Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών)."

Transcript

1 Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση εργαλείων συµβολικής έκφρασης και δυναµικού χειρισµού γεωµετρικών αντικειµένων. Τεχνολογικά εργαλεία: To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Χελωνόκοσµος. Σκεπτικό: Βασική ιδέα Σύµφωνα µε το σενάριο αυτό οι µαθητές θα εµπλακούν σε διαδικασίες κατασκευής παραλληλογράµµων και µετέπειτα χρήσης τους για την κατασκευή δυναµικών σκίτσων. Το κύριο µέρος της διερεύνησης των µαθητών για την κατασκευή παραλληλογράµµων θα βασιστεί σε απλές διαδικασίες σε γλώσσα Logo οι οποίες όταν εκτελούνται έχουν ως αποτέλεσµα τη δηµιουργία τεθλασµένων γραµµών. Οι µαθητές θα κληθούν να κάνουν πειράµατα για το πότε το αποτέλεσµα της εκτέλεσής τους σχεδιάζει παραλληλόγραµµο. Για τον πειραµατισµό αυτό, θα εκτελούν τις διαδικασίες µε διαφορετικές τιµές πλευρών ή γωνιών τις οποίες παράλληλα θα µπορούν να µεταβάλλουν δυναµικά χρησιµοποιώντας τα διαθέσιµα υπολογιστικά εργαλεία. Ο στόχος είναι να ανακαλύψουν οι ίδιοι οι µαθητές τις βασικές ιδιότητες των παραλληλογράµµων και να 'διορθώσουν' τις διαδικασίες ώστε να φτιάχνουν πάντοτε παραλληλόγραµµα. Στο τέλος θα χρησιµοποιήσουν τα διορθωµένα προγράµµατα για να φτιάξουν σχέδια δικής τους επιλογής βασισµένα στο παραλληλόγραµµο ως δοµικό λίθο στα σχέδιά τους. Τα σχέδια αυτά µπορούν να τα 'ζωντανέψουν' δίνοντας τους κίνηση µε το εργαλείο δυναµικού χειρισµού (µεταβολέας). Προστιθέµενη αξία Η διδασκαλία των ιδιοτήτων των γεωµετρικών σχηµάτων στην παραδοσιακή τάξη γίνεται µε τη µορφή της παρουσίασής τους από το διδάσκοντα. Οι µαθητές καλούνται έτσι να "µάθουν" την αντίστοιχη γεωµετρική γνώση µέσα από την παρατήρηση ή το σχεδιασµό γεωµετρικών σχηµάτων µε στατικά µέσα αναπαράστασης τα οποία µπορεί να προσφέρουν περιορισµένες δυνατότητες εµπλοκής τους σε διαδικασίες διερεύνησης των ιδιοτήτων και των σχέσεων που διέπουν την κατασκευή τους. Στα λογισµικά συµβολικής έκφρασης για τη γεωµετρία όπως ο Χελωνόκοσµος

2 οι µαθητές θα χρησιµοποιήσουν συνδυασµό αναπαραστάσεων των αντίστοιχων µαθηµατικών εννοιών, δηλαδή θα τις διατυπώσουν υπό τη µορφή εντολών σε συµβολική γλώσσα, θα παρατηρήσουν το γραφικό αποτέλεσµα των εντολών στο µηχάνηµα και θα χειριστούν δυναµικά τις γεωµετρικές τους κατασκευές αλλάζοντας µε συνεχή τρόπο τις τιµές των µεταβλητών µεγεθών τους. Με την βοήθεια της προτεινόµενης δραστηριότητας θα εµπλακούν σε διαδικασίες εικασίας, κατασκευής υποθέσεων, εξαγωγής συµπερασµάτων και σταδιακής γενίκευσης και διατύπωσης κανόνων για τις ιδιότητες των παραλληλογράµµων. Πλαίσιο εφαρµογής Σε ποιους απευθύνεται: To σενάριο προτείνεται να εφαρµοστεί στην Α' γυµνασίου. Χρόνος υλοποίησης: Για την εφαρµογή του σεναρίου εκτιµάται ότι απαιτούνται 6 διδακτικές ώρες. Χώρος υλοποίησης To σενάριο προτείνεται να διεξαχθεί εξ' ολοκλήρου στο εργαστήριο υπολογιστών, ώστε οι µαθητές να µοιράζονται τους υπολογιστές και να µπορούν να πειραµατίζονται οι ίδιοι, χωρισµένοι σε µικρές οµάδες. Προαπαιτούµενες γνώσεις Οι µαθητές πρέπει να γνωρίζουν τις βασικές λειτουργικότητες του Χελωνόκοσµου, τις απλές εντολές της γλώσσας Logo και τις έννοιες της παραλληλίας ευθειών, του τετραπλεύρου και της γωνίας. Απαιτούµενα βοηθητικά υλικά και εργαλεία Τετράδιο (για να κρατούν σηµειώσεις για την πορεία της διερεύνησης και να καταγράφουν τα συµπεράσµατά τους). Φύλλα εργασίας τα οποία δίνονται από τον/την διδάσκοντα/διδάσκουσα και έχουν ως στόχο να καθοδηγούν τους µαθητές στη διερεύνηση των διαφόρων ερωτηµάτων. Πριν την διεξαγωγή της δραστηριότητας ο/η διδάσκων/διδάσκουσα µπορεί, µέσω απλών δραστηριοτήτων, να συζητήσει µε τους µαθητές για τις βασικές εντολές της Logo, τις λειτουργικότητες του Χελωνόκοσµου αλλά και τις µαθηµατικές έννοιες που απαιτούνται ως υπόβαθρο για την διεξαγωγή της. Κοινωνική ενορχήστρωση της τάξης Οι µαθητές εργαζόµενοι σε οµάδες και καθοδηγούµενοι από φύλλο εργασίας, καλούνται να εξερευνήσουν τις προϋποθέσεις κατασκευής παραλληλογράµµων χρησιµοποιώντας παραµετρικές διαδικασίες που τους έχουν δοθεί από τον/την διδάσκοντα/διδάσκουσα. Η

