ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης"

Transcript

1 (Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΒΑΡΥΤΗΤΑ Νόμος της Βαρύτητας Βαρύτητα στο Εσωτερικό και Πάνω από την Επιφάνεια της ης Πλανήτες σε Ελλειπτικές Τροχιές Νόμοι του Keple Βαρυτική Δυναμική Ενέργεια Τροχιές και Ενέργεια Stathis STILIAIS, UoA 05-06

2 (Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΑΝΤΙΣΤΟΙΧΙΣΗ ΚΕΦΑΛΑΙΩΝ Νόμος της Βαρύτητας ALONSO FINN HALLIDAY ESNICK WALKE.,.. έως.5.,. Νόμοι του Keple.5.7,5 YOUNG FEEDAN Βαρυτική Δυναμική Ενέργεια Δορυφόροι.4,.6.6,.8.,.4 Stathis STILIAIS, UoA 05-06

3 ΝΟΜΟΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (NEWTON) Νόμος της Βαρύτητας του Newton σε διανυσματική μορφή m m mm G F G F F G ˆ m m G N m Kg Βαρύτητα στην επιφάνεια της ης mg G g G Stathis STILIAIS, UoA 05-06

4 ΝΟΜΟΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (NEWTON) Εκτίμηση της μάζας Μ της ης g G g G 6 (6.4 0 ) Kg Kg Εκτίμηση της μέσης πυκνότητας ρ της ης ρ V g G 4 π 4π g G ρ Kg/ m Stathis STILIAIS, UoA

5 ΝΟΜΟΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (NEWTON) Βαρύτητα στο εσωτερικό της ης Ένα ομογενές σφαιρικό κέλυφος δεν ασκεί συνισταμένη βαρυτική δύναμη σε σωματίδιο τοποθετημένο στο εσωτερικό του. F G 4 π ρ m F 4π G m ρ Το σώμα εκτελεί ταλάντωση με περίοδο: F k m m T π π k 4π Gmρ π Gρ Stathis STILIAIS, UoA

6 ΝΟΜΟΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (NEWTON) Βαρύτητα πάνω από την επιφάνεια της ης mg h G ( + h) + h + h) g h G < ( g Παρατηρήσεις Εάν η απόσταση από την επιφάνεια της ης γίνει όσο και η ακτίνα της (h ) τότε το g h υποτετραπλασιάζεται. Το διαστημικό λεωφορείο για το οποίο το h 400 km δέχεται βαρυτική επιτάχυνση g h 8.70 m/s. Stathis STILIAIS, UoA

7 ΝΟΜΟΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (NEWTON) Βαρύτητα σε διαφορετικούς Πλανήτες Σε δύο διαφορετικούς σφαιρικούς πλανήτες με ακτίνες A και B, των οποίων οι πυκνότητες είναι αντίστοιχα ρ A και ρ B, η βαρύτητα στην επιφάνεια καθενός είναι: 4 π g G G ρ 4π Gρ ΠΛΑΝΗΤΗΣ Α ΠΛΑΝΗΤΗΣ Β g A g B 4π 4π G G A B ρ ρ A B g g A B A B ρ ρ A B Στην επιφάνεια της Σελήνης το g είναι περίπου το /6 (.6m/s ) της τιμής στην η. Δεδομένου ότι ο λόγος των ακτίνων των δύο αυτών ουρανίων σωμάτων είναι 0.7 συνάγεται πως η μέση πυκνότητα της Σελήνης είναι μικρότερη (0.6 φορές) της μέσης πυκνότητας της ης. Stathis STILIAIS, UoA

8 ΝΟΜΟΙ ΤΟΥ KEPLE Όταν ένα σώμα κινείται υπό την επίδραση κεντρικής δύναμης η στροφορμή του L είναι διατηρήσιμη ποσότητα. Μια κεντρική δύναμη (όπως είναι η βαρυτική δύναμη) μπορεί να γραφεί στην παρακάτω μορφή: F() F() ˆ F() Οπότε η ροπή της δύναμης αυτής τ ως προς την αρχή των αξόνων είναι: και δεδομένου ότι 0 F() F() τ F dl τ dt L ( ) 0 m dθ dt const Η κίνηση ενός δορυφόρου γύρω από έναν πλανήτη αποτελεί χαρακτηριστικό παράδειγμα. Stathis STILIAIS, UoA

9 ΝΟΜΟΙ ΤΟΥ KEPLE ος Νόμος Keple Κίνηση Πλανητών σε Ελλειπτικές Τροχιές e Εκκεντρότητα a Απόσταση Αφηλίου p Απόσταση Περιηλίου Ο Ήλιος βρίσκεται σε μια από τις εστίες της έλλειψης και σε απόσταση e a (εστιακή απόσταση) από το κέντρο της. Stathis STILIAIS, UoA

10 ΝΟΜΟΙ ΤΟΥ KEPLE ος Νόμος Keple Η επιβατική ακτίνα διαγράφει ίσα εμβαδά σε ίσους χρόνους da vdt mvdt Ldt da L const m m dt m Εναλλακτικά da dt dθ dt ω αλλά L p ( mv ) ( mω) m ω άρα da dt L m Stathis STILIAIS, UoA

11 ΝΟΜΟΙ ΤΟΥ KEPLE ος Νόμος Keple Το τετράγωνο της περιόδου είναι ανάλογο του κύβου του μεγάλου ημιάξονα Κεντρομόλος Δύναμη Βαρυτική Δύναμη mv G mω ω G ω π Τ 4π G T T 4π G Στην ελλειπτική κίνηση το της σχέσης αυτής ταυτίζεται με τον μεγάλο ημιάξονα a της έλλειψης. Στις τέσσερες ελλειπτικές τροχιές με τον ίδιο μεγάλο ημιάξονα που απεικονίζονται στο διπλανό σχήμα, παρόλο που η εκκεντρότητα έχει διαφορετική τιμή, η συνολική ενέργεια είναι η ίδια. Stathis STILIAIS, UoA 05-06

12 ΒΑΡΥΤΙΚΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΕΙΑ Υπολογισμός του έργου που απαιτείται για να μετακινηθεί σώμα μάζας m εντός βαρυτικού πεδίου (προκαλούμενου από τη μάζα Μ) από το σημείο στο άπειρο. W F()d ια τη βαρυτική δύναμη F() ισχύει: ()d F d cos(80 ) Fd G d o F W G d G d G 0 G G Αλλά W U U U 0 U οπότε: W U U G U() G Stathis STILIAIS, UoA 05-06

13 ΒΑΡΥΤΙΚΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΕΙΑ Το βαρυτικό πεδίο είναι συντηρητικό. U() G F - gad U - U ˆ F - G ˆ Δηλαδή το έργο της βαρυτικής δύναμης είναι ανεξάρτητο από τη διαδρομή που επιλέγεται και εξαρτάται μόνο από τη διαφορά του δυναμικού στο αρχικό και τελικό σημείο: W A G U A U G Είναι εύκολα κατανοητό ότι το έργο κατά μήκος των τόξων BC και DE είναι μηδενικό, δεδομένου ότι κατά μήκος των τόξων αυτών η βαρυτική δύναμη είναι κάθετη σε οποιαδήποτε στοιχειώδη μετατόπιση. Stathis STILIAIS, UoA 05-06

14 ΒΑΡΥΤΙΚΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΕΙΑ Ταχύτητα Διαφυγής Η απαιτούμενη ελάχιστη αρχική ταχύτητα βλήματος για να μπορέσει να διαφύγει της επίδρασης του βαρυτικού πεδίου της ης. E K U E E + K + U K + U 0 E K U 0 mv G + 0 v G G v 0. km/s Η εξίσωση αυτή ισχύει για κάθε ουράνιο σώμα. ια τον Ήλιο ( 0 0 Kg, m) η ταχύτητα διαφυγής είναι 68 km/s ενώ για αστέρα νετρονίων αυτή γίνεται 0 5 km/s. Stathis STILIAIS, UoA

15 ΤΡΟΧΙΕΣ ΚΑΙ ΕΝΕΡΕΙΑ Κίνηση δορυφόρου σε κυκλική τροχιά γύρω από πλανήτη Συνολική Ενέργεια: E K + U ια κυκλική τροχιά ισχύει: G mv & K mv Κινητική Ενέργεια: Θετική Συνεπώς: K G E K + U U K K U Δυναμική & Ολική Ενέργεια Αρνητική Stathis STILIAIS, UoA

16 όπου ΤΡΟΧΙΕΣ ΚΑΙ ΕΝΕΡΕΙΑ Υπολογισμός της συνολικής ενέργειας δορυφόρου κινούμενου σε ελλειπτική τροχιά γύρω από πλανήτη m: Μάζα δορυφόρου Μ: Μάζα πλανήτη L: Στροφορμή δορυφόρου d dθ v, v dt dt E K + U mv G m v + v G ( ) ω οπότε v v v v E mv + m G Επειδή όμως η δύναμη είναι κεντρική, η στροφορμή L του συστήματος διατηρείται και ισχύει: ω v dθ dt L m m ω ω L m mv L + m E G Στις ακραίες θέσεις της έλλειψης ό δορυφόρος δεν έχει ακτινική ταχύτητα (v 0) και η παραπάνω εξίσωση γίνεται: L m E Stathis STILIAIS, UoA G

17 ΤΡΟΧΙΕΣ ΚΑΙ ΕΝΕΡΕΙΑ Υπολογισμός της συνολικής ενέργειας δορυφόρου κινούμενου σε ελλειπτική τροχιά γύρω από πλανήτη E L m G me + Gm L 0 Οι λύσεις της δευτεροβάθμιας αυτής εξίσωσης ταυτίζονται με τα και, το άθροισμα των οποίων είναι ο άξονας της έλλειψης (a a): Gm + a a me E G a Το αποτέλεσμα αυτό είναι ταυτόσημο με την ενέργεια δορυφόρου κινούμενου σε κυκλική τροχιά, όπου ο ημιάξονας a ταυτίζεται με την ακτίνα της κυκλικής τροχιάς. Stathis STILIAIS, UoA

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

Σφαιρικά σώµατα και βαρύτητα

Σφαιρικά σώµατα και βαρύτητα ΦΥΣ 131 - Διαλ.28 1 Σφαιρικά σώµατα και βαρύτητα q Χρησιµοποιήσαµε τις εκφράσεις F() =! GMm που ισχύουν για σηµειακές µάζες Μ και m. 2 και V () =! GMm q Ένα χαρακτηριστικό γεγονός, που κάνει τους υπολογισµούς

Διαβάστε περισσότερα

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΠΑΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poias.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης (Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 05 06 06 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Γωνιακή Μετατόπιση & Ταχύτητα Περιστροφική

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ 3. Νίκος Κανδεράκης

ΔΥΝΑΜΙΚΗ 3. Νίκος Κανδεράκης ΔΥΝΑΜΙΚΗ 3 Νίκος Κανδεράκης Νόμος της βαρύτητας ή της παγκόσμιας έλξης Δύο σώματα αλληλεπιδρούν με βαρυτικές δυνάμεις Η δύναμη στο καθένα από αυτά: Είναι ανάλογη με τη μάζα του m Είναι ανάλογη με τη μάζα

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΕΙΔΙΚΕΣ ΠΕΡΙΠΤΩΣΕΙΣ ΔΥΝΑΜΕΩΝ Βαρυτική Δύναμη Βάρος Κάθετη Δύναμη σε Επιφάνεια Τάση Νήματος Τριβή Οπισθέλκουσα Δύναμη και Οριακή Ταχύτητα

ΦΥΣΙΚΗ Ι. ΕΙΔΙΚΕΣ ΠΕΡΙΠΤΩΣΕΙΣ ΔΥΝΑΜΕΩΝ Βαρυτική Δύναμη Βάρος Κάθετη Δύναμη σε Επιφάνεια Τάση Νήματος Τριβή Οπισθέλκουσα Δύναμη και Οριακή Ταχύτητα ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Α. Καραμπαρμπούνης, Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 014 01 015 ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ Νόμος της Αδράνειας Αδρανειακό Σύστημα Μάζα και Ορμή Αρχή διατήρησης της Ορμής Δύναμη Δεύτερος Νόμος

Διαβάστε περισσότερα

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης. Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 4 ο μάθημα Κεφάλαιο 9 Βαρύτητα Ηλιακό σύστημα (όχι σε κλίμακα) Βαρύτητα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ. ΚΥΛΙΣΗ, ΡΟΠΗ και ΣΤΡΟΦΟΡΜΗ

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ. ΚΥΛΙΣΗ, ΡΟΠΗ και ΣΤΡΟΦΟΡΜΗ ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Γωνιακή Μετατόπιση & Ταχύτητα Περιστροφική Κινητική Ενέργεια & Ροπή Αδράνειας Υπολογισμός Ροπής Αδράνειας Στερεών Σωμάτων Θεώρημα Παραλλήλων Αξόνων (Steine) ΚΥΛΙΣΗ, ΡΟΠΗ και

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης (Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 5 6 6 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ Μέση και Στιγμιαία Ταχύτητα Επιτάχυνση Διαφορικές

Διαβάστε περισσότερα

Μηχανική - Ρευστομηχανική

Μηχανική - Ρευστομηχανική Μηχανική - Ρευστομηχανική Ενότητα 10: Βαρύτητα Διδάσκων: Πομόνη Αικατερίνη, Αναπλ. Καθηγήτρια Επιμέλεια: Γεωργακόπουλος Τηλέμαχος, Υπ. Διδάκτωρ Φυσικής 015 Θετικών Επιστημών Φυσικής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. 1 β) Σε ένα πεδίο κεντρικών δυνάµεων F =, ένα σώµα, µε µάζα

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 5-Μάρτη-2016

ΦΥΣ η ΠΡΟΟΔΟΣ 5-Μάρτη-2016 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 5-Μάρτη-016 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-5, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Μάζα που κινείται

Διαβάστε περισσότερα

( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης

( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ΦΥΣ 2 - Διαλ.4 Τι είδαμε: q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ü Ανάγαμε το πρόβλημα 2 σωμάτων σε πρόβλημα κεντρικής δύναμης ü διατήρηση ορμής CM μετατρέπει το πρόβλημα από 6 DoF σε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2003

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2003 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 3 Θέµα 1 (5 µονάδες) Απαντήστε στις ακόλουθες ερωτήσεις µε συντοµία και σαφήνεια Τµήµα Π Ιωάννου & Θ Αποστολάτου (α) Η ταχύτητα ενός

Διαβάστε περισσότερα

Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ04 του ΑΣΕΠ

Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ04 του ΑΣΕΠ Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ του ΑΣΕΠ Ένα κινητό κινείται σε κύκλο Κεντρομόλος και επιτρόχια επιτάχυνση υπάρχουν: α Και οι δύο πάντα β Η πρώτη πάντα γ Η δεύτερη πάντα δ Ενδέχεται

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 7-Μάρτη-2015

ΦΥΣ η ΠΡΟΟΔΟΣ 7-Μάρτη-2015 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 7-Μάρτη-015 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα

Διαβάστε περισσότερα

Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Νόμος της Βαρύτητας επιτάχυνση της βαρύτητας Κίνηση δορυφόρου Νόμοι Keple Το σύμπαν και οι δυνάμεις βαρύτητας Ο λόγος που

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ. Μάζα που κινείται οριζόντια µε ορµή µέτρου 0 Kg m/s προσπίπτει σε κατακόρυφο τοίχο και ανακλάται οριζόντια µε ορµή ίδιου µέτρου. Το

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

12 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Αρχή διατήρησης στροφορμής

12 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Αρχή διατήρησης στροφορμής 1 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Αρχή διατήρησης στροφορμής Βασικές εξισώσεις Στροφορμή υλικού σημείου μάζας m ως προς σημείο Ο. L = r p = m( r υ) Στροφορμή στερεού σώματος που περιστρέφεται

Διαβάστε περισσότερα

Ο µαθητής που έχει µελετήσει το κεφάλαιο νόµος παγκόσµιας έλξης, πεδίο βαρύτητας πρέπει:

Ο µαθητής που έχει µελετήσει το κεφάλαιο νόµος παγκόσµιας έλξης, πεδίο βαρύτητας πρέπει: Ο µαθητής που έχει µελετήσει το κεφάλαιο νόµος παγκόσµιας έλξης, πεδίο βαρύτητας πρέπει: Να µπορεί να διατυπώσει τον Νόµο της παγκόσµιας έλξης. Να γνωρίζει την έννοια βαρυτικό πεδίο και τι ισχύει για αυτό.

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0 Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, Μαΐου 7 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015 Τμήμα Θ. Αποστολάτου & Π. Ιωάννου Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ Η κίνηση των πλανητών είναι το αποτέλεσμα της σύνθεσης 2 κινήσεων: μίας περιστροφής γύρω από τον Ήλιο, η περίοδος της οποίας μας δίνει το έτος κάθε πλανήτη, και πραγματοποιείται

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

k 3/5 P 3/5 ρ = cp 3/5 (1) dp dr = ρg (2) P 3/5 = cgdz (3) cgz + P0 cg(z h)

k 3/5 P 3/5 ρ = cp 3/5 (1) dp dr = ρg (2) P 3/5 = cgdz (3) cgz + P0 cg(z h) Αριστοτελειο Πανεπιστημιο Θεσσαλονικης ΤΜΗΜΑ ΦΥΣΙΚΗΣ 3ο Σετ Ασκήσεων Αστρονομίας Author: Σταμάτης Βρετινάρης Supervisor: Νικόλαος Στεργιούλας Λουκάς Βλάχος December 5, 215 1 Άσκηση Σφαιρικός αστέρας με

Διαβάστε περισσότερα

( ) = ke r/a όπου k και α θετικές σταθερές

( ) = ke r/a όπου k και α θετικές σταθερές Παράδειγµα 1 ΦΥΣ 11 - Διαλ.15 1 Θεωρήστε την κίνηση ενός σώματος,μάζας m σε ελκτικό δυναμικό: V r ke r/a όπου k και α θετικές σταθερές (α) Σχεδιάστε το για μικρές και μεγάλες τιμές της στροφορμής,, και

Διαβάστε περισσότερα

Μέθοδος Hohmann αλλαγής τροχιάς δορυφόρου και σχεδιασμός διαπλανητικών τροχιών

Μέθοδος Hohmann αλλαγής τροχιάς δορυφόρου και σχεδιασμός διαπλανητικών τροχιών Μέθοδος Hohmann αλλαγής τροχιάς δορυφόρου και σχεδιασμός διαπλανητικών τροχιών Διονύσης Στεφανάτος Ειδικός Επιστήμονας, Στρατιωτική Σχολή Ευελπίδων 1. Εισαγωγή Σε αυτήν την ενότητα παρουσιάζουμε μια απλή

Διαβάστε περισσότερα

Κίνηση σε κεντρικό δυναμικό

Κίνηση σε κεντρικό δυναμικό Κίνηση σε κεντρικό δυναμικό ΦΥΣ 211 - Διαλ.13 1 q Έστω ένα σωματίδιο κάτω από την επίδραση μιας κεντρικής δύναμης Ø Δύναμη παράλληλη στο 0 F q Υποθέτουμε ότι η δύναμη είναι συντηρητική: F = V( ) m Ø V

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 16 Φεβρουαρίου, 2011

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 16 Φεβρουαρίου, 2011 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 16 Φεβρουαρίου, 11 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 1. Σώμα μάζας m=15/π Kg εκτελεί ομαλή κυκλική κίνηση ακτίνας R=20/π m με φορά αντίθετη απ τους δείκτες του ρολογιού. Αν το σώμα

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Σε όλες τις κινήσεις που μελετούσαμε μέχρι τώρα, προκειμένου να απλοποιηθεί η μελέτη τους, θεωρούσαμε τα σώματα ως υλικά σημεία. Το υλικό σημείο ορίζεται ως σώμα που έχει

Διαβάστε περισσότερα

. Για τα δύο σωµατίδια Α και Β ισχύει: q Α q, Α, q Β - q, Β 4 και u Α u Β u. Τα δύο σωµατίδια εισέρχονται στο οµογενές µαγνητικό πεδίο, µε ταχύτητες κ

. Για τα δύο σωµατίδια Α και Β ισχύει: q Α q, Α, q Β - q, Β 4 και u Α u Β u. Τα δύο σωµατίδια εισέρχονται στο οµογενές µαγνητικό πεδίο, µε ταχύτητες κ ΑΠΑΝΤΗΣΕΙΙΣ ΣΤΟ ΙΙΑ ΑΓΓΩΝΙΙΣΜΑ ΦΥΣΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΙΟΥ 10 3 013 ΘΕΜΑ 1 ο 1. β. γ 3. α 4. β 5. α ΘΕΜΑ ο 1. α. Σωστό Η δυναµική ενέργεια του συστήµατος των δύο φορτίων δίνεται απόό τη σχέση: q 1

Διαβάστε περισσότερα

Έργο Ενέργεια. ΦΥΣ 131 - Διαλ.15 1

Έργο Ενέργεια. ΦΥΣ 131 - Διαλ.15 1 Έργο Ενέργεια ΦΥΣ 131 - Διαλ.15 1 ΦΥΣ 131 - Διαλ.15 2 Έργο, Κινητική Ενέργεια και Δυναμική Ενέργεια q Βέλος εκτοξεύεται από ένα τόξο: Ø Η δύναμη μεταβάλλεται καθώς το τόξο επανέρχεται στην αρχική του θέση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή: Είναι η κίνηση (παραβολική τροχιά) που κάνει ένα σώμα το οποίο βάλλεται με οριζόντια ταχύτητα U 0 μέσα στο πεδίο βαρύτητας

Διαβάστε περισσότερα

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M,

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M, ΒΑΡΥΤΗΤΑ ΝΟΜΟΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΛΞΗΣ Ο Νεύτωνας ανακάλυψε τον νόμο της βαρύτητας μελετώντας τις κινήσεις των πλανητών γύρω από τον Ήλιο και τον δημοσίευσε το 1686. Από την ανάλυση των δεδομένων αυτών ο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φυσική. Ενότητα # 6: Βαρυτικό Πεδίο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φυσική. Ενότητα # 6: Βαρυτικό Πεδίο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Φυσική Ενότητα # 6: Βαρυτικό Πεδίο Μυροφόρα Πηλακούτα Τμήμα Μηχανικών Αυτοματισμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΚΑΙ ΤΗΝ ΟΡΜΗ 30/11/2014

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΚΑΙ ΤΗΝ ΟΡΜΗ 30/11/2014 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΚΑΙ ΤΗΝ ΟΡΜΗ 30//204 Ζήτημα 0 Να επιλεγεί η σωστή πρόταση ) Σώμα κινείται σε περιφέρεια κύκλου και εκτελεί ομαλή κυκλική κίνηση.τότε: α) Το μέτρο

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Θετικού Προσανατολισμού Σχ. έτος ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο

Φυσική Γ Λυκείου Θετικού Προσανατολισμού Σχ. έτος ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο 1ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη ϕράση που τη συμπληρώνει σωστά.

Διαβάστε περισσότερα

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής Μάθημα 6ου Εξαμήνου: Δορυφορική Γεωδαισία (Ακαδ. Έτος 211-12) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Ενδιάμεσο Διαγώνισμα Διάρκεια 11 Επιλέξτε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Θέμα Α. 1. β 2. α 3. γ 4. β 5. Λ,Λ,Λ,Λ,Λ.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Θέμα Α. 1. β 2. α 3. γ 4. β 5. Λ,Λ,Λ,Λ,Λ. ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ- 07 Θέμα Α.. β. α 3. γ 4. β 5. Λ,Λ,Λ,Λ,Λ. Β Στην επιφάνεια ελαστικού μέσου υπάρχουν δύο πανομοιότυπες πηγές κυμάτων που ξεκινούν ταυτόχρονα την ταλάντωση τους. Σε

Διαβάστε περισσότερα

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

Μηχανική Στερεού Ασκήσεις Εμπέδωσης Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Ερωτήσεις 1. Στην ομαλή κυκλική κίνηση, α. Το μέτρο της ταχύτητας διατηρείται σταθερό. β. Η ταχύτητα διατηρείται σταθερή. γ. Το διάνυσμα της ταχύτητας υ έχει την

Διαβάστε περισσότερα

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται 6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση

Διαβάστε περισσότερα

(http://www.redbullstratos.com). Barbero 2013, European Journal of Physics, 34, df (z) dz

(http://www.redbullstratos.com). Barbero 2013, European Journal of Physics, 34, df (z) dz Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 7 Φεβρουαρίου 5 Διάρκεια εξέτασης ώρες, Καλή επιτυχία, ΑΜ: Να ληφθεί

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση:

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση: ΑΠΑΝΤΗΣΕΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΒΒ ΛΥΥΚΚΕΕΙΙΟΥΥ 1133 33 001111 ΘΕΜΑ 1 ο 1. β. γ 3. α 4. β 5. α ΘΕΜΑ ο 1. α. Σωστό Η δυναμική ενέργεια του συστήματος των δύο φορτίων δίνεται από

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015 ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι. Οκτώβριος 2002 Τμήμα Πέτρου Ιωάννου και Θεοχάρη Αποστολάτου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι. Οκτώβριος 2002 Τμήμα Πέτρου Ιωάννου και Θεοχάρη Αποστολάτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Οκτώβριος 2002 Τμήμα Πέτρου Ιωάννου και Θεοχάρη Αποστολάτου Απαντήστε και στα 4 θέματα. Καλή σας επιτυχία. Θέμα (20 μονάδες) α) Διατυπώστε με σαφήνεια

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 10 η Ομαλή κυκλική κίνηση Δθ = ω = σταθερό Δt X = Rσυν (ωt) => X 2 +Υ 2 = R 2 Υ = Rημ(ωt) Οι προβολές της κίνησης στους άξονες των x και y είναι αρμονικές ταλαντώσεις

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Όποτε χρησιμοποιείτε το σταυρό ή το κλειδί της εργαλειοθήκης σας για να ξεσφίξετε τα μπουλόνια ενώ αντικαθιστάτε ένα σκασμένο λάστιχο αυτοκινήτου, ολόκληρος ο τροχός αρχίζει να στρέφεται και θα πρέπει

Διαβάστε περισσότερα

ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ

ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ Οι δακτύλιοι του Κρόνου είναι ένα σύστημα πλανητικών δακτυλίων γύρω από αυτόν. Αποτελούνται από αμέτρητα σωματίδια των οποίων το μέγεθος κυμαίνεται από μm μέχρι m, με

Διαβάστε περισσότερα

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή 11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό κατά dθ dw F ds = F R dθ

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης Τροχιές σωμάτων σε πεδίο Βαρύτητας Γιώργος Νικολιδάκης 9/18/2013 1 Κωνικές Τομές Είναι καμπύλες που σχηματίζονται καθώς επίπεδα τέμνουν με διάφορες γωνίες επιφάνειες κώνων. Παραβολή Έλλειψη -κύκλος Υπερβολή

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Κεφάλαιο 4 Θέμα 1ο Α. Να επιλέξετε τη σωστή απάντηση που ακολουθεί κάθε μια από τις πιο κάτω προτάσεις α. Ένα σώμα ηρεμεί εκτός πεδίου βαρύτητας. Ασκούμε

Διαβάστε περισσότερα

Ποια μπορεί να είναι η κίνηση μετά την κρούση;

Ποια μπορεί να είναι η κίνηση μετά την κρούση; Ποια μπορεί να είναι η κίνηση μετά την κρούση; ή Η επιτάχυνση και ο ρυθµός µεταβολής του µέτρου της ταχύτητας. Ένα σώµα Σ ηρεµεί, δεµένο στο άκρο ενός ελατηρίου. Σε µια στιγµή συγκρούεται µε ένα άλλο κινούµενο

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που

Διαβάστε περισσότερα

mv V (x) = E με V (x) = mb3 ω 2

mv V (x) = E με V (x) = mb3 ω 2 Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, 6 Σεπτεμβρίου 6 Διάρκεια εξέτασης ώρες, Καλή επιτυχία ( = bonus ερωτήματα),

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΟ ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ Αμπελόκηποι, ΛΑΓΑΝΑ Αθήνα Ph.D. Τηλ.: 10 69 97 985, e-mal: edlag@otenet.g, www.edlag.g Τηλ.: 10 69 97 985, www.edlag.g ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΗΜ/ΝΑ 22/6/2009. ΛΥΣΗ Έχουμε την θέση ως συνάρτηση του χρόνου. Θα πρέπει να βρούμε την ταχύτητα για να 1 2

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΗΜ/ΝΑ 22/6/2009. ΛΥΣΗ Έχουμε την θέση ως συνάρτηση του χρόνου. Θα πρέπει να βρούμε την ταχύτητα για να 1 2 Θέματα και λύσεις διαφόρων εξεταστικών Την ψηφιοποίηση έκανε ο Σπουδαστής Σπύρος Μπαλής Εάν διαπιστώσετε κάποιο λάθος παρακαλώ επικοινωνήστε μαζί μου mpilk@eipir.r ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΗΜ/ΝΑ /6/9.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 16118 Δύο σφαιρίδια Σ 1 και Σ 2 βρίσκονται σε λείο οριζόντιο τραπέζι (κάτοψη του οποίου φαίνεται στο

Διαβάστε περισσότερα

Δυναµική. ! F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή),! Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του! Γιατί σώµατα κινούνται µε το τρόπο που κινούνται

Δυναµική. ! F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή),! Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του! Γιατί σώµατα κινούνται µε το τρόπο που κινούνται 1 Δυναµική F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Γιατί σώµατα κινούνται µε το τρόπο που κινούνται " Θεµελιώδεις νόµοι της µηχανικής: Οι τρεις νόµοι του

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Μαΐου, 01 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: 1) Είναι πολύ σημαντικό να

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 1. Ένα σώμα μάζας m= 2 kg εκτελεί απλή αρμονική ταλάντωση σε οριζόντια διεύθυνση. Στη θέση με απομάκρυνση x 1 =+2m το μέτρο της ταχύτητας του είναι u 1 =4m /s, ενώ στη θέση με απομάκρυνση

Διαβάστε περισσότερα

Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.

Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΕΡΕΟΎ ΣΏΜΑΤΟΣ Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. Ένα υλικό σημείο μπορεί να κάνει μόνο μεταφορική

Διαβάστε περισσότερα

Κεφάλαιο 5. Ενέργεια συστήματος

Κεφάλαιο 5. Ενέργεια συστήματος Κεφάλαιο 5 Ενέργεια συστήματος Εισαγωγή στην ενέργεια Οι νόμοι του Νεύτωνα και οι αντίστοιχες αρχές μας επιτρέπουν να λύνουμε μια ποικιλία προβλημάτων. Ωστόσο, μερικά προβλήματα, που θεωρητικά μπορούν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Σχολικό Έτος 016-017 1 ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Α. ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή, ονομάζουμε την εκτόξευση ενός σώματος από ύψος h από το έδαφος, με οριζόντια ταχύτητα u o, όταν στο σώμα επιδρά

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ορμή

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ορμή ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. B Λυκείου Ύλη: Ορμή 13-11-2016 Θέμα 1 ο : 1) Κατά την πλαστική κρούση δύο σωμάτων: α) η κινητική ενέργεια και η ορμή του συστήματος των σωμάτων παραμένουν σταθερές β) η κινητική

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,,

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 06 0 07 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Πολικές Συντεταγμένες Κυλινδρικές Συντεταγμένες Σφαιρικές Συντεταγμένες Στοιχειώδεις Όγκοι ΠΑΡΑΓΩΓΙΣΗ Ιδιότητες

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Προτεινόμενες Λύσεις Πρόβλημα - ( μονάδες) Ένα όχημα, μαζί με ένα κανόνι που είναι ακλόνητο πάνω σε αυτό,

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Βʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΤΕΤΑΡΤΗ 4 ΙΑΝΟΥΑΡΙΟΥ 2017

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Βʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΤΕΤΑΡΤΗ 4 ΙΑΝΟΥΑΡΙΟΥ 2017 ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Βʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΤΕΤΑΡΤΗ 4 ΙΑΝΟΥΑΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ(6) ΘΕΜΑ Α Στις ερωτήσεις πολλαπλής επιλογής 1 έως 4

Διαβάστε περισσότερα

Έργο δύναμης. Γενικά το έργο δύναμης είναι το εσωτερικό γινόμενο δύο δυανυσμάτων: της δύναμης επί την μετατόπιση

Έργο δύναμης. Γενικά το έργο δύναμης είναι το εσωτερικό γινόμενο δύο δυανυσμάτων: της δύναμης επί την μετατόπιση Έργο δύναμης Γενικά το έργο δύναμης είναι το εσωτερικό γινόμενο δύο δυανυσμάτων: της δύναμης επί την μετατόπιση W F d Fd cos( θ ) θ F F cos ( θ ) d Έργο από μεταβαλλόμενη δύναμη Έστω ότι το μέτρο της δύναμης

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Στις ερωτήσεις -4 να βρείτε τη σωστή πρόταση.. Η ροπή αδράνειας ενός στερεού σώµατος εξαρτάται: α. Από τη ροπή της δύναµης που ασκείται στο στερεό. β. από

Διαβάστε περισσότερα

Κυκλική κίνηση. Βασικές έννοιες. x=rcosθ, y=rsinθ, z=0. x 2 +y 2 =R 2. Γωνιακή μετατόπιση. Γωνιακή ταχύτητα. Θέση

Κυκλική κίνηση. Βασικές έννοιες. x=rcosθ, y=rsinθ, z=0. x 2 +y 2 =R 2. Γωνιακή μετατόπιση. Γωνιακή ταχύτητα. Θέση Κυκλική κίνηση Στη Φυσική, κυκλική κίνηση ονομάζεται η κίνηση στην οποία η τροχιά ενός κινητού ταυτίζεται με την περιφέρεια ενός κύκλου. Η πιο απλή από τις κυκλικές κινήσεις είναι η ομαλή, κατά την οποία

Διαβάστε περισσότερα

8 ο Μάθημα Περιστροφική κίνηση

8 ο Μάθημα Περιστροφική κίνηση 8 ο Μάθημα Περιστροφική κίνηση Κέντρο μάζας Στερεό σώμα Γωνιακή ταχύτητα γωνιακή επιτάχυνση Περιστροφή με σταθερή γωνιακή επιτάχυνση Σχέση γωνιακής ταχύτητας και επιτάχυνσης Κινητική ενέργεια λόγω περιστροφής

Διαβάστε περισσότερα

v r T, 2 T, a r = a r (t) = 4π2 r

v r T, 2 T, a r = a r (t) = 4π2 r Πρώτη και Δεύτερη Διαστημική Ταχύτητα Άλκης Τερσένοβ 1. Πρώτη Διαστημική Ταχύτητα και Γεωστατική Τροχιά Πρώτη Διαστημική Ταχύτητα ονομάζεται η ελάχιστη ταχύτητα που θα πρέπει να αναπτύξει ένα σώμα που

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑ Α Ι. 1. Γ

ΛΥΣΕΙΣ ΘΕΜΑ Α Ι. 1. Γ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Ι Γ Α dw d dx W = x σνθ = ( x σνθ ) P = σνθ dt dt dt P = σνθ 3 A 4 Δ (στην απάντηση β) πρέπει να προσθέσουμε την αύξηση

Διαβάστε περισσότερα

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1 . 1. Η απλή αρµονική ταλάντωση είναι κίνηση: α. ευθύγραµµη οµαλή β. ευθύγραµµη οµαλά µεταβαλλόµενη γ. οµαλή κυκλική δ. ευθύγραµµη περιοδική. Η φάση της αποµάκρυνσης στην απλή αρµονική ταλάντωση: α. αυξάνεται

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή

Διαβάστε περισσότερα