υαδικό δέντρο έντρα (Trees) -Ιεραρχική οµή

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "υαδικό δέντρο έντρα (Trees) -Ιεραρχική οµή"

Transcript

1 έντρα (Trees) Ιεραρχική οµή Εφαρµογές οµή Οργάνωση ρχείων Οργανογράµµατα Ορισµός (αναδροµικός ορισµός): Ένα δέντρο είναι ένα πεπερασµένο σύνολο κόµβων το οποίο είτε είναι κενό είτε µη κενό σύνολο τέτοιο ώστε: Yπάρχει ένας µοναδικός κόµβος, που καλείται ρίζα Οι υπόλοιποι κόµβοι χωρίζονται σε n>=0 ξένα µεταξύ τους υποσύνολα,τ,τ,,t n,κάθεένααπόταοποίαείναιένα δέντροτατ,τ,,t n καλούνταιυπόδεντρα (subtrees)της ρίζας Ο αριθµός των υποδέντρων ενός κόµβου καλείται βαθµός του κόµβου αυτού ς θεωρήσουµε το δέντρο του παρακάτω χήµατος Το δέντρο αποτελείται από 0 κόµβους {A, B,,, E, F, G, H, I, J επίπεδο ρίζα Β E F G H I J 3 Νέοι Όροι βαθµός κόµβου βαθµός δέντρου τερµατικοί κόµβοι (ή φύλλα) εσωτερικοί κόµβοι παιδί, πατέρας (ή γονέας) πρόγονος, απόγονος ύψος (ή βάθος) υαδικό δέντρο Ενα δυαδικό δέντρο είναι ένα πεπερασµένο σύνολο κόµβων, το οποίοείτεείναικενόή: Υπάρχει ένας ειδικός κόµβος που καλείται ρίζα, και Οι υπόλοιποι κόµβοι χωρίζονται σε δύο ξένα µεταξύ τους υποσύνολα, και, κάθε ένα από τα οποία είναι ένα δυαδικό δέντρο Τοείναιτοαριστερόυπόδεντροτηςρίζαςκαιτο είναι το δεξί υπόδεντρο της ρίζας Κάθε δέντρο µπορεί να παρασταθεί σαν ένα δυαδικό δέντρο

2 Ε F Β G Πρόταση (i) Ο µέγιστος αριθµός κόµβων στο επίπεδο i ενός δέντρου βαθµού d είναι d i, i >= και (ii) Ο µέγιστος αριθµός κόµβων ενός δέντρου βαθµού d και ύψους h είναι (d h )/(d ) πόδειξη (i) Η απόδειξη θα γίνει µε επαγωγή ν i =, τότε d i = d 0 = πράγµα που ισχύει Έστω ότι ο µέγιστος αριθµός των κόµβων στο k επίπεδο είναι d k Το µέγιστο πλήθος των κόµβων στο k + επίπεδο είναι d d k = d k (ii) Ο µέγιστος αριθµός των κόµβων σε ένα δέντρο ύψους h είναι: H J I Πόρισµα (i) Ο µέγιστος αριθµός κόµβων στο επίπεδο i ενός δυαδικού δέντρου είναι i, i >= και (ii) Ο µέγιστος αριθµός κόµβων ενός δυαδικού δέντρου ύψους h είναι h Πρόταση Ενα δυαδικό δέντρο µε n κόµβους έχει ύψος τουλάχιστον πόδειξη ν h είναι το ύψος ενός δυαδικού δέντρου, τότε από το παραπάνω πόρισµα έχουµε h >= n ή h >= log (n + ) ρα το ελάχιστο ύψος του δυαδικού δέντρου είναι Πρόταση Για ένα µη κενό δυαδικό δέντρο Τ, αν n 0 είναι το πλήθος των τερµατικών κόµβων και n είναι το πλήθος των εσωτερικών κόµβων βαθµού, τότε n 0 = n + πόδειξη n = n 0 + n + n () Επίσης n = B + όπουβ είναι το πλήθος των κλαδιών λλά επίσης B = n + n άρα n = + n + n () πό τις () και () έχουµε : n 0 = n +

3 Για τον πλήρη ορισµό του Τ δυαδικό δέντρο αποµένει να ορισθούν οι βασικές πράξεις του που είναι: πεικόνιση (σχεδιασµός) δυαδικών δέντρων µε πίνακα ηµιουργία Κενό 3 ριστερό παιδί εξί παιδί 5 νάκτηση εδοµένων (περιεχόµενο) 6 λλαγή εδοµένων 7 Πατέρας (γονέας) 8 ιαγραφή υποδέντρων 9 ντικατάσταση υποδέντρων 0 υγχώνευση ναζήτηση 8 H 9 I Β 5 E F 6 7 G 8 ριθµούµε τις δυνητικές θέσεις των κόµβων από έως h, όπου h το ύψος (βάθος) του δυαδικού δένδρου 3 B A υναρτήσεις πρόσβασης Πρόταση νέναπλήρεςδυαδικόδέντροµε n κόµβους (δηλ βάθος = ) παριστάνεται ακολουθιακά όπως παραπάνω, τότε για οποιονδήποτε κόµβο µε δείκτη i, <= i<= n έχουµε: () O pateras(i) είναι στη θέση αν i< > Όταν i =, τότε δεν υπάρχει πατέρας, γιατί το i είναι η ρίζα () Το apaidi(i) είναιστηθέση i αν i <= n ν i > n, τότεο κόµβος δεν έχει αριστερό παιδί (3) To dpaidi(i) είναιστηθέση i +, αν i + <= n ν i + > n, τότεο κόµβοςδενέχειδεξίπαιδί Η απεικόνιση αυτή είναι ιδανική για ένα πλήρες δυαδικό δέντρο, ωστόσο αρκετός χώρος µνήµης παραµένει ανεκµετάλευτος στα µη πλήρη δυαδικά δέντρα dentro B E F G H I dentro B 3