3 διερεύνηση αυτή θα γίνει συνεργατικά. Στη διάρκεια της υλοποίησης του σεναρίου ο/η διδάσκοντα/διδάσκουσα θα πρέπει να ελέγχει τα συµπεράσµατα των µαθητών, να διευκολύνει την επιχειρηµατολογία και να προκαλεί συζητήσεις µε όλη την τάξη όταν θεωρεί ότι τα συµπεράσµατα κάποιων οµάδων θα είναι χρήσιµα για τη διερεύνηση και των υπολοίπων. Στόχοι Βασικός διδακτικός στόχος είναι η ανακάλυψη, κατανόηση και εφαρµογή βασικών ιδιοτήτων των παραλληλογράµµων και η µελέτη ορισµένων ειδικών περιπτώσεων παραλληλογράµµων (ορθογώνιο, ρόµβος, τετράγωνο) µέσα από το δυναµικό τρόπο χειρισµού και κατασκευής τους. Απώτερος στόχος είναι να δοθεί στους µαθητές η δυνατότητα να εµβαθύνουν στις ιδιότητες ενός γεωµετρικού σχήµατος και παράλληλα να διερευνήσουν το πώς µπορούν να χρησιµοποιήσουν τις συγκεκριµένες ιδιότητες για να φτιάξουν και να κινήσουν άλλα δικά τους σχέδια. Ειδικότερα, οι επιδιωκόµενοι στόχοι µέσα από τη συγκεκριµένη διερεύνηση είναι: Ως προς το γνωστικό αντικείµενο Να 'ανακαλύψουν' οι µαθητές ότι: Στα παραλληλόγραµµα οι απέναντι γωνίες είναι ίσες Οι απέναντι πλευρές είναι ίσες To άθροισµα των γωνιών είναι 360 µοίρες Οι προσκείµενες σε µια πλευρά γωνίες είναι παραπληρωµατικές Να µελετήσουν ειδικές περιπτώσεις παραλληλογράµµων: το ορθογώνιο έχει και τις τέσσερις γωνίες του ορθές το τετράγωνο έχει και τις τέσσερις πλευρές του ίσες και τις τέσσερις γωνίες του ορθές ο ρόµβος έχει και τις τέσσερις πλευρές του ίσες. Ως προς τη χρήση νέων τεχνολογιών ηµιουργία, ερµηνεία και διόρθωση απλών προγραµµάτων σε γλώσσα Logo που περιέχουν παραµετρικές διαδικασίες (διαδικασίες µε µεταβλητές) για την κατασκευή παραλληλογράµµων. Χρήση του εργαλείου δυναµικού χειρισµού (Μεταβολέας) για το χειρισµό αριθµητικών δεδοµένων προκειµένου να προκύψουν κλειστά σχήµατα και ειδικότερα παραλληλόγραµµα. ;ς προς τη µαθησιακή διαδικασία

4 Άσκηση στη διεξαγωγή πειραµάτων προκειµένου να 'κλείσει' ένα παραλληλόγραµµο. ιατύπωση υποθέσεων και εξαγωγή συµπερασµάτων για τις ιδιότητες των παραλληλογράµµων. Σταδιακή γενίκευση των συµπερασµάτων τους µέχρι να καταλήξουν στη διατύπωση κανόνα για τις ιδιότητες των παραλληλογράµµων. Ανάλυση του σεναρίου Ροή εφαρµογής των δραστηριοτήτων Η εφαρµογή των δραστηριοτήτων µπορεί να διαχωριστεί σε τρεις φάσεις: 1η Φάση: Κατασκευή ορθογωνίου. ίνεται στους µαθητές η παρακάτω παραµετρική διαδικασία: για µυστήριο1 :α :β :γ :δ µ :α δ 90 µ :β δ 90 µ :γ δ 90 µ :δ δ 90 τέλος Ζητείται να την εκτελέσουν δίνοντας τυχαίες τιµές στις µεταβλητές α, β, γ και δ. Η διαδικασία αυτή θα κατασκευάσει (για τυχαίες τιµές των µεταβλητών) µία τεθλασµένη γραµµή µε ορθές γωνίες. Στην εικόνα 16 φαίνεται η γραµµή για τις τιµές 70, 80,90, 100 αντιστοίχως. Εικόνα 18 Ζητείται από την κάθε οµάδα µαθητών να κάνει πειράµατα προσπαθώντας να βρει ποια σχέση πρέπει να υπάρχει µεταξύ των τεσσάρων τιµών των µεταβλητών ώστε να προκύψει ορθογώνιο και να διατυπώσει τον κανόνα. Στην εικόνα 17 φαίνεται το ορθογώνιο που

5 κατασκευάζεται από την προηγούµενη διαδικασία για α=γ=100 και β=δ=80.

6 Εικόνα 19 Τους ζητείται δηλαδή να πειραµατισθούν χρησιµοποιώντας διάφορες αριθµητικές τιµές, να χρησιµοποιήσουν τον µεταβολέα για να δουν µε ποιο τρόπο µεταβάλλεται το σχήµα καθώς αυξοµειώνεται µια τιµή, να συζητήσουν και να καταγράψουν τα συµπεράσµατα τους. Η εµπειρία αυτή αναµένεται να τροφοδοτήσει σχετική συζήτηση τόσο στα πλαίσια της κάθε οµάδας όσο και στην τάξη συνολικά µε στόχο να διατυπώσουν µαθητές συµπεράσµατα όπως: οι απέναντι πλευρές του ορθογωνίου είναι ίσες όταν όλες οι πλευρές του ορθογωνίου είναι ίσες έχουµε τετράγωνο. Για το σκοπό αυτό, κατά την διάρκεια του πειραµατισµού στον υπολογιστή, ο/η εκπαιδευτικός περιφέρεται στις οµάδες των µαθητών κάνοντας ερωτήσεις και παροτρύνοντας τους µαθητές να δοκιµάσουν διάφορες αριθµητικές τιµές ώστε κρίσιµες πτυχές του γνωστικού αντικειµένου να έρχονται στο προσκήνιο (π.χ. πότε 'κλείνει' το σχήµα; οκιµάστε µε διαφορετικές γωνίες) αξιοποιώντας ενέργειες και δράσεις των µαθητών κατά την αλληλεπίδρασή τους µε τα κατασκευαζόµενα σχήµατα. Στη συνέχεια, οι µαθητές χρησιµοποιούν τον κανόνα, που πρέπει να συνδέει τις µεταβλητές για να κατασκευάζεται ορθογώνιο, για να διορθώσουν την παραµετρική διαδικασία ώστε αυτή να περιέχει δύο µόνο µεταβλητές. Αναµένεται να προκύψουν διαδικασίες της µορφής: για ορθογώνιο :χ :ψ µ :χ δ 90 µ :ψ δ 90 µ :χ δ 90 µ :ψ δ 90 τέλος

