6. Bobine. 6.1 Model analitic

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "6. Bobine. 6.1 Model analitic"

Transcript

1 6. Bobine Cuprinsul capitolului: - Proprietate esenţială, model analitic simplificat, unitate de măsură, simbol - Circuit echivalent, bobina în regim permanent sinusoidal - Mărimi caracteristice - Marcare - Tehnologii de fabricaţie - Relee electromagnetice - Transformatoare 6.1 Model analitic Caracteristica esenţială a bobinei este inductivitatea (sau inductanţa) electrică (bobina este fabricată special pentru această proprietate). Scopul în care sînt folosite bobinele poate fi: - acumularea de energie (în circuitele de putere, pentru transformatoare sau pentru netezirea curentului în sarcină); - crearea în circuit a unei comportări dependente de frecvenţă (filtre în circuite de putere, filtre de semnal, circuite de defazare, separare frecvenţe joase de cele înalte, bobine de şoc etc.). Constructiv, bobina este compusă dintr-un conductor înfăşurat. Poate fi înfăşurat pe suport sau fără suport (fără carcasă, bobinare pe aer ). Poate avea miez magnetic sau să nu aibă miez (îndeosebi la frecvenţe înalte). Figura 6.1: Dispunerea liniilor de cîmp în bobine de forme simple În tabelul de mai jos sînt date valorile aproximative ale intensităţii cîmpului magnetic, inductanţei, inducţiei magnetice şi fluxului magnetic, pentru cele două cazuri de bobine din figura 6.1. S-a neglijat comportarea neliniară a miezului. Pentru bobina lungă (figura 6.1b), l este lungimea miezului (mult mai mare decît diametrul). Pentru bobina toroidală (figura 6.1a), lungimea medie a liniei de cîmp ( l med ) este cea a cercului cu diametrul mediu, din cuprinsul miezului (se neglijează liniile de cîmp care se închid prin aer). Laurenţiu Frangu Componente şi circuite pasive,

2 Toroidală Lungă Intensitatea cîmpului magnetic N i( t) N i( t) H ( t) = H ( t) = l med l Inductanţa N S N S L = μ L = 4π μ l med l Inducţia magnetică B( t) = μh ( t) Fluxul magnetic Φ ( t) = L i( t) Permeabilitatea magnetică 7 μ = μr μ 0, μ0 = 4π 10 H/m Modelul analitic al funcţionării bobinei în circuit (considerăm bobină fără pierderi) este: di( t) u( t) = L, dt mărimile fiind cele din figura 6.. Figura 6.: Simbolul bobinei şi mărimile măsurabile la borne (fără miez, miez feromagnetic, miez ferimagnetic) (În acest model au fost neglijate elementele reactive şi disipative parazite şi caracterul neliniar.) Unitatea de măsură este 1 henry (1H), care reprezintă prin definiţie inductanţa unui circuit format dintr-o spiră care, fiind străbătut de un curent continuu de 1A, produce un flux magnetic propriu de 1Wb. (Echivalent cu definiţia de mai sus: inductanţa unui circuit în care viteza de variaţie a curentului este 1A/s, dacă tensiunea aplicată este de 1V.) Timpul intervine în mod explicit în model, ca expresie a fenomenului de acumulare de energie. Ca şi condensatorul, bobina are caracter reactiv. Ecuaţia modelului analitic este o ecuaţie diferenţială ordinară, liniară, de odinul I. Pentru a anticipa forma curentului, nu este suficientă soluţia generală a ecuaţiei (care este o familie de funcţii), ci este necesară soluţia problemei Cauchy. Problema Cauchy: di( t) u( t) = L dt i (0) = cunoscută, unde t = 0 este un moment arbitrar, în care cunoaştem valoarea curentului prin bobină. t 1 Soluţia: i( t) = u( ) d + i(0) L τ τ. 0 Ecuaţia de mai sus arată că putem determina curentul (funcţie de timp), dacă cunoaştem modul de variaţie al tensiunii şi valoarea iniţială a curentului. În sens invers, putem determina tensiunea (funcţie de timp), dacă cunoaştem modul de variaţie a curentului (fără valoarea iniţială). În analiza circuitelor, cel mai adesea nu cunoaştem aceste mărimi, ci mărimile de la intrările circuitului, ceea ce face ca ecuaţia diferenţială care Laurenţiu Frangu Componente şi circuite pasive,

3 modelelază funcţionarea întregului circuit să conţină mai multe variabile şi mai mulţi parametri (se va trata în partea afectată circuitelor). În cazurile simple, cînd bobina (fără energie) este cuplată la o sursă de tensiune constantă, curentul variază di E liniar (ca în figura 6.3). Panta curbei din figură este: = dt L Figura 6.3: Creşterea curentului prin bobina ideală, sursa este tot ideală Figura 6.4: Creşterea curentului prin bobina reală Dacă neglijăm rezistenţa internă a sursei şi rezistenţa bobinei, curentul ar creşte nemărginit. Dar sursa de tensiune nu poate livra un curent mai mare decît o valoare maximă, deci va ieşi din funcţionarea normală cînd atinge acest curent. În realitate, rareori se ajunge la situaţia în care sursa de tensiune ajunge la curentul maxim, deoarece intervine o altă limitare. Modelul trebuie completat cu rezistenţa internă a sursei şi cu rezistenţa bobinei. Cele două rezistenţe limitează curentul, aşa cum este prezentat în figura 6.4. O descriere analitică a variaţiei curentului şi tensiunii în regimul tranzitoriu se va face în subcapitolul 8.. N.B. Curentul prin bobină nu variază brusc (cu discontinuităţi), deoarece este integrala tensiunii la borne (care are discontinuităţi cel mult de speţa I). N.B. Tentativa de întrerupere a curentului prin bobină produce descărcare violentă de energie (datorită tensiunii de autoinducţie)! 6. Inductanţa în regim sinusoidal permanent Dacă i(t) este semnal sinusoidal, în regim permanent: i( t) = I sin( ωt). Presupunem că bobina se comportă liniar şi este caracterizată numai prin inductanţa L. di( t) Atunci tensiunea este: u ( t) = L = L I ω cos( ωt) = L I ω sin( ωt + π / ). dt Cele două mărimi sînt de aceeaşi formă, dar tensiunea este defazată înaintea curentului cu un sfert de perioadă (echivalent: curentul este în urma tensiunii). Defazajul este opus faţă de condensator, unde tensiunea este în urma curentului. În figura 6.5, semnalul sinusoidal are perioada 1,5 ms (frecvenţa 800 Hz). Laurenţiu Frangu Componente şi circuite pasive, 008 3

4 Figura 6.5: Forma tensiunii şi a curentului prin bobina ideală, regim sinusoidal permantent Modulul impedanţei, ca raport între amplitudinile tensiunii şi curentului: L I ω Z = = ωl. I Reactanţa inductivă (reprezentarea în numere complexe): Z = jωl. Bobina înmagazinează energie: L i ( t ) W ( t) = (demonstraţie asemănătoare cu cea de la condensator). 6.3 Circuit echivalent al bobinei reale Figura 6.6: Un circuit echivalent al bobinei reale În figura 6.6 este prezentat un circuit echivalent al bobinei reale. Bobina ideală nu disipă energie. Bobina reală presupune şi comportarea disipativă, prin următoarele fenomene: disipaţie în conductorul bobinei disipaţie prin remagnetizare, la miezuri feromagnetice şi ferimagnetice (proporţională cu aria ciclului de histerezis şi cu frecvenţa) disipaţie prin curenţi turbionari, induşi în materialele conductoare din apropiere (cel mai adesea, în miezul metalic). Efect semnificativ asupra inductanţei: numai miezul feromagnetic, ferimagnetic. Efect semnificativ asupra pierderilor prin curenţi turbionari: orice miez metalic, conductor, plus metalul înconjurător, depinde de frecvenţă şi de rezistivitate. Efect semnificativ asupra pierderilor prin remagnetizare: miez fero- sau ferimagnetic, cu ciclu de histerezis lat. Laurenţiu Frangu Componente şi circuite pasive,

5 Efect semnificativ asupra pierderilor prin conducţie: rezistivitatea conductorului şi efectul pelicular (depinde de frecvenţă). Figura 6.7: Secţiune transversală prin conductor, aria zonei în care se găseşte cîmp Efectul pelicular constă în concentrarea fluxului de energie la suprafaţa conductorului, cu atît mai puţin adînc cu cît frecvenţa este mai mare. În figura 6.7 apare un desen aproximativ al secţiunii prin conductor, în care este haşurată aria prin care circulă curentul. O explicaţie intuitivă: pătrunderea cîmpului electromagnetic în adîncimea conductorului necesită timp tranzitoriu. La frecvenţe mari, perioada oscilaţiilor este foarte mică, insuficientă pentru a permite propagarea în adîncime, înainte de a apărea alternanţa următoare (inversarea sensului cîmpului). Ca urmare, aria secţiunii prin care conductorul transportă energie este din ce în ce mai mică, pe măsură ce frecvenţa creşte. Măsuri tehnologice la fabricarea bobinelor, care vor funcţiona la frecvenţe mari: - Bobinele care lucrează la frecvenţe zeci de MHz se confecţionează din conductor cu multe fire subţiri ( liţă de radiofrecvenţă ), pentru ca suprafaţa conductoarelor să fie mare, în volum mic (pierderi mici). - Bobinele care funcţionează la frecvenţe de sute de MHz, se confecţionează din conductor argintat, deoarece argintul este un conductor foarte bun, iar adîncimea de pătrundere la frecvenţe mari este comparabilă cu grosimea stratului de argint. Similar, terminalele condensatoarelor de decuplare la frecvenţe mari se argintează. - La frecvenţe de ordinul GHz, se folosesc ghiduri de undă, ale căror suprafeţe interioare se argintează. - Miezul din oţel se fragmentează în tole (valabil la frecvenţe mici, pentru că miezul din oţel nu se foloseşte la frecvenţe mai mari de cîţiva khz). Aşa cum a fost descris mai sus, efectele disipative se produc prin mai multe fenomene. Dintre ele, remagnetizarea din miezul feromagnetic sau ferimagnetic este producătoare de neliniaritate, deoarece prezintă atît efectul de saturare cît şi histerezis magnetic. Dimpotrivă, disipaţia în conductorul bobinei şi în conductoarele alăturate nu induce o comportare neliniară vizibilă (chiar dacă disipaţia prin curenţi turbionari depinde de frecvenţă, ea are pondere mică, la frecvenţele uzuale). Se mai poate aproxima ca fiind liniară funcţionarea bobinelor cu miez, dacă miezul are caracteristică îngustă ( ferită moale ) iar intensitatea cîmpului este foarte mică, în comparaţie cu intensitatea cîmpului coercitiv. Pentru cazul comportării liniare, parametrul care descrie raportul dintre componenta reactivă şi cea disipativă este factorul de calitate al bobinei, notat Q. Rezistenţa de pierderi cumulează pierderile prin conducţie şi curenţi turbionari. Ea se figurează în serie cu inductanţa, ca în figurile 6.6 şi 6.8. Pe diagrama fazorială din figura 6.8 se pot exprima factorul de calitate şi impedanţa bobinei: Figura 6.8: Reprezentarea fazorială pentru bobina reală Q = ωl Z = r + jωl r 1 Z = r + ω L = ωl 1+ Q Laurenţiu Frangu Componente şi circuite pasive,

6 În cazul comportării neliniare, se defineşte o rezistenţă echivalentă medie, ţinînd cont de energia disipată în unitatea de timp şi de energia înmagazinată în cîmp magnetic. Totuşi, această rezistenţă foloseşte numai la calculul pierderilor, nu şi pentru un calcul riguros al defazajelor, deoarece regimul nu mai poate fi sinusoidal (nu este valabilă diagrama din figura 6.8). Bobinele cu miez fero- şi feri-magnetic se folosesc în circuitele de putere, pentru filtrare sau ca transformatoare. În majoritatea aplicaţiilor, saturarea miezului este un efect nedorit. Spre exemplu, saturarea miezului unui transformator determină creşterea rapidă a curentului, fără a produce tensiunea dorită în secundar. De aceea, fenomenul este evitat din faza de proiectare, adică se dimensionează miezul astfel încît să nu se atingă saturaţia, chiar la curent maxim. Uneori se introduce spaţiu cu aer în circuitul magnetic (întrefier). Bobine cu miez ferimagnetic se folosesc în tehnica de radiofrecvenţă, pentru circuite rezonante şi pentru inductanţă variabilă. 6.4 Mărimi caracteristice ale bobinei Inductanţa (inductivitatea) nominală este valoarea precizată de producător, uneori marcată pe bobină. Multe bobine nu au valoarea nominală marcată. Multe bobine sînt produse chiar de fabricantul de aparate, sau sînt produse la cerere, numai pentru un client. Produse de catalog, fabricate în serii mari, sînt bobinele de putere foarte mică, în tehnologie SMD, bobinele reglabile (pentru tehnica de radiofrecvenţă) şi transformatoarele pe miez de tole din oţel sau miez de ferită, pentru convertoare de putere mică. În schimb, miezurile de ferită sînt produse de catalog (serii mari). Toleranţa este abaterea maximă admisibilă a inductanţei, în raport cu valoarea nominală, la temperatura de referinţă. La bobine, dispersia parametrică este mare (peste 10%), din cauza incertitudinilor constructive, cu excepţia componentelor SMD. Curentul maxim este valoarea maximă admisibilă a curentului efectiv. Această valoare este impusă de fenomenul de disipaţie, care depinde de frecvenţă, deci va fi precizată o valoare maximă a curentului continuu şi o valoare maximă a curentului pentru o frecvenţă de referinţă. Tensiunea instantanee maximă este limitată de posibilitatea de descărcare între spire sau între capetele bobinei. Gama temperaturilor ambiante de funcţionare şi de depozitare. Puterea disipată maximă este importantă, din punctul de vedere al limitării temperaturii interne de funcţionare. Rezistenţa de izolaţie între conductor şi izolaţia exterioară. Alţi parametri privesc gabaritul, regimul climatic, încercarea mecanică, parametrii de fiabilitate ai lotului. 6.5 Tipuri de bobine, după destinaţie - Bobine fără miez, pentru circuite de acord sau oscilatoare la frecvenţe foarte mari, curent mic. Se bobinează pe carcase de plastic sau fără carcasă ( în aer ). - Bobine realizate pe cablajul imprimat (inductanţe mici). - Bobine în tehnologia SMD, curenţi foarte mici, funcţionare la frecvenţe mari, atît în tehnica radio cît şi în convertoare. - Bobine cu miez de ferită (inclusiv transformatoare), ajustabil sau fix, pentru circuite de acord, filtre de radiofrecvenţă, oscilatoare (curent mic, figura 6.9 şi ultimele două din figura 6.10). Se doreşte factor de calitate cît mai bun. Laurenţiu Frangu Componente şi circuite pasive,

7 - Bobine cu miez de ferită, pentru separarea componentei continue de cea de radiofrecvenţă ( şoc de radiofrecvenţă ). - Bobine cu miez de ferită pentru acumulare de energie sau transformator, în convertoare de putere mică sau mijlocie (figura 6.11). Se doreşte un raport inductanţă/gabarit cît mai bun. Dimensiunile miezului scad odată cu creşterea frecvenţei, ceea ce favorizează lucrul la frecvenţe mai mari decît cea a reţelei (zeci de khz). În plus, filtrarea armonicelor superioare este mai simplă, la frecvenţe mari (componente reactive de gabarit mai mic). - Bobine şi transformatoare cu miez din tole de oţel, pentru circuite de putere. Miezul se execută din tole, pentru a micşora disipaţia prin curenţi turbionari. Tolele sînt subţiri, cu dimensiunile principale în sensul liniilor de cîmp. - Bobine pentru relee (curent continuu, curent alternativ). Marcarea valorilor (acolo unde este cazul) se face în clar. Figura 6.9: Bobine cu miez de ferită, reglabile, tehnica radio Figura 6.10: Bobine cu miez de ferită, fixe (convertoare, şoc de radiofrecvenţă) sau ajustabile (tehnica radio) Figura 6.11: Bobine cu miez de ferită, toroidale, pentru convertoare Aspecte tehnologice: - Carcasă izolatoare sau lipsa carcasei - Conductor rigid sau multifilar - Conductor argintat (frecvenţe mari) - Bobinare dificilă la miezuri toroidale Laurenţiu Frangu Componente şi circuite pasive,

8 - Miez din tole - Ajustarea inductanţei prin rotirea miezului (bobine de acord în tehnica radio) Tipuri de miez de ferită (figurile ): - Bară - Tor - Oală cu mosor - oale, X - Miezuri cu, 3, 4 găuri Tipuri de miez de oţel electrotehnic (figura 6.1): - C + I, x C - E + I - x E Figura 6.1: Miezuri din tole de oţel 6.6 Comportarea neliniară a bobinei Materialele feromagnetice şi ferimagnetice folosite la multe aplicaţii din electronică are aspectul din figura 6.13 (curba desenată cu negru). Este vorba despre materiale magnetice moi, cu valoare mică a cîmpului coercitiv, care se folosesc la aplicaţii de putere (transformatoare, bobine de filtrare a curentului) şi de prelucrare a semnalului (bobine din oscilatoare, bobine de suprimare a curentului la frecvenţe mari, circuite rezonante). Ciclul de histerezis magnetic pentru materialele magnetice dure este caracterizat prin valori mari ale cîmpului coercitiv, ca şi prin forma mai apropiată de un dreptunghi (valoarea inducţiei remanente este apropiată de a inducţiei de saturaţie, ca în curba desenată cu roşu în figura 6.13). Materialele dure sînt folosite în magneţi permanenţi (în trecut, au mai fost folosite pentru memoriile calculatoarelor, dar această utilizare este depăşită). Laurenţiu Frangu Componente şi circuite pasive,

9 Figura 6.13: Ciclul de histerezis magnetic (cu negru ferita moale, cu roşu ferita dură) Dacă o bobină cu un miez feromagnetic moale este alimentată la o sursă de tensiune sinusoidală, iar intensitatea cîmpului depăşeşte valoarea de saturaţie, curentul are aspectul din figura Dimpotrivă, dacă este alimentată la o sursă de curent constant, tensiunea este deformată, în sensul aplatisării vîrfurilor. Cu excepţia unor aplicaţii speciale din electronica de putere, miezul trebuie dimensionat astfel încît să nu se satureze, altfel el va determina curenţi mari (posibilitate de distrugere), fără nici un efect din partea cîmpului magnetic. Figura 6.14: Curentul prin bobină cu miez saturat, cînd tensiunea este sinusoidală 6.7 Funcţionarea releelor Releele sînt componente electromecanice. Ele sînt formate dintr-o componentă electrică (bobina care crează cîmp magnetic în miezul feromagnetic) şi o componentă mecanică mobilă (fracţiune mobilă din miezul feromagnetic, numită armătura mobilă). Structura schematică a unui releu şi simbolul pentru reprezentarea în scheme (un contact normal deschis) sînt prezentate în figura Figura 6.14: Structura mecanică şi simbolul releului Modul de funcţionare. Armătura mobilă este atrasă spre cea fixă, atunci cînd fluxul magnetic depăşeşte un prag (implicit, cînd curentul prin bobină depăşeşte pragul de atragere). Se spune că releul este atras. Armătura mobilă se îndepărtează de cea fixă (de regulă, cu ajutorul unui arc), atunci cînd fluxul magnetic scade sub un prag (implicit, cînd curentul prin bobină scade sub pragul de relaxare). Se spune că releul este în repaus sau relaxat. Pragul de atragere are valoare mai mare decît cel de relaxare, astfel încît releul prezintă un efect de histerezis electromecanic (alt fenomen decît histerezisul magnetic al miezului). Pe partea fixă şi pe partea mobilă a miezului sînt prinse perechi de contacte electrice. Unele dintre acestea sînt deschise cînd releul este în repaus şi se vor închide cînd releul este atras (contacte normal deschise ). Celelalte contacte sînt închise cînd releul este în repaus şi se deschid cînd releul este atras Laurenţiu Frangu Componente şi circuite pasive,

10 (contacte normal închise ). Din cauza părţilor mecanice aflate în mişcare, timpii de închidere, respectiv de deschidere a contactelor (numiţi timpul de zbor al contactelor) sînt mari, în comparaţie cu timpii tranzitorii uzuali din circuitele electronice. Valori uzuale ale timpului de zbor: ms. Timpul de zbor la atragere nu este egal cu cel de la relaxare. Tot din cauza structurii mecanice, releul este producător de vibraţii mecanice şi poate fi perturbat de existenţa vibraţiilor mecanice în mediu (se poate întrerupe curentul prin contactele releului atras, din cauza vibraţiilor). Mărimi caracteristice ale releelor: - Tensiunea nominală pe bobină - Curentul nominal prin bobină - Rezistenţa bobinei - Inductanţa bobinei în cele două stări (atras, relaxat) - Curentul maxim prin contactele releului - Tensiunea maximă pe care o pot întrerupe contactele releului - Timpul de zbor la atragere - Timpul de zbor la relaxare Scopul releului este de a comanda închiderea sau deschiderea de circuite electrice, printr-un curent care circulă separat de acel circuit. Circuitul comandat transportă fie puteri mari, fie semnale slabe (cu scop de informaţie). În primul caz, curentul prin bobină este de valoare mică, în comparaţie cu cel comandat, deci scopul este de a comanda circuite de putere mare prin comenzi de putere mică, izolate galvanic. Exemple: aplicaţiile de electronică de putere, comanda circuitelor de iluminat. Tipurile de aparate de comutaţie electrică, cu funcţie de releu, prevăzute a comuta curenţi mari (peste 10A) se numesc contactoare. Tipul de releu folosit pentru comanda curentului prin bobina unui contactor se numeşte releu intermediar. Exemplu de caracteristici pentru un releu intermediar: tensiune nominală de alimentare a bobinei la 4Vcc, curent nominal prin bobină 40mA, perechi de contacte normal deschise şi perechi de contacte normal închise, cuent maxim prin contacte A, tensiune maximă pe contacte 300V, timp de zbor 30ms. În al doilea caz, puterea în circuitul comandat este neglijabilă, deci scopul este protecţia circuitelor de semnal care vin în contact cu omul sau cu aparate scumpe. Exemplu: releele care cuplează circuitele de transmisiuni la linia de comunicaţie, releele de intrare în telefon, în fax, în placa de reţea a calculatorului, unde efectul unei descărcări electrice atmosferice este distrugător. Circuitul echivalent al bobinei este format din inductanţă în serie cu rezistenţa, ca în figura Inductanţa se modifică în momentul atragerii releului (are o valoare sensibil mai mare după ce s-a închis circuitul magnetic, decît în starea relaxată). La releele de c.c., rezistenţa echivalentă este chiar rezistenţa ohmică a bobinei. La releele de c.a., rezistenţa echivalentă este compusă din rezistenţa ohmică, rezistenţa de pierderi prin histerezis magnetic şi cea de pierderi prin curenţi turbionari. Figura 6.15: Circuitul echivalent al bobinei releului Figura 6.15: Variaţia curentului la atragere (bobină în c.a.) Unele relee sînt proiectate astfel ca bobina să fie alimentată în c.a.. Acestea au avantajul că, după atragerea armăturii mobile, curentul prin bobină scade puternic, din cauză că reactanţa inductivă a crescut semnificativ (figura 6.16). Consecinţa este consumul redus de curent. Dezavantajul acestui tip de releu este Laurenţiu Frangu Componente şi circuite pasive,

11 că, atunci cînd armătura mobilă este blocată mecanic în poziţia relaxată, curentul rămîne foarte mare şi bobina se arde. Este important ca realizarea mecanică să prevină astfel de situaţii. Limitarea curentului prin bobină, în regim de releu atras, este efectul reactanţei inductive. A doua variantă de proiectare este pentru alimentarea în c.c.. Limitarea curentului se face doar prin rezistenţa ohmică a bobinei, deci bobina nu se poate arde, chiar dacă circuitul magnetic rămîne deschis. Dezavantajul este consumul de curent, mai mare decît în cazul alimentării în c.a.. Limitarea curentului prin bobină, în regim de releu atras, este doar efectul rezistenţei ohmice. În figura 6.17 este prezentat graficul curentului printr-o bobină alimentată în curent continuu, la atragerea şi relaxarea releului. S-a presupus că există un circuit destinat descărcării energiei din bobină, atunci cînd dorim suprimarea curentului (acest circuit va fi studiat la un alt curs). Valoarea I n este curentul nominal prin bobină, I 1 este pragul de atragere, iar I este pragul de relaxare. În figura 6.18 apare un exemplu tipic de circuit în care releul este folosit pentru transmiterea de informaţie, la puteri mici. Rolul diodei D este de a permite descărcarea energiei din bobină, fără străpungeri, atunci cînd se întrerupe alimentarea bobinei releului. Figura 6.17: Variaţia curentului (c.c.) prin bobina releului, la atragere şi la relaxare Figura 6.18: Circuit pentru transmiterea informaţiei prin releu 6.8 Funcţionarea transformatoarelor Transformatorul este o maşină electrică, fără componente mecanice în mişcare. El posedă cel puţin două bobine pe acelaşi miez sau o bobină cu priză (în cazul autotransformatorului), dar poate avea mai multe bobine (fiecare bobină este situată în cîmpul creat de celelate). Bobinele sînt realizate pe un miez ferosau ferimagnetic, cu excepţia transformatoarelor de frecvenţe foarte mari, care pot lucra fără miez. De regulă, una dintre înfăşurări preia energie sau informaţie de la o sursă, pe care le livrează către celelalte înfăşurări. Prima se numeşte înfăşurare primară (pe scurt: primar), iar celelalte se numesc înfăşurări secundare. Simbolurile transformatoarelor cu miez fero- şi ferimagnetic sînt prezentate în figura Efectul esenţial este inducerea unei tensiuni în înfăşurarea secundară, pe seama variaţiei curentului din înfăşurarea primară. De aici se deduce că transformatorul nu poate fi folosit pentru transferul de energie în c.c.. Mai mult, cu cît frecvenţa de bază a tensiunii aplicate în primar este mai mică, cu atît este necesar un miez mai voluminos. Ca şi în cazul releului, scopul poate fi transmiterea de energie sau de informaţie. Transformatoarele folosite în surse de alimentare şi în echipamente electronice de putere au rol preponderent energetic. În tehnica radio, în Laurenţiu Frangu Componente şi circuite pasive,

12 traductoare, în comunicaţiile de voce şi de date se folosesc transformatoare pentru scopul informaţional (adaptarea impedanţelor, izolare galvanică, cuplarea sarcinii sau a reacţiei în oscilatoare etc.). Figura 6.19: Simbolurile transformatoarelor cu miez feromagnetic şi ferimagnetic Pentru cazul general, al unor tensiuni şi curenţi de formă neprecizată, modelul transformatorului conţine ecuaţiile diferenţiale scrise pentru bobina primară şi cea secundară, în care apare şi efectul inductanţei mutuale (cuplarea între cele două bobine). Neliniaritatea miezului (curba de primă magnetizare, fenomenul de histerezis magnetic) complică serios ecuaţiile. Pentru unele cazuri particulare, cînd efectul neliniarităţii este mic, se pot folosi modele simplificate. Presupunem că fiecare înfăşurare a transformatorului este caracterizată prin: - inductanţa proprie (inclusiv efectul miezului), L k - rezistenţa de pierderi, r k - numărul de spire, n k 1. În cazul cînd secundarul nu este cuplat la o sarcină, contează doar comportarea primarului, ca o bobină de sine stătătoare, caracterizată prin inductanţa L 1 şi rezistenţa de pierderi r 1, ca în figura În cazul regimului permanent sinusoidal, dacă puterea transferată către secundar este semnificativă (comparabilă cu puterea nominală) iar impedanţa de sarcină (din secundar) are caracter pur rezistiv, se pot neglija energia înmagazinată în bobine şi puterea pierdută în conductoare şi în miez (randamentul este aproximat ca fiind 100%). În acest regim, se obişnuieşte ca mărimile U şi I să desemneze valorile efective ale tensiunii şi curentului (totuşi, modelul este valabil şi pentru valorile de vîrf ale mărimilor). Modelarea analitică a funcţionării transformatorului poate fi simplificată astfel: U n =, P 1 = U1I1 = P = UI, U1 n1 unde indicele 1 semnifică primarul. I Rezultă: n = 1. I1 n 3. Pentru regim periodic, altul decît cel sinusoidal, se aplică acelaşi model, cu condiţia ca armonicele superioare să nu depăşească domeniul de frcvenţe pentru care a fost proiectat transformatorul. Semnificaţiile mărimilor rămîn aceleaşi. 4. Dacă transformatorul are mai multe înfăşurări secundare prin care se închid curenţi, modelul care descrie transferul de putere va conţine ecuaţiile tensiunilor secundare şi ecuaţia care egalează puterea din primar cu suma puterilor livrate în secundare. Pentru regimurile particulare şi 3, prezentate mai sus, circuitul echivalent al transformatorului poate fi separat în două circuite (pentru scrierea comodă a ecuaţiilor în primar şi secundar). Presupunem că circuitul în care este folosit transformatorul are aspectul din figura 6.0 (sarcină rezistivă). Laurenţiu Frangu Componente şi circuite pasive,

13 Figura 6.0: Circuit în care este folosit transformatorul (regim periodic) Circuitul echivalent al transformatorului, văzut la bornele generatorului, este o rezistenţă cu valoarea: n1 1 R = Rs (circuitul echivalent în figura 6.1). Această valoare poartă numele de rezistenţa de sarcină n reflectată în primar. Pentru mai multe secundare care lucrează simultan, rezistenţele reflectate apar în paralel. Figura 6.1: Circuitul echivalent în primar (conţine rezistenţa reflectată din secundar) Circuitul echivalent al transformatorului, văzut la bornele sarcinii, este un generator de tensiune cu valoarea n E = Eg n şi cu rezistenţa internă de valoare: n R = Rg. Această valoare poartă numele de 1 n1 rezistenţă a generatorului reflectată în secundar (circuitul echivalent în figura 6.). Figura 6.: Circuitul echivalent în secundar (cu generatorul echivalent şi rezistenţa reflectată din primar) Pentru a cunoaşte faza tensiunii şi curentului din secundar, se foloseşte convenţia bornelor polarizate (prezente în figurile 6.19, 6.0), astfel: faza tensiunii măsurate de la borna polarizată a secundarului spre cea opusă este identică cu cea măsurată de la borna polarizată a primarului spre cea opusă. Un exemplu important de aplicare a convenţiei apare atunci cînd transformatorul are mai multe secundare, legate între ele. În figura 6.3, apar două situaţii diferite: în cazul a sînt legate o bornă polarizată cu una nepolarizată. Tensiunea U este suma celor două tensiuni secundare. În al doilea caz, se măsoară tensiunea dintre două borne de acelaşi fel, iar valoarea ei este diferenţa dintre cele două tensiuni secundare. În particular, dacă cele două secundare au acelaşi număr de spire, tensiunea rezultantă în cazul b este nulă. a b Figura 6.3: Transformator cu două secundare. Sumarea (a) şi scăderea (b) tensiunilor secundare Laurenţiu Frangu Componente şi circuite pasive, 008 4

14 NB. Tot o convenţie a notaţiilor se aplică şi pentru sensul curentului. Spre exemplu, în figura 6.0, semnul lui I este contrar faţă de cel al lui I 1. Dacă se întîmplă că bobinele au acelaşi număr de spire, atunci i( t) = i1 ( t). Mărimile caracteristice ale transformatorului sînt: - Intervalul frecvenţelor de lucru - Tensiunea nominală din primar - Tensiunile nominale pe secundare - Puterea maximă totală transferată spre secundare (puterea nominală a transformatorului) - Curentul maxim prin primar - Curentul maxim prin fiecare secundar Probleme propuse Determinarea puterii maxime disipate pentru un rezistor, cînd temperatura ambiantă este... Determinarea intervalului de valori posibile ale unui lot de rezistoare (se cunosc valoarea nominală şi clasa de toleranţă) Determinarea rezistenţei unui rezistor la altă temperatură decît cea de referinţă Determinarea valorii rezistenţei (capacităţii) marcate numeric Evaluarea capacităţii, inductanţei (din geometria componentei) Determinarea reactanţelor capacitivă şi inductivă, a factorilor de pierderi, a energiei înmagazinate Diagrame fazoriale, determinarea defazajelor, a impedanţelor şi a mărimilor variabile Determinarea tensiunilor, curentului, puterii într-un transformator, determinarea impedanţelor reflectate şi a circuitului echivalent al transformatorului. Determinarea tensiunilor compuse din mai multe secundare, convenţia bornelor polarizate. Laurenţiu Frangu Componente şi circuite pasive,

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1.

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1. Curentul alternativ 1. Voltmetrele din montajul din figura 1 indică tensiunile efective U = 193 V, U 1 = 60 V și U 2 = 180 V, frecvența tensiunii aplicate fiind ν = 50 Hz. Cunoscând că R 1 = 20 Ω, să se

Διαβάστε περισσότερα

N 1 U 2. Fig. 3.1 Transformatorul

N 1 U 2. Fig. 3.1 Transformatorul SRSE ŞI CIRCITE DE ALIMETARE 3. TRASFORMATORL 3. Principiul transformatorului Transformatorul este un aparat electrotehnic static, bazat pe fenomenul inducţiei electromagnetice, construit pentru a primi

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

TRANSFORMATOARE MONOFAZATE DE SIGURANŢĂ ŞI ÎN CARCASĂ

TRANSFORMATOARE MONOFAZATE DE SIGURANŢĂ ŞI ÎN CARCASĂ TRANSFORMATOARE MONOFAZATE DE SIGURANŢĂ ŞI ÎN CARCASĂ Transformatoare de siguranţă Este un transformator destinat să alimenteze un circuit la maximum 50V (asigură siguranţă de funcţionare la tensiune foarte

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Fig Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30].

Fig Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30]. Fig.3.43. Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30]. Fig.3.44. Dependenţa curentului de fugă de raportul U/U R. I 0 este curentul de fugă la tensiunea nominală

Διαβάστε περισσότερα

5. Condensatoare. 5.1 Proprietăţi şi model analitic

5. Condensatoare. 5.1 Proprietăţi şi model analitic 5. Condensatoare Cuprinsul capitolului: - Proprietate esenţială, model analitic simplificat, unitate de măsură, simbol - Circuit echivalent, condensatorul în regim permanent sinusoidal - Mărimi caracteristice

Διαβάστε περισσότερα

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Conf.dr.ing. Lucian PETRESCU CURS 4 ~ CURS 4 ~

Conf.dr.ing. Lucian PETRESCU CURS 4 ~ CURS 4 ~ Conf.dr.ing. Lucian PETRESC CRS 4 ~ CRS 4 ~ I.0. Circuite electrice în regim sinusoidal În regim dinamic, circuitele electrice liniare sunt descrise de ecuaţii integro-diferenţiale. Tensiunile şi curenţii

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Tranzistoare bipolare cu joncţiuni

Tranzistoare bipolare cu joncţiuni Tranzistoare bipolare cu joncţiuni 1. Noţiuni introductive Tranzistorul bipolar cu joncţiuni, pe scurt, tranzistorul bipolar, este un dispozitiv semiconductor cu trei terminale, furnizat de către producători

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

TEORIA CIRCUITELOR ELECTRICE

TEORIA CIRCUITELOR ELECTRICE TEOA TEO EETE TE An - ETT S 9 onf. dr.ing.ec. laudia PĂA e-mail: laudia.pacurar@ethm.utcluj.ro TE EETE NAE ÎN EGM PEMANENT SNSODA /8 EZONANŢA ÎN TE EETE 3/8 ondiţia de realizare a rezonanţei ezonanţa =

Διαβάστε περισσότερα

L2. REGIMUL DINAMIC AL TRANZISTORULUI BIPOLAR

L2. REGIMUL DINAMIC AL TRANZISTORULUI BIPOLAR L2. REGMUL DNAMC AL TRANZSTRULU BPLAR Se studiază regimul dinamic, la semnale mici, al tranzistorului bipolar la o frecvenţă joasă, fixă. Se determină principalii parametrii ai circuitului echivalent natural

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

Electronică anul II PROBLEME

Electronică anul II PROBLEME Electronică anul II PROBLEME 1. Găsiți expresiile analitice ale funcției de transfer şi defazajului dintre tensiunea de ieşire şi tensiunea de intrare pentru cuadrupolii din figurile de mai jos și reprezentați-le

Διαβάστε περισσότερα

Circuite cu diode în conducţie permanentă

Circuite cu diode în conducţie permanentă Circuite cu diode în conducţie permanentă Curentul prin diodă şi tensiunea pe diodă sunt legate prin ecuaţia de funcţionare a diodei o cădere de tensiune pe diodă determină valoarea curentului prin ea

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.

Διαβάστε περισσότερα

SIGURANŢE CILINDRICE

SIGURANŢE CILINDRICE SIGURANŢE CILINDRICE SIGURANŢE CILINDRICE CH Curent nominal Caracteristici de declanşare 1-100A gg, am Aplicaţie: Siguranţele cilindrice reprezintă cea mai sigură protecţie a circuitelor electrice de control

Διαβάστε περισσότερα

11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite

Διαβάστε περισσότερα

Electronică Analogică. Redresoare

Electronică Analogică. Redresoare Electronică Analogică Redresoare Cuprins 1. Redresoare 2. Invertoare 3. Circuite de alimentare în comutaţie 4. Stabilizatoare electronice de tensiune 5. Amplificatoare 6. Oscilatoare electronice Introducere

Διαβάστε περισσότερα

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE MMIC Monolithic Microwave Integrated Circuit CUPRINS 1. Avantajele si limitarile MMIC 2. Modelarea dispozitivelor active 3. Calculul timpului de viata al MMIC

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Dispozitive Electronice şi Electronică Analogică Suport curs 01 Notiuni introductive

Dispozitive Electronice şi Electronică Analogică Suport curs 01 Notiuni introductive 1. Reprezentarea sistemelor electronice sub formă de schemă bloc În figura de mai jos, se prezintă schema de principiu a unui circuit (sistem) electronic. sursă de energie electrică intrare alimentare

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Polarizarea tranzistoarelor bipolare

Polarizarea tranzistoarelor bipolare Polarizarea tranzistoarelor bipolare 1. ntroducere Tranzistorul bipolar poate funcţiona în 4 regiuni diferite şi anume regiunea activă normala RAN, regiunea activă inversă, regiunea de blocare şi regiunea

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

CIRCUITE CU DZ ȘI LED-URI

CIRCUITE CU DZ ȘI LED-URI CICUITE CU DZ ȘI LED-UI I. OBIECTIVE a) Determinarea caracteristicii curent-tensiune pentru diode Zener. b) Determinarea funcționării diodelor Zener în circuite de limitare. c) Determinarea modului de

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Clasa a X-a, Producerea si utilizarea curentului electric continuu

Clasa a X-a, Producerea si utilizarea curentului electric continuu 1. Ce se întămplă cu numărul de electroni transportaţi pe secundă prin secţiunea unui conductor de cupru, legat la o sursă cu rezistenta internă neglijabilă dacă: a. dublăm tensiunea la capetele lui? b.

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Figura 1. Caracteristica de funcţionare a modelului liniar pe porţiuni al diodei semiconductoare..

Figura 1. Caracteristica de funcţionare a modelului liniar pe porţiuni al diodei semiconductoare.. I. Modelarea funcţionării diodei semiconductoare prin modele liniare pe porţiuni În modelul liniar al diodei semiconductoare, se ţine cont de comportamentul acesteia atât în regiunea de conducţie inversă,

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

Examen. Site Sambata, S14, ora (? secretariat) barem minim 7 prezente lista bonus-uri acumulate

Examen. Site   Sambata, S14, ora (? secretariat) barem minim 7 prezente lista bonus-uri acumulate Curs 12 2015/2016 Examen Sambata, S14, ora 10-11 (? secretariat) Site http://rf-opto.etti.tuiasi.ro barem minim 7 prezente lista bonus-uri acumulate min. 1pr. +1pr. Bonus T3 0.5p + X Curs 8-11 Caracteristica

Διαβάστε περισσότερα

MOTOARE DE CURENT CONTINUU

MOTOARE DE CURENT CONTINUU MOTOARE DE CURENT CONTINUU În ultimul timp motoarele de curent continuu au revenit în actualitate, deşi motorul asincron este folosit în circa 95% din sistemele de acţionare electromecanică. Această revenire

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

REDRESOARE MONOFAZATE CU FILTRU CAPACITIV

REDRESOARE MONOFAZATE CU FILTRU CAPACITIV REDRESOARE MONOFAZATE CU FILTRU CAPACITIV I. OBIECTIVE a) Stabilirea dependenţei dintre tipul redresorului (monoalternanţă, bialternanţă) şi forma tensiunii redresate. b) Determinarea efectelor modificării

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni Problema 1. Se dă circuitul de mai jos pentru care se cunosc: VCC10[V], 470[kΩ], RC2,7[kΩ]. Tranzistorul bipolar cu joncţiuni (TBJ) este de tipul BC170 şi are parametrii β100 şi VBE0,6[V]. 1. să se determine

Διαβάστε περισσότερα

Propagarea Interferentei. Frecvente joase d << l/(2p) λ. d > l/(2p) λ d

Propagarea Interferentei. Frecvente joase d << l/(2p) λ. d > l/(2p) λ d 1. Introducere Sunt discutate subiectele urmatoare: (i) mecanismele de cuplare si problemele asociate cuplajelor : cuplaje datorita conductiei (e.g. datorate surselor de putere), cuplaje capacitive si

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

PROBLEME DE ELECTRICITATE

PROBLEME DE ELECTRICITATE PROBLEME DE ELECTRICITATE 1. Două becuri B 1 şi B 2 au fost construite pentru a funcţiona normal la o tensiune U = 100 V, iar un al treilea bec B 3 pentru a funcţiona normal la o tensiune U = 200 V. Puterile

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

Maşina sincronă. Probleme

Maşina sincronă. Probleme Probleme de generator sincron 1) Un generator sincron trifazat pentru alimentare de rezervă, antrenat de un motor diesel, are p = 3 perechi de poli, tensiunea nominală (de linie) U n = 380V, puterea nominala

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Transformatoare de mică putere Relaţii de proiectare

Transformatoare de mică putere Relaţii de proiectare U.T. Gh. Asachi Iaşi Facultatea de Electronică şi Telecomunicaţii Componente şi Circuite Pasive Notaţii utilizate : Transformatoare de mică putere Relaţii de proiectare B [T] - valoarea efectivă a inducţiei

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

Electronică STUDIUL FENOMENULUI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE

Electronică STUDIUL FENOMENULUI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE STDIL FENOMENLI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE Energia electrică este transportată şi distribuită la consumatori sub formă de tensiune alternativă. În multe aplicaţii este însă necesară utilizarea

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

(N) joncţiunea BC. polarizată invers I E = I C + I B. Figura 5.13 Prezentarea funcţionării tranzistorului NPN

(N) joncţiunea BC. polarizată invers I E = I C + I B. Figura 5.13 Prezentarea funcţionării tranzistorului NPN 5.1.3 FUNŢONAREA TRANZSTORULU POLAR Un tranzistor bipolar funcţionează corect, dacă joncţiunea bază-emitor este polarizată direct cu o tensiune mai mare decât tensiunea de prag, iar joncţiunea bază-colector

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

i R i Z D 1 Fig. 1 T 1 Fig. 2

i R i Z D 1 Fig. 1 T 1 Fig. 2 TABILIZATOAE DE TENINE ELECTONICĂ Lucrarea nr. 5 TABILIZATOAE DE TENINE 1. copurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare

Διαβάστε περισσότερα

8.3 Analiza regimului permanent sinusoidal (abordarea frecvenţială)

8.3 Analiza regimului permanent sinusoidal (abordarea frecvenţială) 8.3 Analiza regimului permanent sinusoidal abordarea frecvenţială În subcapitolul precedent, a fost analizată comportarea unui circuit simplu ordinul I, în regimul tranzitoriu. Au fost determinate tensiunea

Διαβάστε περισσότερα

ENUNŢURI ŞI REZOLVĂRI 2013

ENUNŢURI ŞI REZOLVĂRI 2013 ENUNŢURI ŞI REZOLVĂRI 8. Un conductor de cupru ( ρ =,7 Ω m) are lungimea de m şi aria secţiunii transversale de mm. Rezistenţa conductorului este: a), Ω; b), Ω; c), 5Ω; d) 5, Ω; e) 7, 5 Ω; f) 4, 7 Ω. l

Διαβάστε περισσότερα

COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE

COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE I. OBIECTIVE a) Determinarea caracteristicilor statice de transfer în tensiune pentru comparatoare cu AO fără reacţie. b) Determinarea tensiunilor de ieşire

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

2.1 Amplificatorul de semnal mic cu cuplaj RC

2.1 Amplificatorul de semnal mic cu cuplaj RC Lucrarea nr.6 AMPLIFICATOAE DE SEMNAL MIC 1. Scopurile lucrării - ridicarea experimentală a caracteristicilor amplitudine-frecvenţă pentru amplificatorul cu cuplaj C şi amplificatorul selectiv; - determinarea

Διαβάστε περισσότερα

Capitolul 4 Amplificatoare elementare

Capitolul 4 Amplificatoare elementare Capitolul 4 mplificatoare elementare 4.. Etaje de amplificare cu un tranzistor 4... Etajul emitor comun V CC C B B C C L L o ( // ) V gm C i rπ // B // o L // C // L B ro i B E C E 4... Etajul colector

Διαβάστε περισσότερα

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: (

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: ( Exemple e probleme rezolvate pentru curs 0 DEEA Recapitulare formule e calcul puteri ale numărului 0 n m n+ m 0 = 0 n n m =0 m 0 0 n m n m ( ) n = 0 =0 0 0 n Problema. Să se calculeze: a. 0 9 0 b. ( 0

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Corectură. Motoare cu curent alternativ cu protecție contra exploziei EDR * _0616*

Corectură. Motoare cu curent alternativ cu protecție contra exploziei EDR * _0616* Tehnică de acționare \ Automatizări pentru acționări \ Integrare de sisteme \ Servicii *22509356_0616* Corectură Motoare cu curent alternativ cu protecție contra exploziei EDR..71 315 Ediția 06/2016 22509356/RO

Διαβάστε περισσότερα

CAPITOLUL 3. STABILIZATOARE DE TENSIUNE

CAPITOLUL 3. STABILIZATOARE DE TENSIUNE CAPTOLL 3. STABLZATOAE DE TENSNE 3.1. GENEALTĂȚ PVND STABLZATOAE DE TENSNE. Stabilizatoarele de tensiune sunt circuite electronice care furnizează la ieșire (pe rezistența de sarcină) o tensiune continuă

Διαβάστε περισσότερα

Lucrarea Nr. 11 Amplificatoare de nivel mare

Lucrarea Nr. 11 Amplificatoare de nivel mare Lucrarea Nr. 11 Amplificatoare de nivel mare Scopul lucrării - asimilarea conceptului de nivel mare; - studiul etajului de putere clasa B; 1. Generalităţi Caracteristic etajelor de nivel mare este faptul

Διαβάστε περισσότερα

5. Circuite electrice liniare în regim periodic nesinusoidal Elemente introductive

5. Circuite electrice liniare în regim periodic nesinusoidal Elemente introductive 5. Circuite electrice liniare în regim periodic nesinusoidal 5.. Elemente introductive În acest capitol se urmăreşte analizarea circuitelor electrice liniare în care semnalele de excitaţie aplicate au

Διαβάστε περισσότερα

Circuite cu tranzistoare. 1. Inversorul CMOS

Circuite cu tranzistoare. 1. Inversorul CMOS Circuite cu tranzistoare 1. Inversorul CMOS MOSFET-urile cu canal indus N si P sunt folosite la familia CMOS de circuite integrate numerice datorită următoarelor avantaje: asigură o creştere a densităţii

Διαβάστε περισσότερα

Lucrarea nr. 5 STABILIZATOARE DE TENSIUNE. 1. Scopurile lucrării: 2. Consideraţii teoretice. 2.1 Stabilizatorul derivaţie

Lucrarea nr. 5 STABILIZATOARE DE TENSIUNE. 1. Scopurile lucrării: 2. Consideraţii teoretice. 2.1 Stabilizatorul derivaţie Lucrarea nr. 5 STABILIZATOARE DE TENSIUNE 1. Scopurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare serie şi derivaţie; -

Διαβάστε περισσότερα

Dispozitive electronice de putere

Dispozitive electronice de putere Lucrarea 1 Electronica de Putere Dispozitive electronice de putere Se compară calităţile de comutator ale principalelor ventile utilizate în EP şi anume tranzistorul bipolar, tranzistorul Darlington si

Διαβάστε περισσότερα

CIRCUITE LOGICE CU TB

CIRCUITE LOGICE CU TB CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune

Διαβάστε περισσότερα

UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA. Facultatea de Electronică şi Telecomunicaţii EXAMEN LICENŢĂ SPECIALIZAREA ELECTRONICĂ APLICATĂ

UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA. Facultatea de Electronică şi Telecomunicaţii EXAMEN LICENŢĂ SPECIALIZAREA ELECTRONICĂ APLICATĂ UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA Facultatea de Electronică şi Telecomunicaţii EXAMEN LICENŢĂ SPECIALIZAREA ELECTRONICĂ APLICATĂ 2015-2016 UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA Facultatea de Electronică

Διαβάστε περισσότερα

7. AMPLIFICATOARE DE SEMNAL CU TRANZISTOARE

7. AMPLIFICATOARE DE SEMNAL CU TRANZISTOARE 7. AMPLIFICATOARE DE SEMNAL CU TRANZISTOARE 7.1. GENERALITĂŢI PRIVIND AMPLIFICATOARELE DE SEMNAL MIC 7.1.1 MĂRIMI DE CURENT ALTERNATIV 7.1.2 CLASIFICARE 7.1.3 CONSTRUCŢIE 7.2 AMPLIFICATOARE DE SEMNAL MIC

Διαβάστε περισσότερα

LUCRAREA NR. 1 STUDIUL SURSELOR DE CURENT

LUCRAREA NR. 1 STUDIUL SURSELOR DE CURENT LUCAEA N STUDUL SUSELO DE CUENT Scopul lucrării În această lucrare se studiază prin simulare o serie de surse de curent utilizate în cadrul circuitelor integrate analogice: sursa de curent standard, sursa

Διαβάστε περισσότερα

1. PRODUCEREA CURENTULUI ALTERNATIV

1. PRODUCEREA CURENTULUI ALTERNATIV CURENTUL ALTERNATV. PRODUCEREA CURENTULU ALTERNATV Fenomenul de inductie electromagnetica se bazeaza pe variatia unui flux magnetic care are drept consecinta aparitia unei tensiuni electromagnetice alternative

Διαβάστε περισσότερα

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN Montajul Experimental În laborator este realizat un amplificator cu tranzistor bipolar în conexiune cu emitorul comun (E.C.) cu o singură

Διαβάστε περισσότερα