Τα οικονομικά της Υγείας: μια >υσάρεστη επιστήμη ή ένα χρήσιμο εργαλείο για τις πολιτικές Υγείας;

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τα οικονομικά της Υγείας: μια >υσάρεστη επιστήμη ή ένα χρήσιμο εργαλείο για τις πολιτικές Υγείας;"

Transcript

1 Τ οικονομικά της Υγείς: μι υάρετη επιτήμη ή έν χρήιμο εργλείο γι τις πολιτικές Υγείς; Ιωάννης Κυριόπουλος Κθηγητής Οικονομικών της Υγείς, Διευθυντής του Τομέ Οικονομικών της Υγείς, Εθνική Σχολή Δημόις Υγείς πειδή τ οικονομικά της υγείς προπθούν ν θέουν κνόνες κι ν κάνουν επιλογές -εξιτίς της πνιότητς των πόρων- προκλούν πολλές φορές δυρέκει. Ιδιίτερ τον υγειονομικό τομέ που οι νάγκες είνι μεγάλες κι οι επιθυμίες γι πλήρη υγεί περιόριτες, η δυρέκει υτή είνι ιδιίτερ εμφνής. Η δυρέκει που προκλούν τ οικονομικά της υγείς οφείλετι επίης το γεγονός ότι χολούντι με δύκολ κι εντελώς δυάρετ πράγμτ, δηλδή τους φόρους κι τις ειφορές (γι τη χρημτοδότηη των υπηρειών υγείς) κι τη νοηρότητ κι θνηιμότητ (γι το επίπεδο υγείς του πληθυμού). Πολλοί υγχέουν τ οικονομικά της υγείς με τη λογιτική κι την κοτολόγηη κι θεωρούν -ιδίως οι επγγελμτίες υγείς κι οι γιτροί- ότι επιχει- 53

2 ΚΟΙΝΩΝΊΑ & ΥΓΕΊΑ IV ρούν περικοπές το υγειονομικό ύτημ κι τη φροντίδ υγείς. Η άδικη υτή κτηγορί εμφνίζει τ οικονομικά της υγείς με κόμ πιο κκή εικόν. Μι άλλη πηγή δυρέκεις είνι η διφορετική ντίληψη του χρόνου που έχουν οι οικονομολόγοι της υγείς οι οποίοι κάνουν νλύεις κι έρευνες ε Βάθος χρόνου κι οι πολιτικοί κι οι γιτροί οι οποίοι πιέζοντι γι γρήγορες ποφάεις, πράγμ το οποίο δυχερίνει την επικοινωνί κι την υνεννόηη. Η λήθει όμως είνι ότι τ οικονομικά της υγείς προφέρουν την επιτημονική τεκμηρίωη γι τη λήψη ορθολογικών ποφάεων τις πολιτικές υγείς με Βάη τ κριτήρι της (οικονομικής) ποδοτικότητς, της (ιτρικής) ποτελεμτικότητς κι της (κοινωνικής) ιότητς. Μπορεί τ πράγμτ με τ οποί χολείτι η οικονομί της υγείς ν είνι δυάρετ κι νπότρεπτ όπως οι φόροι κι ο θάντος, όμως, μπορεί ν είνι μεττρέψιμ. Έτι τ οικονομικά της υγείς, κτά τη διτύπωη του Alan Williams, προφέρουν μι χρήιμη κι ιιόδοξη οπτική, επειδή επιχειρούν τη μείωη των φόρων κι ειφορών κι την νβολή του θνάτου, δηλδή τη Βελτίωη της ποδοτικότητς κι της ποτελεμτικότητς. Τ οικονομικά της υγείς επίης υπερβίνουν δήθεν ρομντικές πόψεις οι οποίες θεωρούν ότι όλες οι νάγκες μπορεί ν κλυφθούν ε μηδενικές τιμές χρήμτος κι χρόνου γι όλο τον πληθυμό, λλά, ουιτικά οδηγούν ε διέξοδο ή ε λϊκίτικες ρητορείες κι υτρχικές πόψεις ή υντεχνικές θέεις, υποτηρίζοντς ότι η κοινωνί οφείλει ν χολείτι μόνο με την ιτρική κι το ύτημ υγείς. Οι θεωρίες υτές οδηγούν την πλήρη ιτρικοποιήη της κοινωνίς ενώ πρβλέπουν άλλες Βικές νθρώπινες νάγκες οι οποίες υμβάλλουν ημντικά την υγεί κι την ευημερί. Στη χώρ μς, τις τελευτίες δεκετίες, διμορφώθηκε μι μεγάλη κι ύγχρονη βιομηχνί ιτρικής περίθλψης της οποίς η κοινωνική, οικονομική κι πολιτική ημί είνι μεγάλη. Όπως φίνετι τον πίνκ 1, τόο η εθνική δπάνη γι την υγεί (9,4% ΑΕΠ) όο κι η ιδιωτική δπάνη είνι πό τις μεγλύτερες των χωρών του 54

3 ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΤΗΣ ΥΓΕΙΑΣ: ΜΙΑ ΔΥΣΑΡΕΣΤΗ ΕΠΙΣΤΗΜΗ Ή ΕΝΑ ΧΡΗΣΙΜΟ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΙΣ ΠΟΛΙΤΙΚΕΣ ΥΓΕΙΑΣ; ΟΟΣΑ, χωρίς οι πολίτες, οι γιτροί κι η κεντρική διοίκηη ν θεωρούν ότι οι πόροι υτοί έχουν τ ντίτοιχ κι νμενόμεν ποτελέμτ. Τ μεγέθη υτά δείχνουν ότι το πρόβλημ της ποδοτικής χρήης των υγειονομικών πόρων πρμένει ημντικό όπως επίης κι το πρόβλημ της επιβάρυνης των νοικοκυριών -λόγω της υψηλής δπάνης-, η οποί οδηγεί ε κοινωνικές νιότητες ή κι κόμ ε κττροφικές δπάνες. Σημντικό επίης θέμ ποτελεί το νθρώπινο δυνμικό, το οποίο η υπερπληθώρ γιτρών κι η έλλειψη νοηλευτών πιτεί πρεμβάεις την οργάνωη κι την πργωγή της φροντίδς υγείς κι τ οικονομικά της υγείς μπορεί ν υνειφέρουν το θέμ υτό όπως επίης κι τ ζητήμτ τ οποί δημιουργούντι πό τη γήρνη του πληθυμού κι τη νέ υψηλή βιοϊτρική τεχνολογί. Στ μείζον υτά θέμτ, τ οικονομικά της υγείς μπορεί ν προφέρουν λύεις γι τεκμηριωμένες πολιτικές υγείς, οι οποίες οδηγούν τη μεγιτοποίηη του κοινωνικού οφέλους. Επίης μπορεί ν υνδράμουν την προπάθει της κλινικής ιτρικής γι την νζήτηη της ποτελεμτικότερης ιτρικής φροντίδς με το μικρότερο δυντό κότος. Συμπερμτικά, τ οικονομικά της υγείς μπορεί ν φίνοντι δυάρετ -όπως τ φάρμκ κι άλλες θερπευτικές πρεμβάεις-, λλά είνι χρήιμ γιτί επιχειρούν το κλύτερο δυντό ε έν περιβάλλον πάνιων πόρων, μεγάλων περιοριμών κι δυκολιών. Στη χώρ μς, όπου τ οικονομικά της υγείς διδάκοντι τ τελευτί είκοι χρόνι την Εθνική Σχολή Δημόις Υγείς κι τη υνέχει ε άλλ πνεπιτήμι, έχει νπτυχθεί μι κρίιμη μάζ εκπιδευμένων τελεχών κι επίης έν ημντικό πόθεμ Βιβλιογρφίς, μελετών κι ερευνών, που μπορεί ν βοηθήουν τη διμόρφωη των πολιτικών υγείς. 55

4 < «ΚΟΙΝΩΝΊΑ & ΥΓΕΊΑ IV c c L" " vq " 00/ c\i " " -sf c" r-" v \ t- " " t" _ " " CXT v L" v 00 Ο 0\ N r»" " " t" rt" r-" " V_ L. t-_ 0_ C\T V " t" <*" m" \" c" <*" L" L i-i rh Η : " v" <N s 0 e (A/ * 3. Φ tv ο δ w ω L C\f " " " " c L" " * t" <tf C\ UV c" v" c" c" <* κεφ ω ν s e ο Χ άνη 1 ( L ι Ι \ ι t \ V L 00 c L V V i l i ( L r~ N <j) ι 1 L ) i J v V J ω 9 t~- L r~ " N" N,- r-- " t N V L C M L ' t f N" c" r-»" " v" ν" c " " - g. Β < 2 < Q 56

5 * 5,6s1 ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΤΗΣ ΥΓΕΙΑΣ: ΜΙΑ ΔΥΣΑΡΕΣΤΗ ΕΠΙΣΤΗΜΗ Ή ΕΝΑ ΧΡΗΣΙΜΟ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΙΣ ΠΟΛΙΉΚΕΣ ΥΓΕΙΑΣ; V : " V sf Cvi c' r-t οο '- in τ-η N LT) νθ" θ" Τ-Η N N N N ν ο οο N N N N N N N Ο νθ v " L" Γ*- " **" m c m m c \ t- ω ω N ci ; $ vi " Τ Ι V iii. " "c" " " " " " Ι Ι Τ 1 Ο Ο Ο Τ - Η Ο Ο ; 1 I νθ τ Ι : <s <*"; m" " νθ" " e ι Ι τ-η ι Ι C~- * N" 5,9" νθ" i ( " " N ": νθ" v"i N" C # " 4,8*" Èae - cx v 3 w IA/1 3 < IKÓ ω v Ζηλ 2 6ηγί 2 g i υγγρί : 3 ': E: 1' Ο Ο c: ηδί w ρκί H ν : νδι ' θ- 3 I χ cv a y 0 έος s; : 3 X g X Q. r< $:5c PPP N 57

3.3 Άριστο Επίπεδο Αποθεµάτων

3.3 Άριστο Επίπεδο Αποθεµάτων 3.3 Άριστο Επίπεδο Αποθεµάτων - ο λογισµός της επιχείρησης εκτείνετι σε δύο χρονικές περιόδους. - έχει την δυντότητ ν δηµιουργήσει ποθέµτ την πρώτη περίοδο τ οποί θ πουλήσει την δεύτερη. - Η πόφση πργωγής

Διαβάστε περισσότερα

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών

Διαβάστε περισσότερα

Η Υγεία σας - και - η Κατάστασή σας

Η Υγεία σας - και - η Κατάστασή σας Η Υγεί σς - κι - η Κτάστσή σς Kidney Disease and Quality of Life (KDQOL-SF ) Αυτή η έρευν σς ρωτά γι τις πόψεις σς γι την υγεί σς. Αυτές οι πληροφορίες θ µς βοηθήσουν ν δούµε πώς ισθάνεσθε κι πόσο κλά

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό

Διαβάστε περισσότερα

γ. ποιο πρέπει ν είνι το περιεχόµενο της πρεχόµενης γνώσης (<< >>) γι ν ποκτήσουν ρετή γι ν ζουν κλύτερ. δ. Ποιοι πρέπει ν είνι οι στόχοι της πιδείς :

γ. ποιο πρέπει ν είνι το περιεχόµενο της πρεχόµενης γνώσης (<< >>) γι ν ποκτήσουν ρετή γι ν ζουν κλύτερ. δ. Ποιοι πρέπει ν είνι οι στόχοι της πιδείς : Α) Μετάφρση Έγινε, λοιπόν, φνερό ότι πρέπει ν ορίσουµε νόµους γι την πιδεί κι ότι πρέπει ν την κάνουµε ίδι γι όλους. Ποιος όµως θ είνι ο χρκτήρς υτής της πιδείς κι µε ποιον τρόπο θ πρέπει ν διφύγουν την

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 05 ΘΕΜΑ Α. Γι μι συνεχή συνάρτηση f ν γράψετε τις τρείς κτηγορίες σημείων, τ οποί εινι πιθνές θέσεις τοπικών κροτάτων. (6 Μονάδες). Ν χρκτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ. Τ Μ Η Μ Α ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ κ ΠΡΟΝΟΙΑΣ ΘΕΜΑ

Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ. Τ Μ Η Μ Α ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ κ ΠΡΟΝΟΙΑΣ ΘΕΜΑ Τ.Ε.Ι. ΚΑΛΑΜΑΤΑΣ Σ χ ο λ ή Διο ίκ η σ η ς κ Ο ικ ο ν ο μ ί ς Τ Μ Η Μ Α ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ κ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ ΔΙΕΡΕΥΝΗΣΗ ΑΠΟΨΕΩΝ ΧΡΗΣΤΩΝ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ ΤΩΝ ΕΞΩΤΕΡΙΚΩΝ ΙΑΤΡΕΙΩΝ ΤΟΥ

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ημιτελείς προτάσεις Α1 έως Α5 κι δίπλ το γράμμ που