7 2η Φάση: Κατασκευή παραλληλογράµµου. ίνεται στους µαθητές η ακόλουθη παραµετρική διαδικασία: για µυστήριο2 :ε :ζ :η :θ µ 50 δ :ε µ 100 δ :ζ µ 50 δ :η µ 100 δ :θ τέλος Ζητείται να την εκτελέσουν δίνοντας τυχαίες τιµές στις µεταβλητές ε, ζ, η και θ. Η διαδικασία αυτή θα κατασκευάσει (για τυχαίες τιµές των µεταβλητών) µία τεθλασµένη γραµµή (στην εικόνα 18 φαίνεται η γραµµή για τις τιµές 30, 40,50, και 60 αντιστοίχως. Εικόνα 20 Ζητείται από την κάθε οµάδα µαθητών να κάνει πειράµατα προσπαθώντας να βρει: ποια σχέση πρέπει να υπάρχει µεταξύ των τεσσάρων τιµών των µεταβλητών για να είναι το σχήµα παραλληλόγραµµο. Στην εικόνα 19 φαίνεται το ορθογώνιο που κατασκευάζεται από την προηγούµενη διαδικασία για ε=η=70 και ζ=θ=110.

8 Εικόνα 21 Όπως και στην προηγούµενη φάση γίνεται η ίδια διαδικασία πειραµατισµού και συζήτησης µε στόχο να κατανοήσουν οι µαθητές ότι: To άθροισµα των γωνιών του παραλληλογράµµου είναι 360 µοίρες Οι απέναντι γωνίες είναι ίσες Οι διαδοχικές γωνίες είναι παραπληρωµατικές To ορθογώνιο και το τετράγωνο είναι ειδικές περιπτώσεις παραλληλογράµµου Αφού οι µαθητές βρουν τον κανόνα που πρέπει να συνδέει τις µεταβλητές για να κατασκευάζεται παραλληλόγραµµο τους ζητείται να διορθώσουν τη διαδικασία ώστε να περιέχει µία µόνο µεταβλητή. Αναµένεται να προκύψουν διαδικασίες της µορφής: για Απαραλληλόγραµµο :ε µ 50 δ :ε µ 100 δ :180- :ε µ 50 δ :ε µ 100 δ :180- :ε τέλος Τέλος, η διαδικασία διερεύνησης καταλήγει στο να ορίσουν όλες οι οµάδες την διαδικασία που κατασκευάζει παραλληλόγραµµο µε τρεις µεταβλητές [δύο για τις πλευρές και µία για τη γωνία]: γιαβπαραλληλόγραµµο :χ :ψ :ε µ :χ δ :εµ :ψ δ :εµ :χ δ :εµ :ψ δ :ε τέλος 3η Φάση: Κατασκευή σχεδίων µε βάση το παραλληλόγραµµο. Στη φάση αυτή ζητείται από τους µαθητές να κατασκευάσουν ένα δικό τους

9 σκαρίφηµα ή σχέδιο βασισµένο σε πολλά διαφορετικά παραλληλόγραµµα που θα µπορούν να 'κινήσουν' µε το µεταβολέα. Με στόχο να βιώσουν την ισχύ του γενικευµένου -χάρη στα µαθηµατικά -εργαλείου, προτείνεται στους µαθητές να χρησιµοποιήσουν ως δοµικό λίθο τη διαδικασία κατασκευής παραλληλογράµµων διαφορετικής µορφής και µεγέθους που έχουν ήδη έχουν φτιάξει στην προηγούµενη φάση (Βπαραλληλογραµµο). Για παράδειγµα, η κατασκευή ενός ανεµόµυλου µπορεί να ολοκληρωθεί µε τον καθορισµό της παραµετρικής διαδικασίας που θα κατασκευάζει ν παραλληλόγραµµα (µε τη διαδικασία Βπαραλληλογραµµο) που θα στρέφονται κατά γωνία 360/ν (Εικόνα 20). για ανεµόµυλο :χ :ψ :ε :ν επαναλαβε :ν [Βπαραλληλόγραµµο :χ :ψ :ε δ 360/:ν] τέλος Εικόνα 22 Σε αυτό το σηµείο µπορεί να τεθούν ερωτήµατα όπως: Πότε ο ανεµόµυλος στρέφεται γρηγορότερα καθόσον κινείται ο µεταβολέας; Πώς επηρεάζει το σχήµα του ανεµόµυλου η αλλαγή κάθε µεταβλητής; Η φάση αυτή ολοκληρώνεται µε την παρουσίαση της δουλειάς κάθε οµάδας στην τάξη και διάλογο πάνω στις εργασίες των µαθητών.

