FIZ 313 KOMPIUTERINĖ FIZIKA. Laboratorinis darbas FIZIKOS DIFERENCIALINIŲ LYGČIŲ SPRENDIMAS RUNGĖS KUTOS METODU

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "FIZ 313 KOMPIUTERINĖ FIZIKA. Laboratorinis darbas FIZIKOS DIFERENCIALINIŲ LYGČIŲ SPRENDIMAS RUNGĖS KUTOS METODU"

Transcript

1 EUROPOS SĄJUNGA Europos socialinis fondas KURKIME ATEITĮ DRAUGE! m. Bendrojo programavimo dokumento 2 prioriteto Žmogiškųjų išteklių plėtra 4 priemonė Mokymosi visą gyvenimą sąlygų plėtra Projekto sutarties numeris: ESF/2004/2.4.0-K01-160/SUT-261 Projekto pavadinimas: Inovatyvūs mokymosi metodai ir naujausios technologijos gamtos mokslų bakalaurų rengimui Darbo tikslas: FIZ 313 KOMPIUTERINĖ FIZIKA Laboratorinis darbas FIZIKOS DIFERENCIALINIŲ LYGČIŲ SPRENDIMAS RUNGĖS KUTOS METODU 1. Išmokti taikyti Oilerio bei Rungės Kuto metodus fizikos diferencialinių lygčių sprendimui. 2. Darbo užduotнs: 1. Rasti parašiutininko leidimosi greičio priklausomybę nuo laiko Oilerio ir Rungės Kuto metodais. 2. Nustatyti trumpiausią saugaus parašiutininko nusileidimo trukmę. 3. Bendroji teorija Oilerio metodas Nagrinėdami realius mus supančius reiškinius dažnai norime juos ne tik suprasti kokybiškai, bet ir išsiaiškinti kiekybinius dėsningumus gauti tam tikrų dydžių skaitines vertes. Tam neretai kokybinio modelio nepakanka dar reikia sugalvoti, kokiu būdu analitines lygtis paversti skaitinio išvedimo rezultatais. Statiniais (pusiausvyriniais) atvejais tai paprasta. Pavyzdžiui, į dujų būsenos lygtį įstatę dominančius skaičius suskaičiuojame atsakymą, ir kompiuterio šiam darbui net nereikia, nebent norėtume gauti didelę skaičių lentelę. Šiuo atveju nereikia ir programuoti, pakanka pasinaudoti kokia nors populiaria skaičiuokle.

2 Visai kitokia situacija yra su realiomis situacijomis, kai fizikiniai (mechaniniai, elektriniai ar net biologiniai) dydžiai keičiasi proceso eigoje. Tada šių dydžių priklausomybes galima atvaizduoti diferencialinių lygčių pagalba. Palyginti nedaug diferencialinių lygčių galima išspręsti analiziškai, realioms situacijoms reikia taikyti skaitinius metodus. Pats paprasčiausias metodas yra Oilerio metodas. Oilerio metodui išsiaiškinti pasinaudosime ore krentančio kūno judėjimo tyrimu. Tarkime, parašiutininkas iššoka iš lėktuvo ir 24 sekundes neišskleidžia parašiuto. Reikia rasti parašiutininko greičio priklausomybę nuo laiko. Parašiutininko skrydį apsprendžia dvi jėgos: gravitacija ir oro pasipriešinimas. Iš pradžių tarsime, kad oro pasipriešinimas yra proporcingas greičio kvadratui βv 2. Antrasis Niutono dėsnis atrodo taip: mdv /dt = mg - βv 2 (1) kur m yra parašiutininko masė, g laisvojo kritimo pagreitis, v jo greitis. Padalinę iš m gauname: dv /dt = g - kv 2, (2) kur k = β/m. Koeficientas k priklauso nuo įvairių sunkiai apibrėžiamų parametrų, pavyzdžiui, judančio kūno formos, todėl jį paprasčiau nustatyti eksperimentiškai. Po kurio laiko krintančio kūno greitis pasiekia maksimalią vertę, t.y., dv = 0. Šiuo atveju diferencialinę lygtį galima išspręsti analitiškai v g t =, (3) k () vt 2akt ( e ) ac = C+ e 2akt, (4) kur koeficientai lygūs a = v t ir C = [a + v(0) ]/ [a - v(0) ]. Sprendžiant lygtį Oilerio metodu skaitiškai remiamasi tokia idėja. Tam tikru momentu greičio pokytį v per t apsprendžia jėga (g kv 2 ). Kuo didesnis t, tuo ilgiau veikia ši jėga, tuo didesnis bus pokytis: v = (g - kv 2 ) t, (5) kur v = v(t + t) v(t). Reikia neužmiršti, kad krintančio kūno greitis v keičiasi, todėl narys kv 2 yra nepastovus. Tai reiškia, kad greičio pokytis v įvairiais laiko momentais yra skirtingas, todėl jeigu t bus didelis. Tačiau jei imsime labai mažą t, tai galima daryti prielaidą, kad greitis per tokį mažą laiką

3 pasikeičia nežymiai, todėl galima teigti, kad greičio pokytis proporcingas laiko padidėjimui t ir kūną veikiančiai jėgai, t.y., g - kv 2. t paprastai vadinamas žingsniu: h = dt. Tada skaitiniam sprendimui paruošta lygtis atrodo taip: v(t+h) = v(t) + h(g - kv 2 (t)), (6) t.y. kūno greitis laiko momentu t + h yra lygus greičiui laiko momentu t plius priedas h(g - kv 2 (t)), kurį sąlygoja kūną veikiančios jėgos. Jeigu kūnas juda laiką T, o žingsnio trukmė h, tai greitį skaičiuosime n kartų, kur T/h = n. Perrašius (6) lygtį į rekurentinę formą, gauname v i+1 = v i + h(g - kv 2 i ), (7) kur kiekvieno žingsnio i laiko momentą t galime rasti naudodami sąryšį t = h i. Oilerio metodo matematika. Kad pateiktas metodas būtų lengviau suprantamas, Oilerio metodą trumpai užrašysime matematikoje įprasta simbolika. Tarkime, kad skaitiškai tiriame funkciją y(x). Bendru atveju funkcijos prieaugis, kai x = h, lygus f(x, y), t.y., ( x + h) y( x) y h Tada funkcijos reikšmė = f ( x, y) (8) ( ) y = y + n+ 1 n hf xn, yn (9) kur y n atitinka y(x n ); x n = x = nh, o y 0 = y(0). 4-os eilės Runge-Kutto metodas Oilerio metodas (OM) tinka tada, kai ieškoma funkcija kinta lėtai. Tiriant realius fizikinius procesus dažnai tokai sąlyga neišpildoma. Įvairaus pobūdžio fizikos diferencialinių lygčių sprendimų teorija gana stipriai išvystyta, sukurti skaitinio integravimo algoritmai, todėl fizikui dažnai nereikia gilintis į matematinius subtilumus. Fortrano kalbai pritaikytose bibliotekose, tame tarpe ir MSIMSL, yra ne viena paprogramė, kurią galima lanksčiai pritaikyti konkretaus uždavinio sprendimui. Beveik visi šie algoritmai pagrįsti Runge-Kutta metodu. Nesigilindami į matematinį šio algoritmo pagrįstumą ir tikslumą, išsiaiškinsime ketvirtos eilės Runge-Kutta (RK) metodą, kurio turėtų pakakti praktiškai visiems atvejams, su kurias susiduria fizikai. Tarkime, kad DL, kurią reikia spręsti, yra dy / dx = f(x, y) (10) kai duota pradinė sąlyga y(0). Kito žingsnio funkcijos reikšmė y(x+h) surandama pagal formulę: y* = y + (k 1 + 2k 2 + 2k 3 + k 4 )/6 (11) kur koeficientai k i lygūs:

