Θεωρι α Γραφημα των 11η Δια λεξη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρι α Γραφημα των 11η Δια λεξη"

Transcript

1 Θεωρι α Γραφημα των 11η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

2 απεικόνιση γραφήματος στο επίπεδο (Embedding): Η αντιστοι χιση των κορυφω ν του γραφη ματος σε σημει α του επιπε δου και των ακμω ν σε καμπυ λες που ενω νουν τα σημει α που αντιστοιχου ν στα α κρα της ακμη ς επίπεδη απεικόνιση: Μια απεικο νιση στην οποι α: οι καμπυ λες που αντιστοιχου ν σε ακμε ς δεν τε μνουν τον εαυτο τους 2 καμπυ λες τε μνονται μο νο σε σημει α που αντιστοιχου ν σε κορυφη στην οποι α και οι δυ ο προσπι πτουν Επίπεδο γράφημα (Planar graph): Ένα γρα φημα το οποι ο ε χει μια επι πεδη απεικο νιση Ενεπίπεδο γράφημα (Plane graph): Ένα επι πεδο γρα φημα το οποι ο συνοδευ εται απο μια συγκεκριμε νη επι πεδη απεικο νιση Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

3 e 1 2 Μη επι πεδη απεικο νιση του Επι πεδη απεικο νιση του υπερκυ βου Q 3 f 0 f υπερκυ βου Q 3 e f όψεις ενεπίπεδου γραφήματος: e 3 e 2 8 e 4 Τα ενωμε να τμη ματα του R 2 6 f e 9 που προκυ πτουν εα ν e e 6 αφαιρε σουμε τις κορυφε ς και τις ακμε ς ενο ς γραφη ματος απο μια επι πεδη απεικο νιση του 4 e 5 3 f 0 : εξωτερικη ο ψη 2 περιθώριο όψης (face boundary): e Η περιη γηση που προκυ πτει απο τις ακμε ς και 2 7 f e 2 8 κορυφε ς που προσπι πτουν σε μια ο ψη f ενο ς e 4 6 f e 9 ενεπι πεδου γραφη ματος G (σε clockwise η ccw e e 6 δια ταξη). Μερικε ς ακμε ς/κορυφε ς μπορει να 4 e 5 3 εμφανι ζονται 2 φορε ς περιθω ριο της f 2 : 2e 4 3e 6 5e 9 7e 8 6e 7 5e 6 3e 5 4e 2 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

4 Θεώρημα 11.1[Euler-1750]: Έστω συνδεδεμε νο ενεπι πεδο γρα φημα G με n κορυφε ς, m ακμε ς και f ο ψεις. Το τε ισχυ ει n + f = m + 2 (1) Απόδειξη [με επαγωγή στο πλήθος ακμών]: G συνεκτικο m n 1 (2) Βα ση: m = n 1 Ε.Υ. Το G ει ναι δε νδρο f = 1 (3) n + f = m + 2 (2),(3) n + 1= n n + 1= n + 1 Έστω ο τι για κα θε ενεπι πεδο συνδεδεμε νο γρα φημα με k ακμε ς (k n 1) ισχυ ει το θεω ρημα Ε.Β. Θα δει ξω ο τι το θεω ρημα ισχυ ει για ενεπι πεδα συνδεδεμε να γραφη ματα με k + 1 ακμε ς Έστω ενεπι πεδο συνδεδεμε νο γρα φημα G με m G = k + 1 ακμε ς, n G κορυφε ς και f G ο ψεις Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

5 m G = k + 1 n Το G ε χει κυ κλο, και α ρα ε χει τουλα χιστον μια εσωτερικη ο ψη Έστω e μια ακμη που ανη κει στον κυ κλο που ορι ζει μια εσωτερικη ο ψη του G Κατασκευα ζω το ενεπι πεδο γρα φημα G αφαιρω ντας απο το G την ακμη e Το G ε χει f G = f G 1 ο ψεις και m G = m G 1 = k ακμε ς Απο επαγωγικη υπο θεση ε χουμε G n G + f G = m G + 2 n G + (f G 1) = (m G 1) + 2 n G + f G = m G + 2 το οποι ο ει ναι το ζητου μενο για το γρα φημα G e Πόρισμα 11.2: Ο αριθμο ς των ο ψεων ενο ς επι πεδου συνδεδεμε νου γραφη ματος δεν εξαρτα ται απο την επι πεδη απεικο νιση του Απόδειξη : Ο αριθμο ς των ο ψεων (απο το Θ. Euler) ει ναι πα ντα ι σος με m n + 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

6 Ερώτηση 11.1: Πω ς μεταβα λλεται ο τυ πος του Euler για γραφη ματα με k συνεκτικε ς συνιστω σες? Βαθμός όψης: Ο αριθμο ς των ακμω ν μιας ο ψης. Συμβολι ζεται με d(f). Ακμε ς που προσπι πτουν σε μια μο νο ο ψη προσμετρου νται 2 φορε ς f 1 d(f 0 ) = 8 d(f 1 ) = 4 f 0 Λήμμα 11.3: Έστω επι πεδο γρα φημα G με m ακμε ς και ε στω F(G) το συ νολο των ο ψεω ν του. Το τε d(f) = 2m f F(G) Απόδειξη : Κα θε ακμη συνισφε ρει ακριβω ς 2 μονα δες στο α θροισμα γιατι : ει τε προσπι πτει σε 2 ο ψεις η σε μια ο ψη αλλα μετριε ται διπλα Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

7 Θεώρημα 11.4: Έστω επι πεδο γρα φημα G με n κορυφε ς και m ακμε ς. Το τε m 3n 6 (4) Απόδειξη : Ισχυ ει για n = 3 m = 3 (με γιστος # ακμω ν) = 3 Υποθε τω ο τι n 4 Υποθε τω ο τι το G ει ναι συνδεδεμε νο. Αλλιω ς η (4) ισχυ ει για κα θε συνεκτικη του συνιστω σα Για κα θε ο ψη f F(G) ισχυ ει d(f) 3 d(f) 3f (5) f F(G) Απο Λη μμα 11.3 ε χουμε d(f) = 2m (6) f F(G) (5),(6) 2m 3f (7) Απο Θ. Euler n + f = m = n + f m 6 = 3n + 3f 3m (7) 6 3n + 2m 3m 6 3n m m 3n 6 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

8 Πόρισμα 11.5: Το γρα φημα K 5 δεν ει ναι επι πεδο Απόδειξη : Για το K 5 ε χω: n = 5 m = 10 Εα ν το K 5 η ταν επι πεδο, θα ι σχυε ο τι το οποι ο ει ναι ψευδε ς Σημείωση: Η σχε ση m 3n 6 δεν ει ναι αρκετη για να αποδει ξουμε με ο μοιο τρο πο ο τι το K 3,3 δεν ει ναι επι πεδο. n = 6 m = ισχυ ει Θεώρημα 11.6: Έστω διμερε ς επι πεδο γρα φημα G με n κορυφε ς και m ακμε ς. Το τε ισχυ ει: m 2n 4 (8) Απόδειξη : Για διμερη γραφη ματα ισχυ ει ο τι d(f) 4 Ομοια με απο δειξη θεωρη ματος 11.4 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

9 Ερώτηση 11.2: Να δειχθει ο τι το K 3,3 δεν ει ναι επι πεδο. Ερώτηση 11.3: Να δειχθει ο τι κα θε υπογρα φημα των K 5 και K 3,3 ει ναι επι πεδο. Θεώρημα 11.7[Wagner-1937, Fary-1948]: Κα θε επι πεδο γρα φημα μπορει να απεικονισθει στο επι πεδο ε τσι ω στε οι ακμε ς του να αντιστοιχου ν σε ευθυ γραμμα τμη ματα Λήμμα 11.8: Για κα θε επι πεδο γρα φημα G ισχυ ει ο τι δ(g) 5 Απόδειξη [Με άτοπο]: Έστω δ(g) 6 Το τε d(v) 6n και d(v) = 2m v V(G) v V(G) Άρα 2m 6n m 3n άτοπο, γιατι για επι πεδα γραφη ματα ισχυ ει ο τι m 3n 6 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

10 ομοιομορφικά γραφήματα: Δυ ο γραφη ματα ει ναι ομοιομορφικά ο ταν μπορει να παραχθει το ε να απο το α λλο με μια η περισσο τερες υποδιαιρε σεις ακμω ν και συμπτυ ξεις κορυφω ν υποδιαι ρεση ακμη ς: u v u w v συ μπτυξη κορυφη ς: u w v u v Θεώρημα 11.9[Kuratowski-1930]: Ένα γρα φημα G ει ναι επι πεδο ανν κανε να υπογρα φημα του δεν ει ναι ομοιομορφικο με το K 5 η το K 3,3 Παρα δειγμα: Το γρα φημα Petersen δεν ει ναι επι πεδο Σημείωση: Η σχε ση m 3n 6 δεν αρκει για να αποδειχθει η μη-επιπεδο τητα του γραφη ματος Petersen. Για το γρα φημα Petersen ε χω n = 10, m = 15 και = 24 που ισχυ ει Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

11 εξωεπίπεδο γράφημα (outer-planar graph): Ένα επι πεδο γρα φημα G ονομα ζεται εξωεπίπεδο εα ν υπα ρχει επι πεδη απεικο νιση του G στην οποι α ο λες οι κορυφε ς προσπι πτουν στην εξωτερικη ο ψη K 4 μη-εξωεπι πεδο γρα φημα εξωεπι πεδο γρα φημα Θεώρημα 11.10: Ένα γρα φημα ει ναι εξωεπι πεδο ανν δεν υπα ρχει κα ποιο υπογρα φημα του ομοιομορφικο με το K 4 η το K 2,3 Απόδειξη : Το K 4 και το K 2,3 δεν ει ναι εξωεπι πεδα (Αλλιω ς το K 5 και το K 3,3 θα η ταν επι πεδα) Σημείωση: Η εξωεπιπεδο τητα δεν πλη ττεται απο την αφαι ρεση κορυφη ς/ακμη ς και την συ μπτυξη ακμη ς/κορυφη ς. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

12 με α τοπο Έστω ο τι το εξωεπι πεδο γρα φημα G περιε χει υπογρα φημα ομοιομορφικο με το K 4 η το K 2,3 Με σω συμπτυ ξεων κορυφη ς και διαγραφε ς ακμω ν-κορυφω ν στο G, παι ρνω το K 4 η το K 2,3 χωρι ς να πλη ττεται η εξωεπιπεδο τητα. άτοπο γιατι τα K 4 και K 2,3 δεν ει ναι εξωεπι πεδα με α τοπο Έστω ο τι το G δεν περιε χει υπογρα φημα ομοιομορφικο με το K 4 η το K 2,3 και ε στω ο τι το G δεν ει ναι εξωεπι πεδο Το G ει ναι επι πεδο (δεν περιε χει υπογραφη ματα ομοιομορφικα με το K 5 η το K 3,3 ) Θεωρω το γρα φημα G = G K 1 G : v G K 1 Το G δεν ει ναι επι πεδο [Έστω ο τι η ταν επι πεδο. Το τε η v ανη κει σε μι α ο ψη που περιε χει ο λες τις κορυφε ς του G. Το G ει ναι εξωεπι πεδο. άτοπο] Το G περιε χει υπογρα φημα H ομοιομορφικο με το K 5 η το K 3,3 Το H περιε χει την v [Γιατι το G ει ναι επι πεδο] Εα ν αφαιρε σουμε την v απο το H αφαιρου με μια κορυφη απο το K 5 η το K 3,3, οπο τε το G περιε χει υπογρα φημα ομοιομορφικο με το K 4 η το K 2,3 άτοπο Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

13 Θεώρημα 11.11: Για κα θε εξωεπι πεδο γρα φημα με n κορυφε ς και m ακμε ς ισχυ ει ο τι m 2n 3 (9) Απόδειξη : Ισχυ ει προφανω ς για ακυκλικα γραφη ματα (m n 1) Έστω G ε να εξωεπι πεδο γρα φημα με κυ κλους και ε στω μια εξωεπι πεδη απεικο νιση του Κατασκευα ζω το G προσθε τοντας ακμε ς στο G ε τσι ω στε να μην υπα ρχουν γε φυρες και να μην πλη ττεται η εξωεπιπεδο τητα του Έστω m οι ακμε ς του G, m m Παρα δειγμα: G G Ζωγραφι ζω το G ε τσι ω στε ο λες οι κορυφε ς του να ει ναι στην ι δια ευθει α και ελευ θερες προς τα κα τω: Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

14 Έστω v 1, v 2,..., v n οι κορυφε ς του ο πως τις συναντα με απο αριστερα προς τα δεξια Σχηματι ζω το επι πεδο γρα φημα G ο πως παρακα τω: Τοποθετω 2 αντι γραφα του G καθρεπτικα το ε να ως προς το α λλο. Έστω v 1, v 2,..., v n οι κορυφε ς του 2ου αντι γραφου Προσθε τω τις ακμε ς (ευθ. τμη ματα) (v i, v i ), 1 i n Τριγωνοποιω τις ο ψεις v i v i+1 v i+1 v i v i προσθε τοντας την ακμη (v i v i+1 ), 1 i < n Προσθε τω την ακμη (v n, v 1 ) Το G ει ναι επι πεδο με V(G ) = 2n και E(G ) = 2m + 2n Απο Θ. 11.4: 2m + 2n 3 2n 6 2m 4n 6 m 2n 3 m 2n 3 (γιατι m m ) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