10 Επέκταση Οι µαθητές µπορούν να χρησιµοποιήσουν το Χελωνόκοσµο και τις γνώσεις που αποκόµισαν από την διεξαγωγή της δραστηριότητας για να πειραµατιστούν µε τη διερεύνηση των γεωµετρικών ιδιοτήτων της κατασκευής συνθετότερων γεωµετρικών σχηµάτων, όπως κανονικών πολυγώνων. Αξιολόγηση µετά την εφαρµογή Ως προς τις επιδιώξεις του σεναρίου Μετά την υλοποίηση του σεναρίου ο διδάσκων ελέγχει κατά πόσο επετεύχθησαν οι στόχοι του σεναρίου. Ένας τρόπος είναι και η κατασκευή κατάλληλων ερωτήσεων τις οποίες στο τέλος θα απευθύνει προς τους µαθητές για να ελέγξει τον βαθµό κατανόησης των εννοιών που σχετίζονται µε τις ιδιότητες των παραλληλογράµµων. Ως προς τα εργαλεία Η εφαρµογή µέσα σε πραγµατικές συνθήκες µιας δραστηριότητας παρουσιάζει µη αναµενόµενες δυσκολίες οι οποίες µπορεί να οφείλονται στο ψηφιακό εργαλείο που χρησιµοποιείται. Στο Χελωνόκοσµο ευνοείται ο συµβολισµός µεταβαλλόµενων µεγεθών και ο χειρισµός τους µε το 'σύρσιµο' µιας αριθµογραµµής, που είναι καινούριες αναπαραστάσεις για τους µαθητές. Για παράδειγµα, οι διασυνδέσεις µιας µεταβλητής µε το µέγεθος που αναπαριστά και την δυναµική αλλαγή των τιµών της στον αντίστοιχο µεταβολέα είναι προς διερεύνηση. Κάθε διδάσκων οφείλει να λάβει υπόψη τις όποιες δυσκολίες και να επανασχεδιάσει την εφαρµογή εκ νέου (επιλέγοντας π.χ. κατάλληλες δραστηριότητες για την εισαγωγή των µαθητών στη χρήση των εργαλείων). Ως προς την διαδικασία υλοποίησης Η δοµή του σεναρίου, η σειρά των δραστηριοτήτων και τα ερωτήµατα που τίθενται στους µαθητές αποτελούν αντικείµενο αξιολόγησης από τον ίδιο τον διδάσκοντα. Για παράδειγµα, πόσο εύκολο ήταν για τους µαθητές να κατασκευάσουν συνθέσεις γεωµετρικών κατασκευών στην 3η φάση µε βάση τα παραλληλόγραµµα που κατασκεύασαν; Ο διδάσκων µπορεί να κρατάει σηµειώσεις για τις δυσκολίες υλοποίησης

11 συγκεκριµένων δραστηριοτήτων ώστε να είναι σε θέση στο µέλλον, ανάλογα µε το διαθέσιµο χρόνο ή τις γνωστικό επίπεδο συγκεκριµένων µαθητών, να προβεί σε αλλαγές στη ροή εφαρµογής των δραστηριοτήτων, στη διατύπωσή τους ή ακόµα και στα εκάστοτε ζητούµενα. Ως προς την προσαρµογή και επεκτασιµότητα To σενάριο είναι σχεδιασµένο έτσι ώστε η υλοποίησή του να σχετίζεται τόσο µε τη χρήση του υπολογιστικού περιβάλλοντος όσο και µε τις εµπλεκόµενες µαθηµατικές έννοιες που αφορούν τις ιδιότητες της κατασκευής παραλληλογράµµων. Ο εκπαιδευτικός µετά από κάθε εφαρµογή του σεναρίου επανεκτιµά την δοµή του και σχεδιάζει νέες δυνατότητες και επεκτάσεις. Το συγκεκριµένο σενάριο προσφέρει περιθώρια διαφοροποιηµένης διδακτικής ανέλιξης και επιλογής σηµείων εστίασης, καθώς το µαθηµατικό µέρος που καλύπτει µπορεί να συµπεριλάβει π.χ. τη µελέτη της χρήσης µεταβλητών, της έννοιας της γωνίας/στροφής κ.λπ.

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος)

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος) Σενάριο 1 Σκιτσάροντας µε παραλληλόγραµµα (χρήση λογισµικού Χελωνόκοσµος) Βασική ιδέα του σεναρίου Οι µαθητές σκιτσάρουν παραλληλόγραµµα και τα «ζωντανεύουν» κινώντας τα δυναµικά µε χρήση της Logo. Με

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

222 Διδακτική των γνωστικών αντικειμένων

222 Διδακτική των γνωστικών αντικειμένων 222 Διδακτική των γνωστικών αντικειμένων 8. Χελωνόκοσμος (απαιτεί να είναι εγκατεστημένο το Αβάκιο) (6 ώρες) Τίτλος: Ιδιότητες παραλληλογράμμων Δημιουργός: Μιχάλης Αργύρης ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II. 9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

Κατασκευή δυναµικής γραµµατοσειράς

Κατασκευή δυναµικής γραµµατοσειράς Κατασκευή δυναµικής γραµµατοσειράς Γνωστική περιοχή: Γεωµετρία. Θέµα: Η διερεύνηση της αυξοµείωσης γεωµετρικών κατασκευών µε χρήση εργαλείων συµβολικής έκφρασης και δυναµικού χειρισµού γεωµετρικών αντικειµένων.

Διαβάστε περισσότερα

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου ΣΕΝΑΡΙΟ «Προσπάθησε να κάνεις ένα τρίγωνο» Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου Ηµεροµηνία: Φλώρινα, 6-5-2014 Γνωστική περιοχή:

Διαβάστε περισσότερα

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα

Διαβάστε περισσότερα

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής

Διαβάστε περισσότερα

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE Θέµα ιερεύνησης: Σχεδιασµός γραµµάτων Μπορώ να φτιάξω το δικό µου επεξεργαστή κειµένου; Στη διερεύνηση αυτή οι µαθητές καλούνται να κατασκευάσουν µια γραµµατοσειρά µε όλα τα κεφαλαία γράµµατα του ελληνικού

Διαβάστε περισσότερα

Τεχνολογικά εργαλεία To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Χελωνόκοσµος.

Τεχνολογικά εργαλεία To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Χελωνόκοσµος. Σενάριο 2. Κατασκευή δυναµικής γραµµατοσειράς Γνωστική περιοχή: Γεωµετρία. Θέµα: Η διερεύνηση της αυξοµείωσης γεωµετρικών κατασκευών µε χρήση εργαλείων συµβολικής έκφρασης και δυναµικού χειρισµού γεωµετρικών

Διαβάστε περισσότερα

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra. Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο πολλές φορές και σε διαφορετικές τάξεις ή ανταλλάξει ιδέες µε άλλους συναδέλφους

Διαβάστε περισσότερα

(http://www.statistics.gr, Στατιστικά στοιχεία -> Απογραφή -> Απογραφές >

(http://www.statistics.gr, Στατιστικά στοιχεία -> Απογραφή -> Απογραφές > Σενάριο 9. Μελέτη του πληθυσµού των µεταναστών στην Ελλάδα Γνωστική περιοχή: Στατιστική. Θέµα: Η χώρα µας όπως πολλές άλλες έχει δεχτεί τα τελευταία χρόνια µεγάλο αριθµό µεταναστών από διαφορετικές χώρες.

