TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema."

Transcript

1 TERMODINAMIKA U svakodnevnom govoru, često dolazi greškom do koriščenja termina temperatura i toplota u istom značenju. U fizici, ova dva termina imaju potpuno različito značenje. Razmatračemo kako se temperatura meri, kako je definišemo kao i efektivne promene dimenzija tela pri promeni njihove temperature. Videčemo da toplota predstavlja količinu energije koja kada se dovede nekom telu uzrokuje njegovu promenu temperature. Podsetičemo se, takođe nekih transformacija energije kao na primer: prelaz mehaničke energije u toplotnu prilikom kretanja tela po neravnoj podlozi, hemijske u električnu itd. što nam ukazuje na procese u termodinamici o kojima če biti reči. Termodinamika i njen formalizam su neodvojivi deo temelja fizike, hemije i drugih prirodnih i primenjenih nauka. Primeri kao što su rad frižidera, rad automobilskih motora, biohemijski procesi, struktura zvezda itd. su jedni od onih koji nam ukazuju na primenu termodinamičkog formalizma na ovaj ili onaj način u prirodnim ili ljudskom rukom stvorenim sistemima. Govoreči o zakonu održanja mehaničke energije naglašavamo da ovaj zakon važi u slučaju sistema u kojima deluju konzervativne sile. Ukoliko na sistem deluju nekonzervativne sile, onda ne važi ovaj zakon, jer se mehanička energija troši pod delovanjem nekonzervativnih sila. Nekonzervativne sile se javljaju u interakcijama mnogočestičnih sistema. Rasipanje mehaničke energije je karakteristično za mnogočestične sisteme. TERMODINAMIČKI SISTEM je fizički sistem sa velikim brojem interagujučih čestica koji je ograničen. OKOLINA sistema je sve što se nalazi izvan granica sistema. Sistem je odvojen od okoline graničnom površi koja može biti zamišljena (posmatrani deo tečnosti) i realni ( gas zatvoren u nekoj posudi). TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema. TOPLOTNO KRETANJE I UNUTRAŠNJA ENERGIJA Kod mnogočestičnog sistema postoje dva tipa kretanja: Mehaničko kretanje sistema, a to je kretanje sistema kao celine usled delovanja spoljašnjih sila Toplotno kretanje čestica sistema koje postoji kada sistem kao celina miruje. Zbog toplotnog kretanja svaka čestica sistema ima kinetičku energiju, a zbog interakcije sa ostalim česticama ima i potencijalnu energiju.

2 Izolovani sistemi Zatvoreni sistem Otvoreni sistem Slika. IZOLOVAN SISTEM: i masa i energija su konstantni (ne izmjenjuju se s okolinom) ZATVOREN SISTEM: masa je konstantna, ali energija se može izmjenjivati s okolinom. OTVOREN SISTEM: i masa i energija se mogu izmjenjivati s okolinom.

3 Statistički metod se koristi u statističkoj fizici. Statistička fizika je oblast fizike koja se bavi fizičkim sistemima sastavljenim iz velikog broja čestica (reda veličine Avogadrovog broja). Njen zadatak je da opiše makroskopske, merljive fizičke veličine na osnovu osobina, ponašanja i uzajamnog dejstva mikro konstituenata tog sistema. Pri određivanju ponašanja čestica sistema, statistička fizika se koristi metodama teorije verovatnoče i statistike.

4 Kao prvi od značajnih radova, javlja se rad Rudolfa Klauzijusa ( ) iz molekularne teorije gasova u kome je pokazano da je toplota u stvari kinetička energija haotičnog kretanja molekula. TERMODINAMIČKI PARAMETRI su veličine koje fenomenološki opisuju osobine sistema: Temperatura (T), pritisak (p), zapremina(v), unutrašnja energija (U), entropija (S) Intenzivni parametri (pritisak i temperatura) ne zavise od veličine sistema odnosno od količine supstance. Ekstenzivni parametri ( zapremina, unutrašnja energija, entropija) zavise od veličine sistema. Njihova vrednost poraste onoliko puta koliko puta poraste broj čestica u sistemu, dakle proporcionalna je količini supstance. Niz termodinamičkih parametara potpuno određuje stanje sistema. Svaki put kada se sistem vrati u početno stanje, sve veličine stanja (parametri) poprimiče odgovarajuče početne vrednosti Funkcija stanja sistema zavisi samo od početnog i krajnjeg stanja sistema, ali ne i od puta ili načina na koji je sistem došao u to stanje. Funkcije procesa zavise od puta ili načina promene stanja sistema. To su npr. toplota, rad itd. Postoje dva osnovna termodinamička stanja sistema: Ravnotežno stanje je stanje sistema u kome se svi termodinamički parametri, pri ne promenjenim spoljašnjim uslovima, ne menjaju u toku vremena. Stacionarno stanje je stanje sistema kod koga se parametri sistema ne menjaju u toku vremena iako sistem sa okolinom razmenjuje energiju. Postoje dva osnovna termodinamička procesa Termodinamički proces je prelaz sistema iz jednog stanja u drugo usled promene spoljašnjih uslova.

5 Povratni ( reverzibilni) procesi mogu se odvijati u oba smera preko istih međustanja. U reverzibilnom procesu sistem prolazi kroz niz ravnotežnih stanja. Nepovratni (ireverzibilni) procesi su procesi u kojima iz jednog prelazimo u drugo stanje ali se istim putem ne možemo vratiti u prvo stanje. Večina realnih termodinamičkih procesa su nepovratni. Iz početnog stanja sistem pređe u stanje ravnoteže, ali se prelaz u obrnutom smeru neče dogoditi. Termodinamičke sisteme karakterišu termodinamički parametri: pritisak, zapremina, temperatura, unutrašnja energija, entropija.. Sistem se nalazi u stanju termodinamičke ravnoteže kada su u bilo kojoj tački sistema parametri nepromenljivi u toku vremena. Vreme koje protekne između narušavanja termodinamičke ravnoteže i ponovnog vraćanja u ravnotežni položaj, naziva se vreme relaksacije, a taj proces se naziva relaksacija U termodinamici ima više vrsta ravnoteža. Ovde dajemo primer mehaničke i toplotne ravnoteže.

6 S 1, P 1 P 1 =P 2 P 2, S 2 Izjednačavanjem pritisaka podsistema, složeni sistem dolazi u ravnotežno stanje, a podsistemi u stanje mehaničke ravnoteže Termodinamički sistemi sa jednakim pritiscima su u stanju mehaničke ravnoteže TEMPERATURA Kelvin je termodinamička temperatura koja je jednaka 1/273,15 delu termodinamičke temperature trojne tačke vode. Kelvin je osnovna jedinica u SI za temperaturu, koja se skraćeno označava sa K. Raspon od jednog kelvina je jednak jednom stepenu celzijusa ( C). Najniža moguća temperatura u svemiru je 0 kelvina i naziva se apsolutna nula. Tačka mržnjenja vode iznosi 273,15 Kelvina (napomena: na pojedinim mestima je to 273,14 Kelvina)

7 Termodinamički sistemi sa jednakim temperaturama su u stanju toplotne ravnoteže. TERMODINAMIČKI RAD Posmatrajmo otvoreni cilindar u kome se nalazi nekakav gas i zatvoren je pokretnim klipom. Ako zagrevamo gas u cilindru, spontano dolazi do pomeranja klipa. Tada možemo reči da dolazi do vršenja rada sistema. Polazimo od definicije mehaničkog rada i dolazimo do rada u termodinamici: da = F dx = p S dx = pdv F-sila kojom se deluje na klip dx-pomeraj klipa

8 dv-zapremina dela klipa =Sdx Daljim razmatranjem, dolazimo do opštijeg oblika za termodinamički rad : A = x x 2 1 psdx = V 2 V 1 pdv Slika koja prati ovu definiciju rada može se prikazati kao p V dijagram u kome se odigrava prelaz iz jednog u drugo stanje sistema: Površ ispod linije procesa jednaka je izvršenom radu u datom procesu.