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

ΤΕΣΤ ΔΙΑΠΡΑΓΜΑΤΕΥΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ

ΤΕΣΤ ΔΙΑΠΡΑΓΜΑΤΕΥΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΤΕΣΤ ΔΙΑΠΡΑΓΜΑΤΕΥΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ 1. Θεωρείς τη διπργμάτευση σν μι διδικσί άκρως συνεργσιμότητς ντγωνιστική 2. Συμμετέχεις σε μι διπργμάτευση με σκοπό ν πετύχεις μι ν νικήσεις δίκιη συμφωνί 3. Σε τι ποτέλεσμ

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ συγκέντρωση Μόλυνση ονομάζετι η είσοδος ενός πθογόνου μικροίου στον οργνισμό. Χρονικά, προηγείτι η είσοδος του μικροίου κι κολουθεί η ενεργοποίηση

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πρόγραμμα Μεταπτυχιακών Σπουδών

Πανεπιστήμιο Πατρών Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πρόγραμμα Μεταπτυχιακών Σπουδών Πνεπιστήμιο Πτρών Σχολή Ανθρωπιστικών κι Κοινωνικών Επιστημών Πιδγωγικό Τμήμ Δημοτικής Εκπίδευσης Πρόγρμμ Μετπτυχικών Σπουδών Mετπτυχική Εργσί Πεποιθήσεις κι κίνητρ. Μι ερευνητική προσέγγιση σε πολιτισμικά

Διαβάστε περισσότερα

Newsletter. Δεκέμβριος 2011. Christmas Party! στο Yogastudio Maroussi Παρασκευή 23 Δεκεµβρίου, 20.00

Newsletter. Δεκέμβριος 2011. Christmas Party! στο Yogastudio Maroussi Παρασκευή 23 Δεκεµβρίου, 20.00 Newsletter Δεκέμβριος 2011 Christmas Party! στο Yogastudio Maroussi Πρσκευή 23 Δεκεµβρίου, 20.00 Ελάτε ν γιορτάσουµε σε µί κεφάτη Χριστουγεννιάτικη τµόσφιρ µε πολύ µουσική, χορό, χορτοφγικό µπουφέ κι εκπλήξεις!

Διαβάστε περισσότερα

VΙΙ. ΕΤΗΣΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ

VΙΙ. ΕΤΗΣΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ VΙΙ. ΕΤΗΣΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ Α. ΕΤΗΣΙΑ ΑΣΦΑΛΙΣΤΡΑ Η ρχή της ισουνµίς πιτεί την ισότητ της νλογιστικής προύσς ξίς των σφλίστρων µε την νλογιστική προύσ ξί των προχών (σφάλισης, ράντς ή οποισήποτε άλλης

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε

Διαβάστε περισσότερα

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους

Διαβάστε περισσότερα

1) Υπόδειγµα Εντολέα - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου.

1) Υπόδειγµα Εντολέα - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου. ) Υπόδειγµ Εντολέ - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου. Έστω ότι ο εντολοδόχος ελέγχει µί επιχείρηση της οποίς ιδιοκτήτες είνι διάφοροι µέτοχοι (ο εντολές). Στην γενική περίπτωση, ο εντολοδόχος

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΑ ΑΠΟΣΠΑΣΜΑ. Από το πρακτικό της αριθμ.15-11 ης Συνεδρίασης της Οικονομικής Επιτροπής Δήμου Λεβαδέων Αριθμός απόφασης : 142.

ΑΝΑΡΤΗΤΕΑ ΑΠΟΣΠΑΣΜΑ. Από το πρακτικό της αριθμ.15-11 ης Συνεδρίασης της Οικονομικής Επιτροπής Δήμου Λεβαδέων Αριθμός απόφασης : 142. ΑΝΑΡΤΗΤΕΑ Λιβδειά 24 04-2015 Αριθ Πρωτ: 10259 ΑΠΟΣΠΑΣΜΑ Από το πρκτικό της ριθμ15-11 ης Συνεδρίσης της Οικονομικής Επιτροπής Δήμου Λεβδέων Αριθμός πόφσης : 142 Περίληψη Εκθεση ποτελεσμάτων εκτέλεσης προϋπολογισμού

Διαβάστε περισσότερα

ΧΙΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ ΙΙ Α. ΓΕΝΙΚΕΥΜΕΝΕΣ ΑΠΟ ΚΟΙΝΟΥ ΠΙΘΑΝΟΤΗΤΕΣ. Στα όσα προηγήθηκαν, εξετάσαµε δύο "ακραία" καθεστώτα x1x

ΧΙΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ ΙΙ Α. ΓΕΝΙΚΕΥΜΕΝΕΣ ΑΠΟ ΚΟΙΝΟΥ ΠΙΘΑΝΟΤΗΤΕΣ. Στα όσα προηγήθηκαν, εξετάσαµε δύο ακραία καθεστώτα x1x ΧΙΙΙ ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ ΙΙ Α ΓΕΝΙΚΕΥΜΕΝΕΣ ΑΠΟ ΚΟΙΝΟΥ ΠΙΘΑΝΟΤΗΤΕΣ Στ όσ προηγήθηκν, εξετάσε δύο "κρί" κθεστώτ κθεστώτος προϋποθέτει την επιβίωση όλων των, (,, ( ( ( (η "επιβίωση" του κι το κθεστώς "λύετι"

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΔΙΑΣΠΑΣΗΣ ΣΙΛΑΝΙΟΥ ΣΕ ΗΛΕΚΤΡΙΚΕΣ ΕΚΚΕΝΩΣΕΙΣ ΕΝΑΠΟΘΕΣΗΣ ΠΥΡΙΤΙΟΥ. Γ. Αλεξίου, Α. Καλαμπούνιας, Ε. Αμανατίδης, Δ. Ματαράς

ΚΙΝΗΤΙΚΗ ΔΙΑΣΠΑΣΗΣ ΣΙΛΑΝΙΟΥ ΣΕ ΗΛΕΚΤΡΙΚΕΣ ΕΚΚΕΝΩΣΕΙΣ ΕΝΑΠΟΘΕΣΗΣ ΠΥΡΙΤΙΟΥ. Γ. Αλεξίου, Α. Καλαμπούνιας, Ε. Αμανατίδης, Δ. Ματαράς ΚΙΝΗΤΙΚΗ ΔΙΑΣΠΑΣΗΣ ΣΙΛΑΝΙΟΥ ΣΕ ΗΛΕΚΤΡΙΚΕΣ ΕΚΚΕΝΩΣΕΙΣ ΕΝΑΠΟΘΕΣΗΣ ΠΥΡΙΤΙΟΥ Γ. Αλεξίου, Α. Κλμπούνις, Ε. Αμντίδης, Δ. Μτράς Εργστήριο Τεχνολογίς Πλάσμτος, Τμήμ Χημικών Μηχνικών, Πνεπιστήμιο Πτρών ΠΕΡΙΛΗΨΗ

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΣΧΕ ΙΟ ΞΕΝΟΚΡΑΤΗΣ ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΟΥ ΣΕΙΣΜΙΚΟΥ ΚΙΝ ΥΝΟΥ. ρ. Στυλιανός Γ. Λόζιος

ΕΠΙΧΕΙΡΗΣΙΑΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΣΧΕ ΙΟ ΞΕΝΟΚΡΑΤΗΣ ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΟΥ ΣΕΙΣΜΙΚΟΥ ΚΙΝ ΥΝΟΥ. ρ. Στυλιανός Γ. Λόζιος ΕΠΙΧΕΙΡΗΣΙΑΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΣΧΕ ΙΟ ΞΕΝΟΚΡΑΤΗΣ ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΟΥ ΣΕΙΣΜΙΚΟΥ ΚΙΝ ΥΝΟΥ ρ. Στυλινός Γ. Λόζιος Επ. Κθηγητής του Τµήµτος Γεωλογίς του Εθνικού & Κποδιστρικού Πνεπιστηµίου Αθηνών Το εφρµοσµέν

Διαβάστε περισσότερα

9.4. Ασκήσεις σχολικού βιβλίου σελίδας 194. Ερωτήσεις κατανόησης. Στο παρακάτω σχήµα να συµπληρώσετε τα κενά Λύση

9.4. Ασκήσεις σχολικού βιβλίου σελίδας 194. Ερωτήσεις κατανόησης. Στο παρακάτω σχήµα να συµπληρώσετε τα κενά Λύση 1 9.4 σκήσεις σχολικού βιβλίου σελίδς 194 Ερωτήσεις κτνόησης 1. Στο πρκάτω σχήµ ν συµπληρώσετε τ κενά Ε i) = + +. ii) = + +.Ε. Ν βρεθεί το είδος των ωνιών του τριώνου ότν i) β = + ii) = β iii) β = i) β

Διαβάστε περισσότερα

3.3 ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ

3.3 ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ . ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΘΕΩΡΙΑ. Η γενική µορφή της β βάθµις εξίσωσης + β + γ 0, 0. Οι λύσεις της β βάθµις εξίσωσης β 4γ Η εξίσωση + β + γ 0, 0 Ότν > 0 Έχει δύο ρίζες άνισες, τις, Ότν 0 Έχει µί διπλή ρίζ,

Διαβάστε περισσότερα

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ Δύο ομογενείς δίσκοι, ένς μεγάλος μάζς Μ=3kg κι κτίνς =40 κι ένς μικρός μάζς m=kg κι κτίνς =10, ενώνοντι έτσι ώστε ν συμπίπτουν τ κέντρ τους. Ο δίσκος κτίνς διθέτει υλάκι

Διαβάστε περισσότερα

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Εισγωγή: Όπως στη κθημερινή μς ζωή, γι ν συνεννοηθούμε χρησιμοποιούμε προτάσεις, έτσι κι στ Μθημτικά χρησιμοποιούμε «Μθημτικές» προτάσεις. Γι πράδειγμ στη κθημερινή

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:...

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:... ΑΝΑΛΟΓΙΕΣ Μι νθοδέσμη έχει 5 λευκά κι 15 κόκκιν γρύφλλ. Τι μπορούμε ν πρτηρήσουμε; ότι τ κόκκιν είνι κτά δέκ περισσότερ πό τ λευκά, λλά κι ότι τ κόκκιν γρύφλλ είνι τρεις φορές περισσότερ πό τ λευκά Η μέτρηση

Διαβάστε περισσότερα

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι Ίσ Τρίω όχι Ψευδοΐσ ι ημοσιεύτηε στο περιοδιό «φ» τ.5 008 ημ. Ι. Μπουάης Σχ. Σύμουλος Μθημτιώ Οι ερωτήσεις τω μθητώ μς είι σφλώς πάτ ευπρόσδετες λλά πρέπει ι τις εθρρύουμε με άθε τρόπο. Όχι μόο ιτί ζωτεύου

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 5: Θεωρήμτ κυκλωμάτων Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177 5 Θεωρήμτ κυκλωμάτων

Διαβάστε περισσότερα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ

Διαβάστε περισσότερα

Ηλώ σεις. 1 Άσκηση. 2 Άσκηση

Ηλώ σεις. 1 Άσκηση. 2 Άσκηση ΠΜΣ : Σχεδισμός & κτσκευή υπογείων έργων Ακδ. Έτος: 2013-2014 ΜΑΘΗΜΑ: Μέτρ Υποστήριξης Σηράγγων Διδάσκων : Κθηγητής Α.Ι. ΣΟΦΙΑΝΟΣ Επιμέλει σκήσεων: Π. Γιούτ Ηλώ σεις 1 Άσκηση Σχεδιάστε τη μέγιστη πίεση

Διαβάστε περισσότερα

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για 165 4.5 ΠΡΩΤΟΙ ΑΡΙΘΜΟΙ Εισγωγή Δύο πό τ σημντικότερ ποτελέσμτ σχετικά με τους πρώτους ριθμούς ήτν γνωστά ήδη πό την ρχιότητ. Το γεγονός ότι κάθε κέριος νλύετι με μονδικό τρόπο ως γινόμενο πρώτων εμφνίζετι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.

Διαβάστε περισσότερα

Η ΑΓΟΡΑ ΕΛΑΙΟΛΑ ΟΥ ΣΤΗΝ Ν. ΚΟΡΕΑ

Η ΑΓΟΡΑ ΕΛΑΙΟΛΑ ΟΥ ΣΤΗΝ Ν. ΚΟΡΕΑ Η ΑΓΟΡΑ ΕΛΑΙΟΛΑ ΟΥ ΣΤΗΝ Ν. ΚΟΡΕΑ Γρφείο Οικονοµικών & Εµπορικών Υποθέσεων Πρεσβείς της Ελλάδος στη Σεούλ Rm 25, Jang Kyo Bldg,, Jang Kyo-dong, Chung-ku Seoul, Korea 00-77 Tel. +82-2-754-822 Fax +82-2-754-823

Διαβάστε περισσότερα

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Εργστήριο Φυσικής Τμήμτος Πληροφορικής κι Τεχνολογίς Υπολογιστών Τ.Ε.Ι. Λμίς Ηλεκτρικό φορτίο Εισγωγή στην έννοι του Ηλεκτρικού Φορτίου Κάθε σώμ περιέχει στην φυσική του κτάστση ένν πάρ πολύ μεγάλο ριθμό

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ.

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ. Ιόνιο Πνεπιστήμιο - Τμήμ Πληροορικής Μθημτικός Λογισμός Ενότητ: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ Πνγιώτης Βλάμος Αδειες Χρήσης Το πρόν εκπιδευτικό υλικό υπόκειτι σε άδειες χρήσης Cativ Commo

Διαβάστε περισσότερα

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι Έςτω :RR, ςυνεχήσ ςυνάρτηςη κι,,cr Αποδείξτε ότι ) d d β) d d γ) d c c d c c δ) d c c c d ε) d στ) d Απάντηση:, εάν η είνι περιττή d, εάν η είνι άρτι Πρόκειτι γι πολύ βσική άσκηση, που είνι εφρμογή της

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,

Διαβάστε περισσότερα

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα.

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα. 1 9.1 9. Μετρικές σχέσεις στο ορθογώνιο τρίγωνο ΘΕΩΡΙ 1. προβολή του στην ε προβολή του στην ε προβολή του στην ε ε. Τρίγωνο ορθογώνιο στο κι ύψος. Τότε = = = = β + γ κι ντίστροφ = 1 υ = 1 β + 1 γ ν δίνοντι

Διαβάστε περισσότερα

W W Q Q W + W + Q = = = = 1 α C.O.P. C.O.P. = + + = + C.O.P = = = 1 α C.O. H2 H2 C1 C2 C C C C Ψ1

W W Q Q W + W + Q = = = = 1 α C.O.P. C.O.P. = + + = + C.O.P = = = 1 α C.O. H2 H2 C1 C2 C C C C Ψ1 Αντλίες θερµότητς έρος-νερού υψηλών θερµοκρσιών δυο κυκλωµάτων συµπίεσης (σύστηµ cascade). (Από τον Νικόλο Γ. Τσίτσο. Νυπηγό Μηχνολόγο Ε.Μ.Π. Κθηγητ στην Ακδηµί Εµπορικού Νυτικού Ασπροπύργου) εν νκλύψµε

Διαβάστε περισσότερα

Α5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία.

Α5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία. Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 5 ΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 22/05/2015 ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμίς πό τις πρκάτω ημιτελείς

Διαβάστε περισσότερα

1 N N 1 N ( ) x dx (1) , (2) N xi. i= 1. = A exp , (3) dx = 1. (4) x σ 68% 2. (5) σ x x x . (6) . (7)

1 N N 1 N ( ) x dx (1) , (2) N xi. i= 1. = A exp , (3) dx = 1. (4) x σ 68% 2. (5) σ x x x . (6) . (7) Περί φλµάτων µετρήεων κι ποτελεµάτων Προδιοριµός φάλµτος (ή ειότητς) ενός ποτελέµτος Σφάλµ µις µετρήεως: φάλµ νγνώεως, π.χ. ±/ υποδιιρέεως κλίµκος. Σφάλµ πολλπλών, επνληπτικών µετρήεων: ( ) ( ) Πρόκειτι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. α > α. Γνωρίζουµε ότι για κάθε x ( 0, + ) l οg x. Αυτό σηµαίνει ότι σε κάθε x ( 0, ) l οg x, εποµένως έχουµε τη συνάρτηση:

ΚΕΦΑΛΑΙΟ 4. α > α. Γνωρίζουµε ότι για κάθε x ( 0, + ) l οg x. Αυτό σηµαίνει ότι σε κάθε x ( 0, ) l οg x, εποµένως έχουµε τη συνάρτηση: Λυµέν Θέµτ κι Ασκήσεις κ.λ.π. ΚΕΦΑΛΑΙΟ 4 Επιµέλει: Σκουφά Σωτήρη Βούρβχη Κώστ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Λογριθµική συνάρτηση >. Γνωρίζουµε ότι γι κάθε ( 0, + ) l οg. Αυτό σηµίνει ότι σε κάθε ( 0, ) Θεωρούµε

Διαβάστε περισσότερα

magazine Με το βλέμμα στραμμένο στον πελάτη Ασφαλίζω σημαίνει καταλαβαίνω Ελληνική έκδοση του ασφαλιστικού ομίλου ERGO

magazine Με το βλέμμα στραμμένο στον πελάτη Ασφαλίζω σημαίνει καταλαβαίνω Ελληνική έκδοση του ασφαλιστικού ομίλου ERGO Τεύχος 2 Άνοιξη 2012 Ελληνική έκδοη του φλιτικού ομίλου ERGO ΕRGO kick-off 2012 Βράβευη της ERGO Ελλάδος Πρόωπ Συνέντευξη του Dr. Torsten Oletzky Εκδηλώεις Βρβεύεις Συνεργτών έτους 2011 Προϊόντ Χρήιμ προγράμμτ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επνληπτικό Διγώνισμ Μθημτικών Γενικής Πιδείς Γ Λυκείου Θέμ A Α. Ν ποδείξετε ότι η πράγωγος της συνάρτησης f(x)=x ισούτι με x, δηλδή(x ) =x. (6 μονάδες) A. Ν δώσετε τον ορισμό:. του ξιωμτικού ορισμού της

Διαβάστε περισσότερα

Κεφάλαιο 9 ο ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΟΠΩΣΗ

Κεφάλαιο 9 ο ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΟΠΩΣΗ Κεφάλιο 9 ο ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΟΠΩΣΗ ρ. Ν. Αλεξό ουλος ΚΕΦΑΛΑΙΟ 9 ο : ΚΟΠΩΣΗ ΣΥΝΟΠΤΙΚΑ ΘΕΩΡΗΤΙΚΑ ΣΤΟΙΧΕΙΑ Έχει πρτηρηθεί ότι εάν έν µετλλικό εξάρτηµ ή δοκίµιο υποβληθεί ε ενλλόµενες περιοδικές

Διαβάστε περισσότερα

Θέματα Εξετάσεων Φεβρουαρίου 2011:

Θέματα Εξετάσεων Φεβρουαρίου 2011: ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξετάσεων Φεβρουρίου : ΘΕΜΑ μονάδες Πρέπει με κυβικές b-splnes ν πρεμβάλετε, κτά σειρά, τ εξής σημεί:,,,,,,,8, 7, κι,. Ας είνι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΣΗΜΕΙΩΣΕΙΣ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Εμδό προλικού χωρίου Έστω ότι θέλουμε ρούμε

Διαβάστε περισσότερα

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( )

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( ) 9 Ορισμένο ολοκλήρωμ συνάρτησης Η συνάρτηση F( = f t dt Θεωρούμε τη συνεχή συνάρτηση f:a R με A = [,] Χωρίζουμε το [,] σε ν ισομήκη υοδιστήμτ ου το κθέν έχει μήκος Δ = Σε κάθε υοδιάστημ ου σχημτίζετι ν

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo. Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι

Διαβάστε περισσότερα

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής 6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων

Διαβάστε περισσότερα

2. 4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

2. 4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΜΕΡΟΣ Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΟΡΙΣΜΟΣ Ονομάζουμε κλσμτική εξίσση κάθε εξίσση που έχει άγνστο στον προνομστή. 7 6 Γι πράδειγμ οι εξισώσεις + 5, + είνι κλσμτικές ενώ οι εξισώσεις

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02 Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 7 ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

KΕΦΑΛΑΙΟ 7 ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ KΕΦΑΛΑΙΟ 7 ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Είνι γνωστό ότι γι πολλά ορισµέν ολοκληρώµτ δεν υπάρχουν νλυτικές µέθοδοι κριβούς επίλυσής τους. Ετσι λοιπόν έχουν νπτυχθεί προσεγγιστικές µέθοδοι υπολογισµού τέτοιων

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ Σ Ο ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΡΟΟ ΟΣ ΣΤΟ ΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Εαρινό Εξάµηνο , 1 Ιουνίου 2000

ΤΕΙ ΚΡΗΤΗΣ Σ Ο ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΡΟΟ ΟΣ ΣΤΟ ΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Εαρινό Εξάµηνο , 1 Ιουνίου 2000 ΤΕΙ ΚΡΗΤΗΣ Σ Ο ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΡΟΟ ΟΣ ΣΤΟ ΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Ερινό Εξάµηνο 1999-2000, 1 Ιουνίου 2000 Α Οδηγίες: Απντήστε όλες τις ερωτήσεις. Ν επιστρέψετε τ θέµτ. 1. (65 µόρι) ίνετι ο κόλουθος πίνκς πιτούµενων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

Κεφάλαιο 11 Διαγράμματα Φάσεων

Κεφάλαιο 11 Διαγράμματα Φάσεων Κεφάλιο 11 Διγράμμτ Φάσεων Συχνά, σε πολλές διεργσίες, νμιγνύουμε δύο ή κι περισσότερ διφορετικά υλικά, κι πρέπει ν πντήσουμε στο ερώτημ: ποιά θ είνι η φύση του υλικού που θ προκύψει πό υτή την νάμιξη:

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1]

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1] ΛΓΕΒΡ ΛΥΚΕΙΟΥ Οι ερωτήσεις του σχολικού βιβλίου [] Εισγωγικό Κεφάλιο. 9 3 Γι = - 3, η υπόθεση είνι ληθής, ενώ το συμπέρσμ ψευδές Το σύνολο λήθεις της υπόθεσης είνι το = 3, 3, ενώ του συμπεράσμτος είνι

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 24 ΜΑΪΟΥ 202 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη 255 ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣΣ Α! ΤΑΞΗΣΣ Ο Ρωµίος που µχίρωσσε ε τον Αρχιµήδη Μ' έν κλά µελετηµένο κτύπηµ, σκότωσε τον κύκλο, την εφπτόµενη κι το σηµείο τοµής στο άπειρο. "'Επί ποινή" διµελισµού εξόρισε

Διαβάστε περισσότερα

INVESTORS IN PEOPLE. Investors in People: Το ανταγωνιστικό πλεονέκτημα. Investors in People: Η φιλοσοφία. Δράση. Σχεδιασμός.

INVESTORS IN PEOPLE. Investors in People: Το ανταγωνιστικό πλεονέκτημα. Investors in People: Η φιλοσοφία. Δράση. Σχεδιασμός. INVESTORS IN PEOPLE Investors in People: Το ντγωνιστικό πλεονέκτημ Θέλετε ν δείτε την επιχείρησή σς ν βελτιώνει την ντγωνιστικότητά της κι τις επιχειρημτικές της επιδόσεις μέσω της ποτελεσμτικής διχείρισης

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ

f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΓΕΝΙΚΑ ΠΕΡΙ ΕΞΙΣΩΣΕΩΝ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Έστω f (x), g(x) είνι δύο πρστάσεις µις µετβλητής x πού πίρνει τιµές στο σύνολο Α. Εξίσωση µε ένν άγνωστο λέγετι κάθε ισότητ της µορφής f (x) =

Διαβάστε περισσότερα

ΘΕΜΑ: «Αίτημα συνάντησης για το Πράσινο Ταμείο και την ολοκλήρωση του πολεοδομικού σχεδιασμού για τους Δήμους»

ΘΕΜΑ: «Αίτημα συνάντησης για το Πράσινο Ταμείο και την ολοκλήρωση του πολεοδομικού σχεδιασμού για τους Δήμους» ΑΘΗΝΑ 30/01/2017 Αριθμ. Πρωτ.: 341 ΚΕΝΤΡΙΚΗ ΕΝΩΣΗ ΔΗΜΩΝ ΕΛΛΑΔΑΣ κ. Γεώργιο Στθάκη Υπουργό Περιβάλλοντος κι Ενέργεις ΘΕΜΑ: «Αίτημ συνάντησης γι το Πράσινο Τμείο κι την ολοκλήρωση του πολεοδομικού σχεδισμού

Διαβάστε περισσότερα

Θεωρήματα, Προτάσεις, Εφαρμογές

Θεωρήματα, Προτάσεις, Εφαρμογές Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Α) Προβλήμτ ευθύγρμμης ομλά επιτχυνόμενης κίνησης. ) Απλής εφρμογής τύπων Ακολουθούμε τ εξής βήμτ: i) Συμβολίζουμε τ δεδομέν κι ζητούμεν με τ ντίστοιχ σύμβολ που θ χρησιμοποιούμε.

Διαβάστε περισσότερα

ΚΡΑΤΙΚΟΣ ΤΟΜΕΑΣ ΚΑΙ ΗΜΟΣΙΕΣ ΑΠΑΝΕΣ

ΚΡΑΤΙΚΟΣ ΤΟΜΕΑΣ ΚΑΙ ΗΜΟΣΙΕΣ ΑΠΑΝΕΣ Κεφάλιο 9 ΚΡΑΤΙΚΟΣ ΤΟΜΕΑΣ ΚΑΙ ΗΜΟΣΙΕΣ ΑΠΑΝΕΣ Εισγωγή Στην νζήτηση γι τους προσδιοριστικούς πράγοντες της οικονοµικής µεγέθυνσης, στ υποδείγµτ µε εξωτερικές οικονοµίες δόθηκε ιδιίτερο βάρος στις τέλειες

Διαβάστε περισσότερα

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ 1 3.1 σκήσεις σχ. ιλίου σελίδς 144 146 Ο Σ 1. Έν κουτί έχει τρεις µπάλες, µι άσπρη, µι µύρη κι µι κόκκινη. άνουµε το εξής πείρµ : πίρνουµε πό το κουτί µι µπάλ, κτγράφουµε το χρώµ της κι την ξνάζουµε στο

Διαβάστε περισσότερα

Οι Νέες Τεχνολογίες ως Εργαλείο κατανόησης βασικών εννοιών στο Γυµνάσιο

Οι Νέες Τεχνολογίες ως Εργαλείο κατανόησης βασικών εννοιών στο Γυµνάσιο Οι Νέες Τεχνολογίες ως Εργλείο κτνόησης σικών εννοιών στο Γυµνάσιο ΗΜΗΤΡΙΟΣ ΚΟΝΤΟΓΕΩΡΓΟΣ Μθηµτικός-Υπεύθυνος του Μθηµτικού Εργστηρίου του Λυκείου Ελληνικού kontod@yahoo.gr ΚΩΝ/ΝΟΣ ΜΑΡΑΓΚΟΣ Μθηµτικός -Κθ.

Διαβάστε περισσότερα

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστ Βκλόπουλου, Βσίλη Κρκάνη, Άννς Βκλοπούλου Άσκηση η Δίνοντι τ δινύσμτ, β διάφορ του μηδνικού γι τ οποί ισχύι: β, β κι β i) Ν βρθούν τ μέτρ των δινυσμάτων,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Γ' ΦΑΣΗ ΙΑΓΝΩΣΤΙΚΟ ΤΕΣΤ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Γ' ΦΑΣΗ ΙΑΓΝΩΣΤΙΚΟ ΤΕΣΤ ΙΑΓΝΩΣΤΙΚΟ ΤΕΣΤ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΣΠΟΥ ΩΝ Ηµεροµηνί: Πέµπτη 10 Σεπτεµβρίου 015 ιάρκει Εξέτσης: 1 ώρ ΕΚΦΩΝΗΣΕΙΣ Ν λάβετε υπόψη σς ότι µόνο µί πάντηση είνι η σωστή. ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΕΙΜΕΝΟ

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

magazine Η ERGO στην Παταγωνία Ταξιδεύοντας με τους επιτυχημένους Ελληνική έκδοση του ασφαλιστικού ομίλου ERGO

magazine Η ERGO στην Παταγωνία Ταξιδεύοντας με τους επιτυχημένους Ελληνική έκδοση του ασφαλιστικού ομίλου ERGO Τεύχος 3 Χειμώνς 2013 magazine Ελληνική έκδοση του σφλιστικού ομίλου ERGO Training Εμπειρίες φροντίδς γι το διοικητικό προσωπικό Web Portal Oι διδικτυκές σχέσεις της ERGO νβθμίστηκν Πρόσωπ Ανδρές Σούλης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α Θέµα 1ο (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες

ΔΙΑΓΩΝΙΣΜΑ Α Θέµα 1ο (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες 5) (Μονάδες ΔΙΑΓΩΝΙΣΜΑ Α Θέµ ο Από τις πρκάτω πολλπλές πντήσεις ν επιλέξετε τη σωστή..κάθε µετφορικό trn :. συνδέετι µε έν συγκεκριµένο µινοξύ β. συνδέετι µε οποιοδήποτε µινοξύ γ. µπορεί ν µετφέρει πό έως 6 διφορετικά

Διαβάστε περισσότερα

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση

Διαβάστε περισσότερα

ιδιαίτερη ευχαρίστηση». Όμως εδώ τίθεται το εξής ερώτημα: «Ποιός είναι αυθεντία Istvan Urban Εμφυτευματολόγος Συνεδρία I, ΙΙI

ιδιαίτερη ευχαρίστηση». Όμως εδώ τίθεται το εξής ερώτημα: «Ποιός είναι αυθεντία Istvan Urban Εμφυτευματολόγος Συνεδρία I, ΙΙI 12 Κλινικά Θέμτ - Αισθητική Οδοντιτρική De n t a l Tr i b u n e Greek Edition Η λειτουργική ισθητική ζώνη του στόμτος: Ο κθοριστικός πράγοντς γι τη σχεδίση ενός ισθητικά άρτιου χμόγελου J. J. Massad, DDS

Διαβάστε περισσότερα

ΙΔΙΟΤΙΜΕΣ. Λύση. Σχηματίζουμε την εξίσωση (2): x = 0. Οι κολώνες του πίνακα

ΙΔΙΟΤΙΜΕΣ. Λύση. Σχηματίζουμε την εξίσωση (2): x = 0. Οι κολώνες του πίνακα ΙΔΙΟΤΙΜΕΣ Σημείωση Προς το πρόν, κινούμεθ στο σώμ R των πργμτικών ριθμών Έν ιδιοδιάνυσμ ή χρκτηριστικό διάνυσμ ενός πίνκ Α, που ντιστοιχεί στην ιδιοτιμή, είνι εκείνο το μη μηδενικό διάνυσμ το οποίο πηροί

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx Λογάριθμοι Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έοι του λογάριθμου Έστω η εξίσωση θ, 0, θ 0. Η εξίσωση υτή έχει μοδική λύση φού η εκθετική συάρτηση f είι γησίως μοότοη κι το θ ήκει στο σύολο τιμώ της. Τη μοδική

Διαβάστε περισσότερα

ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ. 2 Με τον ίδιο υπονοούμενο τρόπο η έννοια της συνάρτησης εμφανίζεται στους λογαριθμικούς πίνακες που κατασκευάστηκαν

ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ. 2 Με τον ίδιο υπονοούμενο τρόπο η έννοια της συνάρτησης εμφανίζεται στους λογαριθμικούς πίνακες που κατασκευάστηκαν 1 ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 191 Η έννοι της συνάρτησης ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ Η έννοι της συνάρτησης, ως έκφρση μις εξάρτησης νάμεσ σε δύο συγκεκριμένες ποσότητες, εμφνίζετι μ ένν υπονοούμενο τρόπο ήδη πό την