Διαβάστε περισσότερα

Η έννοια της κάλυψης του επιπέδου με κανονικά πολύγωνα.

Η έννοια της κάλυψης του επιπέδου με κανονικά πολύγωνα. 9.1.3 Σενάριο 3. Διερεύνηση των κανονικών πολυγώνων σε περιβάλλον που αξιοποιεί λογισμικό συμβολικής έκφρασης, την κοινωνική δικτύωση και τη συλλογική διαπραγμάτευση. Γνωστική περιοχή: Μαθηματικά Β Γυμνασίου.

Διαβάστε περισσότερα

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Γιώργος Μαντζώλας ΠΕ03 Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Σύντοµη περιγραφή του σεναρίου Η βασική ιδέα του σεναρίου Το συγκεκριµένο εκπαιδευτικό σενάριο αναφέρεται στην εύρεση των τύπων µε τους

Διαβάστε περισσότερα

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα. Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra. 9.3. Σενάριο 9. Μελέτη της συνάρτησης f(x) = αx +βx+γ Γνωστική περιοχή: Άλγεβρα Α Λυκείου. Η συνάρτηση ψ= αχ +βχ+γ (γραφική παράσταση, μονοτονία, ακρότατα). Θέμα: Το προτεινόμενο θέμα αφορά την κατασκευή

Διαβάστε περισσότερα

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe.

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σενάριο 7. Η Οµοιότητα Τριγώνων ως Λόγος Πλευρών Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η γραµµική συνάρτηση ψ= αχ. Συντελεστής διεύθυνσης ευθείας. Γεωµετρία Α' Λυκείου Οµοιότητα τριγώνων Θέµα: To προτεινόµενο

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες

Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες Λουμπαρδιά Αγγελική 1, Ναστάκου Μαρία 2 1 Καθηγήτρια Μαθηματικών, 2 o Γενικό Λύκειο Τρίπολης loumpardia@sch.gr 2 Διευθύντρια, ΙΕΚ Σπάρτης marynasta@sch.gr

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Νέες

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ

ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ 2. Εκπαιδευτικό Λογισμικό για τα Μαθηματικά 2.1 Κύρια χαρακτηριστικά του εκπαιδευτικού λογισμικού για την Διδακτική των Μαθηματικών 2.2 Κατηγορίες εκπαιδευτικού λογισμικού για

Διαβάστε περισσότερα

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΟΙΚΟΝΟΜΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ,

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ίτλος αυτότητα του σεναρίου. Συγγραφέας Γνωστική περιοχή των μαθηματικών: Θέματα: κεπτικό της δραστηριότητας. Καινοτομίες Προστιθέμενη αξία.

ίτλος αυτότητα του σεναρίου. Συγγραφέας Γνωστική περιοχή των μαθηματικών: Θέματα: κεπτικό της δραστηριότητας. Καινοτομίες Προστιθέμενη αξία. 1. Τίτλος Περιπολύγωνα. 2. Ταυτότητα του σεναρίου. Συγγραφέας Βλάστος Αιμίλιος Γνωστική περιοχή των μαθηματικών: Γεωμετρία Θέματα: 1. Κανονικά πολύγωνα (γωνία ω, φ και σχέση τους) 2. Άθροισμα εξωτερικών

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe. 9.3.3 Σενάριο 10. Τριγωνομετρικές συναρτήσεις Γνωστική περιοχή: Άλγεβρα Β Λυκείου. Η συνάρτηση ψ= ρ ημ(λχ+κ). Γραφική παράσταση τριγωνομετρικών συναρτήσεων. Γραφική επίλυση τριγωνομετρικής εξίσωσης. Θέμα:

Διαβάστε περισσότερα

Η κληρονοµιά του Μακάριου

Η κληρονοµιά του Μακάριου Η κληρονοµιά του Μακάριου Συγγραφέας: Ευαγγελία Μαγαλιού Γνωστική Περιοχή: Γεωµετρία Τάξη: Στ ηµοτικού ή Β Γυµνασίου Θέµατα: Εµβαδόν ορθογωνίου, Εµβαδόν παραλληλογράµµου, Εµβαδόν τριγώνου. Τεχνολογικά

Διαβάστε περισσότερα

Εισαγωγή στην έννοια της συνάρτησης

Εισαγωγή στην έννοια της συνάρτησης Εισαγωγή στην έννοια της συνάρτησης Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO

ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO 1 ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Τοποθέτησε μια χελώνα στην επιφάνεια εργασίας. 2. Με ποια εντολή γράφει η χελώνα μας;.. 3. Γράψε την εντολή για να πάει

Διαβάστε περισσότερα

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή

Διαβάστε περισσότερα

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σκεπτικό: Βασική

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σκεπτικό: Βασική Σενάριο 8. Τριγωνοµετρικές. συναρτήσεις; Γνωστική περιοχή: Άλγεβρα Β' Λυκείου. Η συνάρτηση ψ= ρηµ(λχ+κ) Γραφική παράσταση τριγωνοµετρικών συναρτήσεων Γραφική επίλυση τριγωνοµετρικής εξίσωσης. Θέµα: To

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe. Σενάριο 2: Ο ερευνητής και οι χελώνες ΚΑΡΕΤΑ_ΚΑΡΕΤΑ Συγγραφέας: Καλλιόπη Αρδαβάνη, Επιμορφώτρια Μαθηματικών (Β επιπέδου). Γνωστική περιοχή: Άλγεβρα Ανεξάρτητη και εξαρτημένη μεταβλητή. Πεδίο ορισμού και

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Γνωστική περιοχή: Γεωµετρία Β Λυκείου Αναλογίες γεωµετρικών µεγεθών, Οµοιότητα τριγώνων, Εµβαδόν Τετραγώνου. Εµβαδόν Τριγώνου Βασικές γνώσεις Ευκλείδειας Γεωµετρίας Α