9 Ako posmatramo kružni proces u pv dijagramu, rad takvog procesa nije nula već je jednak površi unutar kružnog procesa.u termodinamici je uobičajeno da se diferencijali funkcija procesa obeležavaju simbolom. PRIMERI ZA PRVI PRINCIP TERMODINAMIKE Ako uzmemo konzervu soka iz frižidera i ostavimo je na kuhinjskom stolu njena temperatura će rasti brzo na početku, a zatim sporije dok se temperatura konzerve ne izjednači sa sobnom temperaturom. Na isti način šolja vruče kafe će opadati sve dok ne dostigne sobnu temperaturu. Ukoliko ovaj slučaj uopštimo možemo opisati konzervu pića ili šolju kafe kao sistem (temperature T s ), a odgovarajuže delove kuhinje kao okolinu (temperature T 0 ) datog sistema. Zapažamo da ako T s nije jednako T 0, tada će se T s menjati sve dok se te dve temperature ne izjednače. Ovakva promena temperature je posledica prenosa jednog oblika energije između sistema i njegove okoline. Ova energija je unutrašnja energija koja predstavlja skup kinetičkih i potencijalnih energija povezanih sa slučajnim kretanjem atoma, molekula i drugih mikroskopskih čestica unutar predmeta. Prenesena unutrašnja energija se naziva količina toplote i označava se sa Q. Usvojeno je da je količina toplote pozitivna kada se unutrašnja energija prenosi (dovodi) sistemu iz njegove okoline (kaže se da je toplota apsorbovana), a negativna kada se unutrašnja energija prenosi (odvodi) iz sistema u njegovu okolinu (tada se kaže da se toplota oslobađa ili gubi). Primer: Kada je T s >T 0, unutrašnja energija se prenosi od sistema ka okolini, pa je Q negativno.

10 Kada je T s =T 0,tada nema prenosa, Q=0. Kada je T s <T 0, prenos je od okoline ka sistemu, pa je Q pozitivno. Definišimo količinu toplote: Količina toplote je energija koja se prenosi između sistema i njegove okoline usled razlike temperatura koja postoji između njih. PRVI ZAKON TERMODINAMIKE Drugi način formulacije zakona održanja energije je I zakon termodinamike δq = δa + du Količina toplote dovedena sistemu potroši se na porast unutrašnje energije sistema du i na rad koji sistem δa izvrši nad okolinom δq i δa nisu funkcije stanja sistema. One imaju značenje samo dok opisuju prenošenje energije u sistem ili iz njega, dodajuči ili oduzimajuči određenu količinu unutrašnje energije sistema. Dakle one su funkcije procesa. Neki specijalni slučajevi prvog zakona termodinamike. 1) Adijabatski proces δq=0. Sledi da je du= - δa. Ovo znači idealno izolovan sistem. 2) Izohorni proces V=const. δa=pdv sledi da je dv=0 i odatle δa=0. To znači da je ne vrši rad. du=δq. Ako se zapremina sistema održava konstantnom onda takav sistem 3) Ciklični procesi u kojima se sistem, posle određene razmene toplote i rada vrača u početno stanje. U tom slučaju se nijedna unutrašnja veličina sistema ne menja a to znači ni unutrašnja energija. Tada imamo δq=δa. Ovo je karakteristika i izotermskog procesa, odnosno pri T=const unutrašnja energija sistema se ne menja.

11 DRUGI ZAKON TERMODINAMIKE Posmatramo a) proces topljenja komada leda u metalnoj kutiji koja je zagrejana do 70 stepeni. U ovom slučaju povratni proces nije moguč. Metalna kutija se rashladi do 40 stepeni i u njoj ostaje voda. U slučaju b) Posmatramo metalnu kutiju čija je temperatura 0 stepeni i unutar nje komad leda na 0 stepeni. Kada infinitezimalno malo menjamo temperaturu unutar metalne kutije možemo imati povratni proces u smislu da naizmenično led postaje voda i voda ponovo postaje led. Slika. Nadovezujemo se na ovaj primer tako što uvodimo funkciju entropije S kao kvantitativnu meru uređenosti sistema. Uzimamo primer izotermskog procesa pri veoma maloj promeni zapremine (izotermska ekspanzija) Pošto je T=const sledi da je i du=0. Odatle imamo da je δq = δa = pdv = i tako dobijamo nrt V dv dv δq = V nrt dv nr V δq = T dv/v ovaj relativni odnos zapremina može se razumeti kao mera rasta neuređenosti. Gas je u stanju veče neuređenosti posle širenja nego pre širenja, jer se molekuli kreču u večoj zapremini i imaju veču neodređenost u nalaženju njegovog položaja. Na ovaj način uvodimo pojam entropije.