15 Χρωματισμο ς επι πεδων γραφημα των Θεώρημα 11.12: Κα θε επι πεδο γρα φημα ει ναι 6-χρωματι σιμο Απόδειξη [Με επαγωγή ως προς το πλήθος κορυφών]: Έστω επι πεδο γρα φημα G με n κορυφε ς Βα ση: n 6 Αναδρομη : Έστω κορυφη v του G τε τοια ω στε d(v) 5 Η κορυφη v πα ντα υπα ρχει (Λη μμα 11.8) Χρωμα τισε αναδρομικα το G {v} με 6 χρω ματα Οι γει τονες της v στο G ε χουν χρωματιστει με το πολυ 5 χρω ματα. Χρωμα τισε την v με το (τουλα χιστον ε να) μη-χρησιμοποιηθε ν χρω μα Θεώρημα 11.13[Heawood-1890]: Καθε επι πεδο γρα φημα ει ναι 5-χρωματι σιμο Απόδειξη [Με επαγωγή ως προς το πλήθος κορυφών]: Έστω επι πεδο γρα φημα G με n κορυφε ς Βα ση: n 5. Το G χρωματι ζεται με 5 χρω ματα Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

16 Αναδρομη : Έστω κορυφη v V(G) με d(v) 5 Το G {v} χρωματι ζεται αναδρομικα με 5 χρω ματα Αν N G (v) < 5, η v χρωματι ζεται με το (τουλα χιστον 1) μη-χρησιμοποιηθε ν χρω μα Έστω N G (v) = 5 και N G (v) = {v 1, v 2, v 3, v 4, v 5 } Υπα ρχουν 2 γει τονες της v, ε στω οι v 1, v 2 οι οποι οι δεν ει ναι ενωμε νοι με ακμη στο G [Διαφορετικα το G θα περιει χε το K 5 ] G: G Κατασκευα ζω το γρα φημα G v : 1 v2 απο το G κα νοντας: v v 5 v 5 w συ μπτυξη των ακμω ν (v, v 1 ), (v, v 2 ) v 3 v 3 Χρωματι ζω αναδρομικα το G {w} με 5 χρω ματα, και ε στω, οι v 3, v 4, v 5 ε χουν χρωματιστει με τα χρω ματα 3, 4, 5 και ε στω η w ε χει χρωματιστει με το χρω μα 1 Χρωματι ζω νο μιμα το G ως εξη ς: Οι κορυφε ς v 1 και v 2 με το χρω μα 1 [(v 1, v 2 ) / E(G)] Η κορυφη v με το χρω μα 2 Όλες οι α λλες κορυφε ς διατηρου ν το χρωματισμο του G v 4 v 4 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

17 Θεώρημα 11.14[Appel&Haken-1977]: Κα θε επι πεδο γρα φημα ει ναι 4 χρωματι σιμο Δυικό (dual) επίπεδου γραφήματος: Το δυικό γράφημα ενός επίπεδου γραφήματος G ει ναι ε να γρα φημα G το οποι ο ε χει ως: V(G ) = {f : f F(G)} E(G ) = {e = (f, g) : Οι ο ψεις f και g βρι σκονται στις 2 πλευρε ς της ακμη ς e E(G)} Παρα δειγμα: f 1 f 2 G f 0 G Σημείωση: Το δυικο γρα φημα G του G ει ναι επι πεδο γρα φημα το οποι ο μπορει να ε χει παρα λληλες ακμε ς και/η βρο γχους. k-χρωματισμός ως προς τις όψεις: Ο χρωματισμο ς των ο ψεων ενο ς επι πεδου γραφη ματος στο οποι ο γειτονικε ς ο ψεις (ο ψεις με κοινη ακμη ) ε χουν διαφορετικο χρω μα Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

18 Σημείωση: Ο χρωματισμο ς ο ψεων ενο ς γραφη ματος G ει ναι ισοδυ ναμος με το χρωματισμο κορυφω ν του G (αφου αφαιρεθου ν οι παρα λληλες ακμε ς και οι βρο γχοι). Παρα δειγμα: G G G G Γρα φημα G και το δυικο του G 4-χρωματισμο ς του G 4-χρωματισμο ς ο ψεων του G Θεώρημα 11.15: Ένα επι πεδο γρα φημα ει ναι 2-χρωματι σιμο ως προς τις ο ψεις ανν ε χει κυ κλο Euler Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος / 228

Θεωρι α Γραφημα των 10η Δια λεξη

Θεωρι α Γραφημα των 10η Δια λεξη Θεωρι α Γραφημα των 0η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 05 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 0η Δια λεξη Φεβρουα ριος 05 99 / 0 Χρωματισμο ς Ακμω ν k-χρωματισμός ακμών: Η ανα

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 5η Δια λεξη

Θεωρι α Γραφημα των 5η Δια λεξη Θεωρι α Γραφημα των 5η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος 2015 107 / 122 Δε νδρα Δένδρο: Ένα γρα φημα το οποι ο

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 11η Διάλεξη

Θεωρία Γραφημάτων 11η Διάλεξη Θεωρία Γραφημάτων 11η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 8η Δια λεξη

Θεωρι α Γραφημα των 8η Δια λεξη Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 9η Δια λεξη

Θεωρι α Γραφημα των 9η Δια λεξη Θεωρι α Γραφημα των 9η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 183 / 198 Ταιρια σματα (Matchings) Ταίριασμα: Ένα

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 7η Δια λεξη

Θεωρι α Γραφημα των 7η Δια λεξη Θεωρι α Γραφημα των 7η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος 2015 143 / 167 Hamiltonian γραφη ματα κύκλος Hamilton:

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 2η Δια λεξη

Θεωρι α Γραφημα των 2η Δια λεξη Θεωρι α Γραφημα των 2η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος 2015 23 / 47 Βαθμοι Κορυφω ν Βαθμός κορυφής: d G (v) =

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 3η Δια λεξη

Θεωρι α Γραφημα των 3η Δια λεξη Θεωρι α Γραφημα των 3η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος 2015 48 / 71 Μονοπα τια-κυ κλοι και Αποστα σεις Έστω ε

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 1η Δια λεξη

Θεωρι α Γραφημα των 1η Δια λεξη Θεωρι α Γραφημα των η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 205 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των η Δια λεξη Φεβρουα ριος 205 / 22 Εισαγωγη Διδα σκων: Αντω νιος Συμβω νης ΣΕΜΦΕ, κτι

Διαβάστε περισσότερα

E(G) 2(k 1) = 2k 3.

