Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat"

Transcript

1 Pelajaran 9 Persamaan Bernoulli OBJEKTIF Setelah selesai memelajari Pelajaran ini anda seatutnya daat Mentakrifkan konse kadar aliran jisim Mentakrifkan konse kadar aliran Menerangkan konse halaju urata Mentakrif dan menggunakan rinsi keterusan KERJA DAN TENAGA Kita ketahui bahawa jika kita jatuhkan sebiji bola, bola tersebut akan memecut dengan ecutan g 9.8 m/s (dengan rintangan udara diabaikan). Kita daat hitung halaju bola setelah jatuh sejauh h menggunakan rumus u as dengan a g dan s h. Perkara yang sama daat digunakan untuk setitis bendalir yang jatuh. Pendekatan yang lebih umum untuk memeroleh arameter gerakan (eejal dan bendalir) ialah dengan menggunakan rinsi keabadian tenaga. Prinsi ini menjelaskan bahawa jika geseran diabaikan Hasil tambah tenaga kinetik dengan tenaga uaya adalah malar dengan tenaga kinetik m tenaga uaya tarikan graiti mgh Mohd. Zubil Bahak FKM 00

2 Dalam kes ini m ialah jisim, ialah halaju, dan h ialah ketinggian di atas garis datum. Untuk menggunakan kenyataan ini keada titisan bendalir yang jatuh, kita ada halaju awal yang sifar, dan jatuh dengan ketinggian h. Maka kita daat katakan: Tenaga kinetik awal 0 Tenaga uaya awal mgh Tenaga kinetik akhir m Tenaga uaya akhir 0 Kita ketahui bahawa: Maka Tenaga kinetik tenaga uaya emalar, Tenaga kinetik awal Tenaga uaya awal Tenaga kinetik akhir Tenaga uaya akhir Atau Oleh itu, mgh m gh Walauun rumus ini diguna akai keada setitis bendalir yang jatuh sahaja, namun kaedah yang sama daat digunakan untuk jet berterusan bendalir. Perhatikan Rajah 9.. Dalam rajah ini bendalir mengalir berterusan keluar dariada ai dengan halajau. Satu zarah cecair dengan jisim m akan bergerak bersama-sama dengan jet ini jatuh dari ketinggian z ke z. Halaju juga berubah dari ke. z z Rajah 9. Trajektori jet air Mohd. Zubil Bahak FKM 00

3 Bendalir yang keluar dariada ai ini bergerak dalam udara atmosfera. Oleh itu, tekanan di setia temat adalah tekanan atmosfera. Lanjutan dariada itu, tidak ada daya disebabkan oleh tekanan yang bertindak terhada bendalir tersebut. Daya yang ada hanyalah disebabkan oleh gaiti. Oleh itu, hasil tambah tenaga kinetik dengan tenaga uaya kekal malar (dengan kita mengabaikan kehilangan tenaga akibat dariada geseran) atau Oleh sebab jisim m ada malar, maka mgz m mgz gz gz Rumus ini mamu memberikan keutusan yang agak teat selagi berat jet bendalir adalah lebih besar dariada daya geseran yang kita abaikan sebelum ini. Konse ini hanya boleh digunakan untuk keseluruhan jet sebelum jet itu ecah menjadi titisan bendalir. Perlu diingatkan bahawa rumus yang kita eroleh itu berasaskan bahawa bendalir bergerak di dalam udara. Tekanan di mana-mana titik adalah sifar. Oleh itu, kita yakin bahawa jika sekiranya tekanan tidak sama di mana-mana di dalam aliran bendalir tersebut tentulah rumus yang berlainan akan dieroleh. Ini terjadi kerana jika ada tekanan, maka akan wujud daya tambahan yang bertindak terhada bendalir tersebut dan erlu kita ambil kira dalam analisis menentukan halaju terakhir bendalir. Kita telah lihat dalam seksyen hidrostatik contoh erbezaan tekanan aabila halaju adalah sifar. Katalah kita ada ai yang enuh dengan bendalir dalam keadaan statik dengan ketumatan dan tekanan dan di aras z dan z seerti yang dilakarkan di dalam Rajah 9.. Aakah erbezaan tekanan dalam ungkaan aras ini? m z z Rajah 9. Bendalir di dalam ai dengan tekanan Mohd. Zubil Bahak FKM 00 3

4 Jawaan keada ersoalan ini daat dianalisis mengggunakan konse yang dijelaskan di dalam elajaran berkaitan dengan erubahan tekanan di dalam statik bendalir. Masih ingatkah anda tentang konse ini? Yang jelas ialah erbezaan tekanan yang dimaksudkan ialah atau jika kita susun semula ( z ) g z gz gz Rumus ini hanya sesuai untuk keadaan tekanan yang berubah-ubah tetai bendalir dalam keadaan statik. Cuba anda bandingkan rumus ini dengan rumus yang dieroleh sebelum ini aabila bendalir bergerak tetai tekanan malar: gz gz Anda namak ersamaannya? Aa agaknya akan terjadi jika tekanan dan halaju berubah-ubah? PERSAMAAN BERNOULLI Persamaan Bernoulli adalah salah satu dariada rumus aling enting dalam mekanik bendalir. Persamaan ini ditulis sebagai g z g z Kita daat lihat dengan menggunakan tekanan sama atau halaju sifar kita daat dua rumus yang dibincangkan sebelum ini. Kedua-dua rumus tersebut adalah kes khas ersamaan Bernoulli. Syarat sah enggunaan ersamaan Bernoulli adalah: Aliran adalah manta Kelikatan adalah malar (maknya bendalir tak boleh mamat) Kehilangan geseran diabaikan Persamaan menghubungkan keadaan dua titik di seanjang satu garis arus (bukan keadaan ada dua garis arus yang berbeza) Paksi z sentiasa menghala ke atas. Syarat ini mustahil untuk dienuhi ada sebarang masa (kecuali syarat terakhir)! Namun untuk kebanyakan masalah sebenar keadaan adalah diangga Mohd. Zubil Bahak FKM 00 4

5 hamir memenuhi syarat, ersamaan ini memberikan keutusan yang cuku baik. Sekarang mari kita takrifkab ersamaan Bernoulli ini secara tererinci: Katalah kita ada bendalir yang sedang bergerak di dalam ai. Kita ambil satu elemen dariada keseluruhan bendalir ini seerti yang digambarkan di dalam Rajah 9.3. Keratans rentas a A A B B mg Rajah 9.3 Elemen bendalir dalam ai Elemen bendalir ini memunyai tenaga uaya disebabkan oleh kedudukannya yang berada setinggi z dariada garis datum. Selain itu, elemen ini juga memunyai tenaga kinetik disebabkan oleh halaju. Jika elemen ini memunyai berat mg, maka kita daat katakan: Tenaga uaya mgz Tenaga uaya se unit berat z Tenaga kinetik m Tenaga kinetik se unit berat g Di mana-mana keratan rentas elemen bendalir tersebut, tekanan akan menjana daya sehingga menyebabkan bendalir bergerak, menggerakkan keratan rentas tersebut. Ini tentunya membuktikan bahawa kerja telah dilakukan. Jika tekanan di keratan rentas AB ialah dan luas keratan rentas tersebut ialah a, maka Daya terhada AB a Aabila jisim mg bendalir meleasi AB, keratan rentas AB akan bergerak ke A B. Jumlah isiadu yang meleasi AB ialah Oleh itu, mg m Mohd. Zubil Bahak FKM 00 5

6 Sementara kerja yang dilakukan jarak AA m a Kerja daya jarak AA m m a. a Kerja se unit berat ula ialah g. Ungkaan kerja se unit berat ini dikenali sebagai tenaga tekanan arus bergerak. Dengan menggabungkan kesemua ungkaan tenaga yang ada memberikan: atau Tenaga tekanan se unit berat Tenaga Tenaga kinetik uaya se unit se unit berat berat Tenaga keseluruhan se unit berat g z H Oleh sebab semua ungkaan dalam rumus ini memunyai unit anjang, maka ungkaan ini sering disebut: Turus tekanan Turus halaju g Turus uaya z Turus keseluruhan H Berasaskan rinsi keabadian tenaga, tenaga keseluruhan di dalam sistem tidak berubah. Oleh itu, turus keseluruhan juga tidak berubah. Oleh itu ersamaan Bernoulli daat ditulis sebagai g z H Pemalar Mohd. Zubil Bahak FKM 00 6

7 Seerti yang diterangkan sebelum ini, ersamaan Bernoulli ini digunaakai ada keadaan di seanjang garis arus. Kita boleh gunakan ersamaan ini di antara dua titik, dan, ada garis arus dalam Rajah 9.4 Rajah 9.4 Dua titik disambungkan oleh satu garis arus Jumlah tenaga se unit berat di Jumlah tenaga se unit berat di Atau Turus keseluruhan di Turus keseluruhan di Atau V g z V g z Dalam ersamaan ini dianggakan tidak ada kehilangan tenaga (contohnya disebabkan oleh geseran) atau ertambahan tenaga (contohnya dariada am) di seanjang garis arus. Mohd. Zubil Bahak FKM 00 7

Keterusan dan Keabadian Jisim

Keterusan dan Keabadian Jisim Pelajaran 8 Keterusan dan Keabadian Jisim OBJEKTIF Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Mentakrifkan konsep kadar aliran jisim Mentakrifkan konsep kadar aliran Menerangkan konsep

Διαβάστε περισσότερα

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat: SOALAN 1 Cakera dengan garis pusat d berputar pada halaju sudut ω di dalam bekas mengandungi minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai kelikatan µ. Anggap bahawa susuk halaju

Διαβάστε περισσότερα

2 m. Air. 5 m. Rajah S1

2 m. Air. 5 m. Rajah S1 FAKULI KEJURUERAAN AL 1. Jika pintu A adalah segi empat tepat dan berukuran 2 m lebar (normal terhadap kertas), tentukan nilai daya hidrostatik yang bertindak pada pusat tekanan jika pintu ini tenggelam

Διαβάστε περισσότερα

STATIK BENDALIR: TEKANAN. Setelah selesai mengikuti pelajaran ini anda seharusnya dapat. Mentakrif dan membuktikan hukum Pascal tentang tekanan.

STATIK BENDALIR: TEKANAN. Setelah selesai mengikuti pelajaran ini anda seharusnya dapat. Mentakrif dan membuktikan hukum Pascal tentang tekanan. Statik Bendalir: Tekanan 8 Pelajaran STATIK BENDALIR: TEKANAN OBJEKTIF PELAJARAN Setelah selesai mengikuti elajaran ini anda seharusnya daat Mentakrif dan membuktikan hukum Pascal tentang tekanan. Membuktikan

Διαβάστε περισσότερα

ANALISIS LITAR ELEKTRIK OBJEKTIF AM

ANALISIS LITAR ELEKTRIK OBJEKTIF AM ANALSS LTA ELEKTK ANALSS LTA ELEKTK OBJEKTF AM Unit Memahami konsep-konsep asas Litar Sesiri, Litar Selari, Litar Gabungan dan Hukum Kirchoff. OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menerangkan

Διαβάστε περισσότερα

Tegangan Permukaan. Kerja

Tegangan Permukaan. Kerja Tegangan Permukaan Kerja Cecair lebih cenderung menyesuaikan bentuknya ke arah yang luas permukaan yang minimum. Titisan cecair berbentuk sfera kerana nisbah luas permukaan terhadap isipadu adalah kecil.

Διαβάστε περισσότερα

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun TH383 Realiti Maa Transformasi 3D menggunakan multiplikasi matriks untuk hasilkan kompaun transformasi menggunakan kompaun transformasi - hasilkan sebarang transformasi dan ungkapkan sebagai satu transformasi

Διαβάστε περισσότερα

Keapungan. Objektif. Pendahuluan

Keapungan. Objektif. Pendahuluan Pelajaran 6 Pelajaran 6 Keapungan Ojektif Setelah hais mempelajari pelajaran ini, anda dapat Mentakrifkan Prinsip Archimedes Mentakrifkan rumus untuk pusat meta jasad terapung Memuat analisis mencari tinggi

Διαβάστε περισσότερα

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04 Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia Mekanik Bendalir I KERJA RUMAH Sem II Sesi 2003/04 Pensyarah: Mohd. Zubil Bahak mzubil@fkm.utm.my ext 34737 Arahan: Pelajar diwajibkan menghantar

Διαβάστε περισσότερα

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk SOALAN 1 Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk menyambungkan dua takal yang terpasang kepada dua aci selari. Garispusat takal pemacu, pada motor adalah

Διαβάστε περισσότερα

ALIRAN LAPISAN SEMPADAN

ALIRAN LAPISAN SEMPADAN Bab 1 ALIRAN LAPISAN SEMPADAN 1.1 Kelikatan Kelikatan adalah sifat bendalir yang mengawal kadar alirannya. Ia terjadi disebabkan oleh cohesion yang wujud di antara zarah-zarah bendalir yang boleh diperhatikan

Διαβάστε περισσότερα

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI Bab 5 FUNGSI TRIGONOMETRI Peta Konsep 5.1 Sudut Positif dan Sudut Negatif 5. 6 Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI 5. Graf Fungsi Sinus, Kosinus dan Tangen 5.4 Identiti Asas 5.5

Διαβάστε περισσότερα

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar untuk Fakultas Pertanian Uhaisnaini.com Contents 1 Sistem Koordinat dan Fungsi Sistem Koordinat dan Fungsi Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam

Διαβάστε περισσότερα

Matematika

Matematika Sistem Bilangan Real D3 Analis Kimia FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa D3 Analis Kimia angkatan

Διαβάστε περισσότερα

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan: MODUL 3 [Kertas 1]: MATEMATIK TAMBAHAN JPNK 015 Muka Surat: 1 Jawab SEMUA soalan. 1 Rajah 1 menunjukkan hubungan antara set A dan set B. 6 1 Set A Rajah 1 4 5 Set B (a) Nyatakan julat hubungan itu (b)

Διαβάστε περισσότερα

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia Kalkulus 1 Sistem Bilangan Real Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa

Διαβάστε περισσότερα

ALIRAN BENDALIR UNGGUL

ALIRAN BENDALIR UNGGUL Bab 2 ALIRAN BENDALIR UNGGUL 2.1 Gerakan Zarah-zarah Bendalir Untuk analisis matematik gerakan bendalir, dua pendekatan biasanya digunakan: 1. Kaedah Lagrangian (a) Kajian pola aliran SATU zarah individu

Διαβάστε περισσότερα

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat Kalkulus 1 Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam sistem koordinat, yaitu:

Διαβάστε περισσότερα

Kuliah 4 Rekabentuk untuk kekuatan statik

Kuliah 4 Rekabentuk untuk kekuatan statik 4-1 Kuliah 4 Rekabentuk untuk kekuatan statik 4.1 KEKUATAN STATIK Beban statik merupakan beban pegun atau momen pegun yang bertindak ke atas sesuatu objek. Sesuatu beban itu dikatakan beban statik sekiranya

Διαβάστε περισσότερα

Transformasi Koordinat 2 Dimensi

Transformasi Koordinat 2 Dimensi Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan

Διαβάστε περισσότερα

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM Memahami konsep-konsep asas litar elektrik, arus, voltan, rintangan, kuasa dan tenaga elektrik. Unit OBJEKTIF KHUSUS Di akhir unit ini anda dapat : Mentakrifkan

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Limit dan Statistika FMIPA Universitas Islam Indonesia Operasi Aljabar pada Pembahasan pada limit untuk fungsi dua peubah adalah memberikan pengertian mengenai lim f (x, y) = L (x,y) (a,b) Masalahnya adalah

Διαβάστε περισσότερα

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil. 1, hlm. 37 43 c Jabatan Matematik, UTM. Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan Matematik, Fakulti

Διαβάστε περισσότερα

TOPIK 1 : KUANTITI DAN UNIT ASAS

TOPIK 1 : KUANTITI DAN UNIT ASAS 1.1 KUANTITI DAN UNIT ASAS Fizik adalah berdasarkan kuantiti-kuantiti yang disebut kuantiti fizik. Secara am suatu kuantiti fizik ialah kuantiti yang boleh diukur. Untuk mengukur kuantiti fizik, suatu

Διαβάστε περισσότερα

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR 1. a) Nyatakan dengan jelas Prinsip Archimedes tentang keapungan. b) Nyatakan tiga (3) syarat keseimbangan STABIL jasad terapung. c) Sebuah silinder bergaris pusat 15 cm dan tinggi 50 cm diperbuat daripada

Διαβάστε περισσότερα

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK UJIKAJI TAJUK : E : LENGKUK KEMAGNETAN ATAU CIRI B - H 1. Tujuan : 2. Teori : i. Mendapatkan lengkuk kemagnetan untuk satu

Διαβάστε περισσότερα

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN Jurnal Teknologi, 38(C) Jun 003: 5 8 Universiti Teknologi Malaysia RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN 5 RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN YEOH WENG KANG & JAMALUDIN MD. ALI Abstrak. Rumus untuk

Διαβάστε περισσότερα

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) MODUL 3 [Kertas 2]: MATEMATIK TAMBAHAN JPNK 2015 Muka Surat: 1 1. Selesaikan persamaan serentak yang berikut: MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) 2x y = 1,

Διαβάστε περισσότερα

ALIRAN BOLEH MAMPAT SATU DIMENSI

ALIRAN BOLEH MAMPAT SATU DIMENSI Bab 3 ALIRAN BOLEH MAMPAT SATU DIMENSI 3.1 Bendalir Tak Boleh Mampat dan Boleh Mampat Bendalir tak boleh mampat tidak wujud dalam praktis. Sebutan ini sebenarnya digunakan untuk merujuk kepada bendalir

Διαβάστε περισσότερα

Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil., hlm. 143 156 c Jabatan Matematik, UTM. Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Fungsi Dua Peubah atau Lebih dan Statistika FMIPA Universitas Islam Indonesia 2015 dengan Dua Peubah Real dengan Dua Peubah Real Pada fungsi satu peubah f : D R R D adalah daerah asal (domain) suatu fungsi

Διαβάστε περισσότερα

KEKUATAN KELULI KARBON SEDERHANA

KEKUATAN KELULI KARBON SEDERHANA Makmal Mekanik Pepejal KEKUATAN KELULI KARBON SEDERHANA 1.0 PENGENALAN Dalam rekabentuk sesuatu anggota struktur yang akan mengalami tegasan, pertimbangan utama ialah supaya anggota tersebut selamat dari

Διαβάστε περισσότερα

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987). II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol dinamakan bilangan

Διαβάστε περισσότερα

Hendra Gunawan. 16 April 2014

Hendra Gunawan. 16 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 16 April 014 Kuliah yang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13. Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan Persegi

Διαβάστε περισσότερα

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 ) (1) Tentukan nilai bagi P, Q, dan R MODEL PT MATEMATIK A PUSAT TUISYEN IHSAN JAYA 1 P 0 Q 1 R 2 (4) Lengkapkan operasi di bawah dengan mengisi petak petak kosong berikut dengan nombor yang sesuai. ( 1

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

BAB 2 KEAPUNGAN DAN HIDROSTATIK

BAB 2 KEAPUNGAN DAN HIDROSTATIK BAB 2 KEAPUNGAN DAN HIDROSTATIK 2.1 Hukum Keapungan Archimedes Sebuah badan yang terendam di air ditindak oleh beberapa daya. Pertama ialah berat atau jisim badan itu sendiri yang dianggap bertindak ke

Διαβάστε περισσότερα

Konvergen dalam Peluang dan Distribusi

Konvergen dalam Peluang dan Distribusi limiting distribution Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika July 5, 2014 Outline 1 Review 2 Motivasi 3 Konvergen dalam peluang 4 Konvergen dalam distribusi Back Outline 1 Review 2 Motivasi

Διαβάστε περισσότερα

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia SEE 3533 PRINSIP PERHUBUNGAN Bab III Universiti Teknologi Malaysia 1 Pengenalan Selain daripada teknik pemodulatan amplitud, terdapat juga teknik lain yang menggunakan isyarat memodulat untuk mengubah

Διαβάστε περισσότερα

EMT361 Keboleharapan & Analisis Kegagalan. Dr Zuraidah Mohd Zain Julai, 2005

EMT361 Keboleharapan & Analisis Kegagalan. Dr Zuraidah Mohd Zain Julai, 2005 EMT361 Keboleharapan & Analisis Kegagalan Dr Zuraidah Mohd Zain zuraidah@kukum.edu.my Julai, 2005 Overview untuk minggu 1-3 Minggu 1 Overview terma, takrifan kadar kegagalan, MTBF, bathtub curve; taburan

Διαβάστε περισσότερα

Persamaan Diferensial Parsial

Persamaan Diferensial Parsial Persamaan Diferensial Parsial Turunan Parsial f (, ) Jika berubah ubah sedangkan tetap, adalah fungsi dari dan turunanna terhadap adalah f (, ) f (, ) f (, ) lim 0 disebut turunan parsialpertama dari f

Διαβάστε περισσότερα

PENGEMBANGAN INSTRUMEN

PENGEMBANGAN INSTRUMEN PENGEMBANGAN INSTRUMEN OLEH : IRFAN (A1CI 08 007) PEND. MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS HALUOLEO KENDARI 2012 A. Definisi Konseptual Keterampilan sosial merupakan kemampuan

Διαβάστε περισσότερα

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK 2 SKEMA MODUL PECUTAN AKHIR 20 No Jawapan Pembahagian (a) 00000 0000 0000 Jumlah 000 TIM00 #0300 TIM00 000 000 0M END Simbol dan data betul : 8 X 0.5M = 4M

Διαβάστε περισσότερα

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali LITAR ELEKTRIK 1 EET101/4 Pn. Samila Mat Zali STRUKTUR KURSUS Peperiksaan Akhir : 50% Ujian teori : 10% Mini projek : 10% Amali/praktikal : 30% 100% OBJEKTIF KURSUS Mempelajari komponen-komponen utama

Διαβάστε περισσότερα

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan TKS 6112 Keandalan Struktur TEORI PELUANG* * www.zacoeb.lecture.ub.ac.id Pendahuluan Sebuah bangunan dirancang melalui serangkaian perhitungan yang cermat terhadap beban-beban rencana dan bangunan tersebut

Διαβάστε περισσότερα

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH 72/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 201 2 Jam SMK SERI MUARA, 6100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA KERTAS

Διαβάστε περισσότερα

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2006/2007 April 2007 HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 KOD MATAPELAJARAN : SMJ 3403 NAMA MATAPELAJARAN : TERMODINAMIK

Διαβάστε περισσότερα

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit MATEMATIK TAMBAHAN Kertas 2 September 2013 2½ Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2 Dua jam tiga puluh minit JANGAN BUKA KERTAS

Διαβάστε περισσότερα

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu.

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu. BAB 3 : ISI RUMAH SEBAGAI PENGGUNA SPM2004/A/S3 (a) Rajah tersebut menunjukkan keluk permintaan yang mencerun ke bawah dari kiri ke kanan. Ia menunjukkan hubungan negatif antara harga dengan kuantiti diminta.

Διαβάστε περισσότερα

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA KEPUTUSAN MESYUARAT KALI KE 63 JAWATANKUASA FARMASI DAN TERAPEUTIK HOSPITAL USM PADA 24 SEPTEMBER 2007 (BAHAGIAN 1) DAN 30 OKTOBER 2007 (BAHAGIAN 2) A. Ubat

Διαβάστε περισσότερα

PENGENALAN KEPADA MESIN BENDALIR

PENGENALAN KEPADA MESIN BENDALIR Bab 4 PENGENALAN KEPADA MESIN BENDALIR 4.1 Pengkelasan Mesin Hidraulik Tenaga wujud dalam berbagai bentuk. Tenaga hidraulik adalah tenaga yang terdapat pada bendalir dalam beberapa bentuk; kinetik, tekanan,

Διαβάστε περισσότερα

Pembinaan Homeomorfisma dari Sfera ke Elipsoid

Pembinaan Homeomorfisma dari Sfera ke Elipsoid Matematika, 003, Jilid 19, bil., hlm. 11 138 c Jabatan Matematik, UTM. Pembinaan Homeomorfisma dari Sfera ke Elipsoid Liau Lin Yun & Tahir Ahmad Jabatan Matematik, Fakulti Sains Universiti Teknologi Malasia

Διαβάστε περισσότερα

Pumping Lemma. Semester Ganjil 2013 Jum at, Dosen pengasuh: Kurnia Saputra ST, M.Sc

Pumping Lemma. Semester Ganjil 2013 Jum at, Dosen pengasuh: Kurnia Saputra ST, M.Sc Semester Ganjil 2013 Jum at, 08.11.2013 Dosen pengasuh: Kurnia Saputra ST, M.Sc Email: kurnia.saputra@gmail.com Jurusan Informatika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Syiah Kuala

Διαβάστε περισσότερα

Kertas soalan ini mengandungi 20 halaman bercetak.

Kertas soalan ini mengandungi 20 halaman bercetak. 3472/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 2013 2 Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA

Διαβάστε περισσότερα

LITAR ARUS ULANG ALIK (AU)

LITAR ARUS ULANG ALIK (AU) TA AUS UANG AK (AU) TA AUS UANG AK (AU) OBJEKTF AM Memahami litar asas arus Ulang alik dan litar sesiri yang mengandungi, dan. Unit OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menjelaskan bahawa dalam

Διαβάστε περισσότερα

Sudut positif. Sudut negatif. Rajah 7.1: Sudut

Sudut positif. Sudut negatif. Rajah 7.1: Sudut Bab 7 FUNGSI TRIGONOMETRI Dalam bab ini kita akan belajar secara ringkas satu kelas fungsi penting untuk penggunaan dipanggil fungsi trigonometri Fungsi trigonometri pada mulana timbul dalam pengajian

Διαβάστε περισσότερα

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X. BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua

Διαβάστε περισσότερα

FIZIK. Daya dan Gerakan TINGKATAN 4. Cikgu Khairul Anuar. Cikgu Desikan SMK Changkat Beruas, Perak. Bab 2. SMK Seri Mahkota, Kuantan.

FIZIK. Daya dan Gerakan TINGKATAN 4. Cikgu Khairul Anuar. Cikgu Desikan SMK Changkat Beruas, Perak. Bab 2. SMK Seri Mahkota, Kuantan. FIZIK TINGKATAN 4 Bab 2 Daya dan Gerakan Disunting oleh Cikgu Desikan SMK Changkat Beruas, Perak Cikgu Khairul Anuar Dengan kolaborasi bersama SMK Seri Mahkota, Kuantan FIZIK TINGKATAN 4 2016 Bab 2 Daya

Διαβάστε περισσότερα

Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO

Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND Kompetensi menguraikan ciri-ciri suatu kurva normal menentukan luas daerah dibawah kurva normal menerapkan sebaran normal dalam

Διαβάστε περισσότερα

BAB 5 DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan

BAB 5 DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan BAB DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan Kajian ini adalah untuk meneroka Metakognisi dan Regulasi Metakognisi murid berpencapaian tinggi, sederhana dan rendah dalam kalangan murid tingkatan empat

Διαβάστε περισσότερα

MENGENALI FOTON DAN PENGQUANTUMAN TENAGA

MENGENALI FOTON DAN PENGQUANTUMAN TENAGA MENGENALI FOTON DAN PENGQUANTUMAN TENAGA Oleh Mohd Hafizudin Kamal Sebelum wujudnya teori gelombang membujur oleh Huygens pada tahun 1678, cahaya dianggap sebagai satu aliran zarah-zarah atau disebut juga

Διαβάστε περισσότερα

BAB 2 PEMACU ELEKTRIK

BAB 2 PEMACU ELEKTRIK BAB 2 PEMACU ELEKTRIK PENGENALAN Kebanyakan perindustrian moden dan komersial menggunakan pemacu elektrik berbanding dengan pemacu mekanikal kerana terdapat banyak kelebihan. Di antaranya ialah : a) binaannya

Διαβάστε περισσότερα

SKMM 2323 Mekanik Bendalir II

SKMM 2323 Mekanik Bendalir II Nota Kuliah SKMM 2323 Mekanik Bendalir II Abu Hasan ABDULLAH Nota Kuliah SKMM 2323 Mekanik Bendalir II Aliran Lapisan Sempadan Aliran Bendalir Unggul Aliran Boleh Mampat Satu Dimensi Pengenalan Kepada

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA

S T A T I S T I K A OLEH : WIJAYA S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan

Διαβάστε περισσότερα

KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK

KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK KEMENTERIAN PELAJARAN MALAYSIA KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK TAHUN TIGA DOKUMEN STANDARD KURIKULUM STANDARD SEKOLAH RENDAH (KSSR) MODUL TERAS TEMA DUNIA MUZIK TAHUN TIGA BAHAGIAN PEMBANGUNAN

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 3: Diskrit Statistika FMIPA Universitas Islam Indonesia Ilustrasi 1 Matriks Peluang Transisi Matriks Stokastik Chapman-Komogorov Equations Peluang Transisi Tak Bersyarat Perilaku bunuh diri kini kian

Διαβάστε περισσότερα

SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA

SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA Prof. Madya Dr. Mohd Zainudin Saleh mzsaleh@ukm.my www.ukm.my/zainudin 29/01/2004 Kuliah 12 1 MAKROEKONOMI

Διαβάστε περισσότερα

Karya Tentang Relativiti Khas

Karya Tentang Relativiti Khas Karya Tentang Jurnal Relativiti Terjemahan KhasAlam & Tamadun Melayu 1: (010) 71-10 71 Karya Tentang Relativiti Khas ALBERT EINSTEIN PENDAHULUAN DARIPADA PENTERJEMAH Ada lima buah makalah Albert Einstein

Διαβάστε περισσότερα

Teorem Titik Tetap Pemetaan 2 Mengecut Pada Ruang 2 Metrik

Teorem Titik Tetap Pemetaan 2 Mengecut Pada Ruang 2 Metrik Matematika, 1999, Jilid 15, bil. 2, hlm. 135 141 c Jabatan Matematik, UTM. Teorem Titik Tetap Pemetaan 2 Mengecut Pada Ruang 2 Metrik Mashadi Jurusan Matematika Universitas Riau Kampus Bina Widya Panam

Διαβάστε περισσότερα

LOGIKA MATEMATIKA. MODUL 1 Himpunan. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 )

LOGIKA MATEMATIKA. MODUL 1 Himpunan. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 ) LOGIKA MATEMATIKA MODUL 1 Himpunan Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 ) Himpunan I. Definisi dan Notasi Himpunan adalah kumpulan sesuatu yang didefinisikan

Διαβάστε περισσότερα

BAB 9 PENENTUAN KEDUDUKAN

BAB 9 PENENTUAN KEDUDUKAN Pengenalan BAB 9 PENENTUAN KEDUDUKAN Penentuan Kedudukan Tujuan Penentuan Kedudukan Titik persilangan antara 2 garis Mendapatkan kedudukan bot atau titik di mana kedalaman akan diambil Stn 3 Stn 1 Stn

Διαβάστε περισσότερα

BAB 2 PEMODULATAN AMPLITUD

BAB 2 PEMODULATAN AMPLITUD BAB MODULATAN LITUD enghantaran iyarat yang engandungi akluat elalui atu aluran perhubungan eerlukan anjakan frekueni iyarat akluat kepada julat frekueni yang euai untuk penghantaran - roe ini diapai elalui

Διαβάστε περισσότερα

MODUL PENINGKATAN AKADEMIK SPM 2017 PERATURAN PEMARKAHAN KERTAS 2 (4531/2) BAHAGIAN A. 1(a) (i) P R P 1 (b)(i) Ralat rawak // ralat paralaks 1

MODUL PENINGKATAN AKADEMIK SPM 2017 PERATURAN PEMARKAHAN KERTAS 2 (4531/2) BAHAGIAN A. 1(a) (i) P R P 1 (b)(i) Ralat rawak // ralat paralaks 1 MODUL PENINGKATAN AKADEMIK SPM 207 PERATURAN PEMARKAHAN KERTAS 2 (453/2) BAHAGIAN A Nombor (a) (i) P R P (b)(i) Ralat rawak // ralat paralaks (ii) Ulang eksperimen, kira bacaan purata//kedudukan mata berserenjang

Διαβάστε περισσότερα

Kuliah 2 Analisis Daya & Tegasan

Kuliah 2 Analisis Daya & Tegasan -1 Kuliah Analisis Daya & Tegasan.1 ANALISIS DAYA a. Kepentingan sebelum sebarang analisis kejuruteraan dapat dilakukan, kita mesti ketahui dulu dayadaya yang bertindak ke atas sesuatu objek. Kemudian

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

Proses Pembakaran 1. Presenter: Dr. Zalilah Sharer 2014 Pusat Teknologi Gas Universiti Teknologi Malaysia 28 March 2015

Proses Pembakaran 1. Presenter: Dr. Zalilah Sharer 2014 Pusat Teknologi Gas Universiti Teknologi Malaysia 28 March 2015 Proses Pembakaran 1 Presenter: Dr. Zalilah Sharer 2014 Pusat Teknologi Gas Universiti Teknologi Malaysia 28 March 2015 Proses Pembakaran 1. Sumber Tenaga Dunia 2. Bahanapi Gas Komponen, Sifat ( SG, CV,

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 3: Diskrit Statistika FMIPA Universitas Islam Indonesia Ilustrasi 1 Perilaku bunuh diri kini kian menjadi-jadi. Hesti (nama sebenarnya) adalah sebuah contoh. Dia pernah melakukan percobaan bunuh diri,

Διαβάστε περισσότερα

DAFTAR LAMPIRAN. Lampiran 2. Penetapan derajat infeksi mikoriza arbuskular

DAFTAR LAMPIRAN. Lampiran 2. Penetapan derajat infeksi mikoriza arbuskular DAFTAR LAMPIRAN Lampiran 1. Data analisis awal tanah Jenis Analisis Satuan Nilai Kriteria ph H 2 O - 4,56 Masam C-Organik % 1,75 Rendah N-Total % 0,22 Sedang C/N Ratio - 7,95 Rendah P-tersedia (ppm) ppm

Διαβάστε περισσότερα

FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10}

FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10} FUNGSI KERTAS 1 P = {1,, 3} Q = {, 4, 6, 8, 10} 1. Berdasarkan maklumat di atas, hubungan P kepada Q ditakrifkan oleh set pasangan bertertib {(1, ), (1, 4), (, 6), (, 8)}. Nyatakan (a) imej bagi 1, (b)

Διαβάστε περισσότερα

SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian

SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian KOD KURSUS SCE3105 MATA KREDIT : 3 (2 + 1) PENGENALAN Kursus ini meneroka idea dan amalan fizik

Διαβάστε περισσότερα

BAB 8 PENENTUAN KEDALAMAN

BAB 8 PENENTUAN KEDALAMAN Pengenalan BAB 8 PENENTUAN KEDALAMAN Proses penentuan kedalaman/penentudalaman perlulah dijalankan dengan seberapa tepat yang boleh kerana jika berlaku kesilapan, ianya akan memberikan gambaran yang salah

Διαβάστε περισσότερα

Landasan Teori Kenisbian Am (Bahagian Jurnal Terjemahan Akhir) Alam & Tamadun Melayu 4:1 (2012)

Landasan Teori Kenisbian Am (Bahagian Jurnal Terjemahan Akhir) Alam & Tamadun Melayu 4:1 (2012) Landasan Teori Kenisbian Am (Bahagian Jurnal Terjemahan Akhir) Alam & Tamadun Melayu 4:1 (2012) 89-100 89 Landasan Teori Kenisbian Am (Bahagian Akhir) ALBERT. EINSTEIN C. TEORI MEDAN GRAVITI 13. PERSAMAAN

Διαβάστε περισσότερα

2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan.

2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan. . JELMAAN FOURIER DAN PENGGUNAANNYA. Pengenalan Unuk isyara berkala, siri Fourier digunakan unuk mendapakan spekrum frekuensi dalam benuk spekrum garisan. Unuk isyara ak berkala, garisan-garisan spekrum

Διαβάστε περισσότερα

Transformasi Koordinat 3 Dimensi

Transformasi Koordinat 3 Dimensi Transformasi Koordinat 3 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat Tiga Dimensi (3D) Digunakan untuk mendeskripsikan

Διαβάστε περισσότερα

KOMPONEN ELEKTRIK (PASIF) KOMPONEN ELEKTRIK (PASIF)

KOMPONEN ELEKTRIK (PASIF) KOMPONEN ELEKTRIK (PASIF) E1001 / UNIT 2/ 1 UNIT 2 KOMPONEN ELEKTRIK (PASIF) OBJEKTIF Objektif am : Mempelajari dan memahami konsep asas bagi komponenkomponen elektrik (pasif) seperti perintang, pearuh dan pemuat. Objektif khusus

Διαβάστε περισσότερα

Bilangan Euler(e) Rukmono Budi Utomo Pengampu: Prof. Taufiq Hidayat. March 5, 2016

Bilangan Euler(e) Rukmono Budi Utomo Pengampu: Prof. Taufiq Hidayat. March 5, 2016 Bilangan Euler(e) Rukmono Budi Utomo 30115301 Pengampu: Prof. Taufiq Hidayat March 5, 2016 Asal Usul Bilangan Euler e 1 1. Bilangan Euler 2 3 4 Asal Usul Bilangan Euler e Bilangan Euler atau e = 2, 7182818284...

Διαβάστε περισσότερα

PERENCANAAN JALAN ALTERNATIF & PERKERASAN LENTUR TANJUNG SERDANG KOTABARU,KALIMANTAN SELATAN KM KM 7+000

PERENCANAAN JALAN ALTERNATIF & PERKERASAN LENTUR TANJUNG SERDANG KOTABARU,KALIMANTAN SELATAN KM KM 7+000 PERENCANAAN JALAN ALTERNATIF & PERKERASAN LENTUR TANJUNG SERDANG KOTABARU,KALIMANTAN SELATAN KM 4+000 KM 7+000 LATAR BELAKANG TUJUAN DAN BATASAN MASALAH METODOLOGI PERENCANAAN HASIL Semakin meningkatnya

Διαβάστε περισσότερα

Bahagian A [ 60 markah ] Jawab semua soalan dibahagian ini Masa yang dicadangkan untuk menjawab bahagian ini ialah 90 minit. RAJAH

Bahagian A [ 60 markah ] Jawab semua soalan dibahagian ini Masa yang dicadangkan untuk menjawab bahagian ini ialah 90 minit. RAJAH Pemeriksa SULIT 6 Bahagian A [ 60 markah ] Jawab semua soalan dibahagian ini Masa yang dicadangkan untuk menjawab bahagian ini ialah 90 minit. 1 Rajah 1.1 menunjukkan sejenis alat pengukur yang terdapat

Διαβάστε περισσότερα

BAB 1 PENDAHULUAN 1.1 PENGENALAN

BAB 1 PENDAHULUAN 1.1 PENGENALAN 1 BAB 1 PENDAHULUAN 1.1 PENGENALAN Injap adalah alat yang mengatur, mengarahkan atau mengawal aliran udara. Kegunaan injap adalah untuk mengendalikan sebuah proses cairan, dalam posisi terbuka cecair akan

Διαβάστε περισσότερα

BAB 1 PENGENALAN 1.1 PENDAHULUAN 1.2 PENYATAAN MASALAH

BAB 1 PENGENALAN 1.1 PENDAHULUAN 1.2 PENYATAAN MASALAH BAB 1 PENGENALAN 1.1 PENDAHULUAN Dalam perkembangan teknologi sudah berkembang pesat begitu juga teknologi penetesan yang telah sanggup menciptakan alat penetas buatan yang dikenali sebagai alat penetas

Διαβάστε περισσότερα

Katakunci : penasihatan akademi, tahap pencapaian akademik

Katakunci : penasihatan akademi, tahap pencapaian akademik Pengaruh Sistem Penasihatan Akademik Terhadap Tahap Pencapaian Akademik Pelajar Absullah Sulong & Wan Zainura Wan Yusof Fakulti Pendidikan, Universiti Teknologi Malaysia Abstrak : Kajian ini bertujuan

Διαβάστε περισσότερα

ACCEPTANCE SAMPLING BAB 5

ACCEPTANCE SAMPLING BAB 5 ACCEPTANCE SAMPLING BAB 5 PENGENALAN Merupakan salah satu daripada SQC (statistical quality control) dimana sampel diambil secara rawak daripada lot dan keputusan samada untuk menerima atau menolak lot

Διαβάστε περισσότερα

UNIT 5 PENUKAR AU-AT (PENERUS)

UNIT 5 PENUKAR AU-AT (PENERUS) PENUKAR AU-AT (PENERUS) E4140/UNIT 5/1 UNIT 5 PENUKAR AU-AT (PENERUS) OBJEKTIF Objektif am : Mengenali dan memahami jenis-jenis litar penukaran penukar AU-AT (Penerus) Objektif khusus : Di akhir unit ini

Διαβάστε περισσότερα

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 MAKTAB RENDAH Add SAINS your company MARA BENTONG slogan Bab 1 ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 LOGO Kandungan 1 Jenis Litar Elektrik 2 Meter Pelbagai 3 Unit Kawalan Utama 4 Kuasa Elektrik 1 1.1 Jenis

Διαβάστε περισσότερα

BAB 4 ANALISIS DATA DAN PERBINCANGAN. Seramai 100 orang responden telah dipilih secara rawak dalam kajian ini.

BAB 4 ANALISIS DATA DAN PERBINCANGAN. Seramai 100 orang responden telah dipilih secara rawak dalam kajian ini. BAB 4 ANALISIS DATA DAN PERBINCANGAN 4.1 Maklumat Demografi Responden Seramai 100 orang responden telah dipilih secara rawak dalam kajian ini. Antaranya terdiri daripada 50 orang lelaki dan 50 orang perempuan

Διαβάστε περισσότερα