12 Stoga II zakon termodinamike kaže da spontanim procesom sistem prelazi iz stanja manjeg u stanje većeg nereda. Stanje veće neuređenosti je verovatnije. Entropiju možemo povezati sa stanjem neuređenosti sistema. Entropija predstavlja meru neuređenosti sistema. Možemo meriti promenu entopije sistema.po definiciji : Ne merimo apsolutnu entropiju sistema već njenu promenu. T-temperatura sistema, dq- količina toplote Drugi zakon termodinamike može se formulisati u obliku: Ne postoji mašina koja bi uzimala toplotu iz rezervoara određene temperature i pretvarala ga potpuno u rad ili Pri svakom spontanom procesu, ukupna entropija sistema i okoline se povečava.entropija, dakle opisuje i smer spontanih procesa. Oni svi teku u smeru sveopšteg povečanja entropije. U izolovanim sistemima kada dođe do ravnoteže termodinamičkog sistema,entropija ima maksimalnu vrednost.termodinamički potencijalisu unutrašnja energija U, Gipsov potencijal G, slobodna energija F i entalpija H. Svaka od ovih funkcija zavisi od određenih parametara sistema. U(S,V); G(T, p); F(T,V); H(S,p) TERMODINAMIKA IDEALNOG GASA pv=const: IDEALAN GAS pv nije jednako konstanti: REALAN GAS

13 Osnovni zakoni termodinamike

14 Slika. Prikazana su tri osnovna empirijska zakona termodinamike u p-v dijagramima. Jednačina stanja idealnog gasa Na osnovu prethodno navedenih eksperimentalnih zakona, došlo se do jednačine Koja je poznata kao jednačina idealnog gasa m- masa gasa p-pritisak, V-zapremina, T-temperatura M-molarna masa gasa R-gasna konstanta

15 Ova jednačina povezuje toplotne kapacitete sistema pri konstantnom pritisku I konstantnoj temperaturi sa gasnom konstantom R TERMODINAMIKA REALNOG GASA R je gasna konstanta

16 Slika. Eksperimentalne izoterme za vrednosti temperature 330K Ako budemo uračunavali dimenzije čestica i međumolekulske sile, lako ćemo jednačinu stanja idealnog gasa pretvoriti u Van der Valsovu jednačinu realnog gasa:

17 Slika. Zapremina koje čestice koriste za kretanje (tj. zapremina okolo čestica) je manja od zapremine suda, jer i same čestice zauzimaju neku zapreminu: Faktor za zapreminu korigovao je Van der Vals. Gde je n - broj molova gasa, b - zapremina koja zauzimaju molekuli jednog mola gasa. Pritisak koji određujemo zapravo je manji od stvarnog pritiska zbog međumolekulskihprivlačnih sila. Pa važi: Gde je - odnos kvadratne vrednosti broja molova gasa i kvadrata zapremine, a - konstanta koja govori o tome koliko su jake međumolekulske sile. Odavde se zamenom u: dobija Van der Valsova jednačina stanja: Na osnovu ove formule možemo tačnije meriti i vršiti eksperimente sa gasovima koji su svugde oko nas (gasovi koji su realni u prirodi).