E(G) 2(k 1) = 2k 3. Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από

Διαβάστε περισσότερα

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε Ἦχος Νη α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε στη η και ε πι κα α θε ε ε ε δρα α λοι οι µων ου ουκ ε ε κα θι ι σε ε ε

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 8η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ Στό χος του Ο λο κλη ρω μέ νου Προ γράμ μα τος για τη βιώ σι μη α νά πτυ ξη της Πίν δου εί ναι η δια μόρ φω ση συν θη κών α ει φό ρου α νά πτυ ξης της ο ρει νής πε ριο χής, με τη δη

Διαβάστε περισσότερα

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο Ἐκλογή ἀργοσύντοµος εἰς τὴν Ἁγίν Κυρικήν, κὶ εἰς ἑτέρς Γυνίκς Μάρτυρς. Μέλος Ἰωάννου Ἀ. Νέγρη. Ἦχος Νη ε Κ ι δυ υ υ υ ν µι ις Α λ λη λου ου ου ι ι ι ι ο Θε ος η η µων κ τ φυ γη η κι δυ υ υ ν µις βο η θο

Διαβάστε περισσότερα

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕ Φ Α Λ ΑΙΟ ΤΟ ΙΚΑΙΟ ΤΗΣ ΑΛΙΕΙΑΣ... 21 ΚΕ Φ Α Λ ΑΙΟ 1 o Η ΑΛΙΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ 1.1 Η Α λιεί α ως Οι κο νο μι κή ρα στη ριό τη τα...25 1.2 Η Κοι νο τι κή Α λιευ τι κή Πο λι τι κή...28

Διαβάστε περισσότερα

Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων

Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων Β. Μεταφτση ς 15 Δεκεμβρι ου 2016 1 Παραστάσεις Ομάδων Έστω a, b, c,... ε να συ νολο απο διακριτα συ μβολα και a 1, b 1, c 1,... νε α συ μβολα. Μια λέξη W στα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΙΔΑ: «ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ, ΜΙΑ ΕΜΠΕΙΡΙΑ ΖΩΗΣ» ΣΤΡΑΤΗ ΣΤΑΜΑΤΙΑ Επιβλέπων Καθηγητής: ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΚΑΡΛΟΒΑΣΙ, ΜΑΪΟΣ 2012 ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains

The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains The Probabilistic Method - Probabilistic Techniques Lecture 8: Markov Chains Sotiris Nikoletseas Chistoforos Raptopoulos Computer Engineering and Informatics Department 205-206 Chistoforos Raptopoulos

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 4η Διάλεξη

Θεωρία Γραφημάτων 4η Διάλεξη Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 7η Διάλεξη

Θεωρία Γραφημάτων 7η Διάλεξη Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη

Διαβάστε περισσότερα

Δομές Ελέγχου και Επανάληψης

Δομές Ελέγχου και Επανάληψης Εργαστήριο 3 ο Δομές Ελέγχου και Επανάληψης Εισαγωγή Σκοπο ς του εργαστηρι ου αυτου ει ναι η εισαγωγη στην εκτε λεση εντολω ν υπο συνθη κη και στις δομές επανάληψης. Δομές Ελέγχου Η ικανότητα να μπορεί

Διαβάστε περισσότερα

d u d dt u e u d dt e u d u 1 u dt e 0 2 e

d u d dt u e u d dt e u d u 1 u dt e 0 2 e Ρ ΤΟ Θ ΜΑ Μ. Α ΑΠΟ ε ΞεΤε ΤΙ ΑΝΑΓΚΑ Α ΚΑΙ ΙΚΑΝ ΣΥΝΘ ΚΗ ΣΤε ΝΑ Ι ΝΥΣΜΑ u t 0 ΝΑ ΠΑΡΑΜ ΝεΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ΜΙΑ ε ΟΜ ΝΗ ευθε Α ε ΝΑΙ u t u 0 Π ειξη Α ΑΠΟ ε ΞΟΥΜε ΤΟ ΙΚΑΝ ΗΛΑ ΑΝ ε ΝΑΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ε ΟΜ ΝΗ ευθε

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες

Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Η εταιρεία Kiefer ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Πηγε ς Ενε ργειας στην Ελλα δα. Αναλαμβα νει ε ργα ως EPC

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΕΡ ΓΑ ΤO ΤΕ ΧΝΙ ΤΩΩΝ ΕΡ ΓO ΣΤΑ ΣΙ ΩΩΝ ΤΣΙ ΜΕ ΝΤO ΛΙ ΘΩΩΝ, ΤΣΙ

Διαβάστε περισσότερα

Βασικά Χαρακτηριστικά Αριθμητικών εδομένων

Βασικά Χαρακτηριστικά Αριθμητικών εδομένων ΚΕΦΑΛΑΙΟ 3 Βασικά Χαρακτηριστικά Αριθμητικών εδομένων Α ντι κείμε νο του κε φα λαί ου εί ναι: Να κα τα νο ή σου με τα βα σι κά χαρα κτη ρι στι κά των α ριθ μη τι κών δεδο μέ νων (τά ση, δια σπο ρά, α συμ

Διαβάστε περισσότερα

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ ΠΕΡΙEΧΟΜΕΝΑ Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ Ει σα γω γή 1 ου Μέ ρους...16 1 ο Κε φά λαιο: Ε ΛΕΥ ΘΕ ΡΟΣ ΧΡΟ ΝΟΣ & Α ΝΑ ΨΥ ΧΗ 1.1 Οι έν νοιες του ε λεύ θε ρου χρό νου και της ανα ψυ χής...17

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1 Ε Λ Λ Η Ν Ι Κ Η Η Μ Ο Κ Ρ Α Τ Ι Α Υ ΠΟΥ ΡΓΕΙΟ ΕΘΝ. ΠΑ Ι ΕΙΑ Σ & ΘΡΗΣ Κ/Τ Ω ΕΝΙΑ ΙΟΣ ΙΟΙΚΗΤ ΙΚΟΣ Τ ΟΜ ΕΑ Σ Σ ΠΟΥ Ω Ν ΕΠΙΜ ΟΡΦΩ Σ ΗΣ ΚΑ Ι ΚΑ ΙΝΟΤ ΟΜ ΙΩ Ν /ΝΣ Η Σ ΠΟΥ Ω Τ µ ή µ α Α Α. Πα π α δ ρ έ ο υ 37

Διαβάστε περισσότερα

Lecture 8: Random Walks

Lecture 8: Random Walks Randomized Algorithms Lecture 8: Random Walks Sotiris Nikoletseas Associate Professor CEID - ETY Course 2016-2017 Sotiris Nikoletseas, Associate Professor Randomized Algorithms - Lecture 8 1 / 33 Overview

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Πολύ ενθαρρυντική εικόνα. Σαφώς καλύτερη

Διαβάστε περισσότερα

ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA

ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA Α. Γενικά Η VOLTERRA, ως Προμηθευτη ς Ηλεκτρικη ς Ενε ργειας και ε χοντας ως αντικειμενικο στο

Διαβάστε περισσότερα

m = 18 και m = G 2

m = 18 και m = G 2 Διάλεξη 11: 2.11.201 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιώτης Ρεπούσκος 11.1 Βασικές Ιδιότητες Θεώρημα 11.1 (Τύπος του Eulr, 172) Αν ένα συνεκτικό ενεπίπεδο γράφημα έχει n κορυφές,

Διαβάστε περισσότερα

Αποτελεσματικός Προπονητής

Αποτελεσματικός Προπονητής ÐÝñêïò Ι. ÓôÝ öá íïò & Χριστόπουλος Β. Γιάννης Αποτελεσματικός Προπονητής Ένας οδηγός για προπονητές όλων των ομαδικών αθλημάτων Θεσσαλονίκη 2011 Ðå ñéå ü ìå íá Ðñü ëï ãïò...6 Åé óá ãù ãþ...11 Êå öü ëáéï

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων 2η Διάλεξη Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση

Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση Εισαγωγή Η επι λο γή ενό ς co m p a ct συ στή µ α το ς β ι ολο γι κο ύ κα θ α ρι σµ ο ύ θ α πρέπει να πραγµ α τοπο ι είτα ι β ά σει τη ς α

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αξιόλογη προσπάθεια,

Διαβάστε περισσότερα

ε πι λο γές & σχέ σεις στην οι κο γέ νεια

ε πι λο γές & σχέ σεις στην οι κο γέ νεια ε πι λο γές & σχέ σεις στην οι κο γέ νεια ΚΕΙΜΕΝΟ: Υπτγος ε.α Άρης Διαμαντόπουλος, Διδάκτορας Φιλοσοφίας - Ψυχολόγος ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση Α ξί α Οι κο γέ νειας Ό,τι εί ναι το κύτ τα ρο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ Γιάννης Θεοδωράκης Πανεπιστήμιο Θεσσαλίας ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΘΕΣΣΑΛΟΝΙΚΗ 2010 ΠΕΡΙΕΧΟΜΕΝΑ Πρό λο γος...6 1. Ά σκη ση και ψυ χική υ γεί α Ει σα γω γή...9 Η ψυ χο λο γί α της ά σκη σης...11

Διαβάστε περισσότερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Ιο νιο Πανεπιστη μιο, Κε ρκυρα 17-5-2012 Παύλος Σταμπουλι δης, Με λος ΔΣ Hellenic Startup

Διαβάστε περισσότερα

d(v) = 3 S. q(g \ S) S

d(v) = 3 S. q(g \ S) S Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε S υποσύνολο

Διαβάστε περισσότερα

1 ο Κεφά λαιο. Πώς λειτουργεί η σπονδυλική στήλη;...29

1 ο Κεφά λαιο. Πώς λειτουργεί η σπονδυλική στήλη;...29 ΠΕΡΙEΧΟΜΕΝΑ Οδηγός χρησιμοποίησης του βιβλίου και των τριών ψηφιακών δίσκων (DVD)...11 Σκο πός του βι βλί ου και των 3 ψηφιακών δί σκων...15 Λί γα λό για α πό το Σχο λι κό Σύμ βου λο Φυ σι κής Α γω γής...17

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,

Διαβάστε περισσότερα

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από Διάλεξη 3: 19.10.2016 Θεωρία Γραφημάτων Γραφέας: Βασίλης Λίβανος Διδάσκων: Σταύρος Κολλιόπουλος 3.1 Ακμοδιαχωριστές, Τομές, Δεσμοί Ορισμός 3.1 Ακμοδιαχωριστής (Edge-eparator) ενός γραφήματος G = (V, E)

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 9η Διάλεξη

Θεωρία Γραφημάτων 9η Διάλεξη Θεωρία Γραφημάτων 9η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 9η Διάλεξη

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

F h, h h 2. Lim. Lim. f h, h fyx a, b. Lim. h 2 y 2. Lim. Lim. Lim. x 2 k 2. h 0

F h, h h 2. Lim. Lim. f h, h fyx a, b. Lim. h 2 y 2. Lim. Lim. Lim. x 2 k 2. h 0 ΜΑ 1 Μ.2 Ν ΟΙ ΠΑΡ ΓΩΓΟΙ fx ΚΑΙ fy ΥΠ ΡΧΟΥΝ ΚΑΙ ε ΝΑΙ ΙΑφΟΡ ΣΙΜε Σε Κ ΠΟΙΑ ΠεΡΙΟΧ ΤΟΥ a, b Τ Τε ΝΑ ΑΠΟ ειχθε ΤΙ fxy fyx. Α εξετ ΣεΤε ΑΝ fxy fyx ΣΤΟ 0, 0 ΓΙΑ ΤΗΝ ΣΥΝ ΡΤΗΣΗ f x, y xy x2 y 2 ΓΙΑ x, y 0, 0

Διαβάστε περισσότερα

Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11

Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11 Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ, Ν.Π.Δ.Δ. ΚΑΙ O.Τ.Α. Α. ΓΙΑ ΤΗΝ ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ Ε ΛΗ ΦΘΗ ΣΑΝ Υ ΠO ΨΗ 1. H 15/1981

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα Ασκήσεις στους Γράφους 2 ο Σετ Ασκήσεων Δέντρα Ασκηση 1 η Ένας γράφος G είναι δέντρο αν και μόνο αν κάθε δυο κορυφές του συνδέονται με ένα μοναδικό μονοπάτι. Υποθέτουμε ότι ο γράφος G είναι δέντρο. Έστω

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Ενθαρρυντική εικόνα, σαφώς καλύτερη από

Διαβάστε περισσότερα

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο

Διαβάστε περισσότερα

ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα.

ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΔΣ6. Δίνονταί οί πίνακες Σ1(Κ, Κ) καί Π1(Κ, Κ) που περίέχουν τα αποτελέσματα των

Διαβάστε περισσότερα

Αρ χές Ηγε σί ας κα τά Πλά τω να

Αρ χές Ηγε σί ας κα τά Πλά τω να . Αρ χές Ηγε σί ας κα τά Πλά τω να ΚΕΙΜΕΝΟ: Υπτγος ε.α. Ά ρης Δια μα ντό που λος, Ψυχο λό γος, Δι δά κτω ρ Φι λο σο φί ας χή, στο σώ μα και στο πνεύ μα, 84 ΣΤΡΑΤΙΩΤΙΚΗ ΕΠΙΘΕΩΡΗΣΗ ΝΟΕΜΒΡΙΟΣ - ΔΕΚΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ

Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ Διάλεξη 3: 25..26 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Καλλιόπη Πατερομιχελάκη 3. Εναγόμενοι κύκλοι Ορισμός 3. Ενας κύκλος του γραφήματος G = (V, E), καλείται εναγόμενος αν = G[V ()].