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΝΑΥΤΙΛΙΑΣ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΝΑΥΤΙΛΙΑΣ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ ΔΙΕΥΘΥΝΗ ΔΗΜΟΙΩΝ ΕΠΕΝΔΥΕΩΝ ΤΜΗΜ : ΚΤΡΤΙΗ ΕΤΗ. ΠΡΟΓΡΜ. ΔΗΜ. ΕΠΕΝΔ. ΤΜΗΜΤΡΧΗ : Δ. ΓΡΟΥΖΗ ΤΗΛ. 210-3332990 ΠΛΗΡΟΦΟΡΙΕ : ΜΡΙΚΙΤΗ ΠΠΓΕΩΡΓΙΟΥ ΤΗΛ.210-3332469 ΝΡΤΗΤΕ ΤΟ ΔΙΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΤΙ ΥΠΟΥΡΓΕΙΟ ΝΠΤΥΞΗ,

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση ΔΥΝΑΜΕΙΣ ΜΕ ΕΚΘΕΤΗ ΡΗΤΟ - ΑΡΡΗΤΟ Αν >0, μ κέριος κι ν θετικός κέριος, τότε ορίζουμε: Επιπλέον, ν μ,ν θετικοί κέριοι, ορίζουμε: 0 =0. Πρδείγμτ: 4 4,, 5 5, 4 0 =0. Γενικότερ μπορούμε ν ορίσουμε δυνάμεις

Διαβάστε περισσότερα

Κίνηση σε Μαγνητικό πεδίο

Κίνηση σε Μαγνητικό πεδίο Κίνηση σε γνητικό πεδίο 4.1. Ακτίν κι Περίοδος στο ΟΠ. Από έν σημείο Α μέσ σε ομογενές μγνητικό πεδίο έντσης Β=2Τ, εκτοξεύοντι δύο σωμτίδι Σ 1 κι Σ 2 ίδις μάζς m=10-10 kg κι ντίθετων φορτίων, με τχύτητες

Διαβάστε περισσότερα

τετραγωνικό εκατοστόµετρο 1 cm 2 1 10000 m2 =

τετραγωνικό εκατοστόµετρο 1 cm 2 1 10000 m2 = 3.5 ΜΟΝΑ ΕΣ ΜΕΤΡΗΣΗΣ ΘΕΩΡΙΑ. Μονάδες µέτρησης µήκους Βσική µονάδ το µέτρο. Συµβολίζετι m Υποδιιρέσεις του µέτρου : δεκτόµετρο dm = 0 m = 0, m Πολλπλάσιο του µέτρου : εκτοστόµετρο cm = 00 m = 0,0 m χιλιοστόµετρο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΔΙΟΙΚΗΣΗΣ. Τίτλος Διπλωματικής Εργασίας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΔΙΟΙΚΗΣΗΣ. Τίτλος Διπλωματικής Εργασίας ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΔΙΟΙΚΗΣΗΣ Τίτλος Διπλωμτικής Εργσίς «Οικονομοτεχνική ξιολόγηση της ενεργεικής νβάθμισης συμβτικών κτιρίων, με την εφρμογή

Διαβάστε περισσότερα

1) Ποια είναι η αρχική ή παράγουσα; Τι σχέση έχει µε την f. 3) Υπάρχει µια παράγουσα για κάθε συνάρτηση ή περισσότερες;

1) Ποια είναι η αρχική ή παράγουσα; Τι σχέση έχει µε την f. 3) Υπάρχει µια παράγουσα για κάθε συνάρτηση ή περισσότερες; ΛΟΓΙΣΜΟΣ ) Ποι είνι η ρχική ή πράγουσ; Τι σχέση έχει µε την f. Έστω f µι συνάρτηση ορισµένη σ έν διάστηµ. Αρχική ή πράγουσ της f στο θ ονοµάζετι κάθε συνάρτηση F που είνι πργωγίσιµη στο κι ισχύει F ()

Διαβάστε περισσότερα

Σύγχρονες επεμβατικές και μη επεμβατικές τεχνικές laser και άλλων πηγών ενέργειας για την αποκατάσταση ουλών και της φυσικής γήρανσης του δέρματος

Σύγχρονες επεμβατικές και μη επεμβατικές τεχνικές laser και άλλων πηγών ενέργειας για την αποκατάσταση ουλών και της φυσικής γήρανσης του δέρματος 224 ΟΜΙΛΙΑ ΕΛΛΗΝΙΚΗ ΔΕΡΜΑΤΟΧΕΙΡΟΥΡΓΙΚΗ Τόμος 6, (4):224-234, 2009 Ελληνική Ετιρεί Δερμτοχειρουργικής 43 η Ετήσι Συνάντηση της Ελληνικής Ετιρείς Δερμτοχειρουργικής Laser κι άλλες πηγές ενέργεις στη Δερμτολογί

Διαβάστε περισσότερα

(µετά την µελέτη του αντιστοίχου κεφαλαίου να είστε σίγουροι ότι καταλάβατε τις ακόλουθες έννοιες.)

(µετά την µελέτη του αντιστοίχου κεφαλαίου να είστε σίγουροι ότι καταλάβατε τις ακόλουθες έννοιες.) Βσικές έννοιες της Θεωρίς ιγνίων. µετά την µελέτη του ντιστοίχου κεφλίου ν είστε σίγουροι ότι κτλάβτε τις κόλουθες έννοιες.. Τ στοιχεί ου οτελούν έν ίγνιο είνι : Το σύνολο των ικτών φορέων οφάσεων...n.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Γι τις ερωτήσεις 1.1-1.4 ν γράψετε στο

Διαβάστε περισσότερα

Οι ΤΠΕ ως παιδαγωγική εμπειρία μέσα από τα βιώματα των παιδιών: Εμπειρίες και προκλήσεις για το ψηφιακό χάσμα

Οι ΤΠΕ ως παιδαγωγική εμπειρία μέσα από τα βιώματα των παιδιών: Εμπειρίες και προκλήσεις για το ψηφιακό χάσμα Οι ΤΠΕ ως πιδγωγική εμπειρί μέσ πό τ βιώμτ των πιδιών: Εμπειρίες κι προκλήσεις γι το ψηφικό χάσμ Στύρου Χριστίν Ευρωπϊκό Πνεπιστήμιο Κύπρου & Βρυωνίδης Μάριος Ευρωπϊκό Πνεπιστήμιο Κύπρου Περίληψη H προύσ

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη.

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη. ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Δυνάμεις με ρητό ή άρρητο εκέτη. Με την οήει των ορίων κι των δυνάμεων με ρητό εκέτη ορίζετι κι η δύνμη, με > 0 κι. Ισχύουν κι σε υτή την περίπτωση

Διαβάστε περισσότερα