18 XX T k T 3 T 2 T 1

19 Slika. Zapaža se da se plato eksperimentalne izoterme realnog gasa smanjuje sa porastom temperature. Temperature ovih eksperimentalnih izotermi stoje u odnosu: T k >T 3 >T 2 >T 1 SPONTANI PROCESI PRENOSA Prenos toplote provođenjem se ostvaruje interakcijom delića koji vrše termičko kretanje, pri čemu se delovi tela ne pomeraju. Prenošenje toplote putem pokretanja(strujanja) toplog materijala (fluida) je konvekcija Prirodna konvekcija je pojava kada se topli materijal kreće sam od sebe (spontano) zbog razlika u gustini. Prinudna konvekcija je kretanje (strujanje) toplog materijala pod uticajem spoljašnjih faktora. Slika. Konvekcija molekula vode Toplota se između tela može prenositi i bez direktnog kontakta zračenje, tj. emisijom elektromagnetnog toplotnog zračenja Ako je gustina u jednom delu zapremine veča nego u drugom delu zapremine, počeče kretanje molekula gasa ili fluida iz dela sa večom gustinom u deo sa manjom gustinom. Ovaj proces prenosa mase iz jednog dela zapremine u drugi deo, usled različite koncentracije molekula, naziva se difuzija.

20

Drugi zakon termodinamike

Drugi zakon termodinamike Drugi zakon termodinamike Uvod Drugi zakon termodinamike nije univerzalni prirodni zakon, ne važi za sve sisteme, naročito ne za neobične sisteme (mikrouslovi, svemirski uslovi). Zasnovan je na zajedničkom

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA

U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA HEMIJSKA TERMODINAMIKA Bavi se energetskim promenama pri odigravanju hemijskih reakcija. TERMODINAMIČKE FUNKCIJE STANJA U unutrašnja energija H entalpija S entropija Ako su određene na standardnom pritisku

Διαβάστε περισσότερα

GASNO STANJE.

GASNO STANJE. GASNO STANJE http://www.ffh.bg.ac.rs/geografi_fh_procesi.html AGREGATNA STANJA MATERIJE Četiri agregatna stanja materije na osnovu stepena uređenosti, tj. odnosa termalne energije čestica i energije međumolekulskih

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

TERMODINAMIKA osnovni pojmovi energija, rad, toplota

TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA TERMO TOPLO nauka o kretanju toplote DINAMO SILA Termodinamika-nauka odnosno naučna disciplina koja ispituje odnose između promena u sistemima

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim

Διαβάστε περισσότερα

Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika

Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika Molekularna fizika proučava strukturu i svojstva supstanci polazeći od molekularno -kinetičke teorije: supstance su sastavljene od vrlo malih čestica (molekula, atoma i jona) koji se nalaze u stalnom haotičnom

Διαβάστε περισσότερα

NULTI I PRVI ZAKON TERMODINAMIKE

NULTI I PRVI ZAKON TERMODINAMIKE NULTI I PRVI ZAKON TERMODINAMIKE NULTI ZAKON (princip)termodinamike ako su dva sistema A i B u međusobnom termičkom kontaktu, i u ravnoteži sa trećim sistemom C onda su u ravnoteži i jedan sa drugim Ako

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

2. TERMODINAMIKA 2.1. Prvi zakon termodinamike

2. TERMODINAMIKA 2.1. Prvi zakon termodinamike . ERMODINAMIKA.. rvi zakon termodinamike ermodinamika je naučna disciplina koja proučava energetske promene koje prate univerzalne procese u prirodi kao i vezu tih promena sa osobinama materije koja učestvuje

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

za reverzibilan kružni proces količina toplote koju je sistem na svojoj nižoj temperaturi T 1 predao okolini i ponovo prešao u početno stanje

za reverzibilan kružni proces količina toplote koju je sistem na svojoj nižoj temperaturi T 1 predao okolini i ponovo prešao u početno stanje ENROPIJA Spontani procesi u prirodi se uvek odvijaju u određenom smeru (npr. prelazak toplote sa toplijeg na hladnije telo) što nije moguće opisati termodinamičkim funkcijama do sad obrađenim. Nulti zakon

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

SPONTANI PROCESI II ZAKON TERMODINAMIKE

SPONTANI PROCESI II ZAKON TERMODINAMIKE SPONANI PROCESI II ZAKON ERMODINAMIKE I zakon termodinamike se bavi termodinamičkim procesom kao procesom koji je praćen ekvivalentnošću različitih oblika energije bez ikakvih ograničenja odnosno ne govori

Διαβάστε περισσότερα

TERMODINAMIKA.

TERMODINAMIKA. TERMODINAMIKA http://www.ffh.bg.ac.rs/geografi_fh_procesi.html 1 Termodinamika naučna disciplina koja proučava energetske promene koje prate univerzalne procese u prirodi kao i vezu tih promena sa osobinama

Διαβάστε περισσότερα

Termodinamika. Termodinamika

Termodinamika. Termodinamika ermodinamika Postoje brojne definicije termodinamike kao nauke o toploti. ako na primjer, prema Enriku Fermiju: Glavni sadržaj termodinamike je opisivanje transformacije toplote u mehnaički rad i obratno

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

TERMODINAMIKA. Sistem i okruženje

TERMODINAMIKA. Sistem i okruženje TERMODINAMIKA Sistem i okruženje SISTEM je deo sveta koji nas zanima; to je bilo koji objekat, bilo koja količina materije, bilo koji deo prostora, izabran za ispitivanje i izdvojen (misaono) od svega

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Termodinamički zakoni

Termodinamički zakoni Termodinamički zakoni Stanje sistema Opisano je preko varijabli stanja tlak volumen temperatura unutrašnja energija Makroskopsko stanje izoliranog sistema može se specificirati jedino ako je sistem u unutrašnjoj

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

13.1. Termodinamički procesi O K O L I N A. - termodinamički sustav: količina tvari unutar nekog zatvorenog volumena

13.1. Termodinamički procesi O K O L I N A. - termodinamički sustav: količina tvari unutar nekog zatvorenog volumena 13. TERMODINAMIKA - dio fizike koji proučava vezu izmeñu topline i drugih oblika energije (mehanički rad) - toplinski strojevi: parni stroj, hladnjak, motori s unutrašnjim izgaranjem - makroskopske veličine:

Διαβάστε περισσότερα

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas ,4,4, Odreñivanje promene entropije,4,4,, romena entropije pri promeni faza Molekular ularna interpretacija entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: čvrsto

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1 OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

kvazistatičke (ravnotežne) promene stanja idealnih gasova

kvazistatičke (ravnotežne) promene stanja idealnih gasova zbirka zadataka iz termodinamike strana 1/71 kvazistatičke (ravnotežne) promene stanja idealnih gasova 1.1. Vazduh (idealan gas), (p 1 =2 bar, t 1 =27 o C) kvazistatički menja stanje pri stalnoj zapremini

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

2. OSNOVNI POJMOVI. 2.1 Fizika i termodinamika

2. OSNOVNI POJMOVI. 2.1 Fizika i termodinamika 2. OSNOVNI POJMOVI 2.1 Fizika i termodinamika Fizika nauka koja se bavi izučavanjem procesa kretanja materije u svim njenim pojavnim oblicima. Kako je osnovna kvantitativna mera kretanja materije energija

Διαβάστε περισσότερα

Količina topline T 2 > T 1 T 2 T 1

Količina topline T 2 > T 1 T 2 T 1 Izvršeni rad ermodinamički sustav može vršiti rad na račun unutrašnje energije. Smatramo da je rad pozitivan ako sustav vrši rad, odnosno da je negativan ako se rad vrši nad sustavom djelovanjem vanjskih

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

8 Funkcije više promenljivih

8 Funkcije više promenljivih 8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

Termofizika. Glava Temperatura

Termofizika. Glava Temperatura Glava 7 Termofizika Toplota je jedan od oblika energije sa čijim transferom sa tela na telo se svakodnevno srećemo. Tako nas na primer, leti Sunce zagreva tokom dana dok su vedre letnje noći često prilično

Διαβάστε περισσότερα

DRUGI ZAKON TERMODINAMIKE

DRUGI ZAKON TERMODINAMIKE DRUGI ZKON ERMODINMIKE Povratni i nepovratni procesi Ranije smo razmotrili više različitih procesa pomoću kojih se termodinamički sistem (u našem razmatranju, idealan gas) prevodi iz jednog stanja ravnoteže