4 k 1 = hf(x, y) k 2 = hf(x+0.5h, y+0.5k 1 ) k 3 = hf(x+0.5h, y+0.5k 2 ) (12) k 4 = hf(x+h, y+k 3 ) 4. Tyrimo metodika Aprašytam Oilerio metodui išbandyti naudokite su paruoštą programa, kuri pateikiama priede. Šį programa skaitiniu būdu sprendžia parašiutininko leidimosi uždavinį analiziniu atveju, tai yra, kai oro pasipriešinimo koeficientas yra 2, ~βv 2. Šioje programoje integruotas ir analizinio sprendinio skaičiavimas, ir skaitinis įvertinimas naudojant Oilerio metodą. Oilerio metodo tikslumas priklauso nuo pasirinkto žingsnio, todėl ištirkite, kaip skaičiavimo rezultatai priklauso nuo žingsnio h vertės. Lygindami su analiziniu atsakymu, mažinkite žingsnį tol, kol tikslumas bus pakankamas. Modeliavimo metu reikia atsižvelgti į tai, kad tam tikru momentu išskleidžiamas parašiutas. Skaitiniame uždavinio sprendime tai atsispindi oro pasipriešinimo koeficiento pasikeitime; pilnai išskleidus parašiutą jis lygus maždaug k ~ 0,3. Pakeiskite programą taip, kad joje būtų galima tam tikru momentu išskleisti parašiutą. Išnagrinėkite parašiutininko kritimo greičio priklausomybę laike, kai jis iš pradžių krenta laisvai, o po to išskleidžia parašiutą. Nustatykite stacionarų laisvo kritimo greitį su parašiutu ir be parašiuto. Įvertinkite, per kokį trumpiausią laiką parašiutininkas gali saugiai nusileisti ant žemės, jei jis iššoka iš lėktuvo, skrendančiame 1000 m aukštyje. Suraskite maksimalią laisvo kritimo (be parašiuto) trukmę iki to momento, kad parašiutą išskleidus, parašiutininko greitis suspėtų sumažėti. Reali oro pasipriešinimo priklausomybė nuo greičio yra artima ~kv 1,8. Šis atvejis jau neišsprendžiamas analiziškai, tačiau parašyta programą lygiai taip pat galima naudoti ir šiam atvejui. Patikrinkite, kaip pasikeičia v(t), kai oro pasipriešinimas ~kv 1,8 ir kai ~kv 2. Gautas priklausomybes nubraižykite. Programos su parašiutininko antroji versija padaryta naudojant 4-os eilės Runge-Kutta metodą. Išsiaiškinkite ją ir palyginkite, rezultatų tikslumą esant tam pačiam žingsniui h Oilerio metodu ir RK metodu. 5. Tyrimo eiga 1. Laboratorinis darbas atliekamas kompiuterių klasėje. 2. Ištirkite parašiutininko nusileidimo greičio priklausomybę nuo laiko naudodami Oilerio metodą. Nubraižykite analizinio sprendinio kreivę bei Oilerio metodo kreives, gautas esant skirtingiems žingsniams. Paaiškinkite rezultatų netikslumų priežastis. 3. Papildykite programą taip, kad ji skaičiuotų parašiutininko greičio priklausomybę išskleidus parašiutą. Ištirkite parašiutininko kritimo greičio priklausomybę laike, kai jis iš pradžių krenta

5 laisvai, o po to išskleidžia parašiutą. Nustatykite stacionarų laisvo kritimo greitį su parašiutu ir be parašiuto. Pavaizduokite gautas priklausomybes grafiškai bei trumpai paaiškinkite gautus rezultatus. 4. Papildykite programą taip, kad ji skaičiuotų parašiutininko aukštį virš žemės paviršiaus. 5. Įvertinkite, per kokį trumpiausią laiką parašiutininkas gali saugiai nusileisti ant žemės, jei jis iššoka iš lėktuvo, skrendančiame 1000 m aukštyje. Suraskite maksimalią laisvo kritimo (be parašiuto) trukmę iki to momento, kad parašiutą išskleidus, parašiutininko greitis suspėtų sumažėti. 6. Nubraižykite parašiutininko aukščio virš žemės paviršiaus ir greičio priklausomybes nuo laiko ir paaiškinkite gautus rezultatus. 7. Papildykite programą taip, kad ji spręstų 5 užduotį Rungės kuto metodu ir leistų palyginti Oilerio ir Rungės Kuto metodo tikslumą. Nubraižykite parašiutininko, iššokusio iš lėktuvo parašiuto, greičio priklausomybes nuo laiko abiem metodais, esant skirtingam žingsniui. 8. Atliktą darbą pateikti parašytą tekstiniu redaktoriumi. Atsiskaitymo dokumente turi būti užduoties sąlyga bei atsakymai į 2, 3, 5, 6, 7 tyrimo eigos klausimus. Visi rezultatai turi turėti aiškiai apibrėžtą išvadą bei trumpą paaiškinimą. 6. Kontroliniai kiausimai 1. Parašiutininko kritimo užduoties formulavimas, analizinio ir skaitinio sprendimo metodai. 2. Oilerio ir Rungės Kuto metodai diferencialinių lygčių sprendimui. 3. Fizikinių procesų, aprašomų pirmos eilės diferencialinėmis lygtimis su pastoviais koeficientais, pavyzdžiai. 4. Mokėti atsakyti į visus klausimus, susijusius su naudotos programos programavimo technika. 7. Literatūra 1. A. Kanapickas. Paskaitų konspektas. 4 skyrius: vidinės funkcijos. 2. Tamašauskas A., Vosylius J. Fizika, T Vilnius: Mokslas, p. 3. Fortran for scientists and engineers. Chapter 16.1: introduction to numerical methods equations.