Διαβάστε περισσότερα

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A δ ` 3kς 3qz 3{9 ` ]l 3 # ~-?1 [ve 3 3*~ /[ [ ` ο `` ο ~ ο ```` ξα ~ ``` Πα```` α ` τρι ```ι ``` ι ` ι ~ και ``αι [D # ` 4K / [ [D`3k δδ 13` 4K[ \v~-?3[ve

Διαβάστε περισσότερα

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα Επαγωγή για άκυκλα συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Μάνατζμεντ και Μάνατζερς

Μάνατζμεντ και Μάνατζερς Κ Ε ΦΑ ΛΑΙΟ 1 Μάνατζμεντ και Μάνατζερς Κά θε μέ ρα ε πι σκε πτό μα στε διά φο ρους ορ γα νισμούς με γά λους ή μι κρούς και ερ χό μα στε σε επα φή με τους υ παλ λή λους και τους μά να τζερ ς. Α νά λο γα

Διαβάστε περισσότερα

H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ

H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ Ο Ό μη ρος και ο Η σί ο δος έ χουν δη μιουρ γή σει κα τά τον Η ρό δο το 1, τους ελ λη νι κούς θε ούς. Ο Ό μη ρος στη θε ο γο νί α του έ χει ιε ραρ

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής

Μαθηματικά Πληροφορικής Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενα γραφήματα Ορισμός Κατευθυνόμενογράφημα Gείναιέναζεύγος (V,E)όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ ΤΥΙΚΑ & ΜΑΚΑΡΙΣΜΟΙ Ἦχος Νη Μ Α Ν µην Ευ λο γει η ψυ χη µου τον Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ λο γει η ψυ χη µου τον Κυ ρι ον και πα αν τα τα εν τος µου το ο νο µα το α γι ον αυ του Ευ λο γει η ψυ

Διαβάστε περισσότερα

ΔΕΛΤΙΟ ΤΥΠΟΥ. Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras

ΔΕΛΤΙΟ ΤΥΠΟΥ. Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras ΔΕΛΤΙΟ ΤΥΠΟΥ Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras Στο πλαι룱綟σιο της Παγκο룱綟 σμιας Εβδομα룱綟 δας Επιχειρηματικο룱綟 τητας*, o ΕΣΥΝΕΔΕ και η Ομοσπονδι룱綟α ΕΣΥΝΕ, σε συνεργασι룱綟α

Διαβάστε περισσότερα

Πρώϊος Μιλτιάδης. Αθαναηλίδης Γιάννης. Ηθική στα Σπορ. Θεωρία και οδηγίες για ηθική συμπεριφορά

Πρώϊος Μιλτιάδης. Αθαναηλίδης Γιάννης. Ηθική στα Σπορ. Θεωρία και οδηγίες για ηθική συμπεριφορά Πρώϊος Μιλτιάδης Αθαναηλίδης Γιάννης Ηθική στα Σπορ Θεωρία και οδηγίες για ηθική συμπεριφορά ΘΕΣΣΑΛΟΝΙΚΗ 2004 1 ΗΘΙΚΗ ΣΤΑ ΣΠΟΡ ΘΕΩΡΙΑ ΚΑΙ ΟΔΗΓΙΕΣ ΓΙΑ ΗΘΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ : Εκδόσεις Χριστοδουλίδη Α. & Π.

Διαβάστε περισσότερα

Η ΤΑ ΚΤΙ ΚΗ ΤΕ ΧΝΗ ΤΩΝ ΑΡ ΧΑΙΩΝ ΕΛ ΛΗ ΝΩΝ

Η ΤΑ ΚΤΙ ΚΗ ΤΕ ΧΝΗ ΤΩΝ ΑΡ ΧΑΙΩΝ ΕΛ ΛΗ ΝΩΝ Η ΤΑ ΚΤΙ ΚΗ ΤΕ ΧΝΗ ΤΩΝ ΑΡ ΧΑΙΩΝ ΕΛ ΛΗ ΝΩΝ ΚΕΙΜΕΝΟ: Ευ γέ νιος Αρ. Για ρέ νης, Α ντει σαγ γε λέ ας Στρα το δι κεί ου Ιω αν νί νων, Δι δά κτο ρας στο Πά ντειο Πα νε πι στή μιο Α πό την κλα σι κή φά λαγ γα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα

Διαβάστε περισσότερα

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ.

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ. σελ. 13 σελ. 17 σελ. 21 σελ. 49 σελ. 79 σελ. 185 σελ. 263 σελ. 323 σελ. 393 σελ. 453 σελ. 483 σελ. 509 σελ. 517 Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Αλγόριθμοι Γραφημάτων Τοπολογική Διάταξη

Διαβάστε περισσότερα

καιρο, αυτο ς πε θανε απ ο,τι φαι νεται πολυ αργο τερα. Για ποιον λο γο συνε βη αυτο, Φαι δωνα;

καιρο, αυτο ς πε θανε απ ο,τι φαι νεται πολυ αργο τερα. Για ποιον λο γο συνε βη αυτο, Φαι δωνα; ΠΛΑΤΩΝΟΣ ΦΑΙΔΩΝ ΕΧΕΚΡΑΤΗΣ: Εσυ ο ι διος, Φαι δωνα, βρε θηκες στο πλευρο του Σωκρα τη εκει νη την ημε ρα, που η πιε το δηλητη ριο στη φυλακη, η τα α κουσες απο κα ποιον α λλο; ΦΑΙΔΩΝ: Η μουν ο ι διος εκει,

Διαβάστε περισσότερα

Νικολέττα Ισπυρλίδου* & Δημήτρης Χασάπης**

Νικολέττα Ισπυρλίδου* & Δημήτρης Χασάπης** ÅðéóôçìïíéêÞ Åðåôçñßäá Ðáéäáãùãéêïý ÔìÞìáôïò Ä.Å. Πανεπιστημίου Ιωαννίνων, 20 (2007), 23-39 Νικολέττα Ισπυρλίδου* & Δημήτρης Χασάπης** Η συγκρότηση μιας ευκλείδειας έννοιας της ευθείας γραμμής με τη διαμεσολάβηση

Διαβάστε περισσότερα

ΘΑ ΛΗΣ Ο ΜΙ ΛΗ ΣΙΟΣ. του, εί ναι ση μα ντι κό να ει πω θούν εν συ ντομί α με ρι κά στοι χεί α για το πο λι τι σμι κό πε ριβάλ

ΘΑ ΛΗΣ Ο ΜΙ ΛΗ ΣΙΟΣ. του, εί ναι ση μα ντι κό να ει πω θούν εν συ ντομί α με ρι κά στοι χεί α για το πο λι τι σμι κό πε ριβάλ ΘΑ ΛΗΣ Ο ΜΙ ΛΗ ΣΙΟΣ ΟΙ ΒΑ ΣΙ ΚΕΣ ΑΡ ΧΕΣ ΤΗΣ ΦΙ ΛΟ ΣΟ ΦΙΑΣ ΤΟΥ, Ο ΡΟ ΛΟΣ ΤΟΥ Α ΡΙ ΣΤΟ- ΤΕ ΛΗ ΣΤΗ ΔΙΑ ΔΟ ΣΗ ΤΩΝ ΘΕ ΣΕ ΩΝ ΤΟΥ ΚΑΙ Η Υ ΠΟ ΔΟ ΧΗ ΤΩΝ ΦΙ- ΛΟ ΣΟ ΦΙ ΚΩΝ ΤΟΥ ΘΕ ΣΕ- ΩΝ ΣΤΗΝ Ε ΠΟ ΧΗ ΤΟΥ ΚΙΚΕ ΡΩ ΝΑ

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκήσεις στους Γράφους 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκηση 1 η Να αποδείξετε ότι κάθε γράφημα περιέχει μια διαδρομή από μια κορυφή u σε μια κορυφή w αν και

Διαβάστε περισσότερα

ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ

ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ 12 Το γε γο νός ό τι δια βά ζεις αυ τό το βι βλί ο ση μαί νει ό τι έ χεις μολυν θεί α πό έ να μι κρόβιο το μι κρό βιο του πο δο σφαί ρου και σίγου

Διαβάστε περισσότερα

ΜΕ ΣΩΝ ΜΑ ΖΙ ΚΗΣ Ε ΝΗ ΜΕ ΡΩ ΣΗΣ (Μ.Μ.Ε.) ΣΤΗΝ ΟΥ ΣΙΟ Ε ΞΑΡ ΤΗ ΣΗ ΤΩΝ Α ΝΗ ΛΙ ΚΩΝ όπως προ κύ πτει α πό τις έ ρευ νες

ΜΕ ΣΩΝ ΜΑ ΖΙ ΚΗΣ Ε ΝΗ ΜΕ ΡΩ ΣΗΣ (Μ.Μ.Ε.) ΣΤΗΝ ΟΥ ΣΙΟ Ε ΞΑΡ ΤΗ ΣΗ ΤΩΝ Α ΝΗ ΛΙ ΚΩΝ όπως προ κύ πτει α πό τις έ ρευ νες Ο ΡΟ ΛΟΣ ΤΩΝ ΜΕ ΣΩΝ ΜΑ ΖΙ ΚΗΣ Ε ΝΗ ΜΕ ΡΩ ΣΗΣ (Μ.Μ.Ε.) ΣΤΗΝ ΟΥ ΣΙΟ Ε ΞΑΡ ΤΗ ΣΗ ΤΩΝ Α ΝΗ ΛΙ ΚΩΝ όπως προ κύ πτει α πό τις έ ρευ νες ΚΕΙΜΕΝΟ: Α να στά σιος Γ. Ρούσ σης Κοι νω νιο λό γος - Ε γκλη μα το λό

Διαβάστε περισσότερα

Επαγωγή και αναδρομή για συνεκτικά γραφήματα

Επαγωγή και αναδρομή για συνεκτικά γραφήματα ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για συνεκτικά γραφήματα Επαγωγή για συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη προτασιακή

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων 2η Διάλεξη Θεωρία Γραφημάτων 2η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ

ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ ΤΗ ΑΓΙΑ ΚΑΙ ªΕΓΑΛΗ ΔΕΥΤΕΡΑ. Eις τους Αίνους. Ε ρ χο με νος ο Κυ ρι ος προς το ε κου ου σι ο ον πα α α θος τοις Α πο στο λοις ε λε γε εν εν τη η η η ο ο ο ο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΙΓΑΔΙΚΟΤ-ΟΡΙΑ-ΤΝΕΧΕΙΑ

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΙΓΑΔΙΚΟΤ-ΟΡΙΑ-ΤΝΕΧΕΙΑ (ΠΕΡΙΕΧΕΙ ΑΚΗΕΙ ΚΑΙ ΑΠΟ ΣΗΝ ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ ΣΗ Ε.Μ.Ε) ΑΚΗΗ 1 Έςτω ςυνεήσ ςυνάρτηςη :RR, με (0)=2 η οποία ικανοποιεί τη ςέςη ( ) 4 = 6 ια κά ε R α) Να βρείτε τισ τιμέσ (2) και (-2) β) Να απο είξετε τι υπάρει

Διαβάστε περισσότερα

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α

Διαβάστε περισσότερα

ΔΙΜΗΝΙΑΙΑ ΕΚΔΟΣΗ ΓΕΝΙΚΟΥ ΕΠΙΤΕΛΕΙΟΥ ΣΤΡΑΤΟΥ ΕΤΟΣ ΙΔΡΥΣΕΩΣ 1883 ΤΕΥΧΟΣ 2/2011 (ΜΑΡ.-ΑΠΡ.) ΕΤΗΣΙΑ ΣYΝΔΡΟΜΗ

ΔΙΜΗΝΙΑΙΑ ΕΚΔΟΣΗ ΓΕΝΙΚΟΥ ΕΠΙΤΕΛΕΙΟΥ ΣΤΡΑΤΟΥ ΕΤΟΣ ΙΔΡΥΣΕΩΣ 1883 ΤΕΥΧΟΣ 2/2011 (ΜΑΡ.-ΑΠΡ.) ΕΤΗΣΙΑ ΣYΝΔΡΟΜΗ ΔΙΜΗΝΙΑΙΑ ΕΚΔΟΣΗ ΓΕΝΙΚΟΥ ΕΠΙΤΕΛΕΙΟΥ ΣΤΡΑΤΟΥ ΕΤΟΣ ΙΔΡΥΣΕΩΣ 1883 ΤΕΥΧΟΣ 2/2011 (ΜΑΡ.-ΑΠΡ.) ΕΤΗΣΙΑ ΣYΝΔΡΟΜΗ ΕΣΩΤΕΡΙΚΟΥ Αξιωματικοί Στρατού Ξηράς ε.α. 2,94 Ιδιώτες, Σύλλογοι κ.λπ. 5,87 ΕΞΩΤΕΡΙΚΟΥ (ΕΥΡΩΠΑΪΚΗ

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

H Η ΜΙΟΥΡ ΓΙ Α ΜΙΑΣ Ε ΝΩ ΜΈ ΝΗΣ ΕΥ ΡΩ ΠΗΣ ΚΑ ΤΑ ΤΗΝ ΠΕ ΡΙ Ο Ο ΣΤΗ ΒΑ ΣΗ ΤΟΥ Ο ΜΟ ΣΠΟΝ ΙΑ ΚΟΥ ΠΡΟ ΤΥ ΠΟΥ

H Η ΜΙΟΥΡ ΓΙ Α ΜΙΑΣ Ε ΝΩ ΜΈ ΝΗΣ ΕΥ ΡΩ ΠΗΣ ΚΑ ΤΑ ΤΗΝ ΠΕ ΡΙ Ο Ο ΣΤΗ ΒΑ ΣΗ ΤΟΥ Ο ΜΟ ΣΠΟΝ ΙΑ ΚΟΥ ΠΡΟ ΤΥ ΠΟΥ H Η ΜΙΟΥΡ ΓΙ Α ΜΙΑΣ Ε ΝΩ ΜΈ ΝΗΣ ΕΥ ΡΩ ΠΗΣ ΚΑ ΤΑ ΤΗΝ ΠΕ ΡΙ Ο Ο 1945-1954 ΣΤΗ ΒΑ ΣΗ ΤΟΥ Ο ΜΟ ΣΠΟΝ ΙΑ ΚΟΥ ΠΡΟ ΤΥ ΠΟΥ Για Ποιους Λό γους εν Τελε σφό ρη σε; ΚΕΙΜΕΝΟ-ΦΩΤΟΓΡΑΦΙΕΣ: Αν θστης (ΠΖ) Γεώργιος Δη μη

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

Η ΤΡΥ ΠΑ ΤΟΥ Ο ΖΟ ΝΤΟΣ

Η ΤΡΥ ΠΑ ΤΟΥ Ο ΖΟ ΝΤΟΣ Η ΤΡΥ ΠΑ ΤΟΥ Ο ΖΟ ΝΤΟΣ ΚΕΙΜΕΝΟ: Α θα νά σιος Πα παν δρέ ου, Φαρ μα κο ποιός-το ξι κο λό γος- Ε πι στη μο νι κός συ νερ γά της του Ο φθαλ μο λο γι κού Ιν στι τού του Α θη νών Χρό νια τώ ρα, το κλα σι κό

Διαβάστε περισσότερα

24 Πλημμυρισμένα. 41 Γίνε

24 Πλημμυρισμένα. 41 Γίνε Anderson s Ltd Εφαρμογές Υψηλής Τεχνολογίας - Εκδόσεις : Γ Σεπτεμβρίου 103 Αθήνα 10434 Τ: 210-88 21 109 F: 210-88 21 718 W: www.odp.gr E: web@odp.gr 42 Γρήγορο Εγχειρίδιο για τον Διαχειριστή 24 Πλημμυρισμένα

Διαβάστε περισσότερα

Αρχές Μάνατζμεντ και Μάρκετινγκ Οργανισμών και Επιχειρήσεων Αθλητισμού και Αναψυχής

Αρχές Μάνατζμεντ και Μάρκετινγκ Οργανισμών και Επιχειρήσεων Αθλητισμού και Αναψυχής Κωνσταντίνος Αλεξανδρής, PhD Αρχές Μάνατζμεντ και Μάρκετινγκ Οργανισμών και Επιχειρήσεων Αθλητισμού και Αναψυχής β βελτιωμένη έκδοση ΘΕΣΣΑΛΟΝΙΚΗ 2011 ΠΕΡΙEΧΟΜΕΝΑ Εισαγωγή... 11 ΠΡΩΤΗ ΕΝΟΤΗΤΑ 1.0 Η Αθλητική

Διαβάστε περισσότερα

2 ) d i = 2e 28, i=1. a b c

2 ) d i = 2e 28, i=1. a b c ΑΣΚΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ (1) Εστω G απλός γράφος, που έχει 9 κορυφές και άθροισμα βαθμών κορυφών μεγαλύτερο του 7. Αποδείξτε ότι υπάρχει μια κορυφή του G με βαθμό μεγαλύτερο ή ίσο του 4. () Αποδείξτε ότι

Διαβάστε περισσότερα

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ ι ε α τ Τ εγνα α α ετ κ λε τ υργικ ο τημα Η οτ ρ α τ υ αρ Γ ζε τ τη Φ λα δ α απ τ α φ ιτητ τ υ Πα ετ τημ υ τ υ λ νκ ξεκ νη ε αν μ α τ ρ τ Θε α να δημ υργηθε ακαλ τερ Ενα τ υ αμτ ρε ααντατ κρ ετα καλ τερα

Διαβάστε περισσότερα

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) (α) Επιλέγουµε αυθαίρετα φυσικούς αριθµούς από το σύνολο {,,3,, 3, } Να δείξετε ότι µεταξύ των αριθµών που έχουµε επιλέξει υπάρχει πάντα ένα ζευγάρι όπου ο µεγαλύτερος

Διαβάστε περισσότερα

Ι διω τι κο ποί η ση του πο λέμου

Ι διω τι κο ποί η ση του πο λέμου Ι διω τι κο ποί η ση του πο λέμου μία νέ α πραγ μα τι κό τη τα ΚΕΙΜΕΝΟ: Λγος (ΠΖ) Ιω άν νης Χρή στου ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση Ει σα γω γή Η δο λο φο νί α των τεσ σά ρων Α μερικα νών πο λι

Διαβάστε περισσότερα

Στις α ντιπα λό τη τες με τα ξύ των

Στις α ντιπα λό τη τες με τα ξύ των Υ ΠΟ ΣΤΗ ΡΙ ΞΗ ΤΩΝ ΨΕ ΓΙΑ ΕΠΙΤΥΧΗ ΣΧΕΔΙΑΣΗ ΚΑΙ ΔΙΕΞΑΓΩΓΗ ΣΤΟ ΣΥΓ ΧΡΟ ΝΟ Ε ΠΙ ΧΕΙ ΡΗ ΣΙΑ ΚΟ ΠΕ ΡΙ ΒΑΛ ΛΟΝ ΚΕΙΜΕΝΟ-ΦΩΤΟΓΡΑΦΙΕΣ: Αν χης (ΠΖ) Ιω άν νης Ιω άν νου Στις α ντιπα λό τη τες με τα ξύ των αν θρώπων,

Διαβάστε περισσότερα