Ταξινόμηση. 1. Γρήγορη ταξινόμηση 2. Ταξινόμηση με Συγχώνευση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ταξινόμηση. 1. Γρήγορη ταξινόμηση 2. Ταξινόμηση με Συγχώνευση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη"

Transcript

1 Ταξινόμηση. Γρήγορη ταξινόμηση. Ταξινόμηση με Συγχώνευση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

2 Γρήγορη Ταξινόμηση Η γρήγορη ταξινόμηση qucksort), που αλλιώς ονομάζεται και ταξινόμηση µε διαμερισμό και ανταλλαγή partto exchage sort), θεωρείται ένας από τους top-0 αλγορίθμους ως προς την πρακτική χρηστότητα και το ενδιαφέρον που προκάλεσαν από τη θεωρητική σκοπιά. Η γρήγορη ταξινόμηση αποτελεί ένα κλασικό παράδειγμα αλγορίθμου της οικογενείας Διαίρει και Βασίλευε. Όπως δηλώνει το πρώτο όνομα του αλγορίθμου, πρόκειται για µία πολύ αποτελεσματική μέθοδο ταξινόμησης πλην ελαχίστων εξαιρέσεων). Όπως δηλώνει το δεύτερο όνοµά του, τα βασικά χαρακτηριστικά του είναι δύο: η ανταλλαγή και ο διαμερισμός.

3 Γρήγορη Ταξινόμηση Πρώτον, δηλαδή, εκτελούνται ανταλλαγές μεταξύ των στοιχείων του πίνακα έτσι ώστε τα στοιχεία µε μικρότερες τιμές να μετακινηθούν προς τη µία πλευρά, ενώ τα στοιχεία µε μεγαλύτερες τιμές να μετακινηθούν προς την άλλη πλευρά του πίνακα. Έτσι, επακολουθεί η εφαρμογή του δεύτερου χαρακτηριστικού, δηλαδή του διαμερισμού του πίνακα σε δύο μικρότερους που ταξινομούνται ανεξάρτητα μεταξύ τους. Είναι προφανές ότι στους δύο υποπίνακες επιφυλάσσεται η ίδια αντιμετώπιση: ανταλλαγή και διαμερισμός. 3

4 Αλγόριθμος qucksort Δίνεται προς ταξινόμηση ένας πίνακας Α[.. ], που περιέχει ακεραίους αριθμούς. Το pvot αξονικό) είναι ένα στοιχείο του πίνακα, το οποίο παίρνει την τελική του θέση στον πίνακα, ώστε κατόπιν να γίνει ο διαμερισμός σε δύο υποπίνακες με μικρότερα και μεγαλύτερα στοιχεία από το pvot αντίστοιχα. Η επιλογή του pvot μπορεί να γίνει με πολλούς τρόπους. Δεχόμαστε ότι ως pvot λαμβάνεται το πρώτο στοιχείο του πίνακα. 4

5 Ο πίνακας σαρώνεται από τα αριστερά προς τα δεξιά αναζητώντας το πρώτο στοιχείο µε τιμή μεγαλύτερη ή ίση από την τιμή του pvot. 'Υστερα, ο πίνακας σαρώνεται από τα δεξιά προς τα αριστερά αναζητώντας το πρώτο στοιχείο µε τιμή μικρότερη ή ίση από την τιµή του pvot. Όταν εντοπισθούν δύο τέτοια στοιχεία, τότε αυτά ανταλλάσσονται ώστε κατά το δυνατόν να τείνουν να πλησιάσουν προς την τελική τους θέση. Συνεχίζουμε τις σαρώσεις προσπαθώντας να εντοπίσουμε άλλα παρόμοια ζεύγη και να τα ανταλλάξουμε. Κάποια στιγμή οι δύο δείκτες σάρωσης διασταυρώνονται. Τότε η σάρωση σταματά και το pvot λαμβάνει την τελική του θέση εκτελώντας άλλη µία ανταλλαγή μεταξύ του pvot και του στοιχείου όπου σταμάτησε ο δείκτης της σάρωσης από δεξιά. Έτσι, η διαδικασία μπορεί να συνεχίσει στους δύο υποπίνακες κατά τα γνωστά. 5

6 Αλγόριθμος qucksorta, left, rght);. f left < rght the. lo left; h rght ; pvot A[left]; 3. do 4. do lo lo whle A[lo] < pvot; 5. do h h - whle A[h] > pvot; 6. f lo < h the swapa[lo], A[h]); 7. whle h > lo; 8. swapa[left], A[h]); 9. qucksorta, left, h-); 0. qucksorta, h, rght) 6

7 Επιλογή Pvot Υπάρχουν διάφοροι τρόποι επιλογής του pvot. Στο παράδειγμα επιλέγεται το πρώτο στοιχείο:

8 Διαμερισμός πίνακα Δοθέντος του pvot διαμερίζουμε τα στοιχεία του πίνακα ώστε ο πίνακας που θα προκύψει να αποτελείται από:. Έναν υποπίνακα που περιέχει στοιχεία > pvot. Έναν υποπίνακα που περιέχει στοιχεία < pvot Οι υποπίνακες αποθηκεύονται στον αρχικό πίνακα. Κατά το διαμοιρασμό γίνεται ανταλλαγή στοιχείων μικρότερων / μεγαλύτερων του pvot. 8

9 Ένα παράδειγμα pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 9

10 Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 0

11 Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h

12 Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h

13 Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 3

14 Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 4

15 Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 5

16 Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 6

17 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 7

18 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 8

19 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 9

20 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 0

21 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h

22 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h

23 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 3

24 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 4

25 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 5

26 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 6

27 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 7

28 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 8

29 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 9

30 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 30

31 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 3

32 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 3

33 3. do Ένα παράδειγμα 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; 8. swapa[left], A[h]); pvot_dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 33

34 Αποτέλεσμα διαμερισμού [] [] [3] [4] [5] [6] [7] [8] [9] < Α[pvot] > Α[pvot] 34

35 Αναδρομή: Qucksort Sub-arrays [0] [] [] [3] [4] [5] [6] [7] [8] < Α[pvot] > Α[pvot] 35

36 Qucksort: Χειρότερη περίπτωση Υποθέτουμε ότι το πρώτο στοιχείο επιλέγεται ως pvot. Υποθέτουμε ότι ο πίνακας είναι ήδη ταξινομημένος: pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 36

37 3. do 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 37

38 3. do 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 38

39 3. do 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 39

40 3. do 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 40

41 3. do 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 4

42 3. do 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; 8. swapa[left], A[h]); pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] lo h 4

43 3. do 4. do lo lo whle A[lo] < pvot 5. do h h - whle A[h] > pvot 6. f lo < h swapa[lo], A[h]) 7. whle h > lo; 8. swapa[left], A[h]); pvot dex [] [] [3] [4] [5] [6] [7] [8] [9] < A[pvot] > A[pvot] 43

44 Πρόταση. Η πολυπλοκότητα της γρήγορης ταξινόμησης είναι Θ ) στη χειρότερη περίπτωση. Απόδειξη Σε πίνακα μεγέθους, το επιλεγόμενο στοιχείο ως pvot στη χειρότερη περίπτωση είναι το μικρότερο ή το μεγαλύτερο ταξινομημένος πίνακας σε αύξουσα ή φθίνουσα διάταξη), και τα μεγέθη των δύο υποπινάκων που θα προκύψουν να είναι 0 και - αντίστοιχα αφού η µία θέση του πίνακα θα καταληφθεί από τον ίδιο τον pvot). Έτσι προκύπτει η ακόλουθη αναδρομική εξίσωση: ) ) Ο όρος του δεξιού σκέλους αντιστοιχεί στις συγκρίσεις που θα εκτελεσθούν κατά τη σάρωση του πίνακα εντολές 4-5) πριν επιτευχθεί μια διαμέριση. Για την αναδρομική εξίσωση διαδοχικά ισχύει: ) ) ) ) ) ) 3) )... ) ) ) 0) Με συνεχείς επαναλήψεις της ανδρομικής σχέσης και Τ0) 0 προκύπτει ότι: ) 3... ) Θ ) 44

45 Πρόταση. Η πολυπλοκότητα της γρήγορης ταξινόμησης είναι Θlog ) στην καλύτερη περίπτωση. Απόδειξη Η καλύτερη περίπτωση συμβαίνει όταν κάθε φορά ως pvot επιλέγεται ένα στοιχείο που λαμβάνοντας την τελική του θέση υποδιαιρεί τον πίνακα σε δύο υποπίνακες ίσου μεγέθους. Επομένως ισχύει η αναδρομική εξίσωση: ) ) ) µε αρχικές συνθήκες Τ0) 0. Για την ευκολία της ανάλυσης υποθέτουμε ότι k, Οπότε: ) ) ) ) ) Ή η απόδειξη όπως το παράδειγμα, σελ. 3, 04_Recurrece Relatos.pdf 45

46 Αθροίζοντας τα αριστερά και δεξιά σκέλη αυτών των εξισώσεων προκύπτει ότι: ) ) Eχουμε: ) ) ) ) ) ) ) k )... log log Η αναδρομική εξίσωση ) είναι πλέον εύκολη υπόθεση καθώς ισχύει διαδοχικά: k φορές k log k) ) log Θ ) log log... / ) 4) ) ) 4 Απόδειξη με κανόνα ορίου) 46

47 Πρόταση 3. Η πολυπλοκότητα της γρήγορης ταξινόμησης είναι Θ log ) στη μέση περίπτωση. Απόδειξη Για να εξετάσουμε τη μέση περίπτωση θα υποθέσουμε ότι για στοιχεία, κάθε διάταξη των στοιχείων αυτών όπου! είναι το πλήθος των διατάξεων) είναι ισοπίθανη. Επομένως, το κάθε φορά επιλεγόμενο pvot τελικά επιλέγεται µε τυχαίο τρόπο και άρα όλα τα στοιχεία έχουν την ίδια πιθανότητα / να αποτελέσουν στοιχείο διαχωρισμού pvot). Ετσι καταλήγουμε σε τυχαίες διαμερίσεις του πίνακα, σε υποπίνακες μεγέθους k και -k-, όπου k0,,, -. Θα χειρισθούμε τη μέση περίπτωση µε τη βοήθεια της επόμενης αναδρομικής εξίσωσης για : k 0 ) k) k ) ) µε αρχικές συνθήκες Τ0) 0. 47

48 k 0 ) k) k ) ) µε αρχικές συνθήκες Τ0) 0. Λόγω ισομετρίας και των αρχικών συνθηκών, η προηγούμενη αναδρομική εξίσωση μετασχηματίζεται σε: k 0 k) k ) ) [ 0) )... ) ] [ 0 ) )... ) ) ] [ 0... ) ] [ 0 ) )... ) 0)] [ )... ) ] [ ) )... ) ] k k) k) k) άρα ) k) ) k k k 48

49 Τη σχέση πολλαπλασιάζουμε επί και προκύπτει Επίσης στην ίδια σχέση αντικαθιστούμε το με - και πολλαπλασιάζουμε με -, οπότε προκύπτει: Αφαιρώντας τα αντίστοιχα σκέλη των δυο τελευταίων εκφράσεων: ) ) ) ) ) k k k k ) προκύπτει ) ) ) k k ) ) ) k k ) ) ) ) ) k k ) ) ) ) ) ) ) k k k k ) ) ) ) ) k k k k ) ) ) ) 49

50 ) ) ) ) ) ) ) ) 3 ) ) ) ) 5 3) ) 3 3 ) 3 ) Χ Με διαδοχικές αντικαταστάσεις του με - με ) προκύπτει: Αθροίζοντας αντίστοιχα τα αριστερά και δεξιά σκέλη και απλοποιώντας προκύπτει : Χ ) ) 3 ) 3 ) ) 3 ) ) 3 ) ) 3 Επομένως πρέπει να υπολογίσουμε το άθροισμα του δεξιού σκέλους: ) ) ) ) ) ) ) ) ) 50

51 H H [ ] [ ] H H H H H H H 3 ) 7 ) ) 3 7 ) H H 3 7 ) 3 ) 7 ) ) H H 3 ) ) 3 ) ) H l Θ log Θ H H... 3 ) ) log log ) ) Θ Θ 5

52 5

53 Qucksort: χώρος αποθήκευσης Η γρήγορη ταξινόμηση δεν είναι επιτόπιος αλγόριθμος, δηλαδή δεν αρκείται στο χώρο του συγκεκριμένου πίνακα αλλά χρειάζεται επιπλέον χώρο. Ο χώρος αυτός δεν φαίνεται καθαρά στον ανωτέρω κώδικα αλλά απαιτείται από το μεταγλωττιστή κατά την αναδρομή. Εύλογα προκύπτει η ερώτηση σχετικά µε το μέγεθος αυτού του απαιτούμενου χώρου. Στη χειρότερη περίπτωση το μέγιστο βάθος της αναδρομής θα είναι - κλήσεις, αριθμός υπερβολικός. Για το λόγο αυτό έχει σχεδιάσει µια επαναληπτική εκδοχή της γρήγορης ταξινόμησης, δηλαδή µια εκδοχή που υλοποιεί την απαραίτητη στοίβα, όπου τοποθετούνται τα όρια του μικρότερου υποπίνακα, όπως φαίνεται στην επόμενη διαδικασία teratve_qucksort. 53

54 Αλγόριθμος teratve_qucksortleft,rght);. do. whle left < rght) do 3. lo left ; h rght; pvot A[left]; pleft; qrght; 4. do 5. do lo whle A[lo]<pvot; 6. do h h- whle A[h]>pvot; 7. f lo<h the swapa[lo], A[h]); 8. whle h>lo; 9. swapa[left], A[h]); 0. f h - p) < q - h)) the. pushh); pushq); q h-;. else 3. pushp); pushh-); p h; 4. f stack s empry the retur; 5. popq); popp); 6. whle true) 54

55 Ταξινόμηση µε Συγχώνευση Με τον όρο συγχώνευση mergg) εννοούμε την πράξη της δημιουργίας ενός νέου ταξινομημένου πίνακα που περιέχει όλα τα στοιχεία δύο ή και περισσοτέρων) πινάκων, που είναι ήδη ταξινομημένοι. Η διαδικασία Merge που ακολουθεί υλοποιεί τη συγχώνευση δύο ταξινομημένων πινάκων Α και Β µε και m ακεραίους αντίστοιχα) στον πίνακα C. Θεωρείται ότι οι δύο πίνακες έχουν και µία επιπλέον θέση που χρησιμεύει για την αποθήκευση ενός φρουρού setel). 55

56 Αλγόριθμος merge;. ; j ;. Α[] maxt; Β[m] maxt; 3. for k to m do 4. f Α[] < Β[j] the 5. C[k] Α[]; 6. else 7. C[k] Β[j]; j j Από το βρόχο της εντολής 3, είναι προφανές ότι η πολυπλοκότητα της συγχώνευσης είναι Θm), θεωρώντας φραγμένο από επάνω το κόστος της ερώτησης της εντολής

57 Merge sort H ταξινόμηση µε ευθεία συγχώνευση straght merge sort) κατά καιρούς έχει υλοποιηθεί µε πλήθος τρόπων, όπως επαναληπτικά ή αναδρομικά, για λίστες ή πίνακες κοκ. Στη συνέχεια ακολουθεί µία εκδοχή της για πίνακες, η oποία αποτελείται από δύο τρήματα: την αναδρομική merge_sort και τη merge. Στις εντολές 6-8 της merge_sort βρίσκεται το μεσαίο στοιχείο του πίνακα και εκτελούνται κλήσεις στους δύο υποπίνακες που προκύπτουν. Από εδώ προκύπτει ότι η μέθοδος ανήκει στην οικογένεια των αλγορίθμων Διαίρει και Βασίλευε. Η διαδικασία merge που καλείται όταν προκύψουν στοιχειώδεις υποπίνακες αναλαμβάνει τις συγκρίσεις των στοιχείων και τα τακτοποιεί µε τη βοήθεια ενός βοηθητικού πίνακα Β 57

58 Αλγόριθμος mergea, left, mddle, rght);. frst left; secod mddle ; temp left;. whle frst < mddle) ad secod < rght) do 3. f A[frst] < A[secod] the 4. Β[temp] A[frst]; frst frst ; 5. else 6. Β[temp] A[secod]; secod secod ; 7. temp temp 8. f frst< mddle the 9. for k frst to mddle do 0. Β[temp] A[k]; temp temp. else. for k secod to rght do 3. Β[temp] A[k]; temp temp 4. for k left to rght do A[k] B[k] 58

59 Αλγόριθμος merge_sorta, left, rght); 5. f left < rght the 6. mddle left rght)/ ; //dvde step 7. merge_sorta, left, mddle); //coquer step 8. merge_sorta, mddle,rght); //coquer step 9. mergea, left, mddle, rght) //combe step 59

60 Σχήμα : Σειρά κλήσεων merge_sort Σχήμα : Σειρά κλήσεων merge Αν εφαρμόσουμε τις ανωτέρω διαδικασίες σε πίνακα Α[5,, 7, 56, 5, 0, 9, 90, 45} µε τα 9 κλειδιά, τότε η mergesort θα κληθεί 7 φορές µε τη σειρά που απεικονίζεται επάνω από κάθε κόμβο του σχήματος, ενώ μέσα σε κάθε κόμβο φαίνονται τα ορίσματα της αντίστοιχος κλήσης. Στο Σχήµα φαίνονται 8 κλήσεις της merge, µε την αντίστοιχη τάξη εκτός του κόμβου και τα ορίσματα εντός του κόμβου. Και στις δύο περιπτώσεις η διάσχιση του δένδρου ακλουθεί τη λογική της αναζήτησης µε προτεραιότητα βάθους dfs). 60

61 Ένα παράδειγμα 6

62 Ένα παράδειγμα 6

63 Πρόταση 5. Η πολυπλοκότητα της merge_sort είναι Θ log ) στη χειρότερη περίπτωση. Απόδειξη Από τον αλγόριθμο merge_sort εξάγουμε την επόμενη αναδρομική εξίσωση: ) ) ) µε αρχική συνθήκη Τ), ενώ οι τρεις όροι του δεξιού σκέλους αντιστοιχούν στις εντολές 7-9. Συγκεκριμένα το κόστος σε συγκρίσεις της εντολής 9 προκύπτει από όσα αναφέρθησαν προηγουμένως για τη διαδικασία συγχώνευσης πινάκων. Για την ευκολία της ανάλυσης υποθέτουμε ότι k, έτσι ώστε το κάθε βήμα διαμερισμού οδηγεί σε υποπροβλήματα ακριβώς μεγέθους /. Από την αναδρομική εξίσωση ισχύει διαδοχικά: 63

64 ) ) k k k k k k log k ) log log Θ 64 Απόδειξη με κανόνα ορίου)

65 Η μέθοδος ταξινόμησης µε ευθεία συγχώνευση αξίζει την προσοχή µας γιατί είναι πολύ ευσταθής stable) μέθοδος, δηλαδή ανεξάρτητα από τη φύση των δεδομένων θα εκτελέσει τον ίδιο αριθμό συγκρίσεων στη μέση και τη χειρότερη περίπτωση. Το χαρακτηριστικό αυτό έρχεται σε αντίθεση µε το μειονέκτημα της γρήγορης ταξινόμησης, που διακρίνεται από πολυπλοκότητα Θ ) για τη χειρότερη περίπτωση. Ωστόσο, το συμπέρασμα αυτό προκύπτει γιατί στην ανάλυση λάβαμε υπόψη µας µόνο το πλήθος των εκτελούμενων συγκρίσεων. Σε µία πραγματική υλοποίηση, η χρήση του βοηθητικού πίνακα Β και οι εκτελούμενες καταχωρήσεις είναι επίσης πράξεις µη αμελητέου χρονικού κόστους, οι οποίες επιβαρύνουν τη συνολική επίδοση. Τελικώς, αν και η ταξινόμηση µε συγχώνευση δεν είναι ίσως η καλύτερη μέθοδος ταξινόμησης στην κύρια μνήμη, εν τούτοις αποτελεί τη βάση για μεθόδους εξωτερικής ταξινόμησης. 65

66 Ο αλγόριθμος merge μπορεί να μπορεί να εκφραστεί εναλλακτικά με τη χρήση βοηθητικών πινάκων L και R όπου αντιγράφονται τα στοιχεία του πίνακα Α, συγκεκριμένα τα A[left.. mddle] αντιγράφονται στον L[.. ] και A[mddle.. rght ] αντιγράφονται στον R[.. ] όπου mddle left και rght mddle. Χρησιμοποιούμε μια τιμή φρουρό την τιμή ) και την τοποθετούμε στη θέση L[] και R[], έτσι δε χρειάζεται να ελέγξουμε αν κάποιος από τους πίνακες είναι κενός. 66

67 merge A, left, mddle, rght ). mddle left. rght mddle 3. Create arrays L[.. ] ad R[.. ] 4. for to do 5. L[] A[left ] 6. for j to do 7. R[j] A[rght j ] 8. L[ ] 9. R[ ] 0.. j. for k left to rght do 3. f L[ ] R[ j] the 4. A[k] L[] else A[k] R[j] 7. j j 67

68 68

69 Ανάλυση πολυπλοκότητας Merge sort με Κύριο θεώρημα Τα πρώτα for loops γραμμή 4 και 6) χρειάζονται Θ ) Θ) χρόνο. Το τελευταίο for loop γραμμή ) εκτελεί επαναλήψεις, κάθε μια απαιτεί σταθερό χρόνο. Συνεπώς ο συνολικός χρόνος είναι Θ). Για απλότητα θεωρούμε το ως δύναμη του έτσι ώστε το βήμα διαμοιρασμού να οδηγεί σε υποπροβλήματα ιδίου μεγέθους /. Η βασική περίπτωση συμβαίνει για. Για, ο χρόνος για την εκτέλεση των βημάτων του merge sort:. Διαίρει Dvde): Υπολογισμός του mddle ως μέσος όρος των left και rght που απαιτεί σταθερό χρόνο Θ).. Κυρίευε Coquer): Αναδρομική επίλυση των υποπροβλημάτων, καθένα μεγέθους /, δηλαδή /). 3. Συνδύασε Combe): Συγχώνευση σε ένα πίνακα με -στοιχεία απαιτεί Θ) χρόνο. Αθροίζοντας τα παραπάνω ) & 3) δίνουν μια συνάρτηση που είναι γραμμικού χρόνου, δηλαδή Θ). Προσθέτοντας τον όρο /) από το βήμα «κυρίευε» ) καταλήγουμε στην παρακάτω αναδρομική σχέση Αρα η αναδρομική σχέση για το merge sort είναι: 69

70 Ανάλυση πολυπλοκότητας Merge sort με Κύριο θεώρημα Η αναδρομική σχέση για το merge sort είναι: Με βάση το κεντρικό θεώρημα έχουμε: Εστω a, και b > σταθερές, f) μια συνάρτηση και Τ) μια συνάρτηση που ορίζεται επί των μη αρνητικών ακεραίων από την αναδρομική σχέση a b f ) ) ) Όπου /b εννοείται είτε b είτε b. Στην περίπτωση αυτή το Τ) μπορεί να φραγεί ασυμπτωτικά ως εξής: f f f ) log O ) a ε ) log Θ ) a ) log Ω ) a ε b b b ) ) log a Θ ) ) log a Θ log για κάποια σταθερά ε > 0, τότε τότε για κάποια σταθερά ε > 0, και αν b για κάποια σταθερά ε < και για όλα τα από κάποια τιμή και πάνω, τότε af ) Θ f ) ) b b) cf ) Με βάση το Κύριο θεώρημα Master heorem) έχουμε a, b, f) Θ), τότε ) ) log Θ log log ) Θ 70

71 Δένδρο αναδρομής Η η εικόνα δείχνει ότι για το αρχικό πρόβλημα έχουμε κόστος c και επιπλέον δυο υποπροβλήματα που το καθένα κοστίζει /). Η η εικόνα δείχνει ότι για καθένα από τα υποπροβλήματα μεγέθους-/, έχουμε κόστος c/, και επιπλέον υποπροβλήματα που το καθένα κοστίζει /4). Και συνεχίζουμε με την επέκταση του δένδρου μέχρις ότου η διάσταση του κάθε υποπροβλήματος να γίνει. Στο δένδρο αναδρομής κάθε επίπεδο έχει κόστος c. Το ο επίπεδο έχει κόστος c. Το επόμενο επίπεδο έχει υποπροβλήματα με κόστος το καθένα c/. Το επόμενο επίπεδο έχει 4 υποπροβλήματα με κόστος το καθένα c/4. Κάθε φορά που κατεβαίνουμε επίπεδο το πλήθος των υποπροβλημάτων διπλασιάζεται αλλά το κόστος κάθε υποπροβλήματος μειώνεται στο μισό.

72 Δένδρο αναδρομής Αθροίζοντας τα κόστη σε κάθε επίπεδο του δένδρου, έχουμε: Στο υψηλότερο επίπεδο έχουμε c/) c/) c Στο επόμενο αυτού : c/4) c/4) c/4) c/4) c.. Γενικά στο επίπεδο που απέχει βαθμίδες από την κορυφή έχει κόμβους καθένας συνεισφέρει στο κόστος μια ποσότητα c/ ). Επομένως το επίπεδο αυτό έχει συνολικό κόστος c/ ) c. Στο χαμηλότερο επίπεδο υπάρχουν κόμβοι, καθένας από τους οποίους συνεισφέρει κόστος c, οπότε το συνολικό κόστος του επιπέδου αυτού είναι c. Συνεπώς το κόστος σε κάθε επίπεδο παραμένει το ίδιο. Το ύψος του δένδρου αναδρομής είναι log και έχει log επίπεδα και κάθε επίπεδο συνεισφέρει ένα συνολικό κόστος c. Αρα το συνολικό κόστος είναι clog c που είναι Θlog )

73 73

74 Mergesort Qucksort 74

75 75

76 76

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 7α: Μελέτη πολυπλοκότητας των Αλγόριθμων qucksort & mergesort Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ταξινόμηση. 1. Στατιστικά Διάταξης 2. Στατιστικά σε Μέσο Γραμμικό Χρόνο. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Στατιστικά Διάταξης 2. Στατιστικά σε Μέσο Γραμμικό Χρόνο. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση. Στατιστικά Διάταξης. Στατιστικά σε Μέσο Γραμμικό Χρόνο Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Στατιστικά Διάταξης Με τον όρο στατιστικά διάταξης (order statistics) εννοούμε την περίπτωση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 9: Στατιστικά Διάταξης- Στατιστικά σε Μέσο Γραμμικό Χρόνο Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης: Α. SelectoSort Ταξινόμηση με Επιλογή Β. IsertoSort Ταξινόμηση με Εισαγωγή Γ. MergeSort

Διαβάστε περισσότερα

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6α: Αναζήτηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 2

Αλγόριθμοι Ταξινόμησης Μέρος 2 Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2

Διαβάστε περισσότερα

Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση. Ταξινόμηση με Εισαγωγή. Ταξινόμηση με Επιλογή Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση Η ταξινόμηση sortg τοποθετεί ένα σύνολο κόμβων ή εγγραφών σε μία συγκεκριμένη διάταξη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6β: Ταξινόμηση με εισαγωγή και επιλογή Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve

Διαβάστε περισσότερα

Ταχεία Ταξινόμηση Quick-Sort

Ταχεία Ταξινόμηση Quick-Sort Ταχεία Ταξινόμηση Quc-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 Δομές Δεδομένων και Αλγόριθμοι Εργαστήριο Γνώσης και Ευφυούς Πληροφορικής 1 Outlne Quc-sort Αλγόριθμος Βήμα διαχωρισμού Δένδρο Quc-sort

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση

Διαβάστε περισσότερα

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή

Διαβάστε περισσότερα

Ταξινόμηση με συγχώνευση Merge Sort

Ταξινόμηση με συγχώνευση Merge Sort Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης

Διάλεξη 04: Παραδείγματα Ανάλυσης Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα

Διαβάστε περισσότερα

3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή

3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή 3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ 3.1 ΑΝΑ ΡΟΜΗ 3.1.1 Εισαγωγή ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Αναδροµή είναι η µέθοδος κατά την οποία, σε µία γλώσσα προγραµµατισµού, µία διαδικασία ή συνάρτηση έχει την δυνατότητα

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Αλγορίθμων

Εισαγωγή στην Ανάλυση Αλγορίθμων Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 4: Αναδρομικές σχέσεις και ανάλυση αλγορίθμων Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης

Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης Ουρές Προτεραιότητας: Υπενθύμιση Σωροί / Αναδρομή / Ταξινόμηση Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς (Abstract Data Type) με μεθόδους: Μπορεί να υλοποιηθεί με

Διαβάστε περισσότερα

Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Διαίρει-και-Βασίλευε Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται

Διαβάστε περισσότερα

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.

Διαβάστε περισσότερα

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Απλή Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 11/11/2016 Εισαγωγή Η

Διαβάστε περισσότερα

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση

Διαβάστε περισσότερα

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα

Διαβάστε περισσότερα

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Μέχρι στιγμής εξετάσθηκαν μέθοδοι ταξινόμησης µε πολυπλοκότητα της τάξης Θ ) ή Θlog ). Τι εκφράζει

Διαβάστε περισσότερα

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros

Διαβάστε περισσότερα

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 7 η Βασίλης Στεφανής Αλγόριθμοι ταξινόμησης Στην προηγούμενη διάλεξη είδαμε: Binary search Λειτουργεί μόνο σε ταξινομημένους πίνακες Πώς τους ταξινομούμε? Πολλοί τρόποι. Ενδεικτικά:

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 10η Διάλεξη Ταξινόµηση. E. Μαρκάκης

Δοµές Δεδοµένων. 10η Διάλεξη Ταξινόµηση. E. Μαρκάκης Δοµές Δεδοµένων 10η Διάλεξη Ταξινόµηση E. Μαρκάκης Περίληψη Ταξινόµηση µε αριθµοδείκτη κλειδιού Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική

Διαβάστε περισσότερα

Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Γ. MergeSort Ταξινόμηση με Συγχώνευση Δ. BucketSort Ταξινόμηση με Κάδους Διδάσκων:

Διαβάστε περισσότερα

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1 Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση

Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Συγχωνευτική Ταξινόμηση (Merge Sort) 7 2 9 4 2 4 7 9 7 2 2 7 9 4

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ταξινόμηση. Παύλος Εφραιμίδης. Δομές Δεδομένων Ταξινόμηση 1

Ταξινόμηση. Παύλος Εφραιμίδης. Δομές Δεδομένων Ταξινόμηση 1 Ταξινόμηση Παύλος Εφραιμίδης Δομές Δεδομένων Ταξινόμηση 1 Το πρόβλημα της ταξινόμησης Δομές Δεδομένων Ταξινόμηση 2 Ταξινόμηση Δίνεται πολυ-σύνολο Σ με στοιχεία από κάποιο σύμπαν U (πχ. U = το σύνολο των

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης

Αλγόριθμοι Ταξινόμησης 8 Αλγόριθμοι Ταξινόμησης Περιεχόμενα Κεφαλαίου 8.1 Ταξινόμηση με Εισαγωγή.................. 225 8.2 Ταξινόμηση με Επιλογή................... 226 8.3 Γρήγορη Ταξινόμηση.................... 229 8.4 Στατιστικά

Διαβάστε περισσότερα

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Διαίρει και Κυρίευε

Αλγόριθμοι και πολυπλοκότητα Διαίρει και Κυρίευε ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Διαίρει και Κυρίευε Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Διαίρει και Κυρίευε 7 9 4 4 7 9 7 7 9 4 4 9 7 7 9 9 4 4 Διαίρει και Κυρίευε

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι

Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Εισαγωγή Η τακτοποίηση των δεδομένων με ιδιαίτερη σειρά είναι πολύ σημαντική λειτουργία που ονομάζεται

Διαβάστε περισσότερα

Προβλήματα, αλγόριθμοι, ψευδοκώδικας

Προβλήματα, αλγόριθμοι, ψευδοκώδικας Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι

Διαβάστε περισσότερα

Αλγόριθμοι ταξινόμησης

Αλγόριθμοι ταξινόμησης Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης BuubleSort, SelectionSort, InsertionSort, Merger Sort, Quick Soft ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 12/10/2017

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών,, τα οποίo είναι υποσύνολο του. Υποστηριζόμενες λειτουργίες αναζήτηση(s,x): εισαγωγή(s,x): διαγραφή(s,x): διάδοχος(s,x): προκάτοχος(s,x):

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα Φώτης Ε. Ψωμόπουλος, Περικλής Α. Μήτκας

Αλγόριθμοι και Πολυπλοκότητα Φώτης Ε. Ψωμόπουλος, Περικλής Α. Μήτκας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρονικής και Υπολογιστών Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών Καθηγητής: Περικλής

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης

Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης Σύνοψη Προηγούμενου Πίνακες (Arrays Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς Διαδικαστικά θέματα. Aντικείμενο Μαθήματος. Aντικείμενα, Κλάσεις, Μέθοδοι, Μεταβλητές.

Διαβάστε περισσότερα

Ταξινόμηση. 1. Ταξινόμηση του Shell. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Ταξινόμηση του Shell. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση. Ταξινόμηση του Shell Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση του Shell Η μέθοδος που προτάθηκε από τον Shell έχει βασικό χαρακτηριστικό ότι χρησιμοποιεί µία ακολουθία ακεραίων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 7β: Όρια Αλγόριθμων Ταξινόμησης Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos.

Διαβάστε περισσότερα

8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση

8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων

Διαβάστε περισσότερα

Αναδρομή Ανάλυση Αλγορίθμων

Αναδρομή Ανάλυση Αλγορίθμων Αναδρομή Ανάλυση Αλγορίθμων Παράδειγμα: Υπολογισμός του παραγοντικού Ορισμός του n! n! = n x (n - 1) x x 2 x 1 Ο παραπάνω ορισμός μπορεί να γραφεί ως n! = 1 αν n = 0 n x (n -1)! αλλιώς Παράδειγμα (συνέχ).

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α :

Διαβάστε περισσότερα

Ταξινόμηση. Σαλτογιάννη Αθανασία

Ταξινόμηση. Σαλτογιάννη Αθανασία Ταξινόμηση Σαλτογιάννη Αθανασία Ταξινόμηση Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν; Ταξινόμηση Τι εννοούμε όταν

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 4

Αλγόριθμοι Ταξινόμησης Μέρος 4 Αλγόριθμοι Ταξινόμησης Μέρος 4 Μανόλης Κουμπαράκης Δομές Δεδομένων και Τεχνικές 1 Μέθοδοι Ταξινόμησης Βασισμένοι σε Συγκρίσεις Κλειδιών Οι αλγόριθμοι ταξινόμησης που είδαμε μέχρι τώρα αποφασίζουν πώς να

Διαβάστε περισσότερα

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος

Διαβάστε περισσότερα

Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1

Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1 Merge Sort (Ταξινόμηση με συγχώνευση) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 6/14/2007 3:04 AM Merge Sort 1 Κύρια σημεία για μελέτη Το παράδειγμα του «διαίρει και βασίλευε» ( 4.1.1) Merge-sort

Διαβάστε περισσότερα

Ο ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις

Ο ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις Ο ΑΤΔ Λεξικό Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος Υλοποιήσεις Πίνακας με στοιχεία bit (0 ή 1) (bit vector) Λίστα ακολουθιακή (πίνακας) ή συνδεδεμένη Είναι γνωστό το μέγιστο

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Επιλογή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[ ] με n στοιχεία (όχι ταξινομημένος). Αριθμός k,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

1η Σειρά Γραπτών Ασκήσεων

1η Σειρά Γραπτών Ασκήσεων 1/20 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 1η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 1 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 2 3 4 5 2/20

Διαβάστε περισσότερα

Ταξινόμηση: Εισαγωγικά. Ταξινόμηση (Sor ng) Αλγόριθμοι Απλής Ταξινόμησης. Βασικά Βήματα των Αλγορίθμων

Ταξινόμηση: Εισαγωγικά. Ταξινόμηση (Sor ng) Αλγόριθμοι Απλής Ταξινόμησης. Βασικά Βήματα των Αλγορίθμων Ταξινόμηση: Εισαγωγικά Ταξινόμηση (Sor ng) Ορέστης Τελέλης Βασικό πρόβλημα για την Επιστήμη των Υπολογιστών. π.χ. αλφαβητική σειρά, πωλήσεις ανά τιμή, πόλεις με βάση πληθυσμό, Μπορεί να είναι ένα πρώτο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2014-2015 Πάτρα 5/5/2015 Ονοματεπώνυμο:.. Θέμα Α Α1. α. Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα.0 Σταύρος Δ. Νικολόπουλος 06-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ταξινόμηση Selection-Sort Bubble-Sort και

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 1

Εργαστηριακή Άσκηση 1 Εργαστηριακή Άσκηση 1 Επανάληψη προγραμματισμού Βασικοί Αλγόριθμοι Είσοδος τιμών από το πληκτρολόγιο Σε όλα τα προγράμματα που θα γράψουμε στην συνέχεια του εξαμήνου θα χρειαστεί να εισάγουμε τιμές σε

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης

Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης Δοµές Δεδοµένων 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων Ε. Μαρκάκης Περίληψη Quicksort Χαρακτηριστικά επιδόσεων Μη αναδροµική υλοποίηση Δέντρα Μαθηµατικές ιδιότητες Δοµές Δεδοµένων 11-2

Διαβάστε περισσότερα

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά

Διαβάστε περισσότερα

Α2. Να γράψετε στο τετράδιο σας τον αριθμό 1-4 κάθε πρότασης και δίπλα το γράμμα που δίνει τη σωστή επιλογή.

Α2. Να γράψετε στο τετράδιο σας τον αριθμό 1-4 κάθε πρότασης και δίπλα το γράμμα που δίνει τη σωστή επιλογή. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 23/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ ( 7) ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 9 ο Ταξινόµηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ταξινόµηση Εισαγωγή Selection sort Insertion sort Bubble sort

Διαβάστε περισσότερα

Ταξινόµηση. Παύλος Εφραιµίδης. οµές εδοµένων και

Ταξινόµηση. Παύλος Εφραιµίδης. οµές εδοµένων και Παύλος Εφραιµίδης 1 Το πρόβληµα της ταξινόµησης 2 3 ίνεται πολυ-σύνολο Σ µε στοιχεία από κάποιο σύµπαν U (πχ. U = το σύνολο των ακεραίων αριθµών). του Σ είναι η επιβολή µιας διάταξης στα στοιχεία του συνόλου

Διαβάστε περισσότερα

Πίνακες. Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος A Εξάμηνο

Πίνακες. Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος A Εξάμηνο Πίνακες Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος 2012-13 A Εξάμηνο Πίνακες Η ποιο γνωστή και διαδεδομένη στατική δομή είναι ο πίνακας. Οι πίνακες αποτελούνται από στοιχεία

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2014-2015 Πάτρα 5/5/2015 Ονοματεπώνυμο:.. Α1. α. Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 008 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Παρατηρούμε ότι ο χρόνος εκτέλεσης μέσης περίπτωσης της κάθε εντολής if ξεχωριστά: if (c mod 0) for (k ; k

Διαβάστε περισσότερα

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων ΕΠΛ 1 Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 009 Κατ οίκον Εργασία 1 Σκελετοί Λύσεων Άσκηση 1 Αρχικά θα πρέπει να υπολογίσουμε τον αριθμό των πράξεων που μπορεί να εκτελέσει ο υπολογιστής σε μια ώρα,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 1. α. Να βάλετε σε αύξουσα σειρά μεγέθους τις παρακάτω συναρτήσεις χρονικής πολυπλοκότητας αλγορίθμων: nlogn, n logn,

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Η Μέθοδος «Διαίρει & Βασίλευε» Η Μέθοδος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο ΚΕΦΑΛΑΙΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 ο ΚΕΦΑΛΑΙΟ 1) Τι είναι πρόβλημα (σελ. 3) 2) Τι είναι δεδομένο, πληροφορία, επεξεργασία δεδομένων (σελ. 8) 3) Τι είναι δομή ενός προβλήματος (σελ. 8)

Διαβάστε περισσότερα

Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Επιλογή ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός k, 1 k n. Υπολογισμός

Διαβάστε περισσότερα

Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Quicksort Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 6] Στοιχείο διαχωρισμού (pivot),

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

a 1 a 2 a n. 3. i = j 1 5. A[i + 1] = A[i] 6. i = i 1

a 1 a 2 a n. 3. i = j 1 5. A[i + 1] = A[i] 6. i = i 1 Εισαγωγη στον Σχεδιασμο και Αναλυση αλγοριθμων Αλγοριθμοι Ταξινομησης Η ταξινόμηση μιας ακολουθίας αριθμών είναι από τα βασικά αποτελέσματα της θεωρίας αλγορίθμων. Μια ευρεία γκάμα τέτοιων αλγορίθμων έχουν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και

Διαβάστε περισσότερα

Ταξινόμηση. 1. Ταξινόμηση με Μέτρημα 2. Ταξινόμηση με βάση τη Ρίζα. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Ταξινόμηση με Μέτρημα 2. Ταξινόμηση με βάση τη Ρίζα. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση 1. Ταξινόμηση με Μέτρημα 2. Ταξινόμηση με βάση τη Ρίζα Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση με Μέτρημα Ας υποθέσουμε ότι δίνεται ένας πίνακας Α με n στοιχεία, που λαμβάνουν

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου

Διαβάστε περισσότερα