K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole"

Transcript

1 K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ

2 Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της δίτιμης άλγεβρας Boole 2 Λογικές συναρτήσεις 3 Θεωρήματα Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 2 / 60

3 Ορισμός της δίτιμης άλγεβρας Boole Γενικά Κάθε άλγεβρα Boole είναι μια αλγεβρική δομή η οποία αποτελείται από ένα σύνολο και δύο ή περισσότερες πράξεις (+,, κλπ) οι οποίες μπορούν να επενεργήσουν στα στοιχεία αυτού του συνόλου Ανάλογα με την επιλογή του συνόλου και τον τρόπο ορισμού των πράξεων, μπορούμε να έχουμε διαφορετικές άλγεβρες Boole Στη συνέχεια θα μελετήσουμε την δίτιμη άλγεβρα Boole, δηλαδή εκείνη που ορίζεται σε ένα σύνολο δύο μόνο στοιχείων 1 1 Στο εξής, με τον όρο άλγεβρα Boole θα εννοούμε την δίτιμη άλγεβρα Boole Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 3 / 60

4 Ορισμός της δίτιμης άλγεβρας Boole Στοιχεία Τα στοιχεία της άλγεβρας Boole είναι τα μέλη του συνόλου Β={0,1} Θα πρέπει να τονίσουμε πως, στην άλγεβρα Boole τα σύμβολα 0 και 1 δεν αντιστοιχούν στους γνωστούς μας αριθμούς Με όρους προτασιακής λογικής το στοιχείο 0 αντιστοιχεί προς την έννοια του ψευδούς, ενώ το στοιχείο 1 αντιστοιχεί προς την έννοια του αληθούς Αντίστοιχα, με όρους της θεωρίας συνόλων, το στοιχείο 0 είναι συναφές με το κενό σύνολο ( ) ενώ το στοιχείο 1 είναι συναφές με το καθολικό σύνολο (U) Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 4 / 60

5 Ορισμός της δίτιμης άλγεβρας Boole Πράξεις Το σύνολο B={0,1} εφοδιάζεται με τις εξής πράξεις: Συμπλήρωμα (ΟΧΙ, NOT) Το συμπλήρωμα ενός στοιχείου x του συνόλου B συμβολίζεται με x και ορίζεται ως εξής: { 1, αν x = 0 x = 0, αν x = 1 Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 5 / 60

6 Ορισμός της δίτιμης άλγεβρας Boole Πράξεις Άσκηση Να αποδείξετε πως το σύνολο Β είναι κλειστό ως προς την πράξη του συμπληρώματος: x B, x B Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 6 / 60

7 Ορισμός της δίτιμης άλγεβρας Boole Πράξεις Σύζευξη (ΚΑΙ, AND) Έστω x και y στοιχεία του συνόλου B Η πράξη της σύζευξης των στοιχείων x και y συμβολίζεται με x y και ορίζεται ως εξής: { 1, αν x = 1 και y = 1 x y = 0, αλλιώς Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 7 / 60

8 Ορισμός της δίτιμης άλγεβρας Boole Πράξεις Άσκηση Να αποδείξετε πως το σύνολο Β είναι κλειστό ως προς την πράξη της λογικής σύζευξης Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 8 / 60

9 Ορισμός της δίτιμης άλγεβρας Boole Πράξεις Διάζευξη (Ή, OR) Έστω x και y στοιχεία του συνόλου B Η πράξη της διάζευξης των στοιχείων x και y συμβολίζεται με x+y και ορίζεται ως εξής: { 1, αν x = 1 ή y = 1 x + y = 0, αλλιώς Ισοδύναμα, η πράξη της διάζευξης μπορεί να περιγραφεί ως εξής: { 0, αν x = 0 και y = 0 x + y = 1, αλλιώς Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 9 / 60

10 Ορισμός της δίτιμης άλγεβρας Boole Πράξεις Άσκηση Να αποδείξετε πως το σύνολο Β είναι κλειστό ως προς την πράξη της λογικής διάζευξης Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 10 / 60

11 Ορισμός της δίτιμης άλγεβρας Boole Πίνακες αλήθειας βασικών πράξεων Οι πίνακες αλήθειας αποτελούν εναλλακτικό τρόπο ορισμού και περιγραφής των βασικών πράξεων της άλγεβρας Boole, αλλά και οποιασδήποτε λογικής συνάρτησης Ο πίνακας αλήθειας ο οποίος περιγράφει μια πράξη περιλαμβάνει όλες τους δυνατούς συνδυασμούς τιμών των ορισμάτων της, καθώς και την τιμή την οποία επιστρέφει η συνάρτηση για καθέναν από τους συνδυασμούς αυτούς Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 11 / 60

12 Ορισμός της δίτιμης άλγεβρας Boole Πίνακες αλήθειας βασικών πράξεων Συμπλήρωμα (ΟΧΙ, NOT) Ο πίνακας αλήθειας ο οποίος περιγράφει την πράξη του συμπληρώματος προκύπτει από τη σχέση ορισμού της πράξης και έχει ως εξής: x x Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 12 / 60

13 Ορισμός της δίτιμης άλγεβρας Boole Πίνακες αλήθειας βασικών πράξεων Σύζευξη (ΚΑΙ, AND) Ο πίνακας αλήθειας ο οποίος περιγράφει την πράξη της σύζευξης προκύπτει από τη σχέση ορισμού της πράξης και έχει ως εξής: x y x y Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 13 / 60

14 Ορισμός της δίτιμης άλγεβρας Boole Πίνακες αλήθειας βασικών πράξεων Διάζευξη (Ή, OR) Ο πίνακας αλήθειας ο οποίος περιγράφει την πράξη της διάζευξης προκύπτει από τη σχέση ορισμού της πράξης και έχει ως εξής: x y x+y Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 14 / 60

15 Ορισμός της δίτιμης άλγεβρας Boole Ιδιότητες των πράξεων Για τις πράξεις της δίτιμης άλγεβρας Boole ισχύουν οι ακόλουθες ιδιότητες, οι οποίες και δικαιολογούν τον χαρακτηρισμό της ως αλγεβρικής δομής Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 15 / 60

16 Ορισμός της δίτιμης άλγεβρας Boole Ιδιότητες των πράξεων Κλειστότητα των πράξεων x B, x B (κλειστότητα ως προς την πράξη του συμπληρώματος) x, y B, x y B (κλειστότητα ως προς την πράξη της σύζευξης) x, y B, x + y B (κλειστότητα ως προς την πράξη της διάζευξης) Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 16 / 60

17 Ορισμός της δίτιμης άλγεβρας Boole Ιδιότητες των πράξεων Αντιμεταθετικότητα Τόσο η πράξη της σύζευξης όσο και η πράξη της διάζευξης είναι αντιμεταθετικές, ισχύουν δηλαδή τα ακόλουθα: x, y B, x y = y x (αντιμεταθετικότητα ως προς την πράξη της σύζευξης) x, y B, x + y = y + x (αντιμεταθετικότητα ως προς την πράξη της διάζευξης) Θα πρέπει να σημειωθεί πως η αντιμεταθετικότητα δεν έχει νόημα για την πράξη του συμπληρώματος, καθώς αυτή δέχεται ένα και μοναδικό όρισμα Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 17 / 60

18 Ορισμός της δίτιμης άλγεβρας Boole Ιδιότητες των πράξεων Ουδέτερο στοιχείο Το ουδέτερο στοιχείο για την πράξη της σύζευξης ( ) είναι το 1, ενώ για την πράξη της διάζευξης (+) είναι το 0 Συγκεκριμένα: x B, x 1 = x (ουδέτερο στοιχείο ως προς την πράξη της σύζευξης) x B, x + 0 = x (ουδέτερο στοιχείο ως προς την πράξη της διάζευξης) Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 18 / 60

19 Ορισμός της δίτιμης άλγεβρας Boole Ιδιότητες των πράξεων Επιμεριστικότητα Η πράξη της σύζευξης είναι επιμεριστική ως προς την πράξη της διάζευξης και αντίστροφα Συγκεκριμένα, ισχύουν τα ακόλουθα: x, y, z B, x (y + z) = x y + x z (επιμεριστικότητα της σύζευξης ως προς τη διάζευξη) x, y, z B, x + (y z) = (x + y) (x + z) (επιμεριστικότητα της διάζευξης ως προς τη σύζευξη) Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 19 / 60

20 Ορισμός της δίτιμης άλγεβρας Boole Προτεραιότητα των πράξεων Η προτεραιότητα των πράξεων + και της άλγεβρας Boole συμβαδίζει με την προτεραιότητα των αντίστοιχων πράξεων της στοιχειώδους άλγεβρας Προηγείται, δηλαδή, η πράξη της σύζευξης ( ) και έπεται η πράξη της διάζευξης (+) Επίσης, όπου δεν υπάρχει κίνδυνος σύγχυσης, το σύμβολο της πράξης της σύζευξης ( ) μπορεί να παραλείπεται Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 20 / 60

21 Ορισμός της δίτιμης άλγεβρας Boole Προτεραιότητα των πράξεων Παράδειγμα Έστω η έκφραση x y + y + xyz Θα βρούμε την τιμή της έκφρασης για x = 0, y = 1 και z = 0 Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 21 / 60

22 Ορισμός της δίτιμης άλγεβρας Boole Προτεραιότητα των πράξεων Άσκηση Έστω η έκφραση x + y + (y z + 1) z Να βρεθεί η τιμή της έκφρασης για x = 0, y = 1 και z = 1 Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 22 / 60

23 Ορισμός της δίτιμης άλγεβρας Boole Δευτερογενείς πράξεις NAND Η λογική πράξη NAND ορίζεται ως το συμπλήρωμα του αποτελέσματος της πράξης της σύζευξης, δηλαδή x y x y x y Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 23 / 60

24 Ορισμός της δίτιμης άλγεβρας Boole Δευτερογενείς πράξεις NOR Η λογική πράξη NOR ορίζεται ως το συμπλήρωμα του αποτελέσματος της πράξης της διάζευξης, δηλαδή x + y x y x + y Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 24 / 60

25 Ορισμός της δίτιμης άλγεβρας Boole Δευτερογενείς πράξεις XOR x y x y Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 25 / 60

26 Ορισμός της δίτιμης άλγεβρας Boole Δευτερογενείς πράξεις XNOR x y x y Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 26 / 60

27 Ορισμός της δίτιμης άλγεβρας Boole Modulo-2 πράξεις Γενικά, η modulo-2 εκδοχή μιας αριθμητικής πράξης ορίζεται ως εξής: ( ) x y (x y) %2 = υπόλ 2 Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 27 / 60

28 Ορισμός της δίτιμης άλγεβρας Boole Modulo-2 πράξεις Η λογική πράξη XOR ταυτίζεται με την modulo-2 πρόσθεση: x y x +y x y=(x +y) % Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 28 / 60

29 Ορισμός της δίτιμης άλγεβρας Boole Modulo-2 πράξεις Η λογική πράξη AND ταυτίζεται με τον modulo-2 πολλαπλασιασμό: x y x y x y=(x y) % Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 29 / 60

30 Λογικές συναρτήσεις Περιεχόμενα 1 Ορισμός της δίτιμης άλγεβρας Boole 2 Λογικές συναρτήσεις 3 Θεωρήματα Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 30 / 60

31 Λογικές συναρτήσεις Γενικά Με τον όρο λογική συνάρτηση εννοούμε μια μονοσήμαντη σχέση η οποία απεικονίζει ένα ή περισσότερα στοιχεία του συνόλου B = {0, 1} (τα ορίσματα της συνάρτησης) σε ένα στοιχείο του ίδιου συνόλου (την τιμή της συνάρτησης) Κάθε λογική συνάρτηση μπορεί να οριστεί είτε με τη βοήθεια ενός τύπου ο οποίος συνδέει την τιμή της συνάρτησης με τις τιμές των ορισμάτων της μέσω των βασικών πράξεων της άλγεβρας Boole, είτε με τη βοήθεια του πίνακα αλήθειας ο οποίος παρέχει την τιμή της συνάρτησης για κάθε συνδυασμό τιμών των ορισμάτων της Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 31 / 60

32 Λογικές συναρτήσεις Ορισμός λογικής συνάρτησης Παράδειγμα Έστω η λογική συνάρτηση δύο μεταβλητών (ορισμάτων) x και y με τύπο f(x, y) = x + y Θα βρούμε τον πίνακα αλήθειας ο οποίος περιγράφει τη συνάρτηση f Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 32 / 60

33 Λογικές συναρτήσεις Ορισμός λογικής συνάρτησης Παράδειγμα Έστω λογική συνάρτηση f η οποία ορίζεται από τον πιο κάτω πίνακα αλήθειας Θα βρούμε τον τύπο της λογικής συνάρτησης x y f Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 33 / 60

34 Λογικές συναρτήσεις Ορισμός λογικής συνάρτησης Ερώτηση Είναι μοναδική η λογική συνάρτηση η οποία αντιστοιχεί σε δοσμένο πίνακα αλήθειας; Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 34 / 60

35 Λογικές συναρτήσεις Ορισμός λογικής συνάρτησης Ερώτηση Έστω λογική συνάρτηση f με n ορίσματα (μεταβλητές) Ποιες οι διαστάσεις του πίνακα αλήθειας ο οποίος την περιγράφει; Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 35 / 60

36 Λογικές συναρτήσεις Ορισμός λογικής συνάρτησης Άσκηση Δίνεται η λογική συνάρτηση f(x, y, z) = x + y z Να βρεθεί ο πίνακας αλήθειας της συνάρτησης Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 36 / 60

37 Λογικές συναρτήσεις Ορισμός λογικής συνάρτησης Άσκηση Να βρείτε τους πίνακες αλήθειας όλων των δυνατών λογικών συναρτήσεων με δύο ορίσματα Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 37 / 60

38 Λογικές συναρτήσεις Ορισμός λογικής συνάρτησης Άσκηση Δίνονται οι λογικές συναρτήσεις οι οποίες ορίζονται από τους τύπους f(x, y) = x y και g(x, y) = x + y + x x Να βρείτε τους αντίστοιχους πίνακες αλήθειας και να αποδείξετε πως οι δύο συναρτήσεις ταυτίζονται Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 38 / 60

39 Θεωρήματα Περιεχόμενα 1 Ορισμός της δίτιμης άλγεβρας Boole 2 Λογικές συναρτήσεις 3 Θεωρήματα Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 39 / 60

40 Θεωρήματα Γενικά Οι προτάσεις ή οι σχέσεις που μπορούν να αποδειχθούν με βάση τα αξιώματα 2 της άλγεβρας Boole ονομάζονται θεωρήματα Οι ιδιότητες των πράξεων στις οποίες έχουμε ήδη αναφερθεί αποτελούν θεωρήματα, καθώς η ισχύς τους μπορεί να αποδειχθεί, όπως θα δείξουμε στη συνέχεια 2 Οι ορισμοί των βασικών πράξεων αποτελούν αξιώματα της άλγεβρας Boole Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 40 / 60

41 Θεωρήματα Απόδειξη ιδιοτήτων και θεωρημάτων Παράδειγμα Θα αποδείξουμε την επιμεριστικότητα της διάζευξης ως προς τη σύζευξη: x, y, z B, x + (y z) = (x + y) (x + z) Για την απόδειξή μας θα χρησιμοποιήσουμε την μέθοδο των πινάκων αλήθειας Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 41 / 60

42 Θεωρήματα Απόδειξη ιδιοτήτων και θεωρημάτων Παρατήρηση Η μεθοδολογία την οποία εφαρμόσαμε στο προηγούμενο παράδειγμα είναι γενική, και μπορεί να χρησιμοποιηθεί για την απόδειξη οποιασδήποτε ταυτότητας Πιο συγκεκριμένα, μπορούμε να θεωρήσουμε τα δύο μέλη μιας ταυτότητας ως δύο διαφορετικές λογικές συναρτήσεις, να βρούμε τους πίνακες αλήθειας για κάθε συνάρτηση ξεχωριστά, και να επιβεβαιώσουμε την ισχύ της ταυτότητας αν οι πίνακες αλήθειας ταυτίζονται Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 42 / 60

43 Θεωρήματα Απόδειξη ιδιοτήτων και θεωρημάτων Παράδειγμα Θα αποδείξουμε πως η μονάδα αποτελεί το ουδέτερο στοιχείο της πράξης της σύζευξης: x B, 1 x = x Για την απόδειξή μας θα χρησιμοποιήσουμε τη μέθοδο της άλγεβρας των συνόλων Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 43 / 60

44 Θεωρήματα Απόδειξη ιδιοτήτων και θεωρημάτων X = U X U Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 44 / 60

45 Θεωρήματα Απόδειξη ιδιοτήτων και θεωρημάτων Παράδειγμα Θα αποδείξουμε πως το μηδέν αποτελεί το ουδέτερο στοιχείο της πράξης της διάζευξης: x B, 0 + x = x Για την απόδειξή μας θα χρησιμοποιήσουμε τη μέθοδο της άλγεβρας των συνόλων Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 45 / 60

46 Θεωρήματα Βασικές ιδιότητες και θεωρήματα x + 1 = 1 x 1 = x x + 0 = x x 0 = 0 x + x = 1 x x = 0 x + x = x x x = x x = x x + xy = x x (x + y) = x x + y = x y x y = x + y Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 46 / 60

47 Θεωρήματα Βασικές ιδιότητες και θεωρήματα Άσκηση Να αποδειχθούν οι ιδιότητες και τα θεωρήματα της προηγούμενης διαφάνειας Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 47 / 60

48 Θεωρήματα Δυισμός Στην άλγεβρα Boole, κάθε ταυτότητα μπορεί να μετατραπεί στην αντίστοιχή της με την εναλλαγή των πράξεων + και, με την ταυτόχρονη εναλλαγή των 0 και 1 Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 48 / 60

49 Θεωρήματα Δυισμός Παράδειγμα Θα αποδείξουμε την ταυτότητα x + xy = x + y, και θα διατυπώσουμε τη δυική της μορφή την οποία και θα αποδείξουμε Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 49 / 60

50 Θεωρήματα Δυισμός Παρατήρηση Πολλές φορές, η απόδειξη της δυικής μορφής μιας ταυτότητας είναι ευκολότερη σε σχέση με την απόδειξη της ίδιας της ταυτότητας Αποδεικνύοντας την ισχύ της δυικής ταυτότητας, μπορούμε να είμαστε βέβαιοι για την ισχύ της δοσμένης ταυτότητας, λόγω του δυισμού των ταυτοτήτων της άλγεβρας Boole Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 50 / 60

51 Θεωρήματα Δυισμός Άσκηση Αφού αποδείξετε την ταυτότητα (x + y) (x + z) = x + y z, να διατυπώσετε τη δυική της μορφή την οποία και να αποδείξετε Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 51 / 60

52 Θεωρήματα Ασκήσεις Άσκηση Να συμπληρώσετε την ταυτότητα: αʹδίνεται ότι 2014 i=1 n x = x + x + + x }{{} n φορές i=1 x = αʹ Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 52 / 60

53 Θεωρήματα Ασκήσεις Άσκηση Να συμπληρώσετε την ταυτότητα: 2014 i=1 x 2014 i=1 y = Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 53 / 60

54 Θεωρήματα Ασκήσεις Άσκηση Να συμπληρώσετε την ταυτότητα: 2014 i=1 ( x + x + x ) = Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 54 / 60

55 Θεωρήματα Ασκήσεις Άσκηση Να αποδείξετε την ταυτότητα x y = x y + x y Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 55 / 60

56 Θεωρήματα Ασκήσεις Άσκηση Να αποδείξετε την ταυτότητα x y = x y Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 56 / 60

57 Θεωρήματα Ασκήσεις Άσκηση Να αποδείξετε την ταυτότητα x y = x y + x y Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 57 / 60

58 Θεωρήματα Ασκήσεις Άσκηση Να αποδείξετε την ταυτότητα x y = x y Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 58 / 60

59 Θεωρήματα Ασκήσεις Άσκηση Να αποδείξετε την ταυτότητα x y = x y = x y Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 59 / 60

60 Θεωρήματα Ασκήσεις Άσκηση Να αποδείξετε την ταυτότητα x y = x y Όμοια για την ταυτότητα x y = x y Γιάννης Λιαπέρδος (TEI-Πελ) 4+5: Άλγεβρα Boole 60 / 60

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Λογικές πύλες Περιεχόμενα 1 Λογικές πύλες

Διαβάστε περισσότερα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Λογική Σχεδίαση Ψηφιακών Συστημάτων Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδική Λογική Η δυαδική λογική ασχολείται με μεταβλητές

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ Πύλες - Άλγεβρα Boole 1 ΕΙΣΑΓΩΓΗ Α)Ηλεκτρονικά κυκλώµατα Αναλογικά κυκλώµατα Ψηφιακά κυκλώµατα ( δίτιµα ) V V 2 1 V 1 0 t t Θετική λογική: Ο V 1 µε V 1 =

Διαβάστε περισσότερα

Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2015-2016 Άλγεβρα Boole (Boolean Algebra) Βασικοί ορισμοί Η άλγεβρα Boole μπορεί να οριστεί

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές ΙΙ

Ηλεκτρονικοί Υπολογιστές ΙΙ Ηλεκτρονικοί Υπολογιστές ΙΙ Ενότητα 3: Eφαρμογές Άλγεβρας Boole Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Ενότητα 2 ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ

Ενότητα 2 ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ Ενότητα 2 ΛΓΕΡ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ Άλγεβρα Boole Γενικές Γραμμές ξιώματα Huntington και Θεωρήματα ρχή του Δυϊσμού Λογικές πύλες NAND και NOR Υλοποιήσεις με πύλες NAND ή πύλεςnor πομονωτές τριών καταστάσεων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 8 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Άλγεβρα Boole Ορισμοί Λογικές πράξεις Πίνακες αληθείας Πύλες

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες

ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΑΕΡΟΣΚΑΦΩΝ ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΕΙΣΑΓΩΓΗ στους Η/Υ Διδάσκουσα Δρ. Β. Σγαρδώνη 2013-14 ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες Α. ΑΛΓΕΒΡΑ Boole Η Άλγεβρα Boole (Boolean algebra) πήρε

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων

K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Ένα ψηφιακό κύκλωμα με n εισόδους

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΛΓΕΒΡΑ BOOLE 2017, Δρ. Ηρακλής Σπηλιώτης Γενικοί ορισμοί Αλγεβρική δομή είναι ένα σύνολο στοιχείων και κάποιες συναρτήσεις με πεδίο ορισμού αυτό το σύνολο. Αυτές οι συναρτήσεις

Διαβάστε περισσότερα

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων Ψηφιακή Σχεδίαση Κεφάλαιο 2: Συνδυαστικά Λογικά Κυκλώματα Γ. Κορνάρος Περίγραμμα Μέρος 1 Κυκλώματα Πυλών και

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Παράσταση αριθμών «κινητής υποδιαστολής» floating point

Παράσταση αριθμών «κινητής υποδιαστολής» floating point Παράσταση αριθμών «κινητής υποδιαστολής» floating point Με n bits μπορούμε να παραστήσουμε 2 n διαφορετικούς αριθμούς π.χ. με n=32 μπορούμε να παραστήσουμε τους αριθμούς από έως 2 32 -= 4,294,967,295 4

Διαβάστε περισσότερα

Στοιχεία προτασιακής λογικής

Στοιχεία προτασιακής λογικής Σ. Κοσμαδάκης Στοιχεία προτασιακής λογικής Λογικές πράξεις and, or, not Για οποιεσδήποτε τιμές αλήθειας s, t στο σύνολο {true, false}, οι γνωστές πράξεις s and t, s or t, not s δίνουν αποτελέσματα στο

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ιδάσκων: Καθηγητής Ν. Φακωτάκης Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 11: Βασικές έννοιες ψηφιακής λογικής Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Γιατί χρησιμοποιούμε

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Κεφάλαιο 1ο. Άλγεβρα Boole και Λογικές Πύλες. (c) Αμπατζόγλου Γιάννης, Ηλεκτρονικός Μηχανικός, καθηγητής ΠΕ17

Ψηφιακά Ηλεκτρονικά. Κεφάλαιο 1ο. Άλγεβρα Boole και Λογικές Πύλες. (c) Αμπατζόγλου Γιάννης, Ηλεκτρονικός Μηχανικός, καθηγητής ΠΕ17 Ψηφιακά Ηλεκτρονικά Κεφάλαιο 1ο Άλγεβρα Boole και Λογικές Πύλες Αναλογικά μεγέθη Αναλογικό μέγεθος ονομάζεται εκείνο που μπορεί να πάρει οποιαδήποτε τιμή σε μια περιοχή τιμών, όπως η ταχύτητα, το βάρος,

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ. ΓΙΑΝΝΗΣ ΛΙΑΠΕΡΔΟΣ Επίκουρος Καθηγητής ΤΕΙ Πελοποννήσου

ΜΑΘΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ. ΓΙΑΝΝΗΣ ΛΙΑΠΕΡΔΟΣ Επίκουρος Καθηγητής ΤΕΙ Πελοποννήσου ΜΑΘΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΓΙΑΝΝΗΣ ΛΙΑΠΕΡΔΟΣ Επίκουρος Καθηγητής ΤΕΙ Πελοποννήσου ΣΠΑΡΤΗ 2016 Γιάννης Λιαπέρδος ΜΑΘΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ Copyright ΣΕΑΒ, 2016 Το παρόν έργο αδειοδοτείται υπό τους

Διαβάστε περισσότερα

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ. Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του

Διαβάστε περισσότερα

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Αριθµοί Διαφόρων Βάσεων Δυαδικά Συστήµατα 2 Υπολογιστική Ακρίβεια Ο αριθµός των δυαδικών ψηφίων αναπαράστασης αριθµών καθορίζει την ακρίβεια των αριθµών σε

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory

επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory Μετατροπέας Αναλογικού Σήµατος σε Ψηφιακό Ο δειγματολήπτης (S/H) παίρνει δείγματα του στιγμιαίου εύρους ενός σήματος και διατηρεί την τάση που αντιστοιχεί σταθερή, τροφοδοτώντας έναν κβαντιστή, μέχρι την

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο

Διαβάστε περισσότερα

Κεφάλαιο 4 : Λογική και Κυκλώματα

Κεφάλαιο 4 : Λογική και Κυκλώματα Κεφάλαιο 4 : Λογική και Κυκλώματα Σύνοψη Τα κυκλώματα που διαθέτουν διακόπτες ροής ηλεκτρικού φορτίου, χρησιμοποιούνται σε διατάξεις που αναπαράγουν λογικές διαδικασίες για τη λήψη αποφάσεων. Στην ενότητα

Διαβάστε περισσότερα

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Οι αρχές της λογικής αναπτύχθηκαν από τον George Boole (85-884) και τον ugustus De

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Επιµέλεια διαφανειών: Χρ. Καβουσιανός Βασικοί Ορισµοί Δυαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το Σ αντιστοιχίζει ένα στοιχείο του

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά

Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά Κεφάλαιο Τρία: 3.1 Τι είναι αναλογικό και τι ψηφιακό µέγεθος Αναλογικό ονοµάζεται το µέγεθος που µπορεί να πάρει οποιαδήποτε τιµή σε µια συγκεκριµένη περιοχή τιµών π.χ. η ταχύτητα ενός αυτοκινήτου. Ψηφιακό

Διαβάστε περισσότερα

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά

Διαβάστε περισσότερα

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Βασικοί Ορισµοί

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Βασικοί Ορισµοί 2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Βασικοί Ορισµοί υαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το S αντιστοιχίζει ένα στοιχείο του S = set, σύνολο Συνηθισµένα Αξιώµατα (α,

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/18/2016

Διαβάστε περισσότερα

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος. Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός

Διαβάστε περισσότερα

Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος

Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος 2012-13 Κων/νος Φλώρος Απλοί τύποι δεδομένων Οι τύποι δεδομένων προσδιορίζουν τον τρόπο παράστασης των

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Γιάννης Λιαπέρδος 2 ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΔΙΑΛΕΞΗΣ Άλγεβρα Διακοπτών Κυκλωματική Υλοποίηση Λογικών Πυλών με Ηλεκτρονικά

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR Σκοπός: Να επαληθευτούν πειραµατικά οι πίνακες αληθείας των λογικών πυλών OR, NOR, XOR. Να δειχτεί ότι η πύλη NOR είναι οικουµενική.

Διαβάστε περισσότερα

Αρχιτεκτονικές Υπολογιστών BOOLEAN ALGEBRA

Αρχιτεκτονικές Υπολογιστών BOOLEAN ALGEBRA ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών OOLEN LGER ιδάσκων: ναπλ. Καθ. Κ. Λαµπρινουδάκης clam@unp.gr Αρχιτεκτονικές Υπολογιστών ναπλ. Καθ. Κ. Λαµπρινουδάκης Άλγεβρα OOLE Οι µεταβλητές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Θεωρία συνόλων Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 9: Εσωτερική πράξη και κλάσεις ισοδυναμίας - Δομές Ισομορφισμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή

K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Πληροφορίες για το μάθημα Περιεχόμενα 1 Πληροφορίες για το μάθημα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 27 ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΕΙΣΑΓΩΓΗ Ο απειροστικός λογισμός αποτελείται από το διαφορικό και ολοκληρωτικό

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 10/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen Τι

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Προτασιακός Λογισµός (συνέχεια...) Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Σύνθετα Συνδυαστικά Κυκλώµατα Πύλες AND Πύλες OR Πύλες NAND Τυχαία Λογική Πύλες NOR Πύλες XNOR Η ολοκληρωµένη

Διαβάστε περισσότερα

Ενότητα 4 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΔΥΟ ΕΠΙΠΕΔΩΝ

Ενότητα 4 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΔΥΟ ΕΠΙΠΕΔΩΝ Ενότητα 4 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΔΥΟ ΕΠΙΠΕΔΩΝ Γενικές Γραμμές Λογικές Συναρτήσεις 2 Επιπέδων Συμπλήρωμα Λογικής Συνάρτησης Πίνακας Αλήθειας Κανονική Μορφή Αθροίσματος Γινομένων Λίστα Ελαχιστόρων

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ 1.1 ΣΚΟΠΟΣ Η εξοικείωση με τη λειτουργία των Λογικών Πυλών και των Πινάκων Αληθείας. 1.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Οι λογικές πύλες είναι ηλεκτρονικά κυκλώματα που δέχονται στην είσοδο ή στις

Διαβάστε περισσότερα

Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ. Εφ. Πληροφορικής Κεφ. 2 Καραμαούνας Πολύκαρπος 1

Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ. Εφ. Πληροφορικής Κεφ. 2 Καραμαούνας Πολύκαρπος 1 Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ Καραμαούνας Πολύκαρπος 1 2.1Η έννοια της πληροφορίας Δεδομένα Πληροφορία Καραμαούνας Πολύκαρπος 2 2.2 ΗΥ Το βασικό εργαλείο επεξεργασίας και

Διαβάστε περισσότερα

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

104Θ Αναλογικά Ηλεκτρονικά 12: Φίλτρα

104Θ Αναλογικά Ηλεκτρονικά 12: Φίλτρα 4Θ Αναλογικά Ηλεκτρονικά 2: Φίλτρα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΚΑΛΑΜΑΤΑΣ 99 Χειμ Εξάμηνο 24 25 Εισαγωγικά Περιεχόμενα Εισαγωγικά 2 Γενικά

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων oole Επιµέλεια διαφανειών: Χρ. Καβουσιανός Απλοποίηση Συναρτήσεων oole Ø Η πολυπλοκότητα του κυκλώµατος που υλοποιεί µια συνάρτηση oole σχετίζεται άµεσα µε

Διαβάστε περισσότερα

ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH

ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH 3.1 ΣΚΟΠΟΣ Η κατανόηση της απλοποίησης λογικών συναρτήσεων με χρήση της Άλγεβρας Boole και με χρήση των Πινάκων Karnaugh (Karnaugh maps). 3.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 3.2.1 ΑΠΛΟΠΟΙΗΣΗ

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες 2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Βασικοί Ορισµοί υαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το S αντιστοιχίζει ένα στοιχείο του S. Συνηθισµένα Αξιώµατα (α, β, γ, 0) Σ,,

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 8 ο Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 6: Προτασιακός Λογισμός Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

Λογικές πύλες: Οι στοιχειώδεις δομικοί λίθοι των κυκλωμάτων

Λογικές πύλες: Οι στοιχειώδεις δομικοί λίθοι των κυκλωμάτων Λογικές πύλες Λογικές πύλες: Οι στοιχειώδεις δομικοί λίθοι των κυκλωμάτων Το υλικό(hardware) για την εκτέλεση των εντολών γλώσσας μηχανής(και κατ επέκταση όλων των προγραμμάτων), κατασκευάζεται χρησιμοποιώντας

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Εισαγωγή στα Ψηφιακά Συστήματα

Εισαγωγή στα Ψηφιακά Συστήματα Εισαγωγή στα Ψηφιακά Συστήματα Ασημόπουλος Νικόλαος Πατουλίδης Γεώργιος Παλιανόπουλος Ιωάννης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία: 1 Επικοινωνία: spzygouris@gmail.com 2 Ποιοι είναι οι τελεστές σύγκρισης; Απάντηση Οι τελεστές σύγκρισης είναι: Ίσον = Διάφορο Μικρότερο < Μικρότεροήίσο Μεγαλύτερο > Μεγαλύτερο ή ίσο Που χρησιμοποιούνται

Διαβάστε περισσότερα

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ . A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Μάθηµα 3: Απλοποίηση συναρτήσεων Boole ιδάσκων: Καθηγητής Ν. Φακωτάκης 3-1 Η µέθοδος του χάρτη H πολυπλοκότητα

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα

ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ

Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ Εισαγωγή στην επιστήµη των υπολογιστών Πράξεις µε µπιτ 1 Πράξεις µε µπιτ 2 Αριθµητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασµός, Διαίρεση Ο πολλαπλασιασµός και η διαίρεση στο επίπεδο του

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Πρόταση. Αληθείς Προτάσεις

Πρόταση. Αληθείς Προτάσεις Βασικές έννοιες της Λογικής 1 Πρόταση Στην καθημερινή μας ομιλία χρησιμοποιούμε εκφράσεις όπως: P1: «Καλή σταδιοδρομία» P2: «Ο Όλυμπος είναι το ψηλότερο βουνό της Ελλάδας» P3: «Η Θάσος είναι το μεγαλύτερο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ

ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ Η ΓΛΩΣΣΑ PASCAL ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ Απλοί ή στοιχειώδης Τ.Δ. Ακέραιος τύπος Πραγματικός τύπος Λογικός τύπος Χαρακτήρας Σύνθετοι Τ.Δ. Αλφαριθμητικός 1. Ακέραιος (integer) Εύρος: -32768 έως 32767 Δήλωση

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Κυκλώματα 2

Κεφάλαιο 1 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Κυκλώματα 2 ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων MOS Ψηφιακά Κυκλώματα Κεφάλαιο 1 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Άλγεβρα oole Χάρτης Karnaugh 2. MOS τρανζίστορ 3.

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα K24 Ψηφιακά Ηλεκτρονικά : TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 2 3 Γενικά Όπως είδαμε και σε προηγούμενα μαθήματα, ένα ψηφιακό κύκλωμα ονομάζεται

Διαβάστε περισσότερα

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική

Διαβάστε περισσότερα

Κανονικές μορφές - Ορισμοί

Κανονικές μορφές - Ορισμοί HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:

Διαβάστε περισσότερα

Λογικές Συναρτήσεις με το Excel/OpenCalc Αθανάσιος Σταυρακούδης http://stavrakoudis.econ.uoi.gr Αλήθεια ή ψέμα Μια οποιαδήποτε παράσταση μπορεί να χαρακτηριστεί ως αληθής ή ψευδής. Αληθής: TRUE ή 1 Ψευδής:

Διαβάστε περισσότερα