Διαβάστε περισσότερα

Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων

Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων Σενάριο 8 (Τροποποιηµένο): Η γραµµική συνάρτηση ψ=αx Γνωστική περιοχή: Άλγεβρα Α Λυκείου. - Η γραµµική συνάρτηση ψ=αx. Θέµα: Το προτεινόµενο θέµα αφορά

Διαβάστε περισσότερα

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 1. Τίτλος Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ «Φτιάχνω γεωµετρικά σχήµατα», (Μαθηµατικά Β ηµοτικού) 2. Εµπλεκόµενες γνωστικές περιοχές Κατά την υλοποίηση του διδακτικού σεναρίου θα αξιοποιηθούν κατά κύριο

Διαβάστε περισσότερα

Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics»

Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics» Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics» ΣΧΟΛΕΙΟ Π.Π.Λ.Π.Π. ΤΑΞΗ: Α ΜΑΘΗΜΑ: Β Νόµος του Νεύτωνα ΚΑΘΗΓΗΤΗΣ: Σφαέλος Ιωάννης Συνοπτική Παρουσίαση

Διαβάστε περισσότερα

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013

Διαβάστε περισσότερα

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι

Διαβάστε περισσότερα

ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ. Άσε το Χάος να βάλει τάξη. ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ. Fractals Πλακοστρώσεις(Penrose) Χάος. Α Β Γ Λυκείου ΑΡΙΘΜΟΣ ΜΑΘΗΤΩΝ

ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ. Άσε το Χάος να βάλει τάξη. ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ. Fractals Πλακοστρώσεις(Penrose) Χάος. Α Β Γ Λυκείου ΑΡΙΘΜΟΣ ΜΑΘΗΤΩΝ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ Δρ ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ ΤΑΞΗ Άσε το Χάος να βάλει τάξη. Fractals Πλακοστρώσεις(Penrose) Χάος Α Β Γ Λυκείου

Διαβάστε περισσότερα

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου) Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση

1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση 1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση Στη βασική παιδεία, τα μαθηματικά διδάσκονται με στατικά μέσα α) πίνακα/χαρτιού β) κιμωλίας/στυλού γ) χάρτινου βιβλίου.

Διαβάστε περισσότερα

9.2.4 Σενάριο 7. Η έννοια του εμβαδού επίπεδων γεωμετρικών σχημάτων με λογισμικό δυναμικής γεωμετρίας και συλλογική διαπραγμάτευση

9.2.4 Σενάριο 7. Η έννοια του εμβαδού επίπεδων γεωμετρικών σχημάτων με λογισμικό δυναμικής γεωμετρίας και συλλογική διαπραγμάτευση 9.2.4 Σενάριο 7. Η έννοια του εμβαδού επίπεδων γεωμετρικών σχημάτων με λογισμικό δυναμικής γεωμετρίας και συλλογική διαπραγμάτευση Γνωστική περιοχή: Μαθηματικά Β Γυμνασίου. Η έννοια του εμβαδού επίπεδων

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

Χάρτινα χειροποίητα κουτιά Περίληψη: Χάρτινα κουτιά

Χάρτινα χειροποίητα κουτιά Περίληψη: Χάρτινα κουτιά Χάρτινα χειροποίητα κουτιά Περίληψη: Στη δραστηριότητα αυτή οι μαθητές διερευνούν τη χωρητικότητα κουτιών σχήματος ορθογωνίου παραλληλεπιπέδου που προκύπτουν από ένα χαρτόνι συγκεκριμένων διαστάσεων. Οι

Διαβάστε περισσότερα

GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης

GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης Ενημερωτική Συνάντηση Ομάδων Εργασίας Ν.Α.Π. Παιδαγωγικό Ινστιτούτο, Λευκωσία, 8 Μαΐου 2012 Ιδιότητες

Διαβάστε περισσότερα

Μελέτη του πληθυσµού των µεταναστών στην Ελλάδα

Μελέτη του πληθυσµού των µεταναστών στην Ελλάδα Μελέτη του πληθυσµού των µεταναστών στην Ελλάδα Συγγραφέας: Γιώργος Ψυχάρης, ΕΕΤ, ΦΠΨ Αθηνών Γνωστική περιοχή των µαθηµατικών: Στατιστική Σε σχέση µε το εκπαιδευτικό λογισµικό που προτείνει: ιαχείριση

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Πέτρος Κλιάπης Τάξη Στ Βοηθητικό υλικό: Σχολικό βιβλίο μάθημα 58 Δραστηριότητα 1, ασκήσεις 2, 3 και δραστηριότητα με προεκτάσεις Προσδοκώμενα

Διαβάστε περισσότερα

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΠΥΡΙΔΩΝ ΔΟΥΚΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com Επιμόρφωση Β Επιπέδου Κλάδος: ΠΕ03 Περίοδος: Δεκέμβριος 2010 Ιούνιος 2011 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΝΑΡΙΟΥ 1. Τίτλος σεναρίου: Μελέτη της εκθετικής

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 5 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.1 Ονομάζουν και κατασκευάζουν σημεία, ευθύγραμμα τμήματα, ημιευθείες, ευθείες και διάφορα είδη γραμμών (καμπύλες, ευθείες, τεθλασμένες)

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)......

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)...... 4. Βασικά Στοιχεία ιδακτικής της Άλγεβρας µε τη χρήση Ψηφιακών Τεχνολογιών Οι ψηφιακές τεχνολογίες που έχουν µέχρι τώρα αναπτυχθεί για τη διδασκαλία και τη µάθηση εννοιών της Άλγεβρας µπορούν να χωριστούν

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ Χριστόφορος Δερμάτης ΠΕ 0 3 Γυμνάσιο - Λυκειακές τάξεις Κασσιόπης Κέρκυρα 01/07/2015 1. Συνοπ τική π εριγραφή της ανοιχτής εκπαιδευτικής π ρακτικής Γίνεται

Διαβάστε περισσότερα

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον)

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) ΔΡΑΣΤΗΡΙΟΤΗΤΑ: ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ με τη βοήθεια του λογισμικού Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Νοέμβριος 2013 0 ΤΙΤΛΟΣ ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

Διαβάστε περισσότερα

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία 1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός

Διαβάστε περισσότερα

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή»

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» «Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» Αρδαβάνη Καλλιόπη 1, Μαργιόρα Φιλίππα 2, Μαυρουδής Σπύρος 3 1 Καθηγήτρια Μαθηματικών 3ο Γυμνάσιο Γλυφάδας, επιμορφώτρια Β επιπέδου popiardv@hotmail.com

Διαβάστε περισσότερα

Μαθητές Β ΕΠΑ.Λ. Σωτήρης Δ. Χασάπης. 4-5 διδακτικές ώρες, ανάλογα με το γενικότερο επίπεδο της τάξης.

Μαθητές Β ΕΠΑ.Λ. Σωτήρης Δ. Χασάπης. 4-5 διδακτικές ώρες, ανάλογα με το γενικότερο επίπεδο της τάξης. Τίτλος σεναρίου : Η συνάρτηση f (x)=α ημ(ωx)+ β Γνωστική περιοχή : Θέμα : Τεχνολογικά εργαλεία : Πλαίσιο εφαρμογής Σε ποιους απευθύνεται : Διδάσκων : Χρόνος υλοποίησης : Χώρος υλοποίησης : 1 Σκεπτικό Βασική

Διαβάστε περισσότερα

Τα δομικά στοιχεία ενός σεναρίου και η βαθμολόγηση τους κατά τις εξετάσεις πιστοποίησης

Τα δομικά στοιχεία ενός σεναρίου και η βαθμολόγηση τους κατά τις εξετάσεις πιστοποίησης Τα δομικά στοιχεία ενός σεναρίου και η βαθμολόγηση τους κατά τις εξετάσεις πιστοποίησης Α. Αξιολόγηση επιμέρους παιδαγωγικών και διδακτικών πτυχών του σεναρίου (40) 1 Τίτλος γνωστική περιοχή και θέμα (5)

Διαβάστε περισσότερα

Τα διδακτικά σενάρια

Τα διδακτικά σενάρια 2.2.4.1 Τα διδακτικά σενάρια Το ζήτηµα της διδακτικής αξιοποίησης του λογισµικού αποτελεί σηµείο προβληµατισµού ερευνητών και εκπαιδευτικών που ασχολούνται µε την ένταξη των ΤΠΕ στην εκπαιδευτική διαδικασία

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΤΑΥΡΟΥΛΑ ΔΑΦΝΟΜΗΛΗ

ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΤΑΥΡΟΥΛΑ ΔΑΦΝΟΜΗΛΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΤΑΥΡΟΥΛΑ ΔΑΦΝΟΜΗΛΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Εκπαιδευτικό

Διαβάστε περισσότερα

Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra

Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra Κιούφτη Ροϊδούλα 1 1 Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης, rkioufti@hotmail.com

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Αντιστρόφως ανάλογα ποσά

Αντιστρόφως ανάλογα ποσά Αντιστρόφως ανάλογα ποσά Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση

Διαβάστε περισσότερα

ΟΙ ΒΑΣΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ. 1. ΤΑΥΤΟΤΗΤΑ ΤΟΥ ΣΕΝΑΡΙΟΥ Κατασκευή σεναρίου από τον εκπαιδευτικό ΠΑΝΑΓΟ ΠΑΥΛΟ ΠΕ03 από το 2 ο ΓΥΜΝΑΣΙΟ ΛΑΓΚΑ Α

ΟΙ ΒΑΣΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ. 1. ΤΑΥΤΟΤΗΤΑ ΤΟΥ ΣΕΝΑΡΙΟΥ Κατασκευή σεναρίου από τον εκπαιδευτικό ΠΑΝΑΓΟ ΠΑΥΛΟ ΠΕ03 από το 2 ο ΓΥΜΝΑΣΙΟ ΛΑΓΚΑ Α ΟΙ ΒΑΣΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ 1. ΤΑΥΤΟΤΗΤΑ ΤΟΥ ΣΕΝΑΡΙΟΥ Κατασκευή σεναρίου από τον εκπαιδευτικό ΠΑΝΑΓΟ ΠΑΥΛΟ ΠΕ03 από το 2 ο ΓΥΜΝΑΣΙΟ ΛΑΓΚΑ Α 1. 1. ΓΝΩΣΤΙΚΗ ΠΕΡΙΟΧΗ ΑΛΓΕΒΡΑ Γ γυµνασίου 1. 2. ΘΕΜΑ: «ΓΕΩΜΕΤΡΙΚΗ

Διαβάστε περισσότερα

ΚΣΕ ΣΟΥΦΛΙΟΥ. Συνεδρία 7

ΚΣΕ ΣΟΥΦΛΙΟΥ. Συνεδρία 7 Εισαγωγική Επιµόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιµόρφωση Β1 Επιπέδου) ΚΣΕ ΣΟΥΦΛΙΟΥ Συνεδρία 7 Παράδειγµα Μικροσεναρίου: Έννοια Συνάρτηση στον Προγραµµατισµό ΕΠΙΜΕΛΕΙΑ: Κουτσονίκος Μιχαήλ Πληροφορικός

Διαβάστε περισσότερα

αξιοποίηση των ΤΠΕ: Η logo στη διδακτική διδακτική πράξη

αξιοποίηση των ΤΠΕ: Η logo στη διδακτική διδακτική πράξη Παιδαγωγική αξιοποίηση Δρ. Ι. Μπέλλου, Σχ αξιοποίηση των ΤΠΕ: Η logo στη διδακτική διδακτική πράξη Μια προσέγγιση για τη Γ Γυμνασίου Σχ. Σύμβουλος ΠΕ19 Δρ. Ιωάννα Μπέλλου Σχ. Σύμβουλος ΠΕ19 Μια διδακτική

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 1. Τίτλος Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ «Ισοδύναµα κλάσµατα» 2. Εµπλεκόµενες γνωστικές περιοχές Το σενάριο µπορεί να αξιοποιηθεί από τους µαθητές της Γ δηµοτικού και εντάσσεται στις γνωστικές περιοχές

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. Εξερευνώντας τα τρίγωνα. Νικόλαος Μπαλκίζας - Ιωάννα Κοσμίδου

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. Εξερευνώντας τα τρίγωνα. Νικόλαος Μπαλκίζας - Ιωάννα Κοσμίδου Νικόλαος Μπαλκίζας - Ιωάννα Κοσμίδου M.C. Escher. Απελευθέρωση, λιθογραφία, 1955 43.5x20cm Σε μια ομοιόμορφα γκρι επιφάνεια, επάνω σε μια ξεδιπλούμενη λωρίδα χαρτιού, συντελείται μια ταυτόχρονη ανάπτυξη

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση Μία διδακτική προσέγγιση ΣΕΝΑΡΙΟ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.)

Διαβάστε περισσότερα

ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ. Μιχάλης Αργύρης

ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ. Μιχάλης Αργύρης ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ Μιχάλης Αργύρης 1 Λόγοι και αναλογίες Περίληψη Οι μαθητές έχουν στη διάθεσή τους μια υπολογιστική οντότητα, ένα καγκουρό του οποίου το μέγεθος μπορούν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 4 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.1 Ονομάζουν και κατασκευάζουν σημεία, ευθύγραμμα τμήματα, ημιευθείες, ευθείες και διάφορα είδη γραμμών (καμπύλες, ευθείες, τεθλασμένες)

Διαβάστε περισσότερα

α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ

α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ ΕΙΣΑΓΩΓΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ SKETCHPAD ΜΕΡΟΣ Α Μιλώντας για ένα λογισµικό δυναµικής γεωµετρίας καλό θα ήταν να διακρίνουµε αρχικά 3 οµάδες εργαλείων µε τα οποία µπορούµε να εργαστούµε µέσα στο συγκεκριµένο περιβάλλον.

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 1

Διαβάστε περισσότερα

ΜΙΑ ΟΠΤΙΚΗ ΑΠΟΔΕΙΞΗ ΤΟΥ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ

ΜΙΑ ΟΠΤΙΚΗ ΑΠΟΔΕΙΞΗ ΤΟΥ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΙΑ ΟΠΤΙΚΗ ΑΠΟΔΕΙΞΗ ΤΟΥ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Νικόλαος Τερψιάδης, Μαθηματικός ΣΧΟΛΕΙΟ Πειραματικό Λύκειο Πανεπιστημίου Μακεδονίας ΘΕΣΣΑΛΟΝΙΚΗ, 2015 1. Συνοπτική περιγραφή της ανοιχτής

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΟΥ ΑΦΟΡΑ ΤΗ ΔΙΕΡΕΥΝΗΤΙΚΗ ΜΑΘΗΣΗ (ΔΙΑΤΥΠΩΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕΣΩ ΔΙΑΔΙΚΑΣΙΩΝ ΔΙΕΡΕΥΝΗΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΣΜΟΥ)

ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΟΥ ΑΦΟΡΑ ΤΗ ΔΙΕΡΕΥΝΗΤΙΚΗ ΜΑΘΗΣΗ (ΔΙΑΤΥΠΩΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕΣΩ ΔΙΑΔΙΚΑΣΙΩΝ ΔΙΕΡΕΥΝΗΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΣΜΟΥ) ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΟΥ ΑΦΟΡΑ ΤΗ ΔΙΕΡΕΥΝΗΤΙΚΗ ΜΑΘΗΣΗ (ΔΙΑΤΥΠΩΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕΣΩ ΔΙΑΔΙΚΑΣΙΩΝ ΔΙΕΡΕΥΝΗΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΣΜΟΥ) Σπύρος Φερεντίνος, Σχολικός Σύμβουλος ΠΕ03 ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ 184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΟ ΣΕΝΑΡΙΟ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΠΟΛΙΤΙΣΜΟΣ ΕΝΑ ΤΑΞΙΔΙ ΣΤΗΝ ΟΜΟΙΟΤΗΤΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ GEOGEBRA ΟΝΟΜΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ: ΞΕΝΑΡΙΟΥ ΚΑΛΛΙΟΠΗ

ΕΦΑΡΜΟΣΜΕΝΟ ΣΕΝΑΡΙΟ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΠΟΛΙΤΙΣΜΟΣ ΕΝΑ ΤΑΞΙΔΙ ΣΤΗΝ ΟΜΟΙΟΤΗΤΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ GEOGEBRA ΟΝΟΜΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ: ΞΕΝΑΡΙΟΥ ΚΑΛΛΙΟΠΗ ΕΦΑΡΜΟΣΜΕΝΟ ΣΕΝΑΡΙΟ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΠΟΛΙΤΙΣΜΟΣ ΕΝΑ ΤΑΞΙΔΙ ΣΤΗΝ ΟΜΟΙΟΤΗΤΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ GEOGEBRA ΟΝΟΜΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ: ΞΕΝΑΡΙΟΥ ΚΑΛΛΙΟΠΗ Γνωστική περιοχή: Γεωμετρία Γ Γυμνασίου Ομοιότητα πολυγώνων και

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ. Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός

ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ. Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός 1 ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός 1 Ταυτότητα του σεναρίου Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

Διαβάστε περισσότερα

Σε ποιο σχολείο θα πάω;

Σε ποιο σχολείο θα πάω; Σε ποιο σχολείο θα πάω; Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΝΙΚΟΛΑΟΣ ΜΕΤΑΞΑΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν

Διαβάστε περισσότερα

Θέµα ιερεύνησης: Ο καιρός

Θέµα ιερεύνησης: Ο καιρός Θέµα ιερεύνησης: Ο καιρός Αντικείµενο της συγκεκριµένης δραστηριότητας είναι η µεθοδική παρατήρηση των καιρικών συνθηκών για ένα σχετικά µεγάλο χρονικό διάστηµα, η καταγραφή και οργάνωση των παρατηρήσεων

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο 6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο Το εκπαιδευτικό σενάριο Η χρήση των Τ.Π.Ε. στην πρωτοβάθμια εκπαίδευση θα πρέπει να γίνεται με οργανωμένο

Διαβάστε περισσότερα

Το ανοργάνωτο Parking

Το ανοργάνωτο Parking Δημοτικό Υπαίθριο Parking Περίληψη: Σε κάθε πόλη είναι σημαντικό η δημιουργία όσο το δυνατόν περισσότερων θέσεων parking, ειδικά στο κέντρο της, ώστε να διευκολύνονται οι πολίτες και η εμπορική αγορά.

Διαβάστε περισσότερα