6 Priedas Nr. 1. Užduoties sprendimo pavyzdys Oilerio metodu. PROGRAM Para IMPLICIT NONE REAL, PARAMETER :: g = 9.8 REAL K! Pasipriesinimo koeficientas REAL H! zingsnis dt REAL T! laikas REAL T0! Pradinis laikas REAL Tend! Galutinis laikas REAL V! greitis REAL V0! pradinis greitis! REAL X! INTEGER I, N 10 FORMAT( 1x, A ) WRITE( *, 10, ADVANCE = 'NO' ) 'Iveskite pasipriesinimo koeficienta' WRITE( *, 10, ADVANCE = 'NO' ) '(~ zmogui, 0.3 parasiutui): ' READ*, K WRITE( *, 10, ADVANCE = 'NO' ) 'zingsni ( <= 1): ' READ*, H WRITE( *, 10, ADVANCE = 'NO' ) 'Pradini laika (~0): ' READ*, T0 WRITE( *, 10, ADVANCE = 'NO' ) 'Pradini greiti: ' READ*, V0 WRITE( *, 10, ADVANCE = 'NO' ) 'Galutini laika: ' READ*, Tend N = INT((Tend - T0) / H) + 1 T = T0 V = V0 PRINT "(3A10)", "Time", "Euler", "Exact" DO I = 1, N PRINT "(3F10.2)", T, V, Vexact(T, V0, G, K) V = V + H * (g - K * V * V) T = T + H END DO CONTAINS FUNCTION Vexact(T, V0, G, K) REAL Vexact REAL, INTENT(IN) :: g, K, T, V0 REAL A, C A = SQRT( g / K ) C = (A + V0) / (A - V0) Vexact = A * (C - EXP(-2*A*K*T))/(C + EXP(-2*A*K*T)) END FUNCTION Vexact END PROGRAM Para

7 Priedas Nr. 2. Paprogramės greičio skaičiavimui analziniu, Oilerio ir Rungės Kuto metodais FUNCTION Vexact(T, V0, G, K) REAL Vexact REAL, INTENT(IN) :: g, K, T, V0 REAL A, C A = SQRT( g / K ) C = (A + V0) / (A - V0) Vexact = A * (C - EXP(-2*A*K*T))/(C + EXP(-2*A*K*T)) END FUNCTION Vexact FUNCTION dcrunge(conc, K, dt) REAL Vrunge REAL, INTENT(IN) :: g, K, V, dt REAL k1, k2, k3, k4! k1 = h * f(x, y)! k2 = h * f(x + 0.5*h, y + 0.5*k1)! k3 = h * f(x + 0.5*h, y + 0.5*k2)! k4 = h * f(x + h, y + k3) k1 = dt * (g - K * V * V) k2 = dt * (g - K * (V * k1) * (V * k1)) k3 = dt * (g - K * (V * k2) * (V * k2)) k4 = dt * (g - K * (V + k3) * (V + k3)) Vrunge = V + (k1 + 2 * k2 + 2 * k3 + k4)/6 END FUNCTION Vrunge

Elektronų ir skylučių statistika puslaidininkiuose

Elektronų ir skylučių statistika puslaidininkiuose lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt

Διαβάστε περισσότερα

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lygčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga VII DAUGELIO KINTAMU JU FUNKCIJOS 71 Bendrosios sa vokos Iki šiol mes nagrinėjome funkcijas, apibrėžtas realiu skaičiu aibėje Nagrinėsime funkcijas, kurios apibrėžtos vektorinėse erdvėse Tarkime, kad R

Διαβάστε περισσότερα

EUROPOS CENTRINIS BANKAS

EUROPOS CENTRINIS BANKAS 2005 12 13 C 316/25 EUROPOS CENTRINIS BANKAS EUROPOS CENTRINIO BANKO NUOMONĖ 2005 m. gruodžio 1 d. dėl pasiūlymo dėl Tarybos reglamento, iš dalies keičiančio Reglamentą (EB) Nr. 974/98 dėl euro įvedimo

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lgčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

διακριτοποίηση αριθµητική παραγώγιση

διακριτοποίηση αριθµητική παραγώγιση Ανέκαθεν οι άνθρωποι αντιµετώπιζαν προβλήµατα υπολογισµού µη κανονικών ποσοτήτων όπως είναι για παράδειγµα το εµβαδόν ενός χωραφιού µε ακανόνιστο περίγραµµα, ή ο όγκος µιας δεξαµενής κωνικού σχήµατος κλπ.

Διαβάστε περισσότερα

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka WMB 71032 PTM Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató utomatická pračka Používateľská príručka Dokumentu Nr 2820522945_LT / 06-07-12.(16:34) 1 Svarbūs

Διαβάστε περισσότερα

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam,

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam, 41 Funkcijos riba IV FUNKCIJOS RIBA Taško x X aplinka vadiname bet koki atvira intervala, kuriam priklauso taškas x Taško x 0, 2t ilgio aplinka žymėsime tokiu būdu: V t (x 0 ) = ([x 0 t, x 0 + t) Sakykime,

Διαβάστε περισσότερα

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Fizika doc. dr. Vytautas Stankus Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Studentų 50 58 kab. Darbo tel.: 861033946 Vytautas.Stankus@ktu.lt Bendrosios fizikos

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo

Διαβάστε περισσότερα

, t.y. per 41 valandą ir 40 minučių. (3 taškai) v Braižome h = f(t) priklausomybės grafiką.

, t.y. per 41 valandą ir 40 minučių. (3 taškai) v Braižome h = f(t) priklausomybės grafiką. 5 m. Lietuvos 7-ojo fizikos čempionato UŽDUOČIŲ SPENDIMI 5 m. gruodžio 5 d. (Kiekvienas uždavinys vertinamas taškų, visa galimų taškų suma ). L 5 m ilgio ir s m pločio baseino dugno profilis pavaizduotas

Διαβάστε περισσότερα

04 Elektromagnetinės bangos

04 Elektromagnetinės bangos 04 Elektromagnetinės bangos 1 0.1. BANGINĖ ŠVIESOS PRIGIMTIS 3 Šiame skyriuje išvesime banginę lygtį iš elektromagnetinio lauko Maksvelo lygčių. Šviesa yra elektromagnetinė banga, kurios dažnis yra optiniame

Διαβάστε περισσότερα

Matematinės analizės konspektai

Matematinės analizės konspektai Matematinės analizės konspektai (be įrodymų) Marius Gedminas pagal V. Mackevičiaus paskaitas 998 m. rudens semestras (I kursas) Realieji skaičiai Apibrėžimas. Uždarųjų intervalų seka [a n, b n ], n =,

Διαβάστε περισσότερα

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] )

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] ) ATSITIKTINIAI PROCESAI (paskaitų konspektas 2014[1] ) Alfredas Račkauskas Vilniaus universitetas Matematikos ir Informatikos fakultetas Ekonometrinės analizės katedra Vilnius, 2014 Iš dalies rėmė Projektas

Διαβάστε περισσότερα

ηµιουργία νέου τύπου δεδοµένων από το χρήστη

ηµιουργία νέου τύπου δεδοµένων από το χρήστη ηµιουργία νέου τύπου δεδοµένων από το χρήστη program create_a_type type chemical_element character (len=2) integer end type type (chemical_element) type (chemical_element) :: argon,carbon,neon :: Periodic_Table(109)

Διαβάστε περισσότερα

Palmira Pečiuliauskienė. Fizika. Vadovėlis XI XII klasei. Elektra ir magnetizmas KAUNAS

Palmira Pečiuliauskienė. Fizika. Vadovėlis XI XII klasei. Elektra ir magnetizmas KAUNAS Palmira Pečiuliauskienė Fizika Vadovėlis XI XII klasei lektra ir magnetizmas KAUNAS UDK 53(075.3) Pe3 Turinys Leidinio vadovas RGIMANTAS BALTRUŠAITIS Recenzavo mokytoja ekspertė ALVIDA LOZDINĖ, mokytojas

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 014 m. birželio 5 d. matematikos valstybinį

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 9. Δυναμικά Δεδομένα Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of

Διαβάστε περισσότερα

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Techninis aprašymas Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Aprašymas Šie vožtuvai skirti naudoti su AMV(E) 335, AMV(E) 435 arba

Διαβάστε περισσότερα

Matavimo vienetų perskaičiavimo lentelės

Matavimo vienetų perskaičiavimo lentelės Matavimo vienetų perskaičiavimo lentelės Matavimo vieneto pavadinimas Santrumpa Daugiklis Santrumpa ILGIO MATAVIMO VIENETAI Perskaičiuojamo matavimo Pavyzdžiui:centimetras x 0.3937 = colis centimetras

Διαβάστε περισσότερα

KLASIKIN E MECHANIKA

KLASIKIN E MECHANIKA KLASIKIN E MECHANIKA Algirdas MATULIS Puslaidininkiu zikos institutas Vadoveliu serijos papildymas auk²tuju mokyklu tiksliuju mokslu specialybiu studentams Email: amatulis@takas.lt Mob.: +370 654 543 06

Διαβάστε περισσότερα

Termochemija. Darbas ir šiluma.

Termochemija. Darbas ir šiluma. Termochemija. Darbas ir šiluma. Energija gyvojoje gamtoje. saulės šviesa CO 2 H 2 O O 2 gliukozė C 6 H 12 O 6 saulės šviesa Pavyzdys: Fotosintezė chloroplastas saulės 6CO 2 + 6H 2 O + šviesa C 6 H 12 O

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0.008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Άσκηση Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

BIOMECHANIKOS PRAKTIKUMAS

BIOMECHANIKOS PRAKTIKUMAS Julius Griškevičius Kristina Daunoravičienė BIOMECHANIKOS PRAKTIKUMAS 1 DALIS Projekto kodas VP1-2.2-ŠMM 07-K-01-023 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant

Διαβάστε περισσότερα

Automobilių degalų sąnaudų nustatymo ir normavimo metodikos

Automobilių degalų sąnaudų nustatymo ir normavimo metodikos VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS Valentinas Mickūnaitis, Alvydas Pikūnas Automobilių degalų sąnaudų nustatymo ir normavimo metodikos Metodikos nurodymai Vilnius 2005 V. Mickūnaitis, A. Pikūnas.

Διαβάστε περισσότερα

NEKILNOJAMOJO TURTO VERTINIMAS

NEKILNOJAMOJO TURTO VERTINIMAS LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Žemėtvarkos katedra Audrius ALEKNAVIČIUS NEKILNOJAMOJO TURTO VERTINIMAS Metodiniai patarimai Akademija, 2007 UDK 332.6(076) Spausdino UAB Judex, Europos pr. 122, LT-46351

Διαβάστε περισσότερα

MATAVIMO PRIEMONIŲ METROLOGINö PRIEŽIŪRA

MATAVIMO PRIEMONIŲ METROLOGINö PRIEŽIŪRA MATAVIMO PRIEMONIŲ METROLOGINö PRIEŽIŪRA Matavimo priemonių metrologin priežiūra (teisin metrologija) Pagrindin s metrologin s priežiūros (pagal metrologijos įstatymą) rūšys: tipo patvirtinimas pirmin

Διαβάστε περισσότερα

TEORINĖ ELEKTROTECHNIKA

TEORINĖ ELEKTROTECHNIKA Zita SAVICKIENĖ TEORINĖ ELEKTROTECHNIKA Prjekt kdas VP1-2.2-ŠMM-07-K-01-047 VGTU Elektrniks fakultet I pakps studijų prgramų esminis atnaujinimas Vilnius Technika 2012 VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS

Διαβάστε περισσότερα

Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC standartą

Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC standartą Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC 60364-6 standartą TURINYS 1. Įžanga 2. Standartai 3. Iki 1000V įtampos skirstomojo tinklo sistemos 4. Kada turi būti atliekami bandymai?

Διαβάστε περισσότερα

MATEMATIKOS BRANDOS EGZAMINO PROGRAMA I. BENDROSIOS NUOSTATOS

MATEMATIKOS BRANDOS EGZAMINO PROGRAMA I. BENDROSIOS NUOSTATOS PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 0 m. liepos d. įsakymu Nr. V-97 (Lietuvos Respublikos švietimo ir mokslo ministro 04 m. gruodžio 9 d. įsakymo Nr. V- 7 redakcija) MATEMATIKOS

Διαβάστε περισσότερα

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA tema. APSKRITIMŲ GEOMETRIJA (00 0) Teorinę medžiagą parengė bei antrąją užduotį sudarė Vilniaus pedagoginio universiteto docentas Edmundas Mazėtis. Apskritimas tai

Διαβάστε περισσότερα

Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje. V.Gineityt

Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje. V.Gineityt Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje V.Gineityt Gamtos moksluose teorijoms keliami du pagrindiniai uždaviniai: paaiškinti stebimų objektų savybes

Διαβάστε περισσότερα

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN: Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 6. Πίνακες Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative

Διαβάστε περισσότερα

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx. Numerical Metods for Civil Engineers Lecture Ordinar Differential Equations -Basic Ideas -Euler s Metod -Higer Order One-step Metods -Predictor-Corrector Approac -Runge-Kutta Metods -Adaptive Stepsize

Διαβάστε περισσότερα

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui) ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε

Διαβάστε περισσότερα

Δομή προγράμματος στη Fortran

Δομή προγράμματος στη Fortran Δομή προγράμματος στη Fortran Ένα πρόγραμμα γραμμένο σε Fortran αποτελείται από: Την επικεφαλίδα του προγράμματος. Το τμήμα των δηλώσεων. Το τμήμα των προτάσεων (εντολών). Το τμήμα των υποπρογραμμάτων.

Διαβάστε περισσότερα

4.1 Αριθμητική Ολοκλήρωση Εξισώσεων Νεύτωνα

4.1 Αριθμητική Ολοκλήρωση Εξισώσεων Νεύτωνα ΚΕΦΑΛΑΙΟ 4 Κίνηση Σωματιδίου Στο κεφάλαιο αυτό μελετάται αριθμητικά η επίλυση των κλασικών εξισώσεων κίνησης μονοδιάστατων μηχανικών συστημάτων, όπως λ.χ. αυτή του σημειακού σωματιδίου σε μια ευθεία, του

Διαβάστε περισσότερα

Δομή προγράμματος στη Fortran

Δομή προγράμματος στη Fortran Δομή προγράμματος στη Fortran Ένα πρόγραμμα γραμμένο σε Fortran αποτελείται από: Την επικεφαλίδα του προγράμματος. Το τμήμα των δηλώσεων. Το τμήμα των προτάσεων (εντολών). Το τμήμα των υποπρογραμμάτων.

Διαβάστε περισσότερα

= γ. v = 2Fe(k) O(g) k[h. Cheminė kinetika ir pusiausvyra. Reakcijos greičio priklausomybė nuo temperatūros. t2 t

= γ. v = 2Fe(k) O(g) k[h. Cheminė kinetika ir pusiausvyra. Reakcijos greičio priklausomybė nuo temperatūros. t2 t Cheminė kineika ir pusiausyra Nagrinėja cheminių reakcijų greiį ir mechanizmą. Cheminių reakcijų meu kina reaguojančių iagų koncenracijos: c ų koncenracija, mol/l laikas, s c = Reakcijos greičio io ()

Διαβάστε περισσότερα

I PRIEDAS m. gruodžio 8 d. 1

I PRIEDAS m. gruodžio 8 d. 1 I PRIEDAS VAISTŲ PAVADINIMŲ, VAISTŲ FORMŲ, STIPRUMO, NAUDOJIMO BŪDŲ, PASKIRTIES GYVŪNŲ RŪŠIŲ IR REGISTRUOTOJŲ ATITINKAMOSE VALSTYBĖSE NARĖSE, ISLANDIJOJE IR NORVEGIJOJE, SĄRAŠAS 2004 m. gruodžio 8 d. 1

Διαβάστε περισσότερα

FIZIKOS PASIRENKAMŲJŲ MODULIŲ PROGRAMŲ (III IV GIMNAZIJOS) KLASĖMS ĮGYVENDINIMO MOKYKLOSE METODINES REKOMENDACIJOS SU PAVYZDŽIAIS

FIZIKOS PASIRENKAMŲJŲ MODULIŲ PROGRAMŲ (III IV GIMNAZIJOS) KLASĖMS ĮGYVENDINIMO MOKYKLOSE METODINES REKOMENDACIJOS SU PAVYZDŽIAIS P R O J E K T A S VP1-2.2-ŠMM-04-V-01-001 MOKYMOSI KRYPTIES PASIRINKIMO GALIMYBIŲ DIDINIMAS 14-19 METŲ MOKINIAMS, II ETAPAS: GILESNIS MOKYMOSI DIFERENCIJAVIMAS IR INDI- VIDUALIZAVIMAS, SIEKIANT UGDYMO

Διαβάστε περισσότερα

Οδηγίες Χρήσης naudojimo instrukcija Упутство за употребу navodila za uporabo

Οδηγίες Χρήσης naudojimo instrukcija Упутство за употребу navodila za uporabo Οδηγίες Χρήσης naudojimo instrukcija Упутство за употребу navodila za uporabo Πλυντήριο πιάτων Indaplovė Машинa за прање посуђа Pomivalni stroj ESL 46010 2 electrolux Περιεχόμενα Electrolux. Thinking of

Διαβάστε περισσότερα

Žinios ir supratimas. Apibrėţkite santykinę dielektrinę skvarbą.

Žinios ir supratimas. Apibrėţkite santykinę dielektrinę skvarbą. Žinios ir supratimas Nr. Mokiniai parodo žinias ir supratimą 1. Nurodydami ir apibrėţdami pagrindinius fizikos faktus, dėsnius, sąvokas, fizikinius dydţius, procesus Pavyzdžiai Kokiu reiškiniu paaiškinamas

Διαβάστε περισσότερα

Vandens kokybės rekomendacijos variu lituotiems plokšteliniams šilumokaičiams

Vandens kokybės rekomendacijos variu lituotiems plokšteliniams šilumokaičiams Suvestinė Vandens kokybės rekomendacijos variu lituotiems plokšteliniams šilumokaičiams Danfoss centralizuoto šildymo padalinys parengė šias rekomendacijas, vadovaujantis p. Marie Louise Petersen, Danfoss

Διαβάστε περισσότερα

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip:

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip: III MATRICOS DETERMINANTAI Realiu ju skaičiu lentele 3 Matricos a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn vadinsime m n eilės matrica Trumpai šia lentele žymėsime taip: A = a ij ; i =,, m, j =,, n čia

Διαβάστε περισσότερα

Montavimo ir naudojimo vadovas Išmanusis radiatorių termostatas eco

Montavimo ir naudojimo vadovas Išmanusis radiatorių termostatas eco Montavimo ir naudojimo vadovas Montavimo vadovas Montavimo vadovas 1. Montavimas 1.1 Atpažinkite eco termostatą...4 1.2 Pakuotėje...4 1.3 Ventilių adapterių apžvalga...5 1.4 Tinkamo adapterio montavimas...6

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1

Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1 Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 7/3/5 Σκοπός αυτού του εργαστηρίου είναι να δούμε πως μπορούμε να επιλύσουμε συστήματα διαφορικών εξισώσεων, με την χρήση του Matlab. Συστήματα

Διαβάστε περισσότερα

Ląstelės biologija. Laboratorinis darbas. Mikroskopavimas

Ląstelės biologija. Laboratorinis darbas. Mikroskopavimas Ląstelės biologija Laboratorinis darbas Mikroskopavimas Visi gyvieji organizmai sudaryti iš ląstelių. Ląstelės yra organų, o kartu ir viso organizmo pagrindinis struktūrinis bei funkcinis vienetas. Dauguma

Διαβάστε περισσότερα

MATEMATIKA. VIDURINIO UGDYMO BENDROSIOS PROGRAMOS 3 priedas

MATEMATIKA. VIDURINIO UGDYMO BENDROSIOS PROGRAMOS 3 priedas VIDURINIO UGDYMO BENDROSIOS PROGRAMOS 3 priedas Vi du ri nio ug dy mo ben drų jų pro gra mų 3 prie das Matematika Redakcinė grupė: Alvyda Ambraškienė, Regina Rudalevičienė, Marytė Skakauskienė, dr. Eugenijus

Διαβάστε περισσότερα

Άσκηση 1. Δίδεται η διαφορική εξίσωση dy. Λύση. Έχουμε dy

Άσκηση 1. Δίδεται η διαφορική εξίσωση dy. Λύση. Έχουμε dy Άσκηση ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Δίδεται η διαφορική εξίσωση dy x =

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 8. Διαδικασίες Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative

Διαβάστε περισσότερα

PIRMO VAISIŲ VARTOJIMO SKATINIMO LIETUVOS MOKYKLOSE PROGRAMOS ĮGYVENDINIMO IR VEIKSMINGUMO VERTINIMO, APIMANČIO 2010 M. RUGPJŪČIO 1D.

PIRMO VAISIŲ VARTOJIMO SKATINIMO LIETUVOS MOKYKLOSE PROGRAMOS ĮGYVENDINIMO IR VEIKSMINGUMO VERTINIMO, APIMANČIO 2010 M. RUGPJŪČIO 1D. PIRMO VAISIŲ VARTOJIMO SKATINIMO LIETUVOS MOKYKLOSE PROGRAMOS ĮGYVENDINIMO IR VEIKSMINGUMO VERTINIMO, APIMANČIO 2010 M. RUGPJŪČIO 1D. 2011 M. LIEPOS 31 D. LAIKOTARPĮ, ATASKAITOS SANTRAUKA Vadovaujantis

Διαβάστε περισσότερα

MIKROSCHEMŲ TECHNOLOGIJŲ ANALIZĖ

MIKROSCHEMŲ TECHNOLOGIJŲ ANALIZĖ Romualdas NAVICKAS Vaidotas BARZDĖNAS MIKROSCHEMŲ TECHNOLOGIJŲ ANALIZĖ Projekto kodas VP1-2.2-ŠMM-07-K-01-047 VGTU Elektronikos fakulteto I pakopos studijų programų esminis atnaujinimas Vilnius Technika

Διαβάστε περισσότερα

TRUMAN. Vartotojo vadovas

TRUMAN. Vartotojo vadovas TRUMAN Vartotojo vadovas Jūsų PRESIDENT TRUMAN ASC iš pirmo žvilgsnio DĖMESIO! Prieš pradedant naudotis stotele, pirmiausia būtina prie jos prijungti anteną (jungtis, esanti prietaiso galinėje dalyje)

Διαβάστε περισσότερα

TEDDY Vartotojo vadovas

TEDDY Vartotojo vadovas TEDDY Vartotojo vadovas Jūsų PRESIDENT TEDDY ASC iš pirmo žvilgsnio DĖMESIO! Prieš pradedant naudotis stotele, pirmiausia būtina prie jos prijungti anteną (jungtis, esanti prietaiso galinėje dalyje) ir

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 5 (λύσεις)

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 5 (λύσεις) Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 5 λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : Να υπολογιστούν τα όρια 4 + n n ) n ) n n + n + ) n + 5) n 7 n+ + ) n Θεωρούµε την ακολουθία a n ), που ορίζεται

Διαβάστε περισσότερα

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων 1 Επίλυση Συνήθων ιαφορικών Εξισώσεων Εξίσωση πρώτης τάξης µε συνθήκες αρχικών τιµών ΠΡΟΒΛΗΜΑ : Να ευρεθεί συνάρτηση y = y(x) η οποία για x [a, b] ικανοποιεί την εξίσωση y = f(x, y) υπό την αρχική συνθήκη

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.

Διαβάστε περισσότερα

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 M7 Δομές δεδομένων: Πίνακες - Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ

Διαβάστε περισσότερα

Fortran και Αντικειμενοστραφής προγραμματισμός.

Fortran και Αντικειμενοστραφής προγραμματισμός. Fortran και Αντικειμενοστραφής προγραμματισμός www.corelab.ntua.gr/courses/fortran_naval/naval Διδάσκοντες: Άρης Παγουρτζής (pagour@cs.ntua.gr) (Επίκουρος Καθηγητής ΣΗΜΜΥ ) Δώρα Σούλιου (dsouliou@mail.ntua.gr)

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS STATISTINĖ ANALIZĖ

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS STATISTINĖ ANALIZĖ LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS 2010 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 2010 m. birželio 8 d. valstybinį matematikos

Διαβάστε περισσότερα

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA JONAS DUMČIUS (1905 1986) TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA 1975 metais rotaprintu spausdintą vadovėlį surinko klasikinės filologijos III kurso studentai Lina Girdvainytė Aistė Šuliokaitė Kristina

Διαβάστε περισσότερα

Fortran και Αντικειµενοστραφής προγραµµατισµός.

Fortran και Αντικειµενοστραφής προγραµµατισµός. Fortran και Αντικειµενοστραφής προγραµµατισµός www.corelab.ntua.gr/courses/fortran_naval/naval δάσκοντες: ΆρηςΠαγουρτζής (pagour@cs.ntua.gr) (Επίκουρος Καθηγητής ΣΗΜΜΥ ) ώρασούλιου (dsouliou@mail.ntua.gr)

Διαβάστε περισσότερα

MONOLITINIO GELŽBETONIO BALKONO PLOKŠČIŲ ARMAVIMAS ELEMENTAIS SU IZOLIUOJANČIU INTARPU

MONOLITINIO GELŽBETONIO BALKONO PLOKŠČIŲ ARMAVIMAS ELEMENTAIS SU IZOLIUOJANČIU INTARPU VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS HALFEN-DEHA Bronius Jonaitis, Arnoldas Šneideris MONOLITINIO GELŽBETONIO BALKONO PLOKŠČIŲ ARMAVIMAS ELEMENTAIS SU IZOLIUOJANČIU INTARPU Mokomoji knyga Vilnius

Διαβάστε περισσότερα

FORTRAN και Αντικειμενοστραφής Προγραμματισμός

FORTRAN και Αντικειμενοστραφής Προγραμματισμός FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών

Διαβάστε περισσότερα

Μορφοποίηση της εξόδου

Μορφοποίηση της εξόδου Μορφοποίηση της εξόδου (i) Όταν θέλουμε τα αποτελέσματα μιάς εντολής WRITE(*, *) να εμφανίζονται με συγκεκριμένο τρόπο τροποποιούμε τον δεύτερο αστερίσκο. 2 τρόποι μορφοποίησης WRITE(*, '(format εξόδου)')

Διαβάστε περισσότερα

Οι παρακάτω ασκήσεις είναι από το βιβλίο των S. C. Chapra και R. P. Canale με τίτλο Numerical Methods for Engineers, 6 th edition.

Οι παρακάτω ασκήσεις είναι από το βιβλίο των S. C. Chapra και R. P. Canale με τίτλο Numerical Methods for Engineers, 6 th edition. ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 04-05, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΣ ΕΞΙΣΩΣΕΙΣ: Α) ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Β) ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος:

Διαβάστε περισσότερα

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 04 m. birželio 6 d. Nr. (.)-V-69birželio 4 04 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA I dalis Kiekvieno I dalies klausimo

Διαβάστε περισσότερα

VILNIAUS UNIVERSITETO KAUNO HUMANITARINIO FAKULTETO FINANSŲ IR APSKAITOS KATEDRA STASYS GIRDZIJAUSKAS, BORISAS JEFIMOVAS

VILNIAUS UNIVERSITETO KAUNO HUMANITARINIO FAKULTETO FINANSŲ IR APSKAITOS KATEDRA STASYS GIRDZIJAUSKAS, BORISAS JEFIMOVAS VILNIAUS UNIVERSITETO KAUNO HUMANITARINIO FAKULTETO FINANSŲ IR APSKAITOS KATEDRA STASYS GIRDZIJAUSKAS, BORISAS JEFIMOVAS ĮMONĖS VEIKLOS EKONOMINĖ ANALIZĖ Metodinė priemonė Kaunas 2006 1 Girdzijauskas Stasys,

Διαβάστε περισσότερα

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 Μ4. Συναρτήσεις, Υπορουτίνες, Ενότητες - Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr

Διαβάστε περισσότερα

Laißkas moteriai alkoholikei

Laißkas moteriai alkoholikei Laißkas moteriai alkoholikei Margaret Lee Runbeck / Autori teis s priklauso The Hearst Corporation Jeigu aß b çiau tavo kaimyn ir matyçiau, kaip tu narsiai ir beviltißkai kovoji su savo negalia, ir kreipçiausi

Διαβάστε περισσότερα

(derived data types) ...

(derived data types) ... typeόνοµα_τύπου δήλωση... δήλωση κ end type όνοµα_τύπου ηµιουργία νέου τύπου εδοµένων (derived data types) Όπου δήλωση i (i=,,k) είναι κάποιος γνωστός τύπος δεδοµένων (π.χ. integer :: a). Tο όνοµα του

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0. ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Άσκηση Έστω ένα κύμα που κινείται εντός αγωγού με ταχύτητα c 0 m/s. Η κατανομή

Διαβάστε περισσότερα

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika (II dalis) (Paskaitų konspektas) 2009 m. kovo d. Prof.

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika (II dalis) (Paskaitų konspektas) 2009 m. kovo d. Prof. Papldoo ugdyo okykla Fzkos olpas Mechanka Dnaka (II dals) (Paskatų konspektas) 9 kovo 1-18 d Prof Edundas Kuokšts Planas Ketojo kūno asės centras Statka Pagrndnė sukaojo judėjo lygts Judeso keko (pulso)

Διαβάστε περισσότερα

EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ LT INDAPLOVĖ SK UMÝVAČKA ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 2 NAUDOJIMO INSTRUKCIJA 22 NÁVOD NA POUŽÍVANIE 40

EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ LT INDAPLOVĖ SK UMÝVAČKA ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 2 NAUDOJIMO INSTRUKCIJA 22 NÁVOD NA POUŽÍVANIE 40 ESI4500LOX EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ LT INDAPLOVĖ SK UMÝVAČKA ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 2 NAUDOJIMO INSTRUKCIJA 22 NÁVOD NA POUŽÍVANIE 40 2 ΠΕΡΙΕΧΌΜΕΝΑ 1. ΠΛΗΡΟΦΟΡΊΕΣ ΓΙΑ ΤΗΝ ΑΣΦΆΛΕΙΑ... 3 2. ΟΔΗΓΊΕΣ ΓΙΑ ΤΗΝ ΑΣΦΆΛΕΙΑ...

Διαβάστε περισσότερα

Disbopox 442 GaragenSiegel

Disbopox 442 GaragenSiegel Sustiprinta anglies (karbono) pluoštu, vandeninė, 2-jų komponentų epoksidinės dervos danga garažų, sandėlių, rūsių grindims. Produkto aprašymas Paskirtis Savybės Mineralinės grindų ir kietojo asfalto išlyginamosios

Διαβάστε περισσότερα

MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO PROGRAMA NEPRIGIRDINČIŲJŲ IR KURČIŲJŲ MOKYKLOMS

MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO PROGRAMA NEPRIGIRDINČIŲJŲ IR KURČIŲJŲ MOKYKLOMS PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 004 m. gegužės 7 d. įsakymu Nr. ISAK-75 MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO PROGRAMA NEPRIGIRDINČIŲJŲ IR KURČIŲJŲ MOKYKLOMS

Διαβάστε περισσότερα

PROKALCITONINO TYRIMO REIKŠMĖ DIAGNOZUOJANT SEPSĮ. Dr. Judita Andrejaitienė Kauno medicinos universitetas Kardiochirurgijos klinika

PROKALCITONINO TYRIMO REIKŠMĖ DIAGNOZUOJANT SEPSĮ. Dr. Judita Andrejaitienė Kauno medicinos universitetas Kardiochirurgijos klinika PROKALCITONINO TYRIMO REIKŠMĖ DIAGNOZUOJANT SEPSĮ Dr. Judita Andrejaitienė Kauno medicinos universitetas Kardiochirurgijos klinika Sepsio apibrėžimas ACCP/SCCM Consensus Conference 1992 Sisteminio uždegiminio

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Είσοδος -Έξοδος. Άνοιγµα αρχείου:

Είσοδος -Έξοδος. Άνοιγµα αρχείου: Είσοδος -Έξοδος Άνοιγµα αρχείου: open (unit = αριθµός, file = "όνοµα_αρχείου") Αριθµός: θετικός ακέραιος (εκτός του 6) µε τον οποίο αναφερόµαστε στο αρχείο Όνοµα αρχείου: το όνοµα του αρχείου (καλύτερα

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Πρέπει να απαντήσετε σε όλα τα προβλήµατα

Διαβάστε περισσότερα

Investicijų grąža. Parengė Investuok Lietuvoje analitikai

Investicijų grąža. Parengė Investuok Lietuvoje analitikai Investicijų grąža Parengė Investuok Lietuvoje analitikai Turinys Lietuva pateisina investuotojų lūkesčius... 3 Nuosavo kapitalo grąža... 4 Kokią grąžą generuoja Lietuvos įmonės?... 4 Kokią grąžą generuoja

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ & ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΥΨΗΛΗΣ ΤΑΞΗΣ ODE ΜΕ ΥΨΗΛΗΣ ΤΑΞΗΣ

Διαβάστε περισσότερα

Πίνακες. (i) FORTRAN και Αντικειµενοστραφής Προγραµµατισµός

Πίνακες. (i) FORTRAN και Αντικειµενοστραφής Προγραµµατισµός Πίνακες (i) οµηµένη µεταβλητή: αποθηκεύει µια συλλογή από τιµές δεδοµένων Πίνακας (array): δοµηµένη µεταβλητή που αποθηκεύει πολλές τιµές του ίδιου τύπου INTEGER:: pinakas(100)ή INTEGER, DIMENSION(100)::pinakas

Διαβάστε περισσότερα

TEMA: Kūnai skysčiuose (dujose) Natkiškių Zosės Petraitienės pagrindinė mokykla. Austėja Armonaitė 8 klasė Mokytoja: Rasa Armonienė 2014 m.

TEMA: Kūnai skysčiuose (dujose) Natkiškių Zosės Petraitienės pagrindinė mokykla. Austėja Armonaitė 8 klasė Mokytoja: Rasa Armonienė 2014 m. TEMA: Kūnai skysčiuose (dujose) Natkiškių Zosės Petraitienės pagrindinė mokykla Austėja Armonaitė 8 klasė Mokytoja: Rasa Armonienė 2014 m. Turinys: Archimedo jėga Archimedo dėsnis Kūnų plūduriavimas Vandens

Διαβάστε περισσότερα

Εισαγωγή στη Fortran. Μάθημα 1 ο. Ελευθερία Λιούκα

Εισαγωγή στη Fortran. Μάθημα 1 ο. Ελευθερία Λιούκα Εισαγωγή στη Fortran Μάθημα 1 ο Ελευθερία Λιούκα liouka.eleftheria@gmail.com Περιεχόμενα Ιστορία της Fortran Βασικές γνώσεις Fortran Επιτρεπτοί χαρακτήρες Μορφή προγράμματος Τύποι μεταβλητών Πράξεις και

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 11. Διεπιφάνειες Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the

Διαβάστε περισσότερα

Επιλύστε αριθμητικά το με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών:

Επιλύστε αριθμητικά το με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών: ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 1-13, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ημερομηνίες παράδοσης: Ασκήσεις 1 και : -1-1, Ασκήσεις 3 και 4: 8-1-13 Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ

Διαβάστε περισσότερα

ESI4500LAX EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 2 LT INDAPLOVĖ NAUDOJIMO INSTRUKCIJA 22 RO MAŞINĂ DE SPĂLAT VASE MANUAL DE UTILIZARE 41

ESI4500LAX EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 2 LT INDAPLOVĖ NAUDOJIMO INSTRUKCIJA 22 RO MAŞINĂ DE SPĂLAT VASE MANUAL DE UTILIZARE 41 ESI4500LAX EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 2 LT INDAPLOVĖ NAUDOJIMO INSTRUKCIJA 22 RO MAŞINĂ DE SPĂLAT VASE MANUAL DE UTILIZARE 41 2 ΠΕΡΙΕΧΌΜΕΝΑ 1. ΠΛΗΡΟΦΟΡΊΕΣ ΓΙΑ ΤΗΝ ΑΣΦΆΛΕΙΑ... 3 2. ΟΔΗΓΊΕΣ ΓΙΑ ΤΗΝ

Διαβάστε περισσότερα

Nacionalinis egzaminų centras Projektas Brandos egzaminų kokybės sistemos plėtra m. brandos egzaminų užduočių analizė.

Nacionalinis egzaminų centras Projektas Brandos egzaminų kokybės sistemos plėtra m. brandos egzaminų užduočių analizė. Nacionalinis egzaminų centras Projektas Brandos egzaminų kokybės sistemos plėtra 2007 m. brandos egzaminų užduočių analizė Matematika Vilnius 2008 Išleista Europos Socialinio fondo ir Lietuvos Respublikos

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Επιμέλεια: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ Άσκηση 1 Δίνοντας το ολοκλήρωμα στη Mathematica παίρνουμε την τιμή του: 0 40 100 140558 z 2z 15

Διαβάστε περισσότερα

Η διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων:

Η διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων: ΠΑΡΑΔΕΙΓΜΑ 6 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Η διατήρηση μάζας σε ένα σύστημα τριών

Διαβάστε περισσότερα

8 FORTRAN 77/90/95/2003

8 FORTRAN 77/90/95/2003 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: Εισαγωγή... 17 1.1. Ανασκόπηση της ιστορίας των υπολογιστών... 18 1.2. Πληροφορία και δεδομένα... 24 1.3. Ο Υπολογιστής... 26 1.4. Δομή και λειτουργία του υπολογιστή... 28 1.5.

Διαβάστε περισσότερα