4 Β υνδεδεµένη παράσταση δυαδικού δέντρου µε πίνακες index αριστερό παιδί apaidi dedomena dpaidi index δεξί παιδί Ένα δυαδικό δέντρο τώρα µπορεί να παρασταθεί ως ένας πίνακας τέτοιων εγγραφών Έχουµε λοιπόν τις παρακάτω δηλώσεις : #define plithos typedef typos_stoixeiou; typedef int typossyndesis; /* όχι pointer αλλά index */ typedef struct { typos_stoixeiou dedomena; typossyndesis apaidi, dpaidi; typos_komvou; typedef typos_komvou pinakas_komvou[plithos]; υνδεδεµένη παράσταση δυαδικού δέντρου µε πίνακες : inakas_komvou Tree; A Το πρώτο στοιχείο του Tree δεν χρησιµοποιείται Η ρίζα είναι στο στοιχείο (δες συναρτήσεις) B 3 5 E 3 5 dedomena apaidi dpaidi Β E 3 5

5 Γ Υλοποίησηδυαδικώνδέντρωνµεδείκτες (pointers) typedef typos_stoixeiou; typedef struct typos_komvou *typos_deikti; typedef struct typos_komvou { typos_stoixeiou dedomena; typos_deikti apaidi,dpaidi; ; typos_deikti riza; την συνέχεια όλες οι υλοποιήσεις θα είναι µε δείκτες υνδεδεµένη παράσταση δυαδικού δέντρου µε δείκτες : Β H E I F G void dimiourgia_dentro(typos_deikti *riza){ /*Προ: Καµµία Μετά: Εχει δηµιουργηθεί ένα κενό δυαδικό δέντρο στο οποίο δείχνει η riza*/ *riza = NULL; int keno_dentro(typos_deikti riza){ /* Προ: Εχει δηµιουργηθεί το δέντρο στο οποίο δείχνει η riza Μετά: Το υποπρόγραµµα επιστρέφει την τιµή true ή false ανάλογα µε το αν το δέντρο είναι κενό ή όχι*/ return (riza == NULL); 5

6 ιαδροµή δυαδικού δέντρου Μια από τις βασικές επεξεργασίες ενός δυαδικού δέντρου είναι η επίσκεψη κάθε κόµβου του µια µόνο φορά Τρία Βήµατα Επίσκεψη της ρίζας ιαδροµή του αριστερού υποδέντρου της 3 ιαδροµή του δεξιού υποδέντρου της Τα τρία αυτά βήµατα µπορούν να εκτελεστούν µε οποιαδήποτε διάταξη ν συµβολίσουµε τα παραπάνω βήµατα µε: Κ : Επίσκεψη ενός κόµβου : ιαδροµή αριστερού υποδέντρου του : ιαδροµή δεξιού υποδέντρου του Τότε υπάρχουν έξι διατάξεις για την επίσκεψη των κόµβων ενός δυαδικού δέντρου που είναι οι: Κ Κ Κ Κ Κ Κ Κ : προδιατεταγµένη διαδροµή Κ : ενδοδιατεταγµένη διαδροµή Κ : µεταδιατεταγµένη διαδροµή Οι άλλες 3 ( ) δεν έχουν ενδιαφέρον (συµµετρικές) Οι τρεις διατάξεις επίσκεψης ενός δυαδικού δέντρου: Μ Μεταδιατεταγµένη διαδροµή Κ Μ Ε T Ε T A Z Ζ προδιατεταγµένη : ΜΕΖΤΡ ενδοδιατεταγµένη : ΕΖΜΡΤ µεταδιατεταγµένη : ΖΕΡΤΜ Πρώτα επίσκεψη ριστερού Υποδένδρου του Μ (ρίζας) 6

7 Ε Πρώτα επίσκεψη ριστερού Υποδένδρου του Ε Τ Επίσκεψη εξιού Υποδένδρου του Μ (ρίζας) Ζ Πρώτα επίσκεψη ριστερού Υποδένδρου του, είναι κενό Επίσκεψη εξιού Υποδένδρου του, κενό Επίσκεψη Επίσκεψη εξιού Υποδένδρου Ε ριστερό Ζ, κενό εξιό Ζ, κενό Επίσκεψη Ζ Επίσκεψη ριστερού Υ/ του Τ Επίσκεψη ριστερού Υ/ του Ρ, κενό Επίσκεψη εξιού Υ/ του Ρ, Επίσκεψη ριστερού Υ/ του, κενό Επίσκεψη εξιού Υ/ του, κενό Επίσκεψη Επίσκεψη Ρ Επίσκεψη Τ Επίσκεψη Μ Επίσκεψη Ε ναδροµικό Υποπρόγραµµα Μεταδιατεταταγµένης ιαδροµής void µεταdiataksi(typos_deikti riza){ /* Aναδροµικό υποπρόγραµµα ιατρέχει µε µεταδιατεταγµένη διαδροµή ένα δυαδικό δέντρο */ όπου η episkepsi τυπώνει το περιεχόµενο ενός κόµβου Η εντολή metadiataksi (riza) καλεί αναδροµικά την metadiataksi προκειµένου να εκτελέσει την µεταδιατεταγµένηδιαδροµήτουπαραπάνωδέντρου if (!keno_dentro(riza)){ metadiataksi(riza>apaidi); //αριστερό Υ/ metadiataksi(riza>dpaidi); //δεξί Υ/ episkepsi(riza); /* Eπίσκεψη της ρίζας */ 7

8 ναδροµικό Υποπρόγραµµα Ενδοδιατεταταγµένης ιαδροµής void endodiataksi(typos_deikti riza){ /* Aναδροµικό υποπρόγραµµα ιατρέχει µε ενδοδιατεταγµένη διαδροµή ένα δυαδικό δέντρο */ if (!keno_dentro(riza)){ endodiataksi(riza>apaidi); //αριστερό Υ/ episkepsi(riza); // Eπίσκεψη της ρίζας endodiataksi(riza>dpaidi); /* δεξί Υ/ όπου η episkepsi τυπώνει το περιεχόµενο ενός κόµβου Η εντολή endodiataksi (riza) καλεί τη διαδικασία endodiataksi προκειµένου να εκτελέσει την ενδοδιατεταγµένηδιαδροµήτουπαραπάνωδέντρου Η ενέργεια αυτής της διαδικασίας εµφανίζεται αναλυτικά στον ακόλουθο πίνακα: Aς υποθέσουµε ότι έχουµε το δυαδικό δέντρο: Ε riza Μ Τ Περιεχόµενο κόµβου Ενέργεια ποτέλεσµα Μ Ε Κλήση της διαδικασίας µε δείκτη στη ρίζα (Ε) του αριστερού υποδέντρου Κλήση της διαδικασίας µε δείκτη στη ρίζα () του αριστερού υποδέντρου Ζ Κλήση της διαδικασίας µε δείκτη (NULL) στη ρίζα του αριστερού υποδέντρου Κενό Κενό δέντρο, επιστροφή στον κόµβοπατέρα Εκτύπωση του περιεχοµένου του κόµβου 8