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Promene termodinamičkih funkcija na putu do ravnoteže i u ravnoteži

Promene termodinamičkih funkcija na putu do ravnoteže i u ravnoteži romene termodinamičkih funkcija na putu do ravnoteže i u ravnoteži Helmholcova slobodna energija-2.5.1.,2.5.2. Gibsova slobodna energija-2.5.3. Gibs-Helmholcova jednačina-2.5.4. Reverzibilni i ireverzibilni

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Lijeva strana prethodnog izraza predstavlja diferencijalnu formu rada rezultantne sile

Lijeva strana prethodnog izraza predstavlja diferencijalnu formu rada rezultantne sile RAD SILE Sila se može tokom kretanja opisati kao zavisnost od vremena t ili od trenutnog vektora položaja r. U poglavlju o impulsu sile i količini kretanja je pokazano na koji način se može povezati kretanje

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će

Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će se bez obzira na masu kretati istim ubrzanjem Zanimljivo

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Rad, energija, snaga. Glava Rad

Rad, energija, snaga. Glava Rad Glava 4 Rad, energija, snaga Pojam energije je jedan od najvažnijih u nauci i tehnici ali se koristi i u svakodnevnom životu. U našoj svakodnevnici taj pojam se obično odnosi na gorivo za pokretanje automobila

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

II zakon termodinamike

II zakon termodinamike Poglavlje.3 II zakon termodinamike Pravac i smer spontanih promena Drugi zakon termodinamike-definicije Karnoova teorema i ciklus Termodinamička temperaturska Prvi zakon termodinamike: Energija univerzuma

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Prediktor-korektor metodi

Prediktor-korektor metodi Prediktor-korektor metodi Prilikom numeričkog rešavanja primenom KP: x = fx,, x 0 = 0, x 0 x b LVM α j = h β j f n = 0, 1, 2,..., N, javlja se kompromis izmed u eksplicitnih metoda, koji su lakši za primenu

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

I zakon termodinamike unutrašnje energije, U I zakon termodinamike II zakon termodinamike

I zakon termodinamike unutrašnje energije, U I zakon termodinamike II zakon termodinamike I zakon termodinamike je doveo do uvoñenja unutrašnje nje energije, U koja nam omogućava da odredimo koje termodinamičke promene su moguće: samo one u kojima unutrašnja energija izolovanog sistema ostaje

Διαβάστε περισσότερα

1 Osnovne postavke klasične nerelativističke mehanike

1 Osnovne postavke klasične nerelativističke mehanike 1 Osnovne postavke klasične nerelativističke mehanike Osnovni model koji koristimo u mehanici je materijalna tačka (ili čestica. Jednostavno rečeno, materijalna tačka je geometrijska tačka kojoj pridružujemo

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

Viskoznost predstavlja otpor tečnosti pri proticanju. Viskoznost predstavlja unutrašnje trenje između molekula u fluidu.

Viskoznost predstavlja otpor tečnosti pri proticanju. Viskoznost predstavlja unutrašnje trenje između molekula u fluidu. VISKOZNOST VISKOZNOST Viskoznost predstavlja otpor tečnosti pri proticanju. Viskoznost predstavlja unutrašnje trenje između molekula u fluidu. VISKOZNOST Da li očekujete da će glicerol imati veću ili manju

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia. Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

dt dx dt dx dt dx Radi pojednostavljenja određivanja funkcije raspodele temperature u prostoru i vremenu, uvode se sledeće pretpostavke:

dt dx dt dx dt dx Radi pojednostavljenja određivanja funkcije raspodele temperature u prostoru i vremenu, uvode se sledeće pretpostavke: KONSTRUKCIJE, MATERIJALI I GRAðENJE Fond: 4+ Prof. dr Vlastimir RADONJANIN Prof. dr Mirjana MALEŠEV PREDAVANJE br. 3 Prema drugom zakonu termodinamike, toplota se kreće od toplijeg tela ka hladnijem telu,

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα