ πίυμε: Επειδή η τεευτί ισότητ ισχύει γι κάθε ΙΝ έπετι ότι η διφά δύ διδχικώ ό της κυθίς ΙΝ είι στθεή. Ά η κυθί υτή είι ιθμητική πόδς πότε η κυθί ΙΝ είι μική πόδς.

12 Ο στθμικός μέσς ς γεικός μέσς Είδμε πι πά ότι τόσ γεμετικός μέσς όσ κι μικός δύ θετικώ ιθμώ είι ι στθμικί μέσι τ ιθμώ υτώ με άγυς συτεεστές ύτητς. Τ εώτημ πυ τίθετι τώ είι μήπς υτό μπεί γεικευθεί κι γι με > θετικύς ιθμύς; Η πάτηση δίετι στ επόμε θεώημ. Θεώημ I: Έστ με θετικί πγμτικί ιθμί. Υπάχυ θετικί ιθμί κι τέτιι ώστε γεμετικός μέσς G κι μικός μέσς Η τ ιθμώ εκφάζτι ς ε- ξής: G κι H Απόδειξη Α θέσυμε: τότε εύκ πδεικύετι ππσιάζτς χιστί ότι ισχύει: γεμετικός μέσς. G Επίσης θέσυμε: έχυμε:

13 H μικόςμέσς. Από τ ππά θεώημ πκύπτει ότι στθμικός μέσς είι γεικός μέσς. Επμές ιθμητικός γεμετικός κι μικός μέσς ιθμώ είι ειδικές πειπτώσεις υτύ. Αξίζει σημειθεί κόμη πς η έι τυ στθμικύ μέσυ είι σύμφη με τη έι της μέσης τιμής στη Θεί Πιθτήτ κι γεικά με τη έι της μέσης τιμής. Πτηύμε τώ ότι με είι πγμτικί ιθμί ό- πυ δε είι όι ίσι μετξύ τυς κι τότε ισχύει: θετικί πγμτικί ιθμί min < < ma δηδή είι ιθμί πυ δε είι όι ίσι μετξύ τυς τότε στθμικός μέσς υτώ με τίστιχ άη είι ές ιθμός άμεσ στ μικότε κι στ μεγύτε πό υτύς. Σύμφ με τ επόμε θεώημ ισχύει κι τ τίστφ τυ ππά συμπεάσμτς δηδή έχυμε πγμτικύς ιθμύς πυ δε είι όι ίσι μετξύ τυς τότε πισδήπτε ιθμός πυ είι άμεσ στ μικότε κι στ μεγύτε πό υτύς μπεί πτεέσει στθμικό μέσ υτώ με κάπι τίστιχ άη. Έχυμε ιπό τ θεώημ: ΘεώημII: Έστ με πγμτικί ιθμί με. Α < τότε γι κάθε o IR με < o < υπάχυ θετικί πγμτικί ιθμί τέτιι ώστε: o Απόδειξη Θέτυμε κι

14 Θ εκφάσυμε τ συτεεστή συτήσει τ i i κι τ j j 0 ώστε ισχύει η ισότητ τυ συμπεάσμτς. Έχυμε: Ατικθιστώτς στη τεευτί ισότητ τυς ιθμύς i i πίυμε: Πφώς ισχύει:.. Συεπώς < < Επίσης είι κι 0 < πότε πό τη πίυμε: > Είι πφές τώ ότι ι ιθμί επηθεύυ τη ισότητ τυ συμπεάσμτς κι υτό κηώει τη πόδειξη τυ θεήμτς. Πάδειγμ: Έστ ι ιθμί κι 0. Θ ύμε συτεεστές κι ώστε τ 9 είι στθμικός μέσς τ ιθμώ υτώ με συτεεστές ύτητς τυς ιθμύς κι τίστιχ. Πάγμτι θέσυμε κι τότε σύμφ με τ πηγύμε θεώημ θ είι:

15 Εύκ επηθεύετι στη συέχει ότι ισχύει ισχυισμός μς δηδή: Ά στθμικός μέσς τ ιθμώ κι 0 με συτεεστές ύτητς κι 8 τίστιχ είι τ 9. Σχόι: Τ θεώημ ΙΙ είι γεικότε τυ θεήμτς Ι διότι κι γεμετικός μέσς θετικώ ιθμώ πυ δε είι όι ίσι μετξύ τυς ά κι μικός μέσς υτώ είι άμεσ στ μικότε κι στ μεγύτε πό υτύς τυς - ιθμύς. Επμές τ θεώημ Ι μπεί θεηθεί ς πόισμ τυ θεήμτς ΙΙ. Επειδή όμς τ θεώημ Ι φέετι σε δύ πύ γστύς μέσυς χκτήισ τη πότση υτή ς θεώημ. Ακόμη πό τις πδείξεις τ ππά θεημάτ πκύπτει ότι ι συτεεστές ύτητς τ ιθμώ γι κάθε στθμικό μέσ υτώ δε είι μδικί. 5 Ε π ί γ ς Επειδή μεικά πό τ πτεέσμτ της εγσίς υτής μπύ τ πάγυ κι ι ίδιι ι μθητές με τη κθδήγησή μς θ μπύσε δθεί η μεέτη εός μέυς τυ ππά θέμτς ς δημιυγική εευητική εγσί σε μθητές της Β Λυκείυ. Μπύ πχθύ κι ίες σκήσεις τίστιχες τ σκήσε της ιθμητικής κι της γεμετικής πόδυ. Ακόμη η εγσί υτή μπεί πτεέσει κι πάδειγμ γι άες δημιυγικές εευητικές εγσίες όπυ φμή γι τη εκπόησή τυς ίσς πτεέσυ πτηήσεις ή άθη μθητώ. Κό είι δίυμε τη ευκιί στυς μθητές γι εξεεύηση κι πειμτισμό. Με τ υστηό κι φμιστικό τόπ διδσκίς πυσιάζετι τ τεικό πϊό εώ η πεί της σκέψης πυ δηγεί στ πτέεσμ πκύπτετι. Ατίθετ η εξεεύηση κι πειμτισμός ηθύ τυς μθητές γίσυ τη μφιά κι τη γητεί της έευς κι της επιστημικής κάυψης! Αάγ πτέεσμ μπύμε έχυμε κι ότ γώυμε τη διδσκί μς με τη μφή της κθδηγύμεης κάυψης. Ας μη ξεχάμε ότι ι μθητές δε είι κεά δχεί πυ πέπει τ γεμίσυμε με γώσεις. Είι πσπικότητες με κάπι υπόθ γώσε στ πί στηιχθύ μπύ πάγυ πές φές τη έ γώση. Τές με τη εγσί υτή ι μθητές θ δυ τ τόπ κι τ ό της γείκευσης μις έις εός τύπυ ή εός θεήμτς. Έτσι θ κτήσυ κύτε τη γεική μφή εξίσσης ευθείς τη γείκευση τυ Πυθγείυ Θεήμτς κθώς

16 κι τ όμ τ συημιτό πυ πτεεί τη ειί διτύπση τυ Πυθγείυ θεήμτς κι τ θεημάτ ξείς κι μείς γίς. Επίσης κό είι στη Γεμετί της Β Λυκείυ ύυμε κι τη άσκηση της σείδς 0 πυ είι τ θεώημ Stewart κι κθδηγύμε κτάη τυς μθητές ώστε συμπείυ ότι τ θεώημ υτό πτεεί γείκευση τυ υ θεήμτς τ διμέσ.

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1 Ε Λ Λ Η Ν Ι Κ Η Η Μ Ο Κ Ρ Α Τ Ι Α Υ ΠΟΥ ΡΓΕΙΟ ΕΘΝ. ΠΑ Ι ΕΙΑ Σ & ΘΡΗΣ Κ/Τ Ω ΕΝΙΑ ΙΟΣ ΙΟΙΚΗΤ ΙΚΟΣ Τ ΟΜ ΕΑ Σ Σ ΠΟΥ Ω Ν ΕΠΙΜ ΟΡΦΩ Σ ΗΣ ΚΑ Ι ΚΑ ΙΝΟΤ ΟΜ ΙΩ Ν /ΝΣ Η Σ ΠΟΥ Ω Τ µ ή µ α Α Α. Πα π α δ ρ έ ο υ 37

Διαβάστε περισσότερα

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι Ίσ Τρίω όχι Ψευδοΐσ ι ημοσιεύτηε στο περιοδιό «φ» τ.5 008 ημ. Ι. Μπουάης Σχ. Σύμουλος Μθημτιώ Οι ερωτήσεις τω μθητώ μς είι σφλώς πάτ ευπρόσδετες λλά πρέπει ι τις εθρρύουμε με άθε τρόπο. Όχι μόο ιτί ζωτεύου

Διαβάστε περισσότερα

Βόμβα στην Καρδιά της Ελληνικής Οικονομίας

Βόμβα στην Καρδιά της Ελληνικής Οικονομίας Restart Λθεμπό Κπύ: Βόμβ τη Κδ της Εηής Ομίς Γης Αθδης Δευθυτής Χημ/ώ & Τεωεώ Θεμτω Νέμβς 2015, Θείη Ο δς τω πώ τη εηή μί Κθ έδ ττύ πϋπγμύ (2014)* 47 δ. Ευώ 100% 6δ πό Εδό Φό Κτωης (ΕΦΚ) ΦΠΑ πό Κπ Πϊότ

Διαβάστε περισσότερα

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx Λογάριθμοι Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έοι του λογάριθμου Έστω η εξίσωση θ, 0, θ 0. Η εξίσωση υτή έχει μοδική λύση φού η εκθετική συάρτηση f είι γησίως μοότοη κι το θ ήκει στο σύολο τιμώ της. Τη μοδική

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ)

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Ελευθέρις Πρωταάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Να βρείτε την τιµή των αραστάσεων: o o συν 90 + ηµ 0 -σφ75 α) A =, ηµ o o 0 + συν 80

Διαβάστε περισσότερα

JEAN-CHARLES BLATZ 02XD34455 01RE52755

JEAN-CHARLES BLATZ 02XD34455 01RE52755 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ ΤΩΝ ΕΝ Ι ΑΜ ΕΣ ΩΝ ΟΙ Κ ΟΝΟΜ Ι Κ ΩΝ Κ ΑΤΑΣ ΤΑΣ ΕΩΝ ΤΗΣ ΕΤΑΙ ΡΙ ΑΣ Κ ΑΙ ΤΟΥ ΟΜ Ι ΛΟΥ Α Τρίµηνο 2005 ΑΝΩΝΥΜΟΣ Γ ΕΝΙ Κ Η ΕΤ ΑΙ Ρ Ι Α Τ ΣΙ ΜΕΝΤ ΩΝ Η Ρ ΑΚ Λ Η Σ ΑΡ. ΜΗ Τ Ρ. Α.Ε. : 13576/06/Β/86/096

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 5 : Δίνετι η πργωγίσιμη συνάρτηση, με πεδί ρισμύ κι σύνλ τιμών

Διαβάστε περισσότερα

ΗΛ. ΣΕΛΙΔΟΠΟΙΗΣΗ - ΕΚΤΥΠΩΣΗ - ΒΙΒΛΙΟΔΕΣΙΑ «ΛΥΧΝΙΑ», Αδραβίδας 7, 13671 Χαμόμυλο Αχαρνών τηλ.: 210 34 10 436, fax: 210 34 25 967

ΗΛ. ΣΕΛΙΔΟΠΟΙΗΣΗ - ΕΚΤΥΠΩΣΗ - ΒΙΒΛΙΟΔΕΣΙΑ «ΛΥΧΝΙΑ», Αδραβίδας 7, 13671 Χαμόμυλο Αχαρνών τηλ.: 210 34 10 436, fax: 210 34 25 967 ΒΙΟΛΟΓΙΑ είς δ ι ςπ ή κ ι Γε Υ Ο Ι ΚΕ Υ Λ Γ είς Πιδ τς Γ ής Γεικ ς ί γ ς ιολο θτή. όσ τ β Β µ ς τ τ οµ ριλ ύλς οσιτό στ λήρ κ ίο πε ς λ β ι έ στ πρ π Το β εξετ ε τρόπο ού στ ς τ ί µ κοπ. θεωρ γρµµέ ου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα Ορισμό ΚΕΦΑΛΑΙΟ Αόριστ & Ορισμέν Ολκλήρωμ Αρχική-Πράγυσ Πράγυσ ή Αρχική ή Αντιπράγωγ μι συνάρτηση f, σε έν διάστημ Δ νμάζετι η πργωγίσιμη συνάρτηση F γι την πί ισχύει F ( ) = f ( ) γι κάθε Ξ D π.χ. π.χ.

Διαβάστε περισσότερα

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο 0 ΜΑΘΗΜΑ.4. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ.4.. Συνέχει συνάρτησης στ o Ορισμός: Μι συνάρτηση f/α νμάζετι συνεχής στ σημεί Α, ότν υπάρχει τ lim f () ι είνι: lim f() = f( ) ΙΣΟΔΥΝΑΜΟΣ ΟΡΙΣΜΟΣ Ότν υπάρχει δ > 0 ώστε

Διαβάστε περισσότερα

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Αποδείξεις Θεωρίς Γ Λυκείου Κτεύθυσης Θέμ 1 ο [σελ 167 σχ. Βιβλίου] P 1 Έστω το πολυώυμο Έχουμε 1 1 1 lim P lim... AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ Ρίζες πργμτικώ ριθμώ Τετργωική ρίζ πργμτικού ριθμού Ορισμός: Η τετργωική ρίζ εός μη ρητικού ριθμού είι ο μη ρητικός ριθμός β που ότ υψωθεί στο τετράγωο μς δίει το, δηλδή: = β β =,, β Πρτήρηση: Η ορίζετι

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Θεωρία ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Θεωρία ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχλγικής Κτεύθυσης Μθημτικά Γ Λυκείυ Θεωρί ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: inf@iliasks.gr www.iliasks.gr Τ σύλ C τω μιγδικώ ριθμώ Τ σύλ C τω

Διαβάστε περισσότερα

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό ΤΠΟΤΡΓΔΗΟ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ, ΠΟΛΗΣΗΜΟΤ ΚΑΗ ΑΘΛΖΣΗΜΟΤ Η.Σ.Τ.Δ. «ΓΗΟΦΑΝΣΟ» Αή Δί Ζίο Γήο Μί Μά Ηί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 7ο (Σ, Τ, Φ, Υ, Φ,Φ Χ, Πά) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 7ο (Σ, Τ,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 00 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ : Θεωρύμε τυς μιγαδικύς αριθμύς α) z(t) + z(t) = z(t)

Διαβάστε περισσότερα

Η Ε Β ΕΘΕ 20 α υα ί υ 2014 Ε ΗΓΗ Η «Ε Γ Ω ΧΕ Ω : πα χ μ π π π αμ χ α α απ υ α π χ α μα ;» Φ : μ Β.. ΕΘΕ, φ α μ υ Θ α ία, π μ α ί α, f.alexakos@yahoo.gr Γ μα α : π π ΓΕΩ ΕΕ. Ε, μ Β μ α ΕΕ/.Β. Θ α ία, goumas.kostas@gmail.com

Διαβάστε περισσότερα

Σύνοψη του προγράμματος EU Kids Online: Τελική Έκθεση

Σύνοψη του προγράμματος EU Kids Online: Τελική Έκθεση Σύψη τυ πγάμμτς EU Kids Online: Τεική Έκθεση Sonia Livingstone and Leslie Haddon Συτιστής, EU Kids Online London School of Economics and Political Science ύις 2009 www.eukidsonline.net Εισγωγή Κθώς τ 75%

Διαβάστε περισσότερα

Απόφα η α έ π ωτέ α/ο έ ζιθθί/φ ζθζ/γί-7-2015 «Μ Η Τ Ω Α

Απόφα η α έ π ωτέ α/ο έ ζιθθί/φ ζθζ/γί-7-2015 «Μ Η Τ Ω Α Η Η ΗΜ ΑΤ Α Γ ΜΩ Μ ΤΑΦ Ω Τ Τ Ω 2 0 1 5 α α α Μητ ω ο ηπτ ατα ευα τ Με ετητ Απόφα η α έ π ωτέ α/ο έ ζιθθί/φ ζθζ/γί-7-2015 Χ Γ Α Α Χ Μ «Μ Η Τ Ω Α Τ Τ Ω Τ Χ Ω Γ Ω» Χ ΓΑ Α Χ Μ Μ Η Τ Ω Α Τ Τ Ω Τ Χ Ω Γ Ω Ά ο

Διαβάστε περισσότερα

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό ΤΠΟΤΡΓΔΗΟ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΩΝ, ΠΟΛΗΣΗΜΟΤ ΚΑΗ ΑΘΛΖΣΗΜΟΤ Η.Σ.Τ.Δ. «ΓΗΟΦΑΝΣΟ» Αή Δί Ζίο Γήο Μί Μά Ηί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 4ο (Λ, - Μ, - Ν, - Ξ,) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 4ο (Λ, - Μ, -

Διαβάστε περισσότερα

Εάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt

Εάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt Μία ιστρία στην ΕΞΝΓΚΣΜΕΝΗ ΤΛΝΤΩΣΗ Κατά την περσινή σχλική χρνιά, στα πλαίσια της Π.Δ.Σ. πρσπάησα, αντί να λύσ ασκήσεις πυ μπρεί να υπάρχυν σε πλλά ιαφρετικά εξσχλικά βιβλία, να εάν ι μαητές μυ έχυν πραγματικά

Διαβάστε περισσότερα

ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ (Επλήψεις Συμπληρώσεις) Εισγωγή Στο Γυμάσιο μάθμε ότι οι πργμτικοί ριθμοί ποτελούτι πό τους ρητούς κι τους άρρητους ριθμούς κι πριστάοτι με

Διαβάστε περισσότερα

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο

Διαβάστε περισσότερα

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj Qwφιertuiopasdfghjklzερυυξnmηq σwωψertuςiopasdρfghjklzcvbn mqwertuiopasdfghjklzcvbnφγιmλι qπςπζwωeτrtuτioρμpκaλsdfghςj ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnmqwertuiopasdfghjklz ΤΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΔΕΙΞΕΙΣ

Διαβάστε περισσότερα

ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - ΚΑΡΑ ΣΑ ΒΒ ΟΓ ΠΟ Υ ΑΝ ΑΣΤΑΣΙΟΣ

ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - ΚΑΡΑ ΣΑ ΒΒ ΟΓ ΠΟ Υ ΑΝ ΑΣΤΑΣΙΟΣ ΤΕΧΝ Οη ΟΓ ΙΚ Ο Ε Κ ΠΟ ΙΔ ΕΥ ΤΙ ΚΟ ΙΔΡΥΜΟ ΚΟΒΟΠΑΕ ΕΧΟΠΗ ΔΙϋΙ ΚΗ ΕΗ Σ ΚΑΙ Ο Ι ΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ηο ΓΙ ΣΤ ΙΚ ΗΣ ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - Καθηγητή ΚΑΡΑ ΣΑ ΒΒ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους.

ΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - - ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ο.. Οι πράξεις πρόσθεση κι πολλπλσισµός κι οι ιδιότητές τους. Πρόσθεση Πολλπλσισµός Ιδιότητ.. Ατιµετθετική (γ)()γ (γ)()γ Προσετιρική (γ)γ Επιµεριστική 0. Ουδέτερο

Διαβάστε περισσότερα

Δ Ι Α Τ Ρ Ο Φ Η Κ Α Ι Ε Ξ Ε Τ Α Σ Ε Ι Σ

Δ Ι Α Τ Ρ Ο Φ Η Κ Α Ι Ε Ξ Ε Τ Α Σ Ε Ι Σ Δ Ι Α Τ Ρ Ο Φ Η Κ Α Ι Ε Ξ Ε Τ Α Σ Ε Ι Σ H π ι κ ρ ή α λ ή θ ε ι α ε ί ν α ι ό τ ι κ α ι σ τ ο π α ρ ε λ θ ό ν κ α ι σ τ ο π α ρ ό ν κ α ι σ τ ο μ έ λ λ ο ν π ο λ ύ λ ί γ ο ι α ν α κ ά λ υ ψ α ν, α ν α

Διαβάστε περισσότερα

«Αυτοεκτίμηση και Αυτοαντίληψη σε Έλληνες και αλλοδαπούς μαθητές της Ε Δημοτικού και βαθμός ανταπόκρισης στις προσδοκίες των γονέων τους»

«Αυτοεκτίμηση και Αυτοαντίληψη σε Έλληνες και αλλοδαπούς μαθητές της Ε Δημοτικού και βαθμός ανταπόκρισης στις προσδοκίες των γονέων τους» Πεπιστήμιο Πτρ Σχοή Αθρπιστικ κι Κοιικ Επιστημ Πιδγγικό Τμήμ Δημοτικής Εκπίδευσης Θέμ πτυχικής εργσίς : «Αυτοεκτίμηση κι Αυτοτίηψη σε Έηες κι οδπούς μθητές της Ε Δημοτικού κι βθμός τπόκρισης στις προσδοκίες

Διαβάστε περισσότερα

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΘΡΗΚΔΤΜΑΣΧΝ, ΠΟΛΙΣΙΜΟΤ ΚΑΙ ΑΘΛΗΣΙΜΟΤ Ι.Σ.Τ.Δ. «ΓΙΟΦΑΝΣΟ» Αή Δί Ηίο Γήο Μί Μά Ιί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 1ο (Α, Β,) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 1ο (Α, Β,) ΤΓΓΡΑΦΔΙ Αή Δί,

Διαβάστε περισσότερα

Φροντιστήρια 2001-ΟΡΟΣΗΜΟ

Φροντιστήρια 2001-ΟΡΟΣΗΜΟ Φροτιστήρι -ΟΡΟΣΗΜΟ ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Επιμέλει: Σεμσίρης Αριστείδης -- Φροτιστήρι -ΟΡΟΣΗΜΟ - - Φροτιστήρι -ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Περιέχει Συοπτική Θεωρί Μεθοδολογί Ασκήσεω Λυμέες Ασκήσεις Λυμέ

Διαβάστε περισσότερα

έκκεντρα mechanical science και στρόφαλοι κτίσε ένα ιπτάμενο αετό κτίσε ένα γερανό

έκκεντρα mechanical science και στρόφαλοι κτίσε ένα ιπτάμενο αετό κτίσε ένα γερανό κτίσε ιτάμε ετό education Η Engino Education χει τύξει μι σειά Μηχικής Ειστήμης, ειδικά γι ιδιά υ ωτιύτι γι τ άτ γύω τυς κι θλυ κάυ κάτι γι υτό! Η σειά σχλείτι με 8 κύι θμτ της Μηχικής: Μχλύς, Σύδεσμι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ 1 01 Θετικοί ριθοί λέοτι οι ριθοί που έχου προστά τους το πρόσηο () 02 Αρητικοί ριθοί λέοτι οι ριθοί που έχου προστά τους το πρόσηο () 03 Το ηδέ είι θετικός ριθός. 04 Οόσηοι

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 22 1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑ 22 1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ ΜΑΘΗΜΑ.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ορισµός της συνέχειας Πράξεις µε συνεχείς συναρτήσεις Συνέχεια συνάρτησης σε διάστηµα Θεωρία Ασκήσεις. Ορισµός Συνάρτηση f λέγεται συνεχής σε σηµεί όταν f () = f ( ).

Διαβάστε περισσότερα

34 34 1.641 357 1.373

34 34 1.641 357 1.373 Α -- Ο Η Α Α-Η Η Α -- Α Α 5 Ω Ο Α Ο Ω Ο Α Ο Α Ο Ο Ο Α ΧΟ Η Α Ο Η / ΧΟ Η Ο Α Α..... Ο Α 599 Α & Α Α Α Α Α Α Α Α Α 21 21 1.495 343 1.351 601 Α & Α Α / Α Α Α Α 24 24 1.418 313 1.053 661 Α Α Α Α Α Α Α Α Α

Διαβάστε περισσότερα

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό ΤΠΟΤΡΓΔΗΟ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ, ΠΟΛΗΣΗΜΟΤ ΚΑΗ ΑΘΛΖΣΗΜΟΤ Η.Σ.Τ.Δ. «ΓΗΟΦΑΝΣΟ» Αή Δί Ζίο Γήο Μί Μά Ηί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 3ο (Ζ, Θ, Η, Κ,) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 3ο (Ζ, Θ, Η, Κ,) ΤΓΓΡΑΦΔΙ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΚΑΛΟΚΑΙΡΙΝΟ ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΕΜΕ ΛΕΠΤΟΚΑΡΥΑ ΠΙΕΡΙΑΣ 0 ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Αργύρης Φελλούρης Απληρωτής Κθηγητής ΕΜΠ ΚΕΦΑΛΑΙΟ Ι ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Στο Κεφάλιο υτό θεωρούμε γωστές τις σικές

Διαβάστε περισσότερα

ΙΔΙΟΤΙΜΕΣ. Λύση. Σχηματίζουμε την εξίσωση (2): x = 0. Οι κολώνες του πίνακα

ΙΔΙΟΤΙΜΕΣ. Λύση. Σχηματίζουμε την εξίσωση (2): x = 0. Οι κολώνες του πίνακα ΙΔΙΟΤΙΜΕΣ Σημείωση Προς το πρόν, κινούμεθ στο σώμ R των πργμτικών ριθμών Έν ιδιοδιάνυσμ ή χρκτηριστικό διάνυσμ ενός πίνκ Α, που ντιστοιχεί στην ιδιοτιμή, είνι εκείνο το μη μηδενικό διάνυσμ το οποίο πηροί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. Γ Τάξης Ενιαίου Λυκείου Θετική & Τεχνολογική Κατεύθυνση

ΜΑΘΗΜΑΤΙΚΑ. Γ Τάξης Ενιαίου Λυκείου Θετική & Τεχνολογική Κατεύθυνση ΜΑΘΗΜΑΤΙΚΑ Γ Τάξης Ειίου Λυκείου Θετική & Τεχολογική Κτεύθυση ΣΥΓΓΡΑΦΕΙΣ Αδρεδάκης Στυλιός Κτσργύρης Βσίλειος Μέτης Στέφος Μπρουχούτς Κω/ος Ππστυρίδης Στύρος Πολύζος Γεώργιος Κθηγητής Πεπιστημίου Αθηώ

Διαβάστε περισσότερα

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ) ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τ σύολ τω ριθµώ είι τ εξής : ) Οι φυσικοί ριθµοί : Ν {0,,,,... } ) Οι κέριοι ριθµοί : Ζ {...,,,, 0,,,,... } ) Οι ρητοί ριθµοί : Q ρ / κ ρ, κ Z, Z 0 4) Οι άρρητοι

Διαβάστε περισσότερα

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ Στό χος του Ο λο κλη ρω μέ νου Προ γράμ μα τος για τη βιώ σι μη α νά πτυ ξη της Πίν δου εί ναι η δια μόρ φω ση συν θη κών α ει φό ρου α νά πτυ ξης της ο ρει νής πε ριο χής, με τη δη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ Γιάννης Θεοδωράκης Πανεπιστήμιο Θεσσαλίας ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΘΕΣΣΑΛΟΝΙΚΗ 2010 ΠΕΡΙΕΧΟΜΕΝΑ Πρό λο γος...6 1. Ά σκη ση και ψυ χική υ γεί α Ει σα γω γή...9 Η ψυ χο λο γί α της ά σκη σης...11

Διαβάστε περισσότερα

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Μθηµτικά Ιβ Σελίδ πό 7 Μάθηµ 7 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Θεωρί : Γρµµική Άλγεβρ : εδάφιο 6, σελ. (µέχρι Πρότση 4.6), εδάφιο 7, σελ. 5 (όχι την πόδειξη της Πρότσης 4.9). πρδείγµτ που ντιστοιχούν

Διαβάστε περισσότερα

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕ Φ Α Λ ΑΙΟ ΤΟ ΙΚΑΙΟ ΤΗΣ ΑΛΙΕΙΑΣ... 21 ΚΕ Φ Α Λ ΑΙΟ 1 o Η ΑΛΙΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ 1.1 Η Α λιεί α ως Οι κο νο μι κή ρα στη ριό τη τα...25 1.2 Η Κοι νο τι κή Α λιευ τι κή Πο λι τι κή...28

Διαβάστε περισσότερα

/ % / Α. Α 6 6 14.958 14,90 31,40 9.863 10,00 17,70 121 Α Α % / Α. Α 17 17 17.595 17,80 34,90 17.222 17,40 33,20

/ % / Α. Α 6 6 14.958 14,90 31,40 9.863 10,00 17,70 121 Α Α % / Α. Α 17 17 17.595 17,80 34,90 17.222 17,40 33,20 Α -- Ο Η %, Α -- Α Α 5 Ω Ο Α Ο Ω Ο Α Ο Α Ο Ο Ο Α ΧΟ Η Α Ο Η / ΧΟ Η Ο Α... Α..Α...... Ο Α... Α..Α...... 127 Α Α Α Α Α Α Α % / Α. Α 8 8 19.884 16,72 29,20 19.161 16,53 31,30 129 Α Α Α Α Α Α % / Α. Α 6 6

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

1. Πότε µία γωνία λέγεται εγγεγραµµένη; Απάντηση Όταν η κορυφή της είναι σηµείο του κύκλου και οι πλευρές της είναι τέµνουσες του κύκλου

1. Πότε µία γωνία λέγεται εγγεγραµµένη; Απάντηση Όταν η κορυφή της είναι σηµείο του κύκλου και οι πλευρές της είναι τέµνουσες του κύκλου 6. 6.4 σκήσεις σχλικύ βιβλίυ σελίδας 9 30 Ερωτήσεις Κατανόησης. Πότε µία γωνία λέγεται εγγεγραµµένη; πάντηση Όταν η κρυφή της είναι σηµεί τυ κύκλυ και ι πλευρές της είναι τέµνυσες τυ κύκλυ. ν φ και ω είναι

Διαβάστε περισσότερα

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Σωµάτι α (πυρήνας 4 He ) µε µάζα m a και φρτί q a =e και πυρήνας ασβεστίυ 40 Ca 0 µε µάζα mπυρ = 10m a και φρτί Q = 0 e πυρ, βρίσκνται αρχικά σε πλύ µεγάλη απόσταση µεταξύ

Διαβάστε περισσότερα

παιδιά! ΜΙΚΡΟΥΛΗΣ! Σελίδες Magazine Βρεφανάπτυξη μεγαλώσει! Κινούμαι, κινείσαι, ΚΙΝΕΙΤΑΙ! Τα καλύτερα παιχνίδια για ευτυχισμένα ittle

παιδιά! ΜΙΚΡΟΥΛΗΣ! Σελίδες Magazine Βρεφανάπτυξη μεγαλώσει! Κινούμαι, κινείσαι, ΚΙΝΕΙΤΑΙ! Τα καλύτερα παιχνίδια για ευτυχισμένα ittle ittle Magazine Τ ύτ πχίδ γ υτυχσ πδ! Σίδ Κτγ γ πδ 0-6 τώ Φθόπ-Χώ 2009 Τύχ: 02 Τή: 0,00 σ πό τη ζή! ΕΙΝΑΙ ΥΠΕΡΟΧΟ ΝΑ ΕΙΣΑΙ ΜΙΚΡΟΥΛΗΣ! Η συσθητή δύη τυ πχδύ! ΦτσόΚσ Πχίδ γ Πδ πό 3 τώ Βφπτυξη πό τ 0- γώσ!

Διαβάστε περισσότερα

---------------------------------------------------------------------------------------- 1.1. --------------

---------------------------------------------------------------------------------------- 1.1. -------------- ΕΚΘΕΣΗ Τ Ο Υ Ι Ο Ι ΚΗΤ Ι ΚΟ Υ ΣΥ Μ Β Ο Υ Λ Ι Ο Υ Π Ρ Ο Σ Τ ΗΝ Τ Α ΚΤ Ι ΚΗ Γ ΕΝ Ι ΚΗ ΣΥ Ν ΕΛ ΕΥ ΣΗ Τ Ω Ν Μ ΕΤ Ο Χ Ω Ν Kύριοι Μ έ τ οχοι, Σ ύµ φ ω ν α µ ε τ ο Ν όµ ο κ α ι τ ο Κα τ α σ τ α τ ικ ό τ ης ε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α.. Να αποδείξετε ότι η παράγωγος της συάρτησης f ( ), για κάθε R. Α.. Α.. (

Διαβάστε περισσότερα

14 Ἰουνίου. Προφήτου Ἐλισσαίου. Τῇ ΙΔ τοῦ µηνὸς Ἰουνίου. Μνήµη τοῦ Ἁγίου Προφήτου Ἐλισσαίου Ἐν τῷ Ἑσπερινῷ. Δόξα. Ἦχος Πα

14 Ἰουνίου. Προφήτου Ἐλισσαίου. Τῇ ΙΔ τοῦ µηνὸς Ἰουνίου. Μνήµη τοῦ Ἁγίου Προφήτου Ἐλισσαίου Ἐν τῷ Ἑσπερινῷ. Δόξα. Ἦχος Πα Τῇ ΙΔ τοῦ µηνὸς Ἰουνίου. Μνήµη τοῦ Ἁγίου Προφήτου Ἐλισσαίου Ἐν τῷ Ἑσπερινῷ. Δόξα. Ἦχος Πα Nε ε δο ο ο ξα Πα α τρι ι ι ι και Υι υι ω και Α γι ι ω Πνε ευ µα α α τι Προ φη τα κη η η ρυ υξ Χρι ι ι στου του

Διαβάστε περισσότερα

POWER SERVICE ΥΠΗΡΕΣΙΑ ΕΓΚΑΤΑΣΤΑΣΗΣ ΚΛΙΜΑΤΙΣΤΙΚΟΥ 9.000 14.000 BTU (PREMIUM) Power Service σε "τιμή πακέτου"!

POWER SERVICE ΥΠΗΡΕΣΙΑ ΕΓΚΑΤΑΣΤΑΣΗΣ ΚΛΙΜΑΤΙΣΤΙΚΟΥ 9.000 14.000 BTU (PREMIUM) Power Service σε τιμή πακέτου! Τ θ έ έ ς ύ ό ς24ω ( ά ω ) Ε ύ ά ς2έ Σ ω ώ ς& ωδ ί ω ό ή ς Ε ί δ ξ 35 Δω άπ δ ή άβ Π ή& ά ω ΥΠΗΡΕΣΙΑ ΕΓΚΑΤΑΣΤΑΣΗΣ ΚΛΙΜΑΤΙΣΤΙΚΟΥ 9.000 14.000 BTU (PREMIUM) Χός άς Μής ωώω ωδίως Ύψς ξωής άδς Τύ έ ίχ, ά

Διαβάστε περισσότερα

Θέ α: ωσ ή ια ροφή και άσκηση ια ο ς εφήβο ς.

Θέ α: ωσ ή ια ροφή και άσκηση ια ο ς εφήβο ς. 4ο Ε Α α ο σίο Α' ίο 4-2015 ρε νη ική ρ ασία Θέ α: ωσ ή ια ροφή και άσκηση ια ο ς εφήβο ς. 4η Ο ά α 1ο Τ τ ά η ο Y ο ώτη α: ι ές α ές άσ ησης ια ο ς φήβο ς. Γενικές αρχές άσκησης: Εί η Άσ ησης Ια ι ός

Διαβάστε περισσότερα

11:30-12:00 ιά ι α 12:00-14:00 ία: Α αιο ο ία αι α ς Α έ ος. ο ισ ς: ά ο ιο. οβο ή βί α ι έ ο ή ο Αθ αίω, Α φιθέα ο «Α ώ ς ί σ ς» Α α ίας

11:30-12:00 ιά ι α 12:00-14:00 ία: Α αιο ο ία αι α ς Α έ ος. ο ισ ς: ά ο ιο. οβο ή βί α ι έ ο ή ο Αθ αίω, Α φιθέα ο «Α ώ ς ί σ ς» Α α ίας Α ΧΑ Α 9- α ο α ίο ι «Α αιο ο ι οί ιά ο οι» ί αι έ ας έος θ σ ός, έ ας ια ής ι ι ός αι α ασ ο ασ ι ός ιά ο ος ια ις α αιό ς αι α αιο ο ία σ σ ι ή οι ία. βασι ή ο ο φή ί αι έ α ήσιο, α οι ό σ έ ιο / ή σ

Διαβάστε περισσότερα

POWER SERVICE ΥΠΗΡΕΣΙΑ ΣΥΝΤΗΡΗΣΗΣ ΚΛΙΜΑΤΙΣΤΙΚΟΥ. Power Service σε "τιμή πακέτου"!

POWER SERVICE ΥΠΗΡΕΣΙΑ ΣΥΝΤΗΡΗΣΗΣ ΚΛΙΜΑΤΙΣΤΙΚΟΥ. Power Service σε τιμή πακέτου! Κ θ φί ω& ω ώ Α ί χ ηδ & π ω ηψ ύ ύ Έ χ φά ά δ Κ θ ω & ξ ω ά δ Δω ά άβ η ί χ ώ ζ ώ η Α ΥΠΗΡΕΣΙΑ ΣΥΝΤΗΡΗΣΗΣ ΚΛΙΜΑΤΙΣΤΙΚΟΥ Τηφω πωί η πίψη ί ηη χώ Κθ φίω & ωώ Αίχη δ & πωη ψύ ύ Έχ φά άδ Κθ ω & ξω άδ Δωά

Διαβάστε περισσότερα

1κΝΓΕΝΙΚΟΝΛΤΚΕΙΟΝΚΙΛΚΙ

1κΝΓΕΝΙΚΟΝΛΤΚΕΙΟΝΚΙΛΚΙ 1κΝΓΕΝΙΚΟΝΛΤΚΕΙΟΝΚΙΛΚΙ ά η: Α - Α Ε Ε Ό ο α έσος α/α Ε ώ ο Ό ο α Πα έ α Ό ος 1 Α Α Α 20 2 Α Α Α Α Ω Α 19,8 3 Α Α Α Α 19,3 4 Α Ω Α Ω Α Α Α Α Α 19,2 5 Α Α Ω Α Α 19,2 6 Α Α ΩΑ 19,2 7 Α Α Α Ω Α 19,2 8 ΩΑ Α

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 3 ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ Βγγέλης Α Νικολκάκης Μθημτικός ΛΙΓΑ ΛΟΓΙΑ Η προύσ εργσί μµου δε στοχεύει πλά στο κυήγι του 5,δηλδή τω μµοάδω του

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (7 /5/ 4) ΘΕΜΑ ο Α. Έστω μι συνάρτηση f ορισμένη σ' έν διάστημ Δ κι έν εσωτερικό σημείο του Δ. Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιμη

Διαβάστε περισσότερα

ΗΛΙΑΣ Γ. ΚΑΡΚΑΝΙΑΣ - ΕΦΗ Ι. ΣΟΥΛΙΩΤΟΥ ΤΕΤΡΑΔΙΟ ΠΡΩΤΗΣ ΓΡΑΦΗΣ. τ... μαθητ... ΤΑΞΗ Α ΣΧΟΛΙΚΟ ΕΤΟΣ... Β Τεύχος

ΗΛΙΑΣ Γ. ΚΑΡΚΑΝΙΑΣ - ΕΦΗ Ι. ΣΟΥΛΙΩΤΟΥ ΤΕΤΡΑΔΙΟ ΠΡΩΤΗΣ ΓΡΑΦΗΣ. τ... μαθητ... ΤΑΞΗ Α ΣΧΟΛΙΚΟ ΕΤΟΣ... Β Τεύχος ΗΛΙΑΣ Γ. ΚΑΡΚΑΝΙΑΣ - ΕΦΗ Ι. ΣΟΥΛΙΩΤΟΥ ΤΕΤΡΑΔΙΟ ΠΡΩΤΗΣ ΓΡΑΦΗΣ τ... μαθητ...... ΤΑΞΗ Α ΣΧΟΛΙΚΟ ΕΤΟΣ... Β Τεύχος Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Γραφής Α Δημοτικού Β ΤΕΥΧΟΣ Απαγορεύεται

Διαβάστε περισσότερα

ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ

ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 5 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π

Διαβάστε περισσότερα

Τα μαθήματα. της. Μαρίας Κιουρί. Έκθεση-Εργαστήριο

Τα μαθήματα. της. Μαρίας Κιουρί. Έκθεση-Εργαστήριο Έκθεσ-Εγστήο Τ θήτ τς Μίς Κουί www.maison-des-sciences.ac-versailles.fr La Maison des Sciences 2011 Μ έκθεσ-εγστήο που ογνώθκε στο La Maison des Sciences et le CNRS (laboratoire MSC) σε συνεγσί ε το Μουσείο

Διαβάστε περισσότερα

ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 5 ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Εισαωή Η αυξημέη αησυχία τω σύχοω κοιωιώ ια τις καταστοφικές επιπτώσεις στη ποιότητα του πειβάλλοτος από τη ααία και άαχη αάπτυξη, που παατηείται τα τελευταία χόια,

Διαβάστε περισσότερα

ΘΕΜΑ: Φορολογική μεταχείριση των μερισμάτων που λαμβάνουν νομικά πρόσωπα από την κοινοπραξία στην οποία συμμετέχουν.

ΘΕΜΑ: Φορολογική μεταχείριση των μερισμάτων που λαμβάνουν νομικά πρόσωπα από την κοινοπραξία στην οποία συμμετέχουν. ΑΔΑ: 6ΩΗΩΗ 5ΓΡ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήν, 15 Ιουνίου 2015 ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΕΣΟΔΩΝ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΦΟΡΟΛΟΓΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΕΥΘΥΝΣΗ ΕΦΑΡΜΟΓΗΣ ΑΜΕΣΗΣ ΦΟΡΟΛΟΓΙΑΣ ΤΜΗΜΑ: Β Τχ.

Διαβάστε περισσότερα

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΙΔΑ: «ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ, ΜΙΑ ΕΜΠΕΙΡΙΑ ΖΩΗΣ» ΣΤΡΑΤΗ ΣΤΑΜΑΤΙΑ Επιβλέπων Καθηγητής: ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΚΑΡΛΟΒΑΣΙ, ΜΑΪΟΣ 2012 ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

Τεχνικό εγχειρίδιο. Χαλύβδινος λέβητας βιομάζας σειρά BMT

Τεχνικό εγχειρίδιο. Χαλύβδινος λέβητας βιομάζας σειρά BMT THERM LEV Τεχνικό εγχειρίδι Χαλύβδινς λέβητας βιμάζας σειρά BMT ΨΣας ευχαριστύμε για την επιστσύνη πυ δείχνετε στα πριόντα μας. ΨΓια την απτελεσματική χρήση τυ λέβητα βιμάζας σειράς ΒΜΤ σας συνιστύμε να

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2 1 11. 11.7 Μέτρηση κύκλυ ΘΩΡΙ Μήκς τόξυ µ : µ 180 Μήκς τόξυ α rad : αr Σχέση µιρών ακτινίων : α π µ 180 µβαδόν κυκλικύ δίσκυ : ( ) µβαδόν κυκλικύ τµέα µ : µ µβαδόν κυκλικύ τµέα α rad : ( ) 1 αr µβαδόν

Διαβάστε περισσότερα

ΑΤΥΠΑ ΤΕΣΤ ΓΛΩΣΣΑΣ ΦΩΝΟΛΟΓΙΚΗ ΕΠΙΓΝΩΣΗ. 1.1. Ικανότητα διάκρισης της ομοιότητας ή διαφοράς μεταξύ προφορικών λέξεων

ΑΤΥΠΑ ΤΕΣΤ ΓΛΩΣΣΑΣ ΦΩΝΟΛΟΓΙΚΗ ΕΠΙΓΝΩΣΗ. 1.1. Ικανότητα διάκρισης της ομοιότητας ή διαφοράς μεταξύ προφορικών λέξεων ΑΤΥΠΑ ΤΕΣΤ ΓΛΩΣΣΑΣ ΦΩΝΟΛΟΓΙΚΗ ΕΠΙΓΝΩΣΗ 1. ΕΠΙΓΛΩΣΣΙΚΗ ΕΠΙΓΝΩΣΗ 1.1. Ικανότητα διάκρισης της ομοιότητας ή διαφοράς μεταξύ προφορικών λέξεων 1.1.1. Ικανότητα επισήμανσης της ομοιότητας στη συλλαβή. 1. γάλα

Διαβάστε περισσότερα

Βασίλης Καραγιάννης. Γλώσσα. Εμπεδωτικές ασκήσεις. Α Δημοτικού. Εικονογράφηση Λίλα Καλογερή, Ζαχαρίας Παπαδόπουλος

Βασίλης Καραγιάννης. Γλώσσα. Εμπεδωτικές ασκήσεις. Α Δημοτικού. Εικονογράφηση Λίλα Καλογερή, Ζαχαρίας Παπαδόπουλος Βσίλης Κργιάννης Γλώσσ Εμπεδωτικές σκήσεις Α Δημτικύ Εικνγράφηση Λίλ Κλγερή, Ζχρίς Ππδόπυλς ÂÚÈÂ fiìâó Εισγωγικό σημείωμ.................................................. 9 ΕΙΚΟΝΕΣ ΓΙΑ ΣΥΖΗΤΗΣΗ ΚΑΙ ΠΡΟΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων ικριτά Μηµτικά κι Μηµτική Λογική ΠΛΗ Ε ρ γ σ ί 4η Θεωρί Γρφηµάτων Α π ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµ. ίετι το ένρο του πρκάτω σχήµτος. e d f b l i a k m p c g h n o Θεωρώντς σν ρίζ του ένρου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ ΜΙΓΑ ΙΚΟΙ Ενότητ 6 ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΟΛΟΚΛΗΡΩΜΑΤΩΝ Ορισµό ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Έστω f µί συνάρτηση ορισµένη σε έν διάστηµ. Αρχιή συνάρτηση ή πράουσ f στο ονοµάζετι άθε συνάρτηση F που είνι πρωίσιµη στο ι ισχύει

Διαβάστε περισσότερα

Είμαστε εδώ. Ο σκοπός μας είναι

Είμαστε εδώ. Ο σκοπός μας είναι Ο σκπό μ Ν πέχυμ μ π, πσ, υπύθυ πόυσ γ Έ κω, μέσ πό δμυγ, πγωγ κ πέδυσ δώ [σ Εάδ]. Εμσ δώ. Η σ 50 ώ Τ γσάσά μ Ιδύθκ 1963 πό μ μάδ Εω πχμώ Μ σ 50 ώ 1965, υγ υ πώυ γσσυ σ Αθ γ πγωγ μπ Amstel 1968, Heineken

Διαβάστε περισσότερα

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ ΤΥΙΚΑ & ΜΑΚΑΡΙΣΜΟΙ Ἦχος Νη Μ Α Ν µην Ευ λο γει η ψυ χη µου τον Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ λο γει η ψυ χη µου τον Κυ ρι ον και πα αν τα τα εν τος µου το ο νο µα το α γι ον αυ του Ευ λο γει η ψυ

Διαβάστε περισσότερα

κ ηϋλ μ α λκπκλδευμ www.karmatravel.gr Travel.Karma@yahoo.gr ΙΝΔΙΑΝ ΧΡΤΟΝ ΣΡΙΓΩΝΟ 06, 27/10/15 639 899 03/11/15 769 1029 600 5* ΦόλκδΝ Α φαζέ Κα ηγέ

κ ηϋλ μ α λκπκλδευμ www.karmatravel.gr Travel.Karma@yahoo.gr ΙΝΔΙΑΝ ΧΡΤΟΝ ΣΡΙΓΩΝΟ 06, 27/10/15 639 899 03/11/15 769 1029 600 5* ΦόλκδΝ Α φαζέ Κα ηγέ www.karmatravel.gr Travel.Karma@yahoo.gr ΙΝ Ι ΧΡ Ο ΡΙ ΩΝΟ κ ηϋλ μ α λκπκλδευμ Β ί Ο Ά α (2) Ο Φα π υ ί Ο μπ α Ο α π (2) Ο Φ Άμπ Ο Β ί (2) Πλκκλδ ηόμ ΙΝΔΙΑΝ ΧΡΤΟΝ ΣΡΙΓΩΝΟ ΜΫλ μ Αθαχωλά δμ Δέεζδθκ Μκθόεζδθκ

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Α ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκπός Σκπός τυ κεφαλαίυ είναι η κατανόηση των βασικών στιχείων μιας στατιστικής έρευνας. Πρσδκώμενα απτελέσματα Όταν θα έχετε λκληρώσει τη μελέτη αυτύ τυ κεφαλαίυ θα πρέπει να μπρείτε:

Διαβάστε περισσότερα

Πως διαμορφώνεται το πρόγραμμα σπουδών για τη Γ Γενικού Λυκείου;

Πως διαμορφώνεται το πρόγραμμα σπουδών για τη Γ Γενικού Λυκείου; είδα 1 Πω διαμφνεται τ όγαμμα σδν για τη ενικύ Λκεί; τη Τάξη μεήσι ενικύ Λκεί εφαμόζεται όγαμμα μαθημάτων 33 ων. Πειαμβάνει μαθήματα γενική αιδεία 13 διδακτικν ων εβδμαδιαίω και 3 Ομάδε Μαθημάτων Πσανατισμύ:

Διαβάστε περισσότερα

ναχω ή ι 23 & 30/12, 2/1.

ναχω ή ι 23 & 30/12, 2/1. Ω 6 αχ 23/12. Ω - Γ - Χ - - - - - - - - Θ 1, Θ - Ω: α 7.30 π.. π π ΩΩ. α υ α αφ α πα α 104 (ετteδ REST) α φα αα. π φυ α Ω α υαυ α α πφ α α αα. α απ "PAδδADIτ", π πα, αυυ. 2, - - : π α π αφυα. α αφ A, α

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2008 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Στις ερωτήσεις -4 να γράψετε στ τετράδιό σας τν αριθµό της ερώτησης και δίπα τ γράµµα, πυ αντιστιχεί στη σωστή απάντηση.. Ακτίνα πράσινυ φωτός πρερχόµενη

Διαβάστε περισσότερα

Υπάρχει σηµείο χ 0 τέτοιο ώστε να ισχύει..

Υπάρχει σηµείο χ 0 τέτοιο ώστε να ισχύει.. Υπάχει σηµείο χ 0 τέτοιο ώστε να ισχύει.. ( ή διαφοετικά πεί ιζών εξίσωσης ) I. Για να δείξουµε ότι µια εξίσωση f(χ)=0 έχει µία τουλάχιστον ίζα στο διάστηµα (α, β) µποούµε να εγασθούµε ως εξής: 1 0ς τόπος:

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕ ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 015 Θέμ 1 ο Α) Ν διτυπώσετε τ κριτήρι γι ν είνι δύο τρίγων όμοι Β) Ν διτυπώσετε κι ν ποδείξετε το ο θεώρημ διμέσων Γ) Ν

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Ορισμοί τω εοιώ κι θεωρήμτ χωρίς πόδειξη ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Πως ορίζετι το σύολο C τω μιγδικώ ριθμώ; Το σύολο C τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου R τω

Διαβάστε περισσότερα

σε τα σημε α να ε ναι υπ λ γι τι ζ χαι ι Υ αμμ ζ να αντιπρ σωπει υν τι

σε τα σημε α να ε ναι υπ λ γι τι ζ χαι ι Υ αμμ ζ να αντιπρ σωπει υν τι Φ Λ Ι Ι ι αγωγτ ρι μ Π λλι πρα τν πρ βλτ ματα χαι χαταστι αει τη αθημ ριν ζω μπ ρ ι ν να περιγραφ ν με τη β θεια ν διαγρι μματ ζ απ τελ μεν υ απ να ι ν λ ημε ων αι να ν λ γραμμι ν π υ να ενι ν υν υγ ε

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09

ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09 ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτµατισµύ Συστήµατα Αυτµάτυ Ελέγχυ ΙΙ Ασκήσεις Πράξης. Καλλιγερόπυλς Σ. Βασιλειάδυ Χειµερινό εξάµην 8/9 Ασκήσεις Μόνιµα Σφάλµατα & Κριτήρια ευστάθειας Άσκηση.. ίνεται σύστηµα µε συνάρτηση

Διαβάστε περισσότερα

! # %# %# & &! ( # # )

! # %# %# & &! ( # # ) ! # %# %# & &! ( # #) +, ./ / / 0(12 / /301/ / 01 1 4 5./ ) 4 4)/ 5.06 137897:; 3 3 0 / 0 54 0 4 04 / 5( /( 5 / 9+ & & 8 # 4? # #Α +, # 0? & &! ( #?) Β Χ # # 4 Ε # +# & 6. # Φ# & 60 #=#>! #

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

ΕΧ Γ Ε ΒΕ Β (.Ε..) ΘΗ Χ ΓΓ Ω Γ & & ΒΗΓ Ε Γ Η ΓΓ ΦΗ Χ Ω Ε Γ Ω Ε Γ Φ, Ε ΤΗ Ε Ε Η Ε ΕΧ Ε. Ε Η Χ Ω Ε Γ Ω ΘΗ, 2015 1. Ε Ε Η Χ Η Ε Γ Σ π π υ α υ α α α α α α µ α απ α α µ π π µα α υπ α α µ π φα µ α α α υ υα µ

Διαβάστε περισσότερα

Γιάννης Θεοδωράκης & Μαίρη Χασάνδρα ΣΧΕΔΙΑΣΜΟΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΑΓΩΓΗΣ ΥΓΕΙΑΣ

Γιάννης Θεοδωράκης & Μαίρη Χασάνδρα ΣΧΕΔΙΑΣΜΟΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΑΓΩΓΗΣ ΥΓΕΙΑΣ Γιάννης Θεοδωράκης & Μαίρη Χασάνδρα ΣΧΕΔΙΑΣΜΟΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΑΓΩΓΗΣ ΥΓΕΙΑΣ ΘΕΣΣΑΛΟΝΙΚΗ 2006 ΣΧΕΔΙΑΣΜΟΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΑΓΩΓΗΣ ΥΓΕΙΑΣ Γιάννης Θεοδωράκης & Μαίρη Χασάνδρα : Εκδόσεις Χριστοδουλίδη Α. & Π. Χριστοδουλίδη

Διαβάστε περισσότερα

Μ ια αρκούδα καφ έ ή το Κ αφ έ Χ ρώ μ α

Μ ια αρκούδα καφ έ ή το Κ αφ έ Χ ρώ μ α Μ ια αρκούδα κα ή το Κ α Χ ρώ μ α 1η φωνή 2η φωνή 4 4 4 = 160 5 Σ τίχο ι:μ αρ ια ν ίν α Κ ρ ιεζή Μ ο υσ ικ ή : Δ η μ ητρ η ς Μ αρ α γκ ό πο υλ ο ς Μ ι αρ κ ο ύ δα κ α, μ ι αρ κ ο ύ δα κ α 8 χει φ ο ρ τω

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ

ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ ΕΛΛΗΝΟΓΛΩΣΣΗ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΔΙΑΠΟΛΙΤΙΣΜΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΣΤΗ ΔΙΑΣΠΟΡΑ ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ ΜΟΝΑΔΕΣ 25 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ, Ε.ΔΙΑ.Μ.ΜΕ. Ρέθυμνο, 2014 1 ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ Άσκηση 1 (6

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09

των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09 των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΦOΡ ΤO ΕΚ ΦOΡ ΤΩΩ ΤΩΩΝ ΠΡΑ ΚΤO ΡΕΙ ΩΩΝ ΜΕ ΤΑ ΦO ΡΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α.

Διαβάστε περισσότερα

2 Γ Ε Ν Ι Κ Η Σ Υ Ν Ε Λ Ε Υ Σ Η Τ Ω Ν Μ Ε Λ Ω Ν Τ Ο Υ Σ Ε Π Ε, 2 8 Μ Α Ϊ Ο Υ 2 0 1 5

2 Γ Ε Ν Ι Κ Η Σ Υ Ν Ε Λ Ε Υ Σ Η Τ Ω Ν Μ Ε Λ Ω Ν Τ Ο Υ Σ Ε Π Ε, 2 8 Μ Α Ϊ Ο Υ 2 0 1 5 3 Μ ή ν υ μ α Π ρ ό ε δ ρ ο υ Δ ι ο ι κ η τ ι κ ο ύ Σ υ μ β ο υ λ ί ο υ 4 Μ ή ν υ μ α Γ ε ν ι κ ο ύ Δ ι ε υ θ υ ν τ ή 5 Ό ρ α μ α κ α ι Σ τ ρ α τ η γ ι κ ή 6 Ε κ π ρ ο σ ώ π η σ η κ α ι Σ υ ν ε ρ γ α σ

Διαβάστε περισσότερα

Κα θη γη τών Ι δι ω τι κών εκ παι δευ τη ρίων σχολικών µονάδων τεχνικής & επαγγελµατικής εκπαίδευσης O17R10

Κα θη γη τών Ι δι ω τι κών εκ παι δευ τη ρίων σχολικών µονάδων τεχνικής & επαγγελµατικής εκπαίδευσης O17R10 Κα θη γη τών Ι δι ω τι κών εκ παι δευ τη ρίων σχολικών µονάδων τεχνικής & επαγγελµατικής εκπαίδευσης O17R10 KΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚΑ ΘΗ ΓΗ ΤΩΩΝ Ι Δ Ι ΩΩ ΤΙ ΚΩΩΝ

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

V=αβγ (1) µ το πλάτος της δεξαµενής, β= 1

V=αβγ (1) µ το πλάτος της δεξαµενής, β= 1 ΕΠΙΛΥΣΗ ΤΥΠΩΝ Στην ενότητα αυτή, πιστεύω να καταλάβετε ότι τα Μαθηµατικά έγιναν και αναπτύχθηκαν για να αντιµετωπίζυν καθηµερινά πρβλήµατα. εν χρειάζνται όµως πλλά λόγια, ας πρχωρήσυµε σε παραδείγµατα.

Διαβάστε περισσότερα

στους μιγαδικούς αριθμούς

στους μιγαδικούς αριθμούς Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;

Διαβάστε περισσότερα

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση

Διαβάστε περισσότερα