Μαθηματικά: Αριθμοί, επίπεδο 2 και άνω. εξερευνώντας τους αριθμούς: Μεγαλύτερο από, Μικρότερο από

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μαθηματικά: Αριθμοί, επίπεδο 2 και άνω. εξερευνώντας τους αριθμούς: Μεγαλύτερο από, Μικρότερο από"

Transcript

1 8η Δραστηριότητα Νίκησε τον χρόνο Δίκτυα ταξινόμησης Περίληψη Αν και οι υπολογιστές είναι γρήγοροι, υπάρχει ένα όριο στο πόσο γρήγορα μπορούν να επιλύουν τα προβλήματα. Ένας τρόπος για να επιταχύνουμε περαιτέρω το χρόνο επίλυσης είναι να χρησιμοποιήσουμε πολλούς υπολογιστές κάθε φορά, για την επίλυση διαφορετικών τμημάτων ενός προβλήματος. Σ' αυτή τη δραστηριότητα θα χρησιμοποιήσουμε τα δίκτυα ταξινόμησης, για να κατανοήσουμε πως μπορούν να κάνουνε πολλές συγκρίσεις ταυτοχρόνως. Αντιστοιχία με το σχολικό πρόγραμμα * (*Σημ. μτφ.: αναφέρεται στη Νέα Ζηλανδία) Μαθηματικά: Αριθμοί, επίπεδο 2 και άνω. εξερευνώντας τους αριθμούς: Μεγαλύτερο από, Μικρότερο από Ικανότητες Να κάνουμε συγκρίσεις Να κατατάσσουμε Να αναπτύσσουμε αλγορίθμους Να επιλύουμε προβλήματα μαζί με άλλους Ηλικία Άνω των 7 ετών Υλικά Αυτή η δραστηριότητα μπορεί να γίνει σε ανοιχτό εξωτερικό χώρο. 73 Κιμωλία Δύο σύνολα των 6 χαρτιών. Αντιγράψτε και πάλι το Πρότυπο Φύλλο για φωτοτυπία Δίκτυα ταξινόμησης (σελ. 75) σε ένα χαρτί, και κόψτε το Ένα χρονόμετρο

2 Δίκτυα ταξινόμησης Πριν αρχίσετε αυτή τη δραστηριότητα, χρησιμοποιήστε την κιμωλία για να σχεδιάσετε στην αυλή το παρακάτω διάγραμμα: Οδηγίες προς τα παιδιά Αυτή η δραστηριότητα θα σας δείξει πως οι υπολογιστές βάζουν τυχαίους αριθμούς σε τάξη, εκμεταλλευόμενοι αυτό που λέγεται δίκτυο ταξινόμησης. 1. Οργανωθείτε σε ομάδες των 6. Μόνο μία ομάδα μπορεί να χρησιμοποιήσει το δίκτυο κάθε φορά. 2. Κάθε παίχτης μίας ομάδος, παίρνει ένα αριθμημένο χαρτί. 3. Κάθε παίχτης πρέπει να μείνει σε ένα τετράγωνο στο αριστερό (IN) μέρος της αυλής. Οι παίχτες με τους αριθμούς πρέπει να είναι τυχαία τοποθετημένοι. 4.Κινηθείτε κατά μήκος των σχεδιασμένων γραμμών και όταν θα έχετε φθάσει σ' έναν κύκλο, πρέπει να περιμένετε να φθάσει ένας άλλος συμπαίκτης. 5. Όταν ο συμπαίκτης φθάσει στον κύκλο σας, συγκρίνετε τα χαρτιά σας. Το άτομο με τον πιο μικρό αριθμό, θα πρέπει να πάει στην έξοδο στ' αριστερά, ενώ ο άλλος, με τον μεγαλύτερο αριθμό στο χαρτί του, θα κατευθυνθεί προς την δεξιά έξοδο. 6. Είστε στη σωστή σειρά όταν φθάσετε στην άλλη άκρη του διαγράμματος; Αν μία ομάδα διαπράξει ένα σφάλμα, τότε τα παιδιά θα πρέπει να ξαναρχίσουν το παιγνίδι. Ελέγξτε αν καταλάβατε καλά τη λειτουργία ενός κόμβου (κύκλου) στο διάγραμμα, όπου η πιο μικρή τιμή προχωρεί στ' αριστερά και η άλλη στα δεξιά. Για παράδειγμα: 74

3 Πρότυπο Φύλλο για φωτοτυπία: Δίκτυα Ταξινόμησης 75

4 Ποικιλίες 1. Όταν τα παιδιά θα έχουν εξοικειωθεί με τη δραστηριότητα αυτή, χρησιμοποιήστε το χρονόμετρο για να μετρήσετε το χρόνο που χρειάζεται η κάθε ομάδα για να ολοκληρώσει το δίκτυο. 2. Χρησιμοποιείστε χαρτιά με μεγάλους αριθμούς (π.χ. σαν τους τριψήφιους, στο βασικό φύλλο). 3. Επινοήστε χαρτιά με αριθμούς ακόμη πιο μεγάλους και σύνθετους για να τους χειριστεί κανείς, ή χρησιμοποιήστε λέξεις και συγκρίνετέ τες αλφαβητικά. Πρόσθετες δραστηριότητες 1. Τι θα συμβεί αν ο μικρότερος αριθμός πάει στα δεξιά, αντί να πάει αριστερά και το αντίστροφο; (Οι αριθμοί θα ταξινομηθούν με ανάποδη σειρά) Το σύστημα λειτουργεί πάλι, αν το δίκτυο χρησιμοποιηθεί ανάποδα; (Δε λειτουργεί απαραίτητα! Tα παιδιά πρέπει να μπορούν να βρούνε ένα input που να βγαίνει με τη λάθος σειρά). 2. Προσπαθείστε να δημιουργήσετε ένα πιο μικρό ή ένα πιο μεγάλο δίκτυο ταξινόμησης. Για παράδειγμα, ορίστε ένα δίκτυο που ταξινομεί μόνο 3 αριθμούς. Τα παιδιά θα πρέπει να μπορούν να το βρουν από μόνα τους. 3. Ακολουθούν 2 διαφορετικά δίκτυα, που θα ταξινομήσουν 4 inputs. Ποιο από τα δύο είναι το πιο γρήγορο; (Είναι τo 2ο. Ενώ το 1ο απαιτεί να γίνονται όλοι οι έλεγχοι στη σειρά, ο ένας μετά τον άλλον, το 2ο προβλέπει έναν τρόπο για να πραγματοποιούνται ταυτόχρονα. Το 1ο δίκτυο είναι ένα παράδειγμα σειριακού υπολογισμού, ενώ το 2ο εκμεταλλεύεται τον παράλληλο υπολογισμό για να επιταχυνθεί). 4. Προσπαθείστε να σχεδιάσετε ένα μεγαλύτερο δίκτυο κατάταξης. 5. Τα δίκτυα μπορούν επίσης να χρησιμοποιηθούν για να βρεθεί η ελάχιστη ή η ανώτατη τιμή ενός input. Για παράδειγμα, στα δεξιά έχει σχεδιασθεί ένα δίκτυο για 8 τιμές: και το μοναδικό output θα περιέχει το minimum των inputs (οι άλλες τιμές θα μείνουν στα νεκρά άκρα του δικτύου). Ποιες καθημερινές διαδικασίες μπορούν ή όχι να επιταχυνθούν χρησιμοποιώντας τον παραλληλισμό; Για παράδειγμα, το να μαγειρέψουμε ένα γεύμα, θα ήταν πιο αργό αν χρησιμοποιούσαμε μόνο ένα μικρό ηλεκτρικό μάτι, γιατί όλα τα πιάτα θα 'πρεπε να μαγειρευτούν το ένα μετά το άλλο. Ποιες δουλειές μπορούν να τελειώσουν πιο γρήγορα χρησιμοποιώντας παραπάνω άτομα και ποιες όχι; 76

5 Τι σχέση έχουν όλα αυτά; Σιγά-σιγά, καθώς χρησιμοποιούνται όλο και περισσότερο οι υπολογιστές, θα θέλαμε να μπορούσανε να επεξεργάζονται όλο και πιο γρήγορα τις πληροφορίες. Ένας τρόπος για να αυξηθεί η ταχύτητα επεξεργασίας είναι να γράψουμε προγράμματα με όσο λιγώτερα υπολογιστικά βήματα γίνεται (όπως δείχνουν οι δραστηριότητες 6 e 7). Ένας άλλος τρόπος για να λύνουμε πιο γρήγορα τα προβλήματα, είναι να χρησιμοποιούμε περισσότερους υπολογιστές συγχρόνως, που να επεξεργάζονται διαφορετικές πτυχές του ίδιου προβλήματος. Για παράδειγμα, στο δίκτυο ταξινόμησης με 6 αριθμούς, αν και είναι απαραίτητες 12 συγκρίσεις για να ταξινομήσουμε τους αριθμούς, μπορούν να γίνουν μέχρι και 3 συγκρίσεις συγχρόνως. Αυτό σημαίνει ότι ο απαιτούμενος χρόνος είναι εκείνος που χρειάζεται για μόλις 5 βήματα συγκρίσεως. Αυτό το παράλληλο δίκτυο ταξινομεί τον κατάλογο με ταχύτητα υπερδιπλάσια σε σχέση με ένα σύστημα που πραγματοποιεί μία μόνο σύγκριση κάθε φορά. Δεν μπορούν όμως να λυθούν όλα τα προβλήματα κάνοντας χρήση του παράλληλου υπολογισμού. Κατ' αναλογία, φαντασθείτε ένα άτομο που σκάβει ένα χαντάκι 10 μέτρα μακρύ. Αν 10 άτομα σκάβανε από ένα μέτρο σ' εκείνο το χαντάκι, τότε η όλη δουλειά θα τελείωνε πολύ πιο γρήγορα. Αλλά δε θα μπορούσε να συμβεί το ίδιο με ένα χαντάκι 10 μέτρα βαθύ το 2ο μέτρο δεν είναι προσβάσιμο αν δεν τελειώσει πρώτα το 1 ο. Οι πληροφορικάριοι μελετούν ακόμη ποιος είναι ο καλύτερος τρόπος υποδιαίρεσης των προβλημάτων, για να είναι εφικτή η επεξεργασία τους από πολλούς υπολογιστές σε παράλληλη διάταξη. 77

Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης

Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης 7η Δραστηριότητα Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης Περίληψη Οι υπολογιστές χρησιμοποιούνται συχνά για την ταξινόμηση καταλόγων, όπως για παράδειγμα, ονόματα σε αλφαβητική σειρά, ραντεβού

Διαβάστε περισσότερα

Πρακτική δραστηριότητα: Το πρόβλημα της λασπωμένης πόλης (σελ. 80) Πλακάκια ή τετράγωνα κομματάκια από χαρτόνι (περίπου 40 για κάθε παιδί)

Πρακτική δραστηριότητα: Το πρόβλημα της λασπωμένης πόλης (σελ. 80) Πλακάκια ή τετράγωνα κομματάκια από χαρτόνι (περίπου 40 για κάθε παιδί) 9η Δραστηριότητα Η λασπωμένη πόλη - Minimal Spanning Trees* (*είδος γραφημάτων) Περίληψη Η κοινωνία μας συνδέεται με πολλά δίκτυα: το τηλεφωνικό δίκτυο, το ενεργειακό δίκτυο, το οδικό δίκτυο. Για ένα ιδιαίτερο

Διαβάστε περισσότερα

6η Δραστηριότητα. Ναυμαχία Αλγόριθμοι αναζήτησης. Περίληψη. Αντιστοιχία με το σχολικό πρόγραμμα * Ικανότητες. Ηλικία. Υλικά

6η Δραστηριότητα. Ναυμαχία Αλγόριθμοι αναζήτησης. Περίληψη. Αντιστοιχία με το σχολικό πρόγραμμα * Ικανότητες. Ηλικία. Υλικά 6η Δραστηριότητα Ναυμαχία Αλγόριθμοι αναζήτησης Περίληψη Συχνά ζητάμε από τους υπολογιστές να ψάξουν πληροφορίες στο εσωτερικό μεγάλων αρχείων δεδομένων. Για να το καταφέρουν, απαιτούνται ταχείες και αποτελεσματικές

Διαβάστε περισσότερα

Ζωγραφίζοντας με τους αριθμούς - Η αναπαράσταση των εικόνων

Ζωγραφίζοντας με τους αριθμούς - Η αναπαράσταση των εικόνων 2η Δραστηριότητα Ζωγραφίζοντας με τους αριθμούς - Η αναπαράσταση των εικόνων Περίληψη Οι υπολογιστές απομνημονεύουν τα σχέδια, τις φωτογραφίες και άλλα σχήματα, χρησιμοποιώντας μόνον αριθμούς. Με την επόμενη

Διαβάστε περισσότερα

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα.

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Είδαμε τι είναι πρόβλημα, τι είναι αλγόριθμος και τέλος τι είναι πρόγραμμα. Πρέπει να μπορείτε να ξεχωρίζετε αυτές τις έννοιες και να αντιλαμβάνεστε

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. A Γυμνασίου 29 Μαρτίου 2014 Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:... Σχολείο:... Τάξη/Τμήμα:. Εξεταστικό Κέντρο:. Πειραματικό Μέρος Θέμα 1 ο H μέτρηση του μήκους γίνεται, συνήθως, με μετροταινία

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

Ανακαλύπτω το ΕΞΙΑ και το ΑΡΙΣΤΕΡΑ

Ανακαλύπτω το ΕΞΙΑ και το ΑΡΙΣΤΕΡΑ Κωδ. 20537 ΠΕΡΙΕΧΟΜΕΝΟ Ανακαλύπτω το ΕΞΙΑ και το ΑΡΙΣΤΕΡΑ EL - 32 κάρτες µε µπλε πλαίσιο, µε φωτογραφίες ενός προσώπου (16 προσθίως και 16 από πίσω) µε ένα αντικείµενο στα δεξιά και στα αριστερά. - 1 κάρτα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

Ο Προγραμματισμός στην Πράξη

Ο Προγραμματισμός στην Πράξη Ο Προγραμματισμός στην Πράξη Το περιβάλλον προγραμματισμού MicroWorlds Pro Μενού επιλογών Γραμμή εργαλείων Επιφάνεια εργασίας Περιοχή Καρτελών Κέντρο εντολών Καρτέλες Οι πρώτες εντολές Εντολές εμφάνισης

Διαβάστε περισσότερα

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος

Διαβάστε περισσότερα

Φύλλο Εργασίας 5 Από τη Θερμότητα στη Θερμοκρασία - Η Θερμική Ισορροπία

Φύλλο Εργασίας 5 Από τη Θερμότητα στη Θερμοκρασία - Η Θερμική Ισορροπία Φύλλο Εργασίας 5 Από τη Θερμότητα στη Θερμοκρασία - Η Θερμική Ισορροπία α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι Στο βιβλίο των φυσικών του δημοτικού σχολείου της Ε τάξης υπάρχει η παρακάτω αναφορά στη

Διαβάστε περισσότερα

Γ-ΓΥΜΝΑΣΙΟΥ (1) ΣΕΛ 1 / 6

Γ-ΓΥΜΝΑΣΙΟΥ (1) ΣΕΛ 1 / 6 Γ-ΓΥΜΝΑΣΙΟΥ (1) ΣΕΛ 1 / 6 1) ΘΕΜΑ : Ποιο αποτέλεσμα εμφανίζετε στην οθόνη όταν εκτελούμε τις παρακάτω εντολές στην LOGO ; (Στις περιπτώσεις που ανοίγει παράθυρο επικοινωνίας να το ζωγραφίσετε. Στις περιπτώσεις

Διαβάστε περισσότερα

TRIDIO 190016 TRIDIO 1

TRIDIO 190016 TRIDIO 1 TRIDIO 190016 1 Τι είναι το Tridio; Το Tridio είναι μια ανεξάρτητη μέθοδος εργασίας με σκοπό να υποστηρίξει τις τρέχουσες μεθόδους διδασκαλίας μαθηματικών στους τομείς της ανάπτυξης της χωρικής ικανότητας,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Τα είδη των Δικτύων Εισαγωγή

ΚΕΦΑΛΑΙΟ 1: Τα είδη των Δικτύων Εισαγωγή ΚΕΦΑΛΑΙΟ 1: Τα είδη των Δικτύων 1.1. Εισαγωγή Γενικότερα δεν υπάρχει κάποια ταξινόμηση των πιθανών δικτύων κάτω από την οποία να ταιριάζουν όλα τα δίκτυα. Παρόλα αυτά η ταξινόμηση τους είθισται να γίνεται

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2015 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2015 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. A Γυμνασίου 07 Μαρτίου 2015 Όνομα και Επώνυμο: Όνομα Πατέρα: Όνομα Μητέρας: Σχολείο: Τάξη/Τμήμα: Εξεταστικό Κέντρο: Πειραματικό Μέρος Θέμα 1 ο Μαθητές διαβάζουν, ο ένας μετά τον άλλο, τις ενδείξεις του

Διαβάστε περισσότερα

Αλγόριθμος. Αλγόριθμο ονομάζουμε τη σαφή και ακριβή περιγραφή μιας σειράς ξεχωριστών οδηγιών βημάτων με σκοπό την επίλυση ενός προβλήματος.

Αλγόριθμος. Αλγόριθμο ονομάζουμε τη σαφή και ακριβή περιγραφή μιας σειράς ξεχωριστών οδηγιών βημάτων με σκοπό την επίλυση ενός προβλήματος. Αλγόριθμος Αλγόριθμο ονομάζουμε τη σαφή και ακριβή περιγραφή μιας σειράς ξεχωριστών οδηγιών βημάτων με σκοπό την επίλυση ενός προβλήματος. Εντολές ή οδηγίες ονομάζονται τα βήματα που αποτελούν έναν αλγόριθμο.

Διαβάστε περισσότερα

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Μέχρι στιγμής εξετάσθηκαν μέθοδοι ταξινόμησης µε πολυπλοκότητα της τάξης Θ ) ή Θlog ). Τι εκφράζει

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δρ. Κόννης Γιώργος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Προγραμματισμός Στόχοι 1 Να περιγράψουμε τις έννοιες του Υπολογιστικού Προβλήματος και του Προγράμματος/Αλγορίθμου

Διαβάστε περισσότερα

Διαγράμματα. Νίκος Σκουλίδης, Σημειώσεις Φυσικής Α` Γυμνασίου, , Διαγράμματα_1_0.docx

Διαγράμματα. Νίκος Σκουλίδης, Σημειώσεις Φυσικής Α` Γυμνασίου, , Διαγράμματα_1_0.docx Διαγράμματα Στα περισσότερα από τα Φύλλα Εργασίας που εργαστήκατε και συμπληρώσατε, είχατε να σχεδιάσετε και ένα διάγραμμα. Ίσως ήταν η πρώτη φορά που ασχοληθήκατε με αυτό το αντικείμενο και να σας φάνηκε

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Εκτελώντας το πρόγραμμα παίρνουμε ένα παράθυρο εργασίας Γεωμετρικών εφαρμογών. Τα βασικά κουμπιά και τα μενού έχουν την παρακάτω

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

ΕΠΛ 001: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Προγραμματισμός

ΕΠΛ 001: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Προγραμματισμός ΕΠΛ 001: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Προγραμματισμός Στόχοι 1 Να περιγράψουμε τις έννοιες του υπολογιστικού προβλήματος και του αλγορίθμου. Να περιγράψουμε την πορεία από ένα υπολογιστικό πρόβλημα

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισμα στην Α.Ε.Π.Π - 18 / Απριλίου / 2010 ΘΕΜΑ 1

Επαναληπτικό διαγώνισμα στην Α.Ε.Π.Π - 18 / Απριλίου / 2010 ΘΕΜΑ 1 Επαναληπτικό διαγώνισμα στην Α.Ε.Π.Π - 18 / Απριλίου / 2010 ΘΕΜΑ 1 Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος,

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΑ ΣΥΣΤΗΜΑΤΑ Δρ. Κουζαπάς Δημήτριος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Προγραμματισμός Στόχοι 1 Να περιγράψουμε τις έννοιες του Υπολογιστικού Προβλήματος

Διαβάστε περισσότερα

Ενότητα 1: Απλές εντολές γραφικών

Ενότητα 1: Απλές εντολές γραφικών Ενότητα 1: Απλές εντολές γραφικών ΣΤΚ: Στυλό Κάτω ΣΒΓ: Σβήσε Γραφικά (Σβήνει όλα τα σχέδια και φέρνει τη χελώνα στην αρχή με το κεφάλι προς τα πάνω) Εντολές Κίνησης: Εντολές Παραδείγματα σύνταξης Εντολή

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση

Διαβάστε περισσότερα

Μάριος Αγγελίδης Ενότητες βιβλίου: 2.1, 2.3, 6.1 (εκτός ύλης αλλά χρειάζεται για την συνέχεια) Ώρες διδασκαλίας: 1

Μάριος Αγγελίδης Ενότητες βιβλίου: 2.1, 2.3, 6.1 (εκτός ύλης αλλά χρειάζεται για την συνέχεια) Ώρες διδασκαλίας: 1 Ενότητα 1 Ενότητες βιβλίου: 2.1, 2.3, 6.1 (εκτός ύλης αλλά χρειάζεται για την συνέχεια) Ώρες διδασκαλίας: 1 Τι είναι αλγόριθμος Σύμφωνα με το σχολικό βιβλίο: Ορισμός: Μια πεπερασμένη σειρά ενεργειών, αυστηρά

Διαβάστε περισσότερα

1.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ

1.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1 1 ΕΙΣΩΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙ Σηµείο : Είναι το σχήµα που δηµιουργείται όταν πιέσουµε την µύτη του στυλό στο τετράδιο µας η την κιµωλία στον πίνακα. Η µορφή ενός σηµείου στο τετράδιο µας είναι η ια να ονοµάσουµε

Διαβάστε περισσότερα

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά 5η Δραστηριότητα Λύσε το γρίφο Η Θεωρία της Πληροφορίας Περίληψη Πόση πληροφορία περιέχεται σε ένα βιβλίο των 1000 σελίδων; Υπάρχει περισσότερη πληροφορία σε έναν τηλεφωνικό κατάλογο των 1000 σελίδων ή

Διαβάστε περισσότερα

Σήματα τροχαίας. 1. Τα παρακάτω είναι σήματα της τροχαίας. Ποια αναγνωρίζετε; Προσπαθήστε να ΚΕΙΜΕΝΟ 1

Σήματα τροχαίας. 1. Τα παρακάτω είναι σήματα της τροχαίας. Ποια αναγνωρίζετε; Προσπαθήστε να ΚΕΙΜΕΝΟ 1 ΚΕΙΜΕΝΟ 1 Σήματα τροχαίας 1. Τα παρακάτω είναι σήματα της τροχαίας. Ποια αναγνωρίζετε; Προσπαθήστε να βρείτε τι σημαίνουν τα χρώματα: το κόκκινο, το πράσινο, το μπλε, το κίτρινο. Συζητήστε στην τάξη για

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

Καταγραφή βημάτων στο χαρτί (Pseudocode)

Καταγραφή βημάτων στο χαρτί (Pseudocode) Εκπαιδευτική ρομποτική Lego Καταγραφή βημάτων στο χαρτί (Pseudocode) Πανεπιστήμιο Αιγαίου / Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων ΠΜΣ Διδακτική Πληροφορικής & Επικοινωνιών / Φιλίππου

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Εισαγωγή Η τακτοποίηση των δεδομένων με ιδιαίτερη σειρά είναι πολύ σημαντική λειτουργία που ονομάζεται

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ. Λίγα λόγια παίκτες Διάρκεια 30 Για ηλικίες 10+

ΟΔΗΓΙΕΣ. Λίγα λόγια παίκτες Διάρκεια 30 Για ηλικίες 10+ ΟΔΗΓΙΕΣ 2-4 παίκτες Διάρκεια 30 Για ηλικίες 10+ Λίγα λόγια... Η ζωή ενός εργάτη σε ένα εργοστάσιο παιχνιδιών είναι σχετικά απαιτητική αλλά και απολαυστική. Τι καλύτερο από το να βρίσκεσαι δίπλα σε παιχνίδια!

Διαβάστε περισσότερα

Σύνοψη Θεωρίας ΟΡΙΣΜΟΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΛΓΟΡΙΘΜΩΝ

Σύνοψη Θεωρίας ΟΡΙΣΜΟΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΛΓΟΡΙΘΜΩΝ 1 ο ΓΥΜΝΑΣΙΟ ΘΕΡΜΗΣ Τάξη: Γ Μάθημα: Πληροφορική Εξεταστέα ύλη: Παρ11.1 & 11.2 Σύνοψη Θεωρίας ΟΡΙΣΜΟΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΛΓΟΡΙΘΜΩΝ Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών που περιγράφει τη διαδικασία

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Με διάγραμμα :

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Με διάγραμμα : Νόμος Νόμοι Πρότυπο ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Πρότυπο ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης (Ε.Ο.Μ.Κ) Όταν η επιτάχυνση ενός

Διαβάστε περισσότερα

x < y ή x = y ή y < x.

x < y ή x = y ή y < x. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 011-1 Τμήμα Μαθηματικών Διδάσκων: Χ.Κουρουνιώτης Μ8 ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ Φυλλάδιο 1 Ανισότητες Οι πραγματικοί αριθμοί είναι διατεταγμένοι. Ενισχύουμε αυτήν την ιδέα με

Διαβάστε περισσότερα

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 5. Ρυθμίζοντας τη Φορά Περιστροφής. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 5. Ρυθμίζοντας τη Φορά Περιστροφής. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 5 Ρυθμίζοντας τη Φορά Περιστροφής DC Κινητήρα. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Δεδομένα Ζητούμενο Επίλυση Κατανόηση «περιβάλλον»

Δεδομένα Ζητούμενο Επίλυση Κατανόηση «περιβάλλον» Η έννοια του προβλήματος Γενικά ως πρόβλημα θεωρούμε κάθε ζήτημα που τίθεται προς επίλυση, κάθε κατάσταση που μας απασχολεί και πρέπει να αντιμετωπιστεί. Τα προβλήματα που καλούμαστε να επιλύσουμε στο

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των Υπολογιστών & Τηλεπικοινωνιών

Εισαγωγή στην επιστήμη των Υπολογιστών & Τηλεπικοινωνιών Εισαγωγή στην επιστήμη των Υπολογιστών & Τηλεπικοινωνιών Λογισμικό Υπολογιστών Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 7 η Βασίλης Στεφανής Αλγόριθμοι ταξινόμησης Στην προηγούμενη διάλεξη είδαμε: Binary search Λειτουργεί μόνο σε ταξινομημένους πίνακες Πώς τους ταξινομούμε? Πολλοί τρόποι. Ενδεικτικά:

Διαβάστε περισσότερα

Ορισμός Κάθε ζήτημα που τίθεται προς επίλυση, κάθε δύσκολη κατάσταση που μας απασχολεί και πρέπει να αντιμετωπιστεί.

Ορισμός Κάθε ζήτημα που τίθεται προς επίλυση, κάθε δύσκολη κατάσταση που μας απασχολεί και πρέπει να αντιμετωπιστεί. ΠΡΟΒΛΗΜΑ Ορισμός Κάθε ζήτημα που τίθεται προς επίλυση, κάθε δύσκολη κατάσταση που μας απασχολεί και πρέπει να αντιμετωπιστεί. ΚΑΤΗΓΟΡΙΕΣ ΠΡΟΒΛΗΜΑΤΩΝ Απλά προβλήματα εύκολη η επίλυσή τους π.χ. υπολογισμός

Διαβάστε περισσότερα

Ψευδοκώδικας. November 7, 2011

Ψευδοκώδικας. November 7, 2011 Ψευδοκώδικας November 7, 2011 Οι γλώσσες τύπου ψευδοκώδικα είναι ένας τρόπος περιγραφής αλγορίθμων. Δεν υπάρχει κανένας τυπικός ορισμός της έννοιας του ψευδοκώδικα όμως είναι κοινός τόπος ότι οποιαδήποτε

Διαβάστε περισσότερα

Γραπτές Απολυτήριες Εξετάσεις Ιουνίου 2008 ΘΕΜΑΤΑ. ΘΕΜΑ 1 ο Σημειώστε δίπλα σε κάθε φράση (Σ) αν είναι σωστή ή (Λ) αν είναι λάθος.

Γραπτές Απολυτήριες Εξετάσεις Ιουνίου 2008 ΘΕΜΑΤΑ. ΘΕΜΑ 1 ο Σημειώστε δίπλα σε κάθε φράση (Σ) αν είναι σωστή ή (Λ) αν είναι λάθος. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Σχολ. Έτος : 2007-2008 Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν.... ΓΥΜΝΑΣΙΟ... Τάξη: Γ Μάθημα : Πληροφορική Ημερ/νία : 11 / 6 / 2008 Γραπτές Απολυτήριες Εξετάσεις Ιουνίου 2008 ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Σημειώστε

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

Αναπαραγωγή και stop/pause έτοιμων ηχητικών clips

Αναπαραγωγή και stop/pause έτοιμων ηχητικών clips Αναπαραγωγή και stop/pause έτοιμων ηχητικών clips Το scratch διαθέτει αρκετά μεγάλη ποικιλία έτοιμων ενσωματωμένων ηχητικών clips τα οποία θα βρείτε πολύ ενδιαφέροντα και θα σας βάλουν σε πειρασμό να πειραματιστείτε

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Αυτοματισμοί και

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 4: Συστηματικές μέθοδοι επίλυσης κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 4 ΙΟΥΛΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ 1 ΟΥ ΒΑΘΜΟΥ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ 1 ΟΥ ΒΑΘΜΟΥ Α ΛΥΚΕΙΟΥ Page1 ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ 1 ΟΥ ΒΑΘΜΟΥ Α ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: 3.1 - Η 1 ΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΗ i. ΔΙΔΑΚΤΙΚΟΙ ΣΤΟΧΟΙ: 1. Να κατανοήσουν τον ρόλο της αλγεβρικής αναγωγής σε απλούστερες αλγεβρικές

Διαβάστε περισσότερα

Το φύλλο εργασίας: Βρες το δρόμο για τα πλούτη του Νησιού του Θησαυρού (σελ. 95) Στυλό ή Μολύβι

Το φύλλο εργασίας: Βρες το δρόμο για τα πλούτη του Νησιού του Θησαυρού (σελ. 95) Στυλό ή Μολύβι 11η Δραστηριότητα Το κυνήγι του θησαυρού - Finite State Automata (FSA) Περίληψη Τα προγράμματα για υπολογιστές πρέπει συχνά να επεξεργαστούν μία σειρά συμβόλων, όπως γράμματα ή λέξεις μέσα σε ένα κείμενο,

Διαβάστε περισσότερα

Μαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Α'Γυμνασίου Μαρίνος Παπαδόπουλος ΚΕΦΑΛΑΙΟ 1: ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. ιάταξη φυσικών αριθµών 2. Στρογγυλοποίηση 3. Πρόσθεση-Αφαίρεση-Πολλαπλασιασµός 4. υνάµεις 5. Ευκλείδεια ιαίρεση 6. ιαιρετότητα-μκ

Διαβάστε περισσότερα

Βασίλειος Κοντογιάννης ΠΕ19

Βασίλειος Κοντογιάννης ΠΕ19 Ενότητα2 Προγραμματιστικά Περιβάλλοντα Δημιουργία Εφαρμογών 5.1 Πρόβλημα και Υπολογιστής Τι ονομάζουμε πρόβλημα; Πρόβλημα θεωρείται κάθε ζήτημα που τίθεται προς επίλυση, κάθε κατάσταση που μας απασχολεί

Διαβάστε περισσότερα

Ορολογία Αλγόριθμος, υπολογιστική σκέψη, αλγοριθμική σκέψη, αποδοτικότητα, δοκιμή.

Ορολογία Αλγόριθμος, υπολογιστική σκέψη, αλγοριθμική σκέψη, αποδοτικότητα, δοκιμή. Το παζλ ανταλλαγής Ηλικίες: 7 ενήλικες Προαπαιτούμενες δεξιότητες: Καμία Χρόνος: 50-60 λεπτά Μέγεθος ομάδας: 8 με 30 Εστίαση Τι είναι αλγόριθμος; Δοκιμή Αποδοτικότητα αλγορίθμων Υπολογιστική και αλγοριθμική

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Αν κάναμε ένα τεστ νοημοσύνης στους μαθητές και θέταμε την ερώτηση: Πως μπορεί να μετρηθεί το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

ΣΥΝ ΕΣΜΟΛΟΓΙΑ ΑΝΤΙΣΤΑΤΩΝ ΣΕ ΣΕΙΡΑ

ΣΥΝ ΕΣΜΟΛΟΓΙΑ ΑΝΤΙΣΤΑΤΩΝ ΣΕ ΣΕΙΡΑ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΣΥΝ ΕΣΜΟΛΟΓΙΑ ΑΝΤΙΣΤΑΣΕΩΝ Λογισµικό: PhET ιάρκεια : 2 διδακτικές ώρες Στόχος : Μετρήσεις τάσεων / εντάσεων του ηλεκτρικού ρεύµατος σε κύκλωµα µε παραπάνω από µια αντιστάσεις και εύρεση του

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη: ΣΤ Η γάτα και το ποντίκι 1. Ένα ποντίκι βρίσκεται πάνω σε έναν τοίχο ύψους 2 μέτρων και κάτω στο έδαφος, περιμένοντας το, βρίσκεται μια γάτα. Κατά τη διάρκεια της

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

9. Κόκκινα-Μαύρα Δέντρα

9. Κόκκινα-Μαύρα Δέντρα Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 9. Κόκκινα-Μαύρα Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 9/12/2016 Δέντρα,

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 4 ο, Τμήμα Α Τι συμβαίνει όταν η περίοδος δεν ξεκινάει αμέσως μετά το κόμμα όπως συμβαίνει με τον αριθμό 3,4555 και θέλουμε να γραφεί σαν κλάσμα; 345 Υπήρχαν πολλές

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΟΜΑ Α Α Αριθµητική Λογική Μονάδα των 8-bit 1. Εισαγωγή Γενικά µια αριθµητική λογική µονάδα (ALU, Arithmetic Logic Unit)

Διαβάστε περισσότερα

(1) Σ 0 (2) Κ 0 (3) Αρχή_Επανάληψης (4) ιάβασε Χ (5) Σ Σ+Χ (6) Αν Χ>0 τότε (7) Κ Κ+1 (8) Τέλος_Αν (9) Μέχρις_ότου Σ>1000 (10) Εμφάνισε Χ

(1) Σ 0 (2) Κ 0 (3) Αρχή_Επανάληψης (4) ιάβασε Χ (5) Σ Σ+Χ (6) Αν Χ>0 τότε (7) Κ Κ+1 (8) Τέλος_Αν (9) Μέχρις_ότου Σ>1000 (10) Εμφάνισε Χ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Πολλαπλές Συγκρίσεις Μέσων Γενικά Η ANOVA αποκαλύπτει εάν υπάρχουν διαφορές μεταξύ των επεμβάσεων, αλλά ποιες ακριβώς είναι αυτές? Κατηγορίες συγκρίσεων A posteriori συγκρίσεις (αφού δούμε τα δεδομένα)

Διαβάστε περισσότερα

Η μπάλα στο σημείο Δεξιότητες: Ρίξιμο κάτω από τον ώμο σε ύψος. Πιάσιμο της μπάλας στον αέρα ή μετά από μια αναπήδηση.

Η μπάλα στο σημείο Δεξιότητες: Ρίξιμο κάτω από τον ώμο σε ύψος. Πιάσιμο της μπάλας στον αέρα ή μετά από μια αναπήδηση. Η μπάλα στο σημείο Ρίξιμο κάτω από τον ώμο σε ύψος. Πιάσιμο της μπάλας στον αέρα ή μετά από μια αναπήδηση. Στέλνω το αντικείμενο στον κενό χώρο. Ξεκινώ και επανατοποθετούμαι κάθε φορά στην Παίζω με διαφορετικό

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

Ο αλγόριθμος πρέπει να τηρεί κάποια κριτήρια

Ο αλγόριθμος πρέπει να τηρεί κάποια κριτήρια Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. Ο αλγόριθμος πρέπει να τηρεί κάποια κριτήρια Είσοδος:

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 6 Οκτωβρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 6 Οκτωβρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 6 Οκτωβρίου 11 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

ΕΚΜΑΘΗΣΗ ΤΟΥ ΜΑΝ ΤΟ ΜΑΝ ΣΤΗΝ ΗΛΙΚΙΑΚΗ ΚΑΤΗΓΟΡΙΑ 8-10 χρ.

ΕΚΜΑΘΗΣΗ ΤΟΥ ΜΑΝ ΤΟ ΜΑΝ ΣΤΗΝ ΗΛΙΚΙΑΚΗ ΚΑΤΗΓΟΡΙΑ 8-10 χρ. ΕΚΜΑΘΗΣΗ ΤΟΥ ΜΑΝ ΤΟ ΜΑΝ ΣΤΗΝ ΗΛΙΚΙΑΚΗ ΚΑΤΗΓΟΡΙΑ 8-10 χρ. 2 ο ΜΕΡΟΣ Mετάφραση & Επιμέλεια: Καρακεχαγιάς Αθ., Ζαπαρτίδης Η. ΕΚΜΑΘΗΣΗ ΤΟΥ ΜΑΝ ΤΟ ΜΑΝ ΣΤΗΝ ΗΛΙΚΙΑΚΗ ΚΑΤΗΓΟΡΙΑ 8-10 ΧΡ. 2 ο ΜΕΡΟΣ ΜΕΘΟΔΟΛΟΓΙΑ

Διαβάστε περισσότερα

4 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

4 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 4 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΣΥΣΤΗΜΑΤΑ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στην έννοια του Αλγορίθμου και στον Προγραμματισμό

Εισαγωγή στην έννοια του Αλγορίθμου και στον Προγραμματισμό Εισαγωγή στην έννοια του Αλγορίθμου και στον Προγραμματισμό Η έννοια του προβλήματος Γενικά ως πρόβλημα θεωρούμε κάθε ζήτημα που τίθεται προς επίλυση, κάθε κατάσταση που μας απασχολεί και πρέπει να αντιμετωπιστεί.

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ

1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ 1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 «Μαθαίνω στη γάτα να σχεδιάζει» Δραστηριότητα 1 Παρατηρήστε τις εντολές στους παρακάτω πίνακες,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ & ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΤΘ ΑΝΑ ΚΕΦΑΛΑΙΟ ΚΑΙ ΠΑΡΑΓΡΑΦΟ

ΕΚΦΩΝΗΣΕΙΣ & ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΤΘ ΑΝΑ ΚΕΦΑΛΑΙΟ ΚΑΙ ΠΑΡΑΓΡΑΦΟ ΕΚΦΩΝΗΣΕΙΣ & ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΤΘ ΑΝΑ ΚΕΦΑΛΑΙΟ ΚΑΙ ΠΑΡΑΓΡΑΦΟ [μέχρι τη ομή Επιλογής] Περιεχόμενα >ΕΝΟΤΗΤΑ 1/ΚΕΦ.1.1/... 2 ΤΥΠΟΥ Β1: ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΟΥ... 2 ΤΥΠΟΥ Β2: ΑΝΤΙΣΤΟΙΧΙΣΗΣ... 2 >ΕΝΟΤΗΤΑ 2/ΚΕΦ.2.1/...

Διαβάστε περισσότερα

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ ΣΕΝΑΡΙΟ ΠΑΙΧΝΙ ΙΟΥ Το παιχνίδι θα αποτελείται από δυο παίκτες, οι οποίοι θα βρίσκονται αντικριστά στις άκρες ενός γηπέδου δεξιά και αριστερά, και µια µπάλα.

Διαβάστε περισσότερα

Δίνεται το σύστημα μιας εισόδου και μιας εξόδου, το οποίο περιγράφεται από τις κάτωθι εξισώσεις:,, πίνακας,

Δίνεται το σύστημα μιας εισόδου και μιας εξόδου, το οποίο περιγράφεται από τις κάτωθι εξισώσεις:,, πίνακας, Παράδειγμα 3.2(Επίλυση συστήματος Jordan) Δίνεται το σύστημα μιας εισόδου και μιας εξόδου, το οποίο περιγράφεται από τις κάτωθι εξισώσεις: Όπου,, πίνακας, Να λυθεί το σύστημα με είσοδο τη συνάρτηση Επίλυση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Σκοπός του παιχνιδιού. Περίληψη

Σκοπός του παιχνιδιού. Περίληψη Σκοπός του παιχνιδιού Είστε διαβολάκια στην Κόλαση, στο διαλλειμά σας από τα βασανιστήρια των χαμένων ψυχών. Ασφαλώς και έχει πάρα πολύ ζέστη, κι έτσι κάθεστε στο μπαρ του Πανδοχείου Τελική Κρίση.Αποφασίσατε

Διαβάστε περισσότερα