# ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

## Transcript

1 .

2 1 (INTERPOLATION)

3 A a 1x1 [ ] Sin[ A] [ Sin[ a]], Cos[ A] [ Cos[ a]], Tan[ A] [ Tan[ a]], Cot[ A] [ Cot[ a]]. a x + yi x, y R

4 Sin[ a] Cosh[ y] Sin[ x] + Cos[ x] Sinh[ y] i Cos[ a] Cos[ x] Cosh[ y] Sin[ x] Sinh[ y] i Tan[ a] Cot[ a] Sin[2 x] Sinh[2 y] + Cos[2 x] + Cosh[2 y] Cos[2 x] + Cosh[2 y] Sin[2 x] Sinh[2 y] + Cos[2 x] Cosh[2 y] Cos[2 x] Cosh[2 y] i i

5 a β A γ δ 2x2. a x β 2 cp( x) x ( a + δ ) x + ( αδ βγ ) γ δ x 1 2, λ λ,

6 Sin[ A ] ) λ1, λ 2. ( λ, Sin[ λ ]), ( λ, Sin[ λ ]) Sin[ λ2 ] Sin[ λ1 ] λ2sin[ λ1] λ1 Sin[ λ2 ] p( x) x + λ2 λ1 λ2 λ1 Sin[ A] p( A)

7 Sin[ λ ] Sin[ λ ] λ Sin[ λ ] λ Sin[ λ ] λ2 λ1 λ2 λ Sin[ A] A+ I Sin[ A] ( a λ1 ) Sin[ λ2] ( a λ2) Sin[ λ1] β( Sin[ λ2] Sin[ λ1 ]) λ λ λ λ γ ( Sin[ λ2 ] Sin[ λ1]) ( δ λ1) Sin[ λ2 ] ( δ λ2) Sin[ λ1] λ2 λ1 λ2 λ 1

8 ) λ λ 1 2 (,{ Sin[ ], Cos[ ]}) λ λ λ p( λ ) Sin[ λ ] p '( λ ) Cos[ λ ] p( x) Cos[ λ ] x + Sin[ λ ] λ Cos[ λ ]

9 Sin[ A] p( A) Sin[ A] Cos[ λ1] A + ( Sin[ λ1 ] λ1cos[ λ1 ]) I Sin[ A] acos[ λ1 ] + Sin[ λ1] λ1 Cos[ λ1] βcos[ λ1 ] γcos[ λ1 ] δcos[ λ1 ] + Sin[ λ1] λ1cos[ λ1]

10 Cos[ A] ( a λ1) Cos[ λ2] ( a λ2 ) Cos[ λ1] β( Cos[ λ2] Cos[ λ1 ]) λ2 λ1 λ2 λ 1 γ ( Cos[ λ ] Cos[ λ ]) ( δ λ ) Cos[ λ ] ( δ λ ) Cos[ λ ] λ λ λ λ Cos[ A] asin[ λ1] + Cos[ λ1] + λ1sin[ λ1 ] βsin[ λ1] γ Sin[ λ1 ] δsin[ λ1] + Cos[ λ1 ] + λ1 Sin[ λ1]

11 Tan[ A] ( a λ1) Tan[ λ2 ] ( a λ2 ) Tan[ λ1 ] β ( Tan[ λ2 ] Tan[ λ1]) λ2 λ1 λ2 λ 1 γ ( Tan[ λ ] Tan[ λ ]) ( δ λ ) Tan[ λ ] ( δ λ ) Tan[ λ ] λ λ λ λ Tan[ A] a(1 + Tan [ λ1]) + Tan[ λ1] λ1(1 + Tan [ λ1]) β(1 + Tan [ λ1 ]) γ (1 + Tan [ λ1 ]) δ (1 + Tan [ λ1]) + Tan[ λ1] λ1(1 + Tan [ λ1 ])

12 Cot[ A] ( a λ1) Cot[ λ2] ( a λ2 ) Cot[ λ1] β( Cot[ λ2] Cot[ λ1]) λ2 λ1 λ2 λ 1 γ ( Cot[ λ ] Cot[ λ ]) ( δ λ ) Cot[ λ ] ( δ λ ) Cot[ λ ] λ λ λ λ Cot[ A] a( 1 Cot [ λ1]) + Cot[ λ1] + λ1(1 + Cot [ λ1]) β( 1 Cot [ λ1]) γ ( 1 Cot [ λ1 ]) δ( 1 Cot [ λ1]) + Cot[ λ1] + λ1(1 + Cot [ λ1])

13 2 (POWER SERIES)

14 Sin[ x ] k 1 x x x k 1 x Sin[ x] x ( 1), 3! 5! 7! k 1 (2k 1)! x R. A nxn, Sin[ A ] A A A A A Sin[ A] A ! 5! 7! 9! 11! 2.

15 Cos[ x ] k x x x k 1 x Cos[ x] ( 1), 2! 4! 6! k 1 (2 k)! x R. A nxn, Cos[ A ] A A A A A Cos[ A] I ! 4! 6! 8! 10! 2.

16 Tan[ x ] k 2k x 2x 17 x B 2 (2 1) k Tan[ x] x x (2 k)! k 1 π π x, 2 2. A nxn, Tan[ A ] 2k k 2k A 2A 17 A Bk 2 (2 1) Tan[ A] A A k 1 (2 k)! 2. 2k 1

17 Cot[ x ] k 1 x x 2x B 2 k 2 k 1 Cot[ x]... x x (2 k)! x ( 0, π ). k 1 A nxn, Cot[ A ] k 1 A A 2A Bk 2 2k 1 Cot[ A] A... A k 1 (2 k)! 2.

18 B n Bernoulli (2 n)! Bn n 1 2n n 2n 2n 2 π B n n 4 π e 2n π n

19 Sin[ A ], Cos[ A ], Tan[ A ] Cot[ A ] ; 2 2 Sin [ A] + Cos [ A] I 1 Sin[ A] Tan[ A] Sin[ A] Cos[ A] Cos[ A] 1 Cos[ A] Cot[ A] Cos[ A] Sin[ A] Sin[ A] I + Tan [ A] ( Cos [ A]) 2 Cos [ A] I + Cot [ A] ( Sin [ A]) 2 Sin [ A]

20 2 Sin[2 A] 2 Sin[ A] Cos[ A] 2 2 Cos[2 A] Cos [ A] Sin [ A] 2 Tan[ A] Tan[2 A] 2 I Tan [ A] Cot 2 [ A] I Cot[2 A] 2 Cot[ A]

21 ; Sin[ X ] A Cos[ X ] A Tan[ X ] A Cot[ X ] A.

22 A + B ; Sin[ A + B] Sin[ A] Cos[ B] + Cos[ A] Sin[ B] Cos[ A+ B] Cos[ A] Cos[ B] Sin[ A] Sin[ B] Tan[ A] + Tan[ B] Tan[ A + B] I Tan[ A] Tan[ B] Cot[ A] Cot[ B] I Cot[ A+ B] Cot[ A] + Cot[ B]

23 mail.com

### Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)

Bsic Formuls. n d =. d b = 3. b d =. sin d = 5. cos d = 6. tn d = n n ln b ln b b cos sin ln cos 7. udv= uv vdu. sin( = cos( π 9. sin ( = cos ( 0. sin( = sin(cos(. cos( =cos (. tn( = cos( sin( 3. sin(b

Διαβάστε περισσότερα

### Διπλωματική Εργασία. Εφαρμοσμένη Θεωρία Πινάκων

Πανεπιστήμιο Μακεδονίας Τ.Ε.Ι. Δυτικής Μακεδονίας Π.Μ.Σ Εφαρμοσμένης Πηροφορικής Διπωματική Εργασία Θέμα Εφαρμοσμένη Θεωρία Πινάκων Επιβέπον Καθηγητής Πετράκης Ανδρέας Μεταπτυχιακός Φοιτητής Τσαγκαρή Αθηνά

Διαβάστε περισσότερα

### ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα

Διαβάστε περισσότερα

### Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Παράγωγος. x ορίζεται ως

Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 5 Παράγωγος Παράγωγος Η παράγωγος της συνάρτησης f f () στο σηµείο f ( ) lim 0 ορίζεται ως f ( + ) f ( ) () Παράγωγοι ανώτερης

Διαβάστε περισσότερα

### Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.

ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin

Διαβάστε περισσότερα

### Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Σκοπός Να αναπτύξουν ένα πρόγραμμα όπου θα επαναλάβουν τα βήματα ανάπτυξης μιας παραθυρικής εφαρμογής.

Διαβάστε περισσότερα

### ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5

Διαβάστε περισσότερα

### ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................

Διαβάστε περισσότερα

### List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

List MF0 List of Formulae and Statistical Tables Cambridge Pre-U Mathematics (979) and Further Mathematics (979) For use from 07 in all aers for the above syllabuses. CST7 Mensuration Surface area of shere

Διαβάστε περισσότερα

### 3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ τρίγωνο θέσης position triangle astronomical triangle

21 3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ Ως τώρα είδαμε πως ορίζονται διάφορα συστήματα αναφοράς και πως οι συντεταγμένες, σε κάθε σύστημα, αλλάζουν ανάλογα με την διεύθυνση παρατήρησης, τον τόπο και τον χρόνο. Για να γίνουν

Διαβάστε περισσότερα

### Formulario di Trigonometria

Formulario di Trigonometria Indice degli argomenti Formule fondamentali Valori noti delle funzioni trigonometriche Simmetrie delle funzioni trigonometriche Relazioni tra funzioni goniometriche elementari

Διαβάστε περισσότερα

### 1 Σύντομη επανάληψη βασικών εννοιών

Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=

Διαβάστε περισσότερα

### Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

### Κεφάλαιο ΙV : Εργαστηριακές ασκήσεις που αφορούν πίνακες και µεθόδους στη Java.

Κεφάλαιο ΙV : Εργαστηριακές ασκήσεις που αφορούν πίνακες και µεθόδους στη Java. Στο παρόν κεφάλαιο παρουσιάζονται εργαστηριακές ασκήσεις οι οποίες αφορούν την χρήση πινάκων και την δηµιουργία και χρήση

Διαβάστε περισσότερα

### G L (x) =Ax + B, G R (x) =A x + B οπότε από τις συνοριακές συνθήκες έχουμε

1 ÈÖ Ð Ñ Για να είναι εφαρμόσιμη η μέθοδος της συνάρτησης Green, θαπρέπειηομογενής εξίσωση Ly =+ Ο.Σ.Σ. να έχει ως μοναδική λύση τη μηδενική. α) Η ομογενής εξίσωση y =έχει λύση y = A + B, από τις δεδομένες

Διαβάστε περισσότερα

### Ι ΤΕΛΕΣΤΕΣ, ΤΑΥΤΟΤΗΤΕΣ, ΠΑΡΑΓΩΓΟΙ, ΣΕΙΡΕΣ, ΙΑΦΟΡΟΙ ΤΥΠΟΙ

Ι ΤΕΛΕΣΤΕΣ, ΤΑΥΤΟΤΗΤΕΣ, ΠΑΡΑΓΩΓΟΙ, ΣΕΙΡΕΣ, ΙΑΦΟΡΟΙ ΤΥΠΟΙ TΑ TΡΙΑ ΣΥΝΗΘΗ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ O P(,, ) O φ φ φ P(, φ, ) P(,, φ) O φ (α) (β) (γ) (α) Κατεσιαό σύστηµα συτεταγµέω,,. (σχήµα (α)) (β) Σύστηµα

Διαβάστε περισσότερα

### Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (Θ.Ε. ΠΛΗ ) 5 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Ημερομηνία Ανάρτησης Μαρτίου 4 Ημερομηνία Παράδοσης της εργασίας από τον Φοιτητή Απριλίου 4 Πριν

Διαβάστε περισσότερα

### 5 Παράγωγος συνάρτησης

5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =

Διαβάστε περισσότερα

### ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Να κατατάξετε τις διαφορικές εξισώσεις, δηλ να δώσετε την τάξη της, να πείτε αν είναι γραμμική ή όχι, να δώσετε την ανεξάρτητη μεταβλητή

Διαβάστε περισσότερα

### Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών

Διαβάστε περισσότερα

### Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:

Διαβάστε περισσότερα

### = 1. z n 1 = z z n = 1. f(z) = x 0. (0, 0) = lim

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ 1η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση 1. Να λυθεί η εξίσωση: 4 1 + 3i. Λύση. Επειδή 1 + 3i e πi/3, οι λύσεις της εξίσωσης 4 1 + 3i

Διαβάστε περισσότερα

### z k z + n N f(z n ) + K z n = z n 1 2N

Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά 6..5 Λύσεις Σειράς Ασκήσεων Άσκηση (α) Έστω z το όριο της ακολουθίας z n, δηλ. για κάθε ɛ > υπάρχει N(ɛ) ώστε z n z < ɛ για n > N. Για n > N(ɛ), είναι z n

Διαβάστε περισσότερα

### Jörg Gayler, Lubov Vassilevskaya

Differentialrechnung: Aufgaben Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Erste Ableitung der elementaren Funktionen......................... Ableitungsregeln......................................

Διαβάστε περισσότερα

### ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Ενότητα 6: Ειδικές Περιπτώσεις Γραμμών Μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος, Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

### ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008

ΘΕΜΑΤΑ B Σεπτέμβριος 8. Να προσδιοριστούν με τη μέθοδο των ελαχίστων τετραγώνων οι συντελεστές a και b της εξίσωσης y = be a, ώστε να περιγράφει τα πειραματικά σημεία ( i, y i ), i =,,, N.. Να υπολογιστούν

Διαβάστε περισσότερα

### Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

### Καθ. Βλάσης Κουµούσης

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Η καµπτική επιρροή αναµένεται να φθίνει σε κάποια κοντινή απόσταση από το σύνορο, δηµιουργώντας

Διαβάστε περισσότερα

### Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

Τύπος TAYLOR f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) f(x) = ξ μεταξύ x και x 0 n 1 (x x 0 ) k f (k) (x 0 ) + R n (x) R n (x) = (x ξ)n p (x x 0 ) p p(n 1)! f (n) (ξ) υπόλοιπο Sclömlich-Roche

Διαβάστε περισσότερα

### x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι

Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδι3α(ΑΚΠ3α), x > Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( x) x Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για (α) c> και (β) c< Για την περίπτωση (α) να µελετηθεί

Διαβάστε περισσότερα

### FM & PM στενής ζώνης. Narrowband FM & PM

FM & PM στενής ζώνης Narrowband FM & PM Διαμόρφωση γωνίας στενής ζώνης Το διαμορφωμένο κατά γωνία σήμα μπορεί να γραφεί ως [ π φ ] st () = Acos2 ft+ () t c όπου η στιγμιαία φάση είναι φ() t c Δφxt () PM

Διαβάστε περισσότερα

### Μαθηματική Ανάλυση Ι

Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 4: Συναρτήσεις Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

### = df. f (n) (x) = dn f dx n

Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

### Παραδείγματα στα θεμελιώδη προβλήματα.

Θεμελιώδη προβλήματα της Τοπογραφίας 1 Παραδείγματα στα θεμελιώδη προβλήματα Παράδειγμα 1 ο Γνωρίζουμε τις συντεταγμένες των σημείων Α με Χ Α =19,71, Ψ Α =0,5 και Β με Χ Β =181,37 και Ψ Β =53,63 Θα υπολογίσουμε

Διαβάστε περισσότερα

### γ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m.

Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 015-016 Ν. Βλαχάκης 1. Σώμα μάζας m και φορτίου q κινείται σε κατακόρυφο άξονα x, δεμένο σε ελατήριο σταθεράς k = mω του οποίου το άλλο άκρο είναι σταθερό. Το σύστημα

Διαβάστε περισσότερα

### ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Έστω μια συνάρτηση f ορισμένη σε ένα σύνολο Α. Ένα από τα βασικότερα προβλήματα της Μαθηματικής Ανάλυσης είναι ο προσδιορισμός μιας συνάρτησης F/ A με F = f για κάθε

Διαβάστε περισσότερα

### ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Ι

ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Ι. ΠΑΡΑΓΩΓΟΙ Κανόνες παραγώγισης - διαφόρισης ) (c) = dc = ) () = ) (cf) = cf 4) (f g) = f g d(f g) = df dg 5) (fg) = f g + fg d(fg) = gdf + fdg 6) d(f / g) = 7) [f(g())] = f (g)g

Διαβάστε περισσότερα

### HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Παράρτημα Α Μιγαδικοί Αριμοί Οι μιγαδικοί αριμοί είναι μια από τις πιο σημαντικές έννοιες στον τομέα της ηλεκτρολογίας. Τι είναι οι μιγαδικοί αριμοί (compl numbrs; Ξέρουμε

Διαβάστε περισσότερα

### SMART Notebook Math Tools

SMART Notebook Math Tools Windows λειτ ουργικά συστ ήματ α Εγχειρίδιο Χρήστ η Σημείωση για το εμπορικό σήμα Τα SMART Board, SMART Notebook, smarttech, το λογότυπο SMART και όλα τα σλόγκαν SMART είναι εμπορικά

Διαβάστε περισσότερα

### Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.10: Αναπτύγματα σε Σειρά Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.10: Αναπτύγματα

Διαβάστε περισσότερα

### 2 η ΕΡΓΑΣΙΑ Παράδοση

η ΕΡΓΑΣΙΑ Παράδοση --8 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση η Υπολογίστε τα κάτωθι όρια: cos α) β) γ) δ) ε) sin 5 α) Εφαρμόζουμε τον κανόνα L Hospital μια φορά (απροσδιοριστία της μορφής /)

Διαβάστε περισσότερα

### Συνοπτική εισαγωγή στην γλώσσα FORTRAN Μάριος Βαφειάδης Αν.Καθηγητής ΑΠΘ. Θεσσαλονίκη 2004

ΜΑΡΙΟΣ ΒΑΦΕΙΑ ΗΣ ΘΕΣΣΑΛΟΝΙΚΗ 2004 Συνοπτική εισαγωγή στην γλώσσα FORTRAN Μάριος Βαφειάδης Αν.Καθηγητής ΑΠΘ. Θεσσαλονίκη 2004 2 Συνοπτική εισαγωγή στην γλώσσα προγραµµατισµού FORTRAN 3 Η γλώσσα προγραµµατισµού

Διαβάστε περισσότερα

### Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative

Διαβάστε περισσότερα

### ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Ενότητα 7: Η Ομοιογενής Γραμμή Μεταφοράς ως Τετράπολο Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

### 2.3 Ασκήσεις 19/09/2012

. Ασκήσεις 19/09/01 Ασκηση 1. ορισµού της Αν η συνάρτηση f έχει έναν από τους παρακάτω τύπους να ϐρεθεί το πεδίο a) x + x 5 b) x + 1 + x 5 c) tan x d) 1 x 1 tan + sin x x a) Παρατηρούµε ότι η ποσότητα

Διαβάστε περισσότερα

### Εξαναγκασµένες φθίνουσες ταλαντώσεις

ΦΥΣ 131 - Διαλ.32 1 Εξαναγκασµένες φθίνουσες ταλαντώσεις q Στην περίπτωση αυτή µελετάµε την δεδοµένη οδηγό δύναµη: F d (t) = F cos! d t η οποία δρα επιπλέον των άλλων δυνάµεων:!kx! b x Ø H συχνότητα µπορεί

Διαβάστε περισσότερα

### ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Ενότητα 8: Ισχύς Εισόδου και Εξόδου ΓΜ, Ευστάθεια ΣΓ Άπειρου Ζυγού, Λειτουργικά Διαγράμματα Μακριών

Διαβάστε περισσότερα

### Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις πρώτου φυλλαδίου ασκήσεων.. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις πείτε αν είναι γραμμική ή όχι και προσδιορίστε την τάξη της. α. y + y +

Διαβάστε περισσότερα

### Περιεχόμενα. Σειρά II 2

Περιεχόμενα 1. Δυναμικό Ροής και Ροϊκή Συνάρτηση 2. Κυματική Θεωρία Stokes 1 ης τάξης (Airy) 3. Κυματική Θεωρία Stokes 2 ης τάξης 4. Κυματική Θεωρία Stokes 5 ης τάξης 5. Κυματική Θεωρία Συνάρτησης ροής

Διαβάστε περισσότερα

### FM & PM στενής ζώνης. Narrowband FM & PM

FM & PM στενής ζώνης Narrowband FM & PM Διαμόρφωση γωνίας στενής ζώνης Το διαμορφωμένο κατά γωνία σήμα μπορεί να γραφεί ως [ π φ ] st () = Acos2 ft+ () t c όπου η στιγμιαία φάση είναι φ() t c Δφxt () PM

Διαβάστε περισσότερα

### κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει

Πρόβλημα 22. Θεωρούμε το ακόλουθο πρόβλημα συνοριακών τιμών για τη εξίσωση του Laplace u + u = 0, 1 < < 1, 1 < < 1, u(, 1) = f(), u(, 1) = 0, u( 1, ) = 0, u(1, ) = 0. α) Σωστό ή λάθος; Αν f( ) = f() είναι

Διαβάστε περισσότερα

### Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.08: Υπερβολικές Συναρτήσεις Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.08: Υπερβολικές

Διαβάστε περισσότερα

### 1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS

1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +

Διαβάστε περισσότερα

### Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος

Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο

Διαβάστε περισσότερα

### Περιεχόμενα. Σειρά VII 2

Περιεχόμενα 1. Κυματική Θεωρία Stokes ης τάξης. Κυματική Θεωρία Stokes 5 ης τάξης 3. Κυματική Θεωρία Συνάρτησης ροής (Fourier 18 ης τάξης) 4. Cnoial waves 5. Θεωρία μοναχικού κύματος (Solitary wave) 6.

Διαβάστε περισσότερα

### Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή

Διαβάστε περισσότερα

### ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Ενότητα 5: Η Ομοιογενής Γραμμή Μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

### Ατταλείας 9 Ν. μύρνη 17123 Τηλ. (210) 93 70 032 Fax 93 47 234 697.2014 286 ΙΝΤΕRΝΕΤ web site: http://www.ergotech.gr e-mail: nkyra@tee.

ÍÉÊÏËÁÏÓ Ð. ÊÕÑÁÍÁÊÏÓ ÔïðïãñÜöïò Ìç áíéêüò Å.Ì.Ð. Åñãïë. Äçìïóßùí ñãùí Ìç.Ëïãéóìéêïý ÅËÊÅÐÁ Ατταλείας 9 Ν. μύρνη 17123 Τηλ. (210) 93 70 032 Fax 93 47 234 697.2014 286 ΙΝΤΕRΝΕΤ web site: http://www.ergotech.gr

Διαβάστε περισσότερα

### Κεφάλαιο 8 Το αόριστο ολοκλήρωµα

Κεφάλαιο 8 Το αόριστο ολοκλήρωµα 8 Θεµελίωση έννοιας αορίστου ολοκληρώµατος Στο 7 0 Κεφάλαιο ορίσαµε την έννοια της αντιπαραγώγου µιας συνάρτησης f σ ένα κλειστό και φραγµένο διάστηµα Γενικότερα Ορισµός

Διαβάστε περισσότερα

### Εφαρμοσμένα Μαθηματικά

Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 3: Αντίστροφος Μετασχηματισμός Laplace Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το

Διαβάστε περισσότερα

### Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις. Ονομασίες Ορισμοί Ο τριγωνομετρικός κύκλος έχει ακτίνα R. Αρχή μέτρησης των τόξων (γωνιών) είναι το Α, είτε κατά τη θετική φορά (αριστερόστροφα)

Διαβάστε περισσότερα

### ΦΥΛΛΑΔΙΟ 2 ΑΝΑΛΥΣΗΣ/ ΥΠΟΛΟΓΙΣΜΟΣ ΑΟΡΙΣΤΩΝ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ., (γ) sin 5xdx sin x cos x. x + x + 1 dx.. 2x 1 2 2

ΦΥΛΛΑΔΙΟ ΑΝΑΛΥΣΗΣ/00- ΥΠΟΛΟΓΙΣΜΟΣ ΑΟΡΙΣΤΩΝ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ Να υπολογιστούν τα ολοκληρώματα 6 d (α) d, (β), (γ) si 5d si cos, d (δ) cos cos cos 5d, (ε), (στ) d 5 6 (α) Έχουμε =, οπότε θα είναι: 6

Διαβάστε περισσότερα

### Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

ΜΑΘΗΜΑΤΙΚΑ, 6-7 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΠΙΚ. ΚΑΘ. ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους 6-7. Περιοδικές Συναρτήσεις) Έστω συνεχής συνάρτηση f : R R περιοδική

Διαβάστε περισσότερα

### (i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ (ΜΕΤΑΠΤΥΧΙΑΚΟ) 6 Νοεμβρίου 07 Αναλυτικές συναρτήσεις Άσκηση (i) Δείξτε ότι η συνάρτηση f(z) είναι αναλυτική σε χωρίο D του μιγαδικού επιπέδου εάν και μόνο εάν η if(z) είναι αναλυτική

Διαβάστε περισσότερα

### 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

63 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

### Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.6: Τριγωνομετρικά Ολοκληρώματα Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Γ.6:

Διαβάστε περισσότερα

### Μόρφωση πεπερασμένων στοιχείων

Κεφάλαιο 3 Μόρφωση πεπερασμένων στοιχείων Στο παρόν κεφάλαιο μορφώνονται τυπικά πεπερασμένα στοιχεία που χρησιμοποιούνται ευρέως στη γεωτεχνική μηχανική. Αρχικά εξετάζονται τα γραμμικά στοιχεία, όπως το

Διαβάστε περισσότερα

### Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους.

Άσκηση. Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους. α) y, β) y, γ) y, δ) y, ε) y ( ) Να προσδιοριστούν γραφικά και µε

Διαβάστε περισσότερα

### Γεωδαιτική Αστρονομία

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Γεωδαιτική Αστρονομία Ρωμύλος Κορακίτης Αστροφυσικός Αναπλ. Καθηγητής ΕΜΠ romylos@survey.ntua.gr ΑΝΑΚΕΦΑΛΑΙΩΣΗ Σφαιρικό σύστημα αναφοράς

Διαβάστε περισσότερα

### ( ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Α.Μ.: 2. Εστω ότι τα σηµεία z,..., Υπολογίστε όλες τις λύσεις της εξίσωσης. θ,n ισούται µε. (α) βρίσκονται στο ηµιεπίπεδο Im

ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Α.Μ.:. είξτε ότι η οσότητα συνθ + συν ( θ + a) +... + συν ( θ + na) θ,n ισούται µε ( ) ηµ (( n+ ) a/ ) συν ( θ + na /). (β) ηµ ( a /) ηµ ( na /) (γ) ηµ ( θ + na /). (δ) ηµ ( a /) συν ((

Διαβάστε περισσότερα

### 1 m z. 1 mz. 1 mz M 1, 2 M 1

Σύνοψη Κεφαλαίου 6: Υπερβολική Γεωμετρία Υπερβολική γεωμετρία: το μοντέλο του δίσκου 1. Στο μοντέλο του Poincaré της υπερβολικής γεωμετρίας, υπερβολικά σημεία είναι τα σημεία του μοναδιαίου δίσκου, D =

Διαβάστε περισσότερα

### Η απόσταση του σημείου Ρ από τη δεύτερη πηγή είναι: β) Από την εξίσωση απομάκρυνσης των πηγών y = 0,2.ημ10πt (S.I.) έχουμε:

Γενική άσκηση στη συμβολή κυμάτων (Λύση) α) Η χρονική στιγμή t 1 που το κύμα από την πρώτη πηγή φτάνει στο σημείο Ρ είναι: r1 r1 6 u = => t1 = => t1 = s => t1 = 0, 6s t u 10 1 Τα κύματα φτάνουν στο σημείο

Διαβάστε περισσότερα

### KYMATA Ανάκλαση - Μετάδοση

ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

### ΠΡΟΦΥΛΑΞΕΙΣ ΣΤΟΝ ΧΕΙΡΙΣΜΟ

159005 Ελληνικά ΠΡΟΦΥΛΑΞΕΙΣ ΣΤΟΝ ΧΕΙΡΙΣΜΟ Βεβαιωθείτε ότι έχετε πατήσει το πλήκτρο που βρίσκεται πίσω από το κομπιουτεράκι, πριν να το χρησιμοποιήσετε για πρώτη φορά. Ακόμα κι αν το κομπιουτεράκι λειτουργεί

Διαβάστε περισσότερα

### ΣΗΜΕΙΩΣΕΙΣ ΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Κυριάκος Γ. Μαυρίδης ΣΗΜΕΙΩΣΕΙΣ ΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΠΕΡΙΕΧΟΜΕΝΑ. ΣΥΝΟΛΑ.... ΣΥΝΑΡΤΗΣΕΙΣ...9 3. ΑΚΟΛΟΥΘΙΕΣ... 9 4. ΣΕΙΡΕΣ... 33 5. ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ... 43 6. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ... 57 7. ΠΑΡΑΓΩΓΟΣ

Διαβάστε περισσότερα

### Μαθηματικά ΙII. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Αντίστροφος Μετασχηματισμός Laplace. Αθανάσιος Μπράτσος

Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙII Ενότητα : Αντίστροφος Μετασχηματισμός Laplace Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο

Διαβάστε περισσότερα

### Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για τις δέσµιες καταστάσεις.

Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα), < Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( ) = VΘ( ), Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για τις δέσµιες καταστάσεις V Ε Ι ΙΙ Σχήµα ΑΚΠα1

Διαβάστε περισσότερα

### ohm y j mho B 2 B = j (ratio of E R /E S with open ended line) per_cent increase% 100

MVA := 000kW MW := MVA MVAr := MVA f := 50 Hz ω := πf ω = 4.59656 Hz ΟΜΑ Α ΘΕΜΑ ο (4 βαθµοί) Τριφασική γραµµή µεταφοράς, 50 Hz, µήκους 400, 400 kv, έχει τις παρακάτω παραµέτρους: r = 0,09 /, x = 0,84 /

Διαβάστε περισσότερα

### Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες

Διαβάστε περισσότερα

### Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση. Έτσι οι εξισώσεις

ΠΑΡΑΡΤΗΜΑ Β: ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ µ ÂÓÈÎ ÓÓÔÈÂ Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση Έτσι οι εξισώσεις d = + t d = 5 (Β) (Β3) d e t = cos (Β) d d = 5 + (Β4) είναι όλες διαφορικές

Διαβάστε περισσότερα

### Αεροδυναμική του δρομέα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ Διδάσκων: Δρ. Ριζιώτης Βασίλης Αεροδυναμική του δρομέα Άδεια Χρήσης Το

Διαβάστε περισσότερα

### * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exo7 Courbes en polaires Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Διαβάστε περισσότερα

### f (x) = l R, τότε f (x 0 ) = l.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα 1. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

### 1. [Carrier, Krook and Pearson, Section 3-1 problem 1] Using the contour

. [Carrier, Krook and Pearson, Section 3- problem ] Using the contour Γ R Γ show that if a, b and c are real with b < 4ac, then dx ax + bx + c π 4ac b. Let r and r be the roots of ax + bx + c. By hypothesis

Διαβάστε περισσότερα

### Μετασχηματισμοί Laplace. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας

ιαφορικές Εξισώσεις Μετασχηματισμοί Laplace Μανόλης Βάβαλης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας Βόλος, 11 Μαΐου 2015 Περιεχόμενα Μετασχηματισμοί Laplace Ορισμός μετασχηματισμού

Διαβάστε περισσότερα

### Παλμογράφος. ω Ν. Άσκηση 15:

Άσκηση 15: Παλμογράφος Σκοπός: Σε αυτή την άσκηση θα μάθουμε τις βασικές λειτουργίες του παλμογράφου και το πώς χρησιμοποιείται αυτός για τη μέτρηση συνεχούς και εναλλασσόμενης τάσης, συχνότητας και διαφοράς

Διαβάστε περισσότερα

### 12 Το αόριστο ολοκλήρωµα

Το αόριστο ολοκλήρωµα. Αντιπαράγωγοι Εστω ότι η y = f ( ορίζεται στο διάστηµα I, οποιουδήποτε τύπου. Αν µια δεύτερη συνάρτηση y = F(, που ορίζεται στο ίδιο διάστηµα I, έχει την ιδιότητα F ( = f (, για

Διαβάστε περισσότερα

### Μαθηματική Ανάλυση Ι

Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 6: Παράγωγοι Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

### Γενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

### 2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 8: Τεχνικές ολοκλήρωσης Α Οµάδα. Υπολογίστε τα ακόλουθα ολοκληρώµατα : + + d, + + ( + 3)( ) d, 3 + 3 + 3 + + + d. Υπόδειξη. (α) Γράφουµε + + d

Διαβάστε περισσότερα

### 6 Εφαρµογές των παραγώγων στον υπολογισµό ορίων α- προσδιόριστων µορφών - Κανόνες L Hôpital

6 Εφαρµογές των παραγώγων στον υπολογισµό ορίων α- προσδιόριστων µορφών - Κανόνες L Hôpital Στην ενότητα αυτή ϑα µελετήσουµε εφαρµογές των παραγώγων συναρτήσεων στον υπολογισµό απροσδιόριστων µορφών ορίων

Διαβάστε περισσότερα

### CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions

Διαβάστε περισσότερα

### Σχετικότητα. Από τους μετασχηματισμούς Galileo στον τετραδιάστατο χωροχρόνο. Παπαδημητρίου X. Γιώργος. Ναύπακτος 2012 A B.

Σχετικότητα Από τους μετασχηματισμούς Galileo στον τετραδιάστατο χωροχρόνο ct ct A B x. x Παπαδημητρίου X. Γιώργος Ναύπακτος 2012 GPLv3 License Αφιερώνεται σε όλα τα, ενεργά και μή, μέλη του ylikonet.gr

Διαβάστε περισσότερα

### σ (9) = i + j + 3 k, σ (9) = 1 6 k.

Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις

Διαβάστε περισσότερα

### ΚΕΦΑΛΑΙΟ 11 ΕΠΙΠΕ Ο ΚΥΜΑ

ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ΕΠΙΠΕ Ο ΚΥΜΑ. Η λύση της µονοδιάστατης εξίσωσης κύµατος Ιδιαίτερο θεωρητικό αλλά πρακτικό ενδιαφέρον εµφανίζει η περίπτωση ενός ο- µοιόµορφου επίπεδου ηλεκτροµαγνητικού κύµατος που διαδίδεται

Διαβάστε περισσότερα

### CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

### ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΤΟ ΜΑΘΗΜΑ "ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ"

ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΤΟ ΜΑΘΗΜΑ "ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ" ΠΡΟΣΕΓΓΙΣH BUTTERWORTH G(Ω H o %β 2 Ω 2n 20log H o H C a max 20log H o H S a min 0 a min 0 & Ω n S H 2 o H 2 S Ω n S & β min #β# β max H 2 o H 2 C & 0 a max

Διαβάστε περισσότερα