9 Περιεχόµενο κόµβου Ενέργεια ποτέλεσµα Κλήση της διαδικασίας µε δείκτη NULL στη ρίζατου δεξιού υποδέντρου Κενό Κενό δέντρο, επιστροφή στον κόµβοπατέρα Ε Επιστροφή στον κόµβο πατέρα Εκτύπωση του περιεχοµένου του Ε του κόµβου Ε Κλήση της διαδικασίας µε δείκτηστη ρίζα (Ζ) του δεξιού υποδέντρου Περιεχόµενο κόµβου Ενέργεια ποτέλεσµα Ζ Κλήση της διαδικασίας µε δείκτη (NULL) στη ρίζα του αριστερού υποδέντρου Κενό Κενό δέντρο, επιστροφή στον κόµβοπατέρα Ζ Εκτύπωση του περιεχοµένου του Ζ κόµβου Ζ Κλήση της διαδικασίας µε δείκτη (NULL) στη ρίζα του δεξιού υποδέντρου Περιεχόµενο κόµβου Ενέργεια ποτέλεσµα Περιεχόµενο κόµβου Ενέργεια ποτέλεσµα Κενό Κενό δέντρο, επιστροφή στον κόµβο πατέρα Τ Κλήση της διαδικασίας µε δείκτη στη ρίζα () του αριστερού υποδέντρου Ζ Ε Μ Επιστροφή στον κόµβοπατέρα Επιστροφή στον κόµβοπατέρα Εκτύπωση του περιεχοµένου του κόµβου Μ Κλήση της διαδικασίας µε δείκτη στη ρίζα (Τ) του δεξιού υποδέντρου Μ Κενό Κλήση της διαδικασίας µε δείκτη (NULL) στη ρίζα του αριστερού υποδέντρου Κενό δέντρο, επιστροφή στον κόµβοπατέρα Εκτύπωση του περιεχοµένου του κόµβου 9

10 Περιεχόµενο κόµβου Ενέργεια ποτέλεσµα Περιεχόµενο κόµβου Ενέργεια ποτέλεσµα Κλήση της διαδικασίας µε δείκτη στη ρίζα () του δεξιού υποδέντρου Κλήση της διαδικασίας µε δείκτη (NULL) του δεξιού υποδέντρου Κλήση της διαδικασίας µε δείκτη (NULLl) στη ρίζα του αριστερού υποδέντρου Κενό Κενό δέντρο, επιστροφή στον κόµβο πατέρα Κενό Κενό δέντρο, επιστροφή στον κόµβοπατέρα Εκτύπωση του περιεχοµένου του κόµβου Τ Επιστροφή στον κόµβοπατέρα Επιστροφή στον κόµβοπατέρα Εκτύπωση του περιεχοµένου του κόµβου Τ Περιεχόµενο κόµβου Ενέργεια ποτέλεσµα T Κενό Τ Μ Κλήση της διαδικασίας µε δείκτη (NULL) του δεξιού υποδέντρου Κενό δέντρο, επιστροφή στον κόµβοπατέρα Επιστροφή στον κόµβοπατέρα Τέλος διαδικασίας Eίναι φανερό ότι η προδιατεταγµένη και µεταδιατεταγµένη διαδροµή προκύπτουν αν απλά αλλάξουµε την σειρά των εντολών στη διαδικασία endodiataksi, όπως φαίνεται παρακάτω : void prodiataksi(typos_deikti riza){ /* προδιατεταγµένη διαδροµή */ if (!keno_dentro(riza)){ episkepsi(riza); prodiataksi(riza>apaidi); prodiataksi(riza>dpaidi); 0

11 void metadiataksi(typos_deikti riza){ /* µεταδιατεταγµένη διαδροµή */ Μη ναδροµικά Υποπρογράµµατα ιαδροµής riza A if (!keno_dentro(riza)){ metadiataksi(riza>apaidi); metadiataksi(riza>dpaidi); episkepsi(riza); Πολυπλοκότητα Ο(n) B F E Περνάµε από κάθε κόµβο είτε ΜΙ φορά (φύλλο) είτε ΥΟ φορές (εσωτερικός κόµβος) G Μη αναδροµικός αλγόριθµος για την ενδοδιατεταγµένη διαδροµή (µε χρήση στοίβας) trexon = riza; Όσο η στοίβα δεν είναι κενή και trexon!= NULL να εκτελούνται: α Να διατρέχονται οι αριστεροί κόµβοι του αριστερού υποδέντρου και να τοποθετούνται οι διευθύνσεις τους σε µια στοίβα {έως ότου αριστερό υπόδεντρο κενό β νη στοίβαδενείναικενήτότε (i) Εξαγωγή διεύθυνσης από στοίβα (ii) Επεξεργασία του περιεχοµένου του (iii) υνέχισε µε δεξί παιδί, trexon= δεξι παιδί void endodiataksi(typos_deikti riza){//eπαναληπτικό typos_stoivas stoiva; typos_deikti trexon = riza; dimiourgia(&stoiva); do {// ιατρέχονται οι κόµβοι των αριστερών κλαδιών while (trexon!=null){ othisi(&stoiva,trexon); trexon = trexon>apaidi; /* Tο αριστερό υπόδεντρο είναι κενό */ if (!keni(stoiva)) { exagogi(&stoiva,&trexon); episkepsi(trexon); /*Eπίσκεψη ρίζας */ trexon = trexon>dpaidi; /*δεξιός κόµβος*/ while ((!keni(stoiva)) (trexon!=null));

12 νοµοιογενή δυαδικά δέντρα (παραστάσεωνexpressions) υχνά τα δεδοµένα που περιέχονται σε διαφορετικούς κόµβους δεν είναι όλα του ίδιου τύπου + Για τη µετατροπή µιας ενδοδιατεταγµένης παράστασης (expression) κατασκευάζουµε δυαδικό δέντρο, το οποίο ονοµάζεται δέντρο παράστασης ε κάθε βήµα να αναζητείται ο τελεστής εκείνος ο οποίος θα εκτελεστεί τελευταίος (έχει τη µικρότερη ιεραρχία) A * Παράσταση της (A(B*))+ µε δυαδικό δέντρο Β ηµουργία δυαδικού δέντρου παράστασης της 6*(3+8)* ο Βήµα (ρίζα ο τελεστής που εκτελείται τελευταίος) ο Βήµα (αναδροµικά σε αριστερό και δεξί υποδένδρο) * 6*(3+8) * 6*(3+8)

13 3ο Βήµα ο Βήµα * * * * typedef enum {oros,telest typos_dedomenon; typedef struct typos_komvou *typos_deikti; struct telestis { char xar; typos_deikti apaidi; typos_deikti dpaidi; ; union oros_telestis{ float arithmos; struct telestis xaraktiras; ; typedef struct typos_komvou { typos_dedomenon simadi; oros_tel dedomena; ; τους παραπάνω ορισµούς παρατηρούµε ότι µόνο οι κόµβοι που περιέχουν τελεστές έχουν πεδία δεικτών apaidi και dpaidi για τους υπόλοιπους δεν χρειάζονται γιατί είναι φύλλα τη συνέχεια παρουσιάζεται ένα αναδροµικό υποπρόγραµµα που υπολογίζει την τιµή της παράστασης 3

14 float ypologismos_dentrou(typos_deikti riza){ float oros,oros; char symbolo; switch (riza>simadi){ case oros:return riza>dedomenaarithmos; case telestis: oros = ypologismos_dentrou (riza>dedomenaxaraktirasapaidi); oros = ypologismos_dentrou (riza>dedomenaxaraktirasdpaidi); symbolo = riza>dedomenaxaraktirasxar; return telestis(symbolo, oros, oros);

Δέντρα (Trees) - Ιεραρχική Δομή

Δέντρα (Trees) - Ιεραρχική Δομή Δέντρα (Trees) - Ιεραρχική Δομή Εφαρμογές Δομή Οργάνωση Αρχείων Οργανογράμματα Ορισμός (αναδρομικός ορισμός): Ένα δέντρο είναι ένα πεπερασμένο σύνολο κόμβων το οποίο είτε είναι κενό είτε μη κενό σύνολο

Διαβάστε περισσότερα

ρίζα E F G H I J επίπεδο 1

ρίζα E F G H I J επίπεδο 1 Δέντρα (Trees) Ορισµός: Ενα δέντρο είναι ένα πεπερασµένο µη κενό σύνολο κόµβων τέτοιο ώστε: 1.Yπάρχει ένας µοναδικός κόµβος, που καλείται ρίζα, ο οποίος δεν έχει προηγούµενο. 2.Οι υπόλοιποι κόµβοι χωρίζονται

Διαβάστε περισσότερα

Δομές Δεδομένων και Τεχνικές Προγραμματισμού Ενότητα 6: ΑΤΔ Δένδρο, ΑΤΔ Δυαδικό Δένδρο Αναζήτησης (ΔΔΑ)

Δομές Δεδομένων και Τεχνικές Προγραμματισμού Ενότητα 6: ΑΤΔ Δένδρο, ΑΤΔ Δυαδικό Δένδρο Αναζήτησης (ΔΔΑ) Δομές Δεδομένων και Τεχνικές Προγραμματισμού Ενότητα 6: ΑΤΔ Δένδρο, ΑΤΔ Δυαδικό Δένδρο Αναζήτησης (ΔΔΑ) Ιωάννης Κοτρώνης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας Ορίσει

Διαβάστε περισσότερα

Οι βασικές πράξεις που ορίζουν τον ΑΤ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:

Οι βασικές πράξεις που ορίζουν τον ΑΤ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες: υαδικά έντρα Αναζήτησης (Binary Search Trees) Ορισµός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόµενα στο αριστερό υποδέντρο του t είναι

Διαβάστε περισσότερα

ΣΤΟΙΒΕΣ (stacks) Σχήµα: Λειτουργία Στοίβας

ΣΤΟΙΒΕΣ (stacks) Σχήµα: Λειτουργία Στοίβας ΣΤΟΙΒΕΣ (stacks) Η στοίβα είναι µια συλλογή δεδοµένων µε γραµµική διάταξη στην οποία όλες οι εισαγωγές και οι διαγραφές γίνονται στο ένα άκρο που λέγεται κορυφή (top) της στοίβας Σχήµα: Λειτουργία Στοίβας

Διαβάστε περισσότερα

Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε:

Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι

Διαβάστε περισσότερα

ΟιβασικέςπράξειςπουορίζουντονΑΤΔ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:

ΟιβασικέςπράξειςπουορίζουντονΑΤΔ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες: Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο

Διαβάστε περισσότερα

AVL δέντρα. h L h R. G.M. Adelson_Velkii και E.M. Landis 1962

AVL δέντρα. h L h R. G.M. Adelson_Velkii και E.M. Landis 1962 AVL δέντρα L - R 1 L R G.M. AdelsonVelkii και E.M. Landis 1962 AVL Δέντρα Μη AVL Δέντρα Εισαγωγή κόμβου 4, 6 : 4 12 : 6 4 6 Αριστερή στροφή 6 4 12 12 8, 14 : 6 4 12 8 14 7 : 4 6 12 6 4 8 6 8 12 7 8 14

Διαβάστε περισσότερα

ΕΠΛ232: Εργαστήριο 2

ΕΠΛ232: Εργαστήριο 2 ΕΠΛ232: Εργαστήριο 2 Παράδειγμα σε Στοίβες 1 Υπολογισμός Αριθμητικών Παραστάσεων - Πολωνικός Συμβολισμός A + (B * C) A + (BC * ) A(BC *) + ABC * + Ενδοθεματική μορφή Μεταθεματική μορφή Οι κανόνες που διέπουν

Διαβάστε περισσότερα

Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :

Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Δένδρα Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Ανάλυση αλγορίθμων (π.χ. δένδρα αναδρομής) Δομές δεδομένων (π.χ. δένδρα αναζήτησης) ακμή Κατηγορίες (αύξουσα

Διαβάστε περισσότερα

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου

Διαβάστε περισσότερα

ΣΤΟΙΒΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΗΣ ΣΤΟΙΒΑΣ. Το τελευταίο στοιχείο που εισήχθη θα εξαχθεί πρώτο. Άλλο όνομα L I F O (Last In First Out)

ΣΤΟΙΒΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΗΣ ΣΤΟΙΒΑΣ. Το τελευταίο στοιχείο που εισήχθη θα εξαχθεί πρώτο. Άλλο όνομα L I F O (Last In First Out) ΣΤΟΙΒΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΗΣ ΣΤΟΙΒΑΣ Το τελευταίο στοιχείο που εισήχθη θα εξαχθεί πρώτο. Άλλο όνομα L I F O (Last In First Out) Χρήσεις Στοίβας Καθημερινή Ζωή (όχι πάρα πολλές) Δίσκοι Τραπεζαρίας

Διαβάστε περισσότερα

ΣΤΟΙΒΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΗΣ ΣΤΟΙΒΑΣ. Το τελευταίο στοιχείο που εισήχθη θα εξαχθεί πρώτο. Άλλο όνομα L I F O (Last In First Out)

ΣΤΟΙΒΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΗΣ ΣΤΟΙΒΑΣ. Το τελευταίο στοιχείο που εισήχθη θα εξαχθεί πρώτο. Άλλο όνομα L I F O (Last In First Out) ΣΤΟΙΒΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΗΣ ΣΤΟΙΒΑΣ Το τελευταίο στοιχείο που εισήχθη θα εξαχθεί πρώτο. Άλλο όνομα L I F O (Last In First Out) Χρήσεις Στοίβας Καθημερινή Ζωή (όχι πάρα πολλές) Δίσκοι Τραπεζαρίας

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

Χρήσεις Στοίβας ΣΤΟΙΒΑ. Ορισμός Στοίβας (stack) Βασική Λειτουργικότητα

Χρήσεις Στοίβας ΣΤΟΙΒΑ. Ορισμός Στοίβας (stack) Βασική Λειτουργικότητα ΣΤΟΙΒΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΗΣ ΣΤΟΙΒΑΣ Το τελευταίο στοιχείο που εισήχθη θα εξαχθεί πρώτο. Άλλο όνομα L I F O (Last In First Out) Χρήσεις Στοίβας Καθημερινή Ζωή (όχι πάρα πολλές) Δίσκοι Τραπεζαρίας

Διαβάστε περισσότερα

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση

Διαβάστε περισσότερα

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής Αναδροµή Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής 1 Αναδροµή Βασική έννοια στα Μαθηµατικά και στην Πληροφορική.

Διαβάστε περισσότερα

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ 1 ένδρα εσωτερικός κόµβος u το δένδρο έχει ύψος 4 u έχει ύψος 3 w έχει βάθος 2 κόµβος ένδρο: γράφηµα χωρίς κύκλους o Ρίζα (root) o Κόµβος (node) o Ακµή (edge) o Γονέας (parent) Παιδί (child)

Διαβάστε περισσότερα

Δομές Δεδομένων και Τεχνικές Προγραμματισμού Ενότητα 2: ΑΤΔ Στοίβα. Ιωάννης Κοτρώνης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Δομές Δεδομένων και Τεχνικές Προγραμματισμού Ενότητα 2: ΑΤΔ Στοίβα. Ιωάννης Κοτρώνης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Δομές Δεδομένων και Τεχνικές Προγραμματισμού Ενότητα 2: ΑΤΔ Στοίβα Ιωάννης Κοτρώνης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας Ορίζει τον ΑΤΔ Στοίβα Σχεδιαστικές Επιλογές

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΜΕ C. ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής. CMOR Lab. Computational Methodologies and Operations Research

ΑΛΓΟΡΙΘΜΟΙ ΜΕ C. ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής. CMOR Lab. Computational Methodologies and Operations Research ΑΛΓΟΡΙΘΜΟΙ ΜΕ C ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής CMOR Lab Computational Methodologies and Operations Research Δέντρα (5) Τ ένα δέντρο i ένας κόμβος στο επίπεδο k j ένας κόμβος στο επίπεδο k+1 } :

Διαβάστε περισσότερα

ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat

ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (path) o Πρόγονος απόγονος (ancestor, descendant)

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

Tύπος δεδοµένων (data type) µιας µεταβλητής (σε µια γλώσσα προγραµµατισµού) είναι το σύνολο των τιµών που µπορεί να πάρει η µεταβλητή.

Tύπος δεδοµένων (data type) µιας µεταβλητής (σε µια γλώσσα προγραµµατισµού) είναι το σύνολο των τιµών που µπορεί να πάρει η µεταβλητή. Tύπος δεδοµένων (data type) µιας µεταβλητής (σε µια γλώσσα προγραµµατισµού) είναι το σύνολο των τιµών που µπορεί να πάρει η µεταβλητή. Αφηρηµένος τύπος δεδοµένων (abstract data type): είναι ένα θεωρητικό

Διαβάστε περισσότερα

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα?

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα? Κόκκινα-Μαύρα ένδρα (Red-Black Trees) Ένα κόκκινο-µαύρο δένδρο είναι ένα δυαδικό δένδρο αναζήτησης στο οποίο οι κόµβοι µπορούν να χαρακτηρίζονται από ένα εκ των δύο χρωµάτων: µαύρο-κόκκινο. Το χρώµα της

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι

Διαβάστε περισσότερα

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 Χρησιµοποιούµε τη δοµή Κατ οίκον Εργασία 3 Σκελετοί Λύσεων typedef struct Node int data; struct node *lchild; struct node *rbro; node; και υποθέτουµε πως ένα τυχαίο δένδρο είναι υλοποιηµένο ως

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και

Διαβάστε περισσότερα

Εργασία 3 Σκελετοί Λύσεων

Εργασία 3 Σκελετοί Λύσεων Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 Χρησιμοποιούμε τη δομή typedef struct TNode{ int key; struct TNode *left; struct TNode *right; tnode; και υποθέτουμε πως ένα δυαδικό δένδρο είναι υλοποιημένο ως δείκτης

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C Εισαγωγή στην C Μορφή Προγράµµατος σε γλώσσα C Τµήµα Α Με την εντολή include συµπεριλαµβάνω στο πρόγραµµα τα πρότυπα των συναρτήσεων εισόδου/εξόδου της C.Το αρχείο κεφαλίδας stdio.h είναι ένας κατάλογος

Διαβάστε περισσότερα

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου

Διαβάστε περισσότερα

ΛΙΣΤΕΣ. Ορισμός ΑΤΔ Λίστα ΑΤΔ Ακολουθιακή Λίστα Διαχείριση Δεικτών και Λιστών στη C ΑΤΔ Συνδεδεμένη Λίστα. Εφαρμογές και Χρήση Λιστών

ΛΙΣΤΕΣ. Ορισμός ΑΤΔ Λίστα ΑΤΔ Ακολουθιακή Λίστα Διαχείριση Δεικτών και Λιστών στη C ΑΤΔ Συνδεδεμένη Λίστα. Εφαρμογές και Χρήση Λιστών ΛΙΣΤΕΣ Ορισμός ΑΤΔ Λίστα ΑΤΔ Ακολουθιακή Λίστα Διαχείριση Δεικτών και Λιστών στη C ΑΤΔ Συνδεδεμένη Λίστα Υλοποίηση με δείκτες (pointers) Υλοποίηση με πίνακα Εφαρμογές και Χρήση Λιστών Λίστες (Lists) Δεδομένα

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι - Δυαδικά Δένδρα (binary trees) - Δυαδικά Δένδρα Αναζήτησης (binary search trees) 1 Δυαδικά Δένδρα Ορισμοί Λειτουργίες Υλοποιήσεις ΑΤΔ Εφαρμογές 2 Ορισμοί (αναδρομικός ορισμός) Ένα δένδρο t είναι ένα πεπερασμένο

Διαβάστε περισσότερα

έντρα ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη

έντρα ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη έντρα 2-3-4 ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη Σημερινό Μάθημα 2-3-4 έντρα Ισοζυγισμένα δέντρα αναζήτησης έντρα αναζήτησης πολλαπλών

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί

Διαβάστε περισσότερα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ. ΗΥ240 - Παναγιώτα Φατούρου 1

ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ. ΗΥ240 - Παναγιώτα Φατούρου 1 ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ΗΥ240 - Παναγιώτα Φατούρου 1 ένδρα Κόµβοι (nodes) Ακµές (edges) Ουρά και κεφαλή ακµής (tail, head) Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) Μονοπάτι (path) Πρόγονος απόγονος

Διαβάστε περισσότερα

Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά

Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά EPL231: Δομές Δεδομένων και Αλγόριθμοι Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά Αναδρομή Η αναδρομή εμφανίζεται όταν μία διεργασία καλεί τον εαυτό της Υπάρχουν

Διαβάστε περισσότερα

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 3 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 23: Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ισοζυγισμένα Δέντρα - Υλοποίηση AVL-δέντρων - Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα Διδάσκων:

Διαβάστε περισσότερα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα

Διαβάστε περισσότερα

Αναδροµή (Recursion) ύο παρεξηγήσεις. Σκέψου Αναδροµικά. Τρίγωνο Sierpinski Μη αναδροµικός ορισµός;

Αναδροµή (Recursion) ύο παρεξηγήσεις. Σκέψου Αναδροµικά. Τρίγωνο Sierpinski Μη αναδροµικός ορισµός; Αναδροµή (Recursion) Πώς να λύσουµε ένα πρόβληµα κάνοντας λίγη δουλειά και ανάγοντας το υπόλοιπο να λυθεί µε τον ίδιο τρόπο. Πού χρειάζεται; Πολλές µαθηµατικές συναρτήσεις ορίζονται αναδροµικά. εν είναι

Διαβάστε περισσότερα

ΔυαδικάΔΕΝΔΡΑΑναζήτησης

ΔυαδικάΔΕΝΔΡΑΑναζήτησης ΔυαδικάΔΕΝΔΡΑΑναζήτησης Ρίζα (κόμβος που δεν έχει γονέα) πρόγονοι απόγονοι γονέας παιδιά έντρο είναι µία συλλογή από στοιχεία, που ονοµάζονται κόµβοι και συνδέονται µεταξύ τους µε τη βοήθεια ακµών αδέλφια

Διαβάστε περισσότερα

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 9: Τα ΔΔΑ ως Αναδρομικές Δομές Δεδομένων-Εφαρμογή Δυαδικών Δέντρων: Κωδικοί Huffman. Καθηγήτρια Μαρία Σατρατζέμη

Δομές Δεδομένων. Ενότητα 9: Τα ΔΔΑ ως Αναδρομικές Δομές Δεδομένων-Εφαρμογή Δυαδικών Δέντρων: Κωδικοί Huffman. Καθηγήτρια Μαρία Σατρατζέμη Ενότητα 9: Τα ΔΔΑ ως Αναδρομικές Δομές Δεδομένων-Εφαρμογή Δυαδικών Δέντρων: Κωδικοί Huffman Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

5 ΔΕΝΤΡΑ (Trees) Σχήµα 5.1 : ενδροειδής αναπαράσταση αρχείων στα Windows. έντρα. \ {root directory} Accessories. Program Files.

5 ΔΕΝΤΡΑ (Trees) Σχήµα 5.1 : ενδροειδής αναπαράσταση αρχείων στα Windows. έντρα. \ {root directory} Accessories. Program Files. 5 ΔΕΝΤΡΑ (Trees) Oι περισσότερες δοµές δεδοµένων που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµµικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο αυτή θα ασχοληθούµε µε τις µή-γραµµικές

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 2: Στοίβες Εισαγωγή-Υλοποίηση ΑΤΔ Στοίβα με Πίνακα-Εφαρμογή Στοίβας: Αντίστροφη Πολωνική Γραφή. Καθηγήτρια Μαρία Σατρατζέμη

Δομές Δεδομένων. Ενότητα 2: Στοίβες Εισαγωγή-Υλοποίηση ΑΤΔ Στοίβα με Πίνακα-Εφαρμογή Στοίβας: Αντίστροφη Πολωνική Γραφή. Καθηγήτρια Μαρία Σατρατζέμη Ενότητα 2: Στοίβες Εισαγωγή-Υλοποίηση ΑΤΔ Στοίβα με Πίνακα-Εφαρμογή Στοίβας: Αντίστροφη Πολωνική Γραφή Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 16 Δένδρα (Trees) 1 / 42 Δένδρα (Trees) Ένα δένδρο είναι ένα συνδεδεμένο γράφημα χωρίς κύκλους Για κάθε

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

ΑΡ Χ Ε Ι Α Κ Ε Ι Μ Ε Ν Ο Υ (text files)

ΑΡ Χ Ε Ι Α Κ Ε Ι Μ Ε Ν Ο Υ (text files) ΑΡ Χ Ε Ι Α Κ Ε Ι Μ Ε Ν Ο Υ (text files) Αρχείο είναι μια συλλογή δεδομένων του ίδιου τύπου. Ενα αρχείο αποθηκεύεται στην περιφερειακή μνήμη (σκληρό δίσκο, δισκέττα). Τα αρχεία είναι μόνιμα. Τα δεδομένα

Διαβάστε περισσότερα

Αναδρομή (Recursion) Πώς να λύσουμε ένα πρόβλημα κάνοντας λίγη δουλειά και ανάγοντας το υπόλοιπο να λυθεί με τον ίδιο τρόπο.

Αναδρομή (Recursion) Πώς να λύσουμε ένα πρόβλημα κάνοντας λίγη δουλειά και ανάγοντας το υπόλοιπο να λυθεί με τον ίδιο τρόπο. Αναδρομή (Recursion) Πώς να λύσουμε ένα πρόβλημα κάνοντας λίγη δουλειά και ανάγοντας το υπόλοιπο να λυθεί με τον ίδιο τρόπο. Πού χρειάζεται; Πολλές μαθηματικές συναρτήσεις ορίζονται αναδρομικά. Δεν είναι

Διαβάστε περισσότερα

Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ

Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά

Διαβάστε περισσότερα

υαδικά έντρα Αναζήτησης

υαδικά έντρα Αναζήτησης ηµήτρης Φωτάκης Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Πανεπιστήµιο Αιγαίου υαδικά έντρα µε ρίζα. Κάθε εσωτερικός κόµβος περιέχει στοιχείο (αριθµό) και έχει δύο παιδιά. NULL-φύλλα

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δοµών δεδοµένων 8.4 Μια σύντοµη µελέτη περίπτωσης 8.5 Προσαρµοσµένοι τύποι δεδοµένων 1 Βασικές δοµές

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης

Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης Δοµές Δεδοµένων 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων Ε. Μαρκάκης Περίληψη Quicksort Χαρακτηριστικά επιδόσεων Μη αναδροµική υλοποίηση Δέντρα Μαθηµατικές ιδιότητες Δοµές Δεδοµένων 11-2

Διαβάστε περισσότερα

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ. for (παράσταση_1; παράσταση_2; παράσταση_3) εντολή επόμενη εντολή

ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ. for (παράσταση_1; παράσταση_2; παράσταση_3) εντολή επόμενη εντολή ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ for (παράσταση_1; παράσταση_2; παράσταση_3) εντολή επόμενη εντολή παράσταση_1 = Παράσταση Αρχικοποίησης παράσταση_2 = Παράσταση Ελέγχου Επανάληψης παράσταση_3 = Παράσταση Ενημέρωσης

Διαβάστε περισσότερα

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231

Διαβάστε περισσότερα

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Υλικό από τις σηµειώσεις Ν. Παπασπύρου, 2006 Δέντρα δυαδικής αναζήτησης Δενδρικές δοµές δεδοµένων στις οποίες Όλα τα στοιχεία στο αριστερό υποδέντρο της ρίζας είναι

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός. Καθηγήτρια Μαρία Σατρατζέμη

Δομές Δεδομένων. Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός. Καθηγήτρια Μαρία Σατρατζέμη Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Προγραμματισμό για ΗΜΥ

Προγραμματισμό για ΗΜΥ ΕΠΛ 034: Εισαγωγή στον Προγραμματισμό για ΗΜΥ Αχιλλέας Αχιλλέως, Τμήμα Πληροφορικής, Πανεπιστήμιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 3 Εισαγωγή στην C Θέματα ιάλεξης Σύνταξη και Σημασιολογία

Διαβάστε περισσότερα

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 3 ο. Συνδεδεµένες Λίστες. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 3 ο. Συνδεδεµένες Λίστες. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 3 ο Συνδεδεµένες Λίστες Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ανασκόπηση ΟΑΤ λίστα Ακολουθιακή λίστα Συνδεδεµένη λίστα

Διαβάστε περισσότερα

Μη AVL Δέντρα Εισαγωγή κόμβου 4, 6 : 4 12 :

Μη AVL Δέντρα Εισαγωγή κόμβου 4, 6 : 4 12 : AVL δέντρα AVL Δέντρα L R G.M. AdelsonVelkii και E.M. Landis 192 Μη AVL Δέντρα Εισαγωγή κόμβου, : : Αριστερή στροφή 1 8, 1 : 8 1 7 : 7 8 1 Δεξιά στροφή 8 7 Αριστερή στροφή 1 8 7 1 Περιπτώσεις LL : ο νέος

Διαβάστε περισσότερα

Δομές δεδομένων. Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

Δομές δεδομένων. Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 8 Ξένα Σύνολα

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς έντρα 1 / 27 έντρα έντρο είναι απλό συνδεδεµένο µη

Διαβάστε περισσότερα

Δρ. Πέτρος Παναγή B123

Δρ. Πέτρος Παναγή B123 Δρ. Πέτρος Παναγή petrosp@cs.ucy.ac.cy B123 1 ΣΥΜΒΟΛΟΣΕΙΡΕΣ (Strings) Ο ΑΤΔ Συμβολοσειρά Μία συμβολοσειρά είναι μία συλλογή χαρακτήρων με διάταξη Bασικές πράξεις : (Είναιτοελάχιστοδυνατόσύνολοπράξεων)

Διαβάστε περισσότερα

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων ΕΠΛ 3 Δομές Δεδομένων και Αλγόριθμοι Νοέμβριος 00 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Έστω ο αριθμός φύλλων που βρίσκονται στο επίπεδο ενός δυαδικού δένδρου. Θέλουμε να αποδείξουμε την πρόταση: Η

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 3 Δέντρα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 3 Δέντρα ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 3 Δέντρα Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 19/03/2013 Ημερομηνία Παράδοσης:

Διαβάστε περισσότερα

Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 9.8

Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 9.8 Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 1000 1001 1002 1003 1004 1005 12 9.8 9976 3 1010 26 1006 1007 1008 1009 1010 1011 16 125 1299 a 13 1298 Δήλωση Δήλωση Τύπος

Διαβάστε περισσότερα

Ουρές προτεραιότητας

Ουρές προτεραιότητας Ουρές προτεραιότητας Πελάτες... στο ταµείο µιας τράπεζας Κάθε πελάτης µε ένα νούµερο/αριθµός προτεραιότητας! Όσοοαριθµός είναι µεγάλος, τόσο οι πελάτες είναι πιο ενδιαφέροντες(!) ένα µόνο ταµείο ανοικτό

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ

ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ Ουρές Προτεραιότητας (Priority Queues) Θεωρούµε ότι τα προς αποθήκευση στοιχεία έχουν κάποια διάταξη (καθένα έχει µια προτεραιότητα). Τα προς αποθήκευση στοιχεία είναι

Διαβάστε περισσότερα

Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) :

Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) : Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος και Γέφυρα του (με αφετηρία τον ) : Ακμή που περιέχεται σε κάθε μονοπάτι από το στο s a b c d e f g h i j k l Μας δίνεται ένα δίκτυο (κατευθυνόμενο

Διαβάστε περισσότερα

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 3η: Δένδρα Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 3η: Δένδρα Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 3η: Δένδρα Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΝΟΤΗΤΑ 3 ΔΕΝΔΡΑ ΗΥ240 - Παναγιώτα Φατούρου 2 Δένδρα Ένα δένδρο Τ αποτελείται από

Διαβάστε περισσότερα

έντρα Πολλαπλής ιακλάδωσης και (a, b)- έντρα

έντρα Πολλαπλής ιακλάδωσης και (a, b)- έντρα έντρα Πολλαπλής ιακλάδωσης και (a, b)- έντρα ηµήτρης Φωτάκης Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων έντρα Αναζήτησης Πολλαπλής ιακλάδωσης ( ΑΠ ) ΑΠ ή έντρα m-δρόµων: Σ Βάσεων εδοµένων.

Διαβάστε περισσότερα

ΗΥ240 - Παναγιώτα Φατούρου 1

ΗΥ240 - Παναγιώτα Φατούρου 1 ΕΝΟΤΗΤΑ 3 ΔΕΝΔΡΑ ΗΥ240 - Παναγιώτα Φατούρου 1 Δένδρα Ένα δένδρο Τ αποτελείται από ένα σύνολο από κόµβους µεταξύ των οποίων ορίζεται µια σχέση γονέα-παιδιού µε τις εξής ιδιότητες: q Αν το Τ δεν είναι το

Διαβάστε περισσότερα

Βασικές δοµές δεδοµένων. Ορολογία λιστών. 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας

Βασικές δοµές δεδοµένων. Ορολογία λιστών. 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας ΚΕΦΑΛΑΙΟ 8: Αφηρηµένοι τύποι δεδοµένων 8.1 οµές δεδοµένων (data structures) 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας Αδόµητα δεδοµένα οδός Ζέας

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #10 (β)

ιαφάνειες παρουσίασης #10 (β) ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ http://www.softlab.ntua.gr/~nickie/courses/progtech/ ιδάσκοντες: Γιάννης Μαΐστρος (maistros@cs.ntua.gr) Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr)

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Προγραµµατιστική Εργασία 2 ο Μέρος

Προγραµµατιστική Εργασία 2 ο Μέρος Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών 20 Νοεµβρίου 2012 ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος 2011-12 ιδάσκουσα: Παναγιώτα Φατούρου Προγραµµατιστική Εργασία 2 ο Μέρος Ηµεροµηνία

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #5

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #5 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #5 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #5 2 Γενικά Στο Τετράδιο #5 του Εργαστηρίου θα ασχοληθούμε με πιο προχωρημένα θέματα υλοποίησης

Διαβάστε περισσότερα

Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 26: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας -Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΗΥ240 - Παναγιώτα Φατούρου Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο U αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενων από έναν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΡΩΤΗ ΠΡΟΟΔΟΣ ΣΤΗΝ «ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Y»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΡΩΤΗ ΠΡΟΟΔΟΣ ΣΤΗΝ «ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Y» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΡΩΤΗ ΠΡΟΟΔΟΣ ΣΤΗΝ «ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Y» Σάββατο, 31 Οκτωβρίου 2015 ΔΙΑΡΚΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ 150 ΛΕΠΤΑ ΘΕΜΑ 1.

Διαβάστε περισσότερα

Δομές δεδομένων (2) Αλγόριθμοι

Δομές δεδομένων (2) Αλγόριθμοι Δομές δεδομένων (2) Αλγόριθμοι Παράγωγοι τύποι (struct) σύνοψη προηγουμένων Πίνακες: πολλές μεταβλητές ίδιου τύπου Παράγωγοι τύποι ή Δομές (struct): ομαδοποίηση μεταβλητών διαφορετικού τύπου struct Student

Διαβάστε περισσότερα

Ενώσεις δεδομένων Απαριθμητές Ψηφιακοί τελεστές Αναδρομικές συναρτήσεις

Ενώσεις δεδομένων Απαριθμητές Ψηφιακοί τελεστές Αναδρομικές συναρτήσεις Ενώσεις δεδομένων Απαριθμητές Ψηφιακοί τελεστές Αναδρομικές συναρτήσεις Ενώσεις δεδομένων (union) τι και γιατί Συσκευές με μικρή μνήμη => ανάγκη εξοικονόμησης πόρων Παρατήρηση: αχρησιμοποίητη μνήμη. Έστω

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Δένδρα (Trees) Βασικές Έννοιες. Δυαδικά Δένδρα. Δυαδικά Δένδρα Αναζήτησης. AVL Δένδρα. Δένδρα: Βασικές Έννοιες Ορισμοί Λειτουργίες Υλοποιήσεις ΑΤΔ Δένδρο: μοντέλο ιεραρχικής

Διαβάστε περισσότερα

Κεφάλαιο 10 Ψηφιακά Λεξικά

Κεφάλαιο 10 Ψηφιακά Λεξικά Κεφάλαιο 10 Ψηφιακά Λεξικά Περιεχόμενα 10.1 Εισαγωγή... 213 10.2 Ψηφιακά Δένδρα... 214 10.3 Υλοποίηση σε Java... 222 10.4 Συμπιεσμένα και τριαδικά ψηφιακά δένδρα... 223 Ασκήσεις... 225 Βιβλιογραφία...

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα