4. VLAZAN VAZDUH. Ukupan pritisak vlaznog vazduha jednak je zbiru parcijalnih pritisaka suvog vazduha i vodene pare.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4. VLAZAN VAZDUH. Ukupan pritisak vlaznog vazduha jednak je zbiru parcijalnih pritisaka suvog vazduha i vodene pare."

Transcript

1 4. VLAZAN VAZDUH Vlazan vazduh je dvo-komonentna mesavina, suvog vazduha i vodene are. Za suv vazduh kao komonentu vlaznog vazduha vaze zakonitosti idealnog gasa. Za vodenu aru kao komonentu vlaznog vazduha vazse zakonitosti realnog gasa. U zavisnosti u kojem obliku se vodena ara nalazi u vlaznom vazduhu razlikujemo: 1. nezasicen vlazan vazduh ( suv vazduh + regrejana ara) 2. zasicen vlazan vazduh ( suv vazduh + suvozasicena vodena ara) 3. resicen vlazan vazduh, magla ( suv vazduh + suvozasicena vodena ara + voda + led) naomena: Presicenost se moze ostici i vodenom arom u tecnom i cvrtstom stanju (ledena magla), ali takva stanja su bez znacaja u ovom kursu. nezasicen vlazan vazduh: Pritisak: MEHANICKE VELICINE STANJA VLAZNOG VAZDUHA = sv + Ukuan ritisak vlaznog vazduha jednak je zbiru arcijalnih ritisaka suvog vazduha i vodene are. gustina: ρ = ρ sv + ρ Gustina vlaznog vazduha jednak je zbiru gustina suvog vazduha i vodene are. ρ sv = RT g 1 = ρ ( v), t g RT temeratura: t = t sv = t H2O Temeratura vlaznog vaduha jednaka je temeraturi suvog vazduha i temeraturi vodene are u vlaznom vazduhu.

2 TOPLOTNE VELICINE STANJA VLAZNOG VAZDUHA entalija: i= i sv + x (i ) = = c SV. t + x(1.86. t ) i sv = c SV. t, c SV = 1 kj/kgk, t [ o C] i = f(, t) u ostem slucaju. Za vrednosti <0.1 bar (sto je uglavnom slucaj u vlaznom vazduhu) i = f(t) = t t, [ o C] unutrasnja energija entroija: u= u sv + x (u ) s= s sv + x (s ) u sv = c vsv. t s - kao kod vodene are u - kao kod vodene are asolutna vlaznost vlaznog vazduha, x (kgh 2 O/kgSV) POKAZATELJI VLAZNOSTI VLAZNOG VAZDUHA Asolutna vlaznost vlaznog vazduha redstavlja odnos masa vodene are i suvog vazduha u vlaznom vazduhu tj. x= m H2O msv x =. Asolutna vlaznost vlaznog vazduha i arcijalni m m sv sv ritisak vodene are mogu se reracunavati jedno u drugo na nacin M H2O x=f( )= M -. relativna vlaznost vlaznog vazduha, ϕ sv Relativna vlaznost vlaznog vazduha,ϕ, redstavlja odnos arcijalnog ritiska vodene are u osmatranom vlaznom vazduhu ( ) i ritiska suvozasicene vodene are iste temerature ( s ). Ako se zeli da se izrazi u % otrebno je omnoziti ga sa 100. ϕ = 1 s - s, je tablicna velicina i cita se u rirucniku za termodinamiku na str ili na str za temeraturu osmatranog vlaznog vazduha.. Za odredjivanje bilo koje velicina stanja nezasicenog vlaznog vazduha (A) otrebno je znati neke druge dve velicine stanja (B, C) tj A=f(B,C). Tabelarni rikaz svih ovakvih jednacina dat je u tabeli koja sledi. Uociti da je u nekim situacijama neohodno koristiti Molijerov ix dijagram za odredjivanja velicina stanja. Takve situacije su: 1. A=f(ϕ, i) 2. A=f(ϕ, rava vlazenja)

3 zasicen vlazan vazduh: Mehanicke i tolotne velicine stanja zasicenog vlaznog vazduha mogu se odredjivati na isti nacin kao i mehanicke i tolotne velicine stanja nezasicenog vazduha. Medjutim takav jedan ostuak je otuno neotreban jer su velicine stanja zasicenog vazduha vec izracunate i nalaze se u rirucniku za termodinamiku na str Za odredjivanje velicina stanja zasicenog vazduha otrebo je znati samo jednu (neku drugu) velicinu stanja, tj vazi jednacina tia A=f(B). Uociti da za zasicen vlazan vazduh vazi: 1. Relativna vlaznost zasicenog vlaznog vazduha, ϕ, iznosi Parcijalni ritisak are u zasicenom vazduhu iznosi s tj = s 3. Gustina zasicenog vlaznog vazduha odredjuje se izraza: 1 s ρ = " ( v ) RT t g v " - secificna zaremina suvozasicene vodene are, rirucnik str Uociti da je u situaciji tia A=f( rava vlazenja) neohodno koristiti Molijerov ix dijagram za odredjivanja velicina stanja zasicenog vlaznog vazduha. resicen vlazan vazduh Kad govorimo o aslutnoj vlaznosti resicenog vlaznog vazduha (x) moramo znati da se jedan deo vodene are nalazi u obliku suvozasicene vodene are i ima vlaznost x s (vlaga u arnom stanju), a da se drugi deo vodene are nalazi u obliku kljucale vode (x-x s ) (vlaga u tecnom stanju). Vlaznost u arnom stanju (x s ), odredjuje se citanjem u rirucniku na str za temeraturu osmatranog resicenog vlaznog vazduha. Za odredjivanje velicina stanja resicenog vlaznog (i, x, t) vazduha koristi se Molijerov ix dijagram, izuzetak je situacija i=f(t,x) kada se moze se koristiti jednacina: i = i sv + x s i" +(x-x s )i' i', i" - entalije kljucale vode i suvozasicene vodene are, citaju se u rirucniku na str za temeraturu resicenog vlaznog vazduha Takodje se moze koristiti i aroksimativna jednacina: i = c sv. t + x s (1.86. t+2500) + (x-x s ) t

4 Trikovi, tj skrivalice za ojedine velicine stanja vlaznog vazduha. - Temeratura tacke rose redstavlja temeraturu do koje bi trebalo hladiti vlazan vazduh da bi doslo do kondenzacije regrejane vodene are koja se nalazi u njemu. Drugim recima to je temeratura zasicenog vlaznog vazduha koji ima istu asolutnu vlaznost kao osmatrani vazduh. Temeratura tacke rose u zadacima sluzi da se omocu nje sakrije asolutna vlaznost vlaznog vzazduha (x). - Temeratura adijabatskog zasicenja 1 redstavlja temeratutu do koje bi trebalo adijabatski vlaziti vlazan vazduh tako da on ostane zasicen. Drugim recima to je temeratura zasicenog vlaznog vazduha koji ima istu entaliju kao osmatrani vazduh. Temeratura adijabatskog zasicenja u zadacima sluzi da se reko nje sakrije entalija vlaznog vazduha (i) 1 U ovom kursu smatracemo da je temeratura adijabatskog zasicenja jednaka temeraturi vlaznog termometra, sto je rihvatljiva aroksimacija u intervalu temeratura od o C

5 RACUNSKO ODREDJIVANJE PARAMETARA NEZASICENOG VLAZNOG VAZDUHA x=f(t,ϕ) ϕ s -ϕ x=f(t,t vt ) I - i=f(t vt ) i-csv t II t x=f(t,i) i-csv t t s 2 x=f(i,ϕ) samo uotrebom i-x dijagrama x=f(t r ) x=f( ) rirucnik str.59-60; x=(x) tr - i=f(t,x). c sv t + x(1.86 t ) 6 5 i=f(t vt ) i=f(x,ϕ t=f(i,x) t=f(x,ϕ) rirucnik str.59-60; i=(i) tvt I - t=f(x,ϕ) II - i=f(t,x). i-x 2500 t= 1+ x I - = x x II - s = /ϕ t=f(t r,t vt ) I - i=f(t vt ) II - x=f(t r ) III - t=f(i,x) III - rirucnik str.59-60; t=(t) s t=f(i,ϕ) samo uotrebom i-x dijagrama ϕ=f(t,x) s x M H2O M +x sv 9

6 PROMENE STANJA VLAZNOG VAZDUHA 1. Procesi razmene tolote sa okolinom, U ovakvim rocesima vlaznom vazduhu se dovodi ili odvodi tolota, a tako razlikujemo rocese zagrevanja i hladjenja. Procese razmene tolote sa okolinom vlazan vazduh obavlja izoletski (x=const). Kolicina tolote koju vlazan vazduh razmeni sa okolinom, bilo da je rec o zagrevanju ili hladjenju, odredjuje se iz izraza: Q = m sv (i 2 -i 1 ) Q m sv i 1, i 2, - kolicina tolote koju vazduh razmeni sa okolinom, kj/s tj kw - maseni rotok suvog vazduha, kg/s - entalije vlaznog vazduha re odnosno nakon ramene tolote sa okolinom, kj/kgsv Zagrevanje vlaznog vazduha obavlja se u uredjima koji se obicno zovu zagrejaci. Tolota koju je otrebno redati vlaznom vazduhu u zagrejacu obicno se dobija odvodjenjem tolote od nekog drugog fluida. U tom slucaju zagrejac je izveden kao razmenjivac tolote (Q'=Q). Q'=m'(i f 1 - i f2 ) Q' m' i f1, i f2 - kolicina tolote koju oslobodi grejni fluid, kw - maseni rotok grejnog fluida, kg/s - entalije grejnog fluida na ulazu i izlazu iz zagrejaca, kj/kg Hladjenje vlaznog vazduha obavlja se u uredjajima koji se obicno zovu hladnjaci. Tolota koja se odvodi od vlaznog vazduha u hladnjaku obicno se redaje ili okolini ili nekom drugom fluidu. U ovom drugom slucaju hladnjak se izvodi kao razmenjivac tolote. Ako se nezasicen vlazan vazduh ohladi do temerature koja je niza od tacke rose, dolazi do ojave izdvajanja kondenzata iz vlaznog vazduha. Kondenzat iz vlaznog vazduha zaostaje na zidovima hladnjaka i nakon toga se skulja u risiveru, dok reostali vazduh nausta hladnjak kao zasicen vlazan vazduh iste temerature. Pri tome iz m vv1 =m sv (1+x 1 ) kg nezasicenog vlaznog vazduha nastaje W=m sv (x s -x 1 ) kondenzata i m vvs =m sv (1+x s ) kg zasicenog vlaznog vazduha.

7 2. Proces mesanja dva vlaznog vazduha Procesi mesanja dva vlazna vazduha obavljaju se u komorama za mesanje. Mesanje vlaznih vazduha vrsi se o sistemu mesanja gasnih struja. Ako omesamo vlazan vazduh stanja 1(m sv1, x 1, i 1 ) sa vlaznim vazduhom stanja 2(m sv2, x 2, i 2 ) dobicemo mesavinu stanja M(m sv, x m, i m ). Odredjivanje velicina stanja mesavine (m sv, x m, i m ) vrsimo ostavljanjem bilansnih jednacina: 1. materijalni bilans suvog vazduha: m sv1 + m sv2 = m sv 2. materijalni bilans vlage: m sv1. x 1 + m sv2. x 2 = m sv. x m 3. tolotni bilans m sv1. i 1 + m sv2. i 2 = m sv. i m Pri odredjivanju stanja dobijene mesavine (tacka M) moze se koristiti i ravilo oluge za slucaj kada su oznati maseni oba vazduha koji formiraju mesavinu. g 1 + g 2 = 1 g 1 x 1 + g 2 x 2 = x m g 1 i 1 + g 2 i 2 = i m g 1, g 2 - maseni udeli vazduha 1 i vazduha 2 u mesavini M

8 3. Procesi vlazenja vlaznog vazduha Procesi vlazenja vlaznog vazduha vrse se u cilju ovecanja asolutne vlaznosti vlaznog vazduha (x). Vlazenje vlaznog vazduha vrsi se dovodjenjem vodene are, a se vlazenje moze u teorijskoj zanlizi tretirati i kao mesanje vlaznog vazduha i vodene are. Uredjaji se obicno konstruisu kao komore u koje se u fino rasrsenom stanju uvodi vodena ara. Asolutna vlaznost vlaznog vazduha i entalija vlaznog vazduha nakon vlazenja odredjuju se ostavljanjem materijalnog bilanasa vlage i tolotnog bilansa za uredjaj u kojem se vrsi vlazenje. - materijalni bilans vlage : m sv x 1 + W = m sv x 2 W - rotok dovedene vlage (kg/s) m v - rotok suvog vazduha (kg/s) x 1 - asolutna vlaznost vazduha re vlazenja (kgh 2 O/kgSV) x 2 - asolutna vlaznost vazduha nakon vlazenja (kgh 2 O/kgSV) - tolotni bilans : m sv i 1 + W [i w ] = m sv (i 2 ) i w - entalija dovedene vodene are (kj/kg) i 1 - entalija vazduha re vlazenja (kj/kgsv) i 2 - entalija vazduha nakon zagrevanja (kj/kgsv) GRAFICKI PRIKAZ VLAZENJA VLAZNOG VAZDUHA - ucrta se tacka olozaja vlaznog vazduha (re ili osle vlazenja) - odredi se entlija dovodene vodene are - uoci se ta vrednost na obodu ix dijagrama - konstruise se omocna rava kroz ol (P) ix dijagrama i kroz tacku na obodu koja okazuje vrednost entalije dovedene vodene are - konstruise se njoj aralelna rava kroz olozaj vlaznog vazduha (re ili osle vlazenja)

9 SUSENJE VLAZNOG MATERIJALA Susenje materijala je tehnoloska oeracija koja se srovodi u cilju odstranjivanje odredjene kolicine vlage iz vlaznog materijala. Kao agens susenja uotrebljava se vlazan vazduh, koji se rethodno riremi (na razlicit nacin u razlicitim nacinima susenja) a zatim uotrebljava za susenje vlaznog materijala (sam vazduh se ri tome vlazi). Prema nacinu rieme vazduha razlikujemo jednosteene, visesteene, recirkulacione i rekuerativne susare a rema nacinu vlazenja vlaznog vazduha razlikujemo idealne (teroijske, adijabatske) i realne susare. Svaki materijal sa asekta susenja sastoji se iz dve komonente: suve materije (SM) i vode. Nacin na koji razlikujemo dva (ili vise) materijala je kolicina vlage koju oni sadrze. SM H2O NACINI IZRAZAVANJA VLAZNOSTTI MATERIJALA: 1. Vlaznost materijala, d (kg H 2 O/kg(H 2 O+SM)), redstavlja maseni udeo vlage u materijalu. Vrednosti za d se uvek nalaze u intervalu od 0 do 1 tj 0<d<1. 2. Vlaznost materijala racunato na suvu materiju (SM), D (kg H2O/kgSM), redstavlja maseni odnos vlage rema suvoj materiji u materijalu D>0 Pri koriscenju materijalnih bilanasa moze se koristiti samo d (malo d). Ako je kojim slucajem u D zadatku zadato D (veliko D) ono se mora reracunati na malo d na nacin: d = 1+ D Prikaz komore za susenje u obliku blok dijagrama: (d 1 ) (d 2 ) m vm m om W osti materijalni bilans komore: m vm = m om + W materijalni bilans vlage: m vm. d 1 = m om. d 2 + W

10 JEDNOSTEPENE TEORIJSKE SUSARE 1. MATERIJALNI BILANS VLAGE ZA KOMORU ZA SUSENJE VLAZNOG MATERIJALA W=m (x - x )=m d 1 - d 2 =m d 1 - d 2 sv 3 2 VM OM 10 1-d2 1-d1 W - odstranjena vlaga iz vlaznnog materijala (kg/s) m VM - rotok vlaznog materijala (kg/s) m OM - rotok osusenog materijala (kg/s) d 1 - ocetna vlaznost materijala (maseni udeo vlage) d 2 - zavrsna vlaznost materijala (maseni udeo vlage) 2. PROTOCI VLAZNOG VAZDUHA KROZ SUSARU m vv1 = m sv (1+x 1 ) m vv1 - rotok vlaznog vazduha na ulazu u susaru (kg/s) m vv3 = m sv (1+x 3 ) m vv3 - rotok vlaznog vazduha na izlazu iz susare (kg/s) 3. GRAFICKI PRIKAZ PROMENA STANJA VLAZNOG VAZDUHA 1-2: x = const 2-3: i = const

11 VISESTEPENE TEORIJSKE SUSARE 1. PROTOK SUVOG VAZDUHA KROZ SUSARU: m sv = const 2. ODSTRANJENA VLAGA U SUSARI: 3. POTROSNJA TOPLOTE U SUSARI: i=n i sv x 3 x 2 x 5 x 4 x n x n-1 i=1 W= W Q= Q 4. GRAFICKI PRIKAZ PROMENA STANJA VLAZNOG VAZDUHA i=n i=1 =m ( ) =m ( ) sv i i i i i i i n-1 n

12 TEORIJSKE SUSARE SA RECIRKULACIJOM JEDNOG DELA ISKORISCENOG VAZDUHA svez vazduh 1. MATERIJALNI BILANS VLAGE ZA KOMORU ZA SUSENJE VLAZNOG MATERIJALA - identicno kao kod jednosteenih susara 2. PROTOCI VAZDUHA U SUSARI SA RECIRKULACIJOM m sv - rotok (ukuan) suvog vazduha m sv1 - rotok (svezeg) suvog vazduha, m sv3 - rotok (oticjnog) suvog vazduha, m sv = m sv1 + m sv3 m sv1 = g. 1 m sv m sv3 = g. 3 m sv m vv - rotok (ukuan) vlaznog vazduha, m vv = m sv (1+x m ) m vv1 - rotok (svezeg) vlaznog vazduha, m vv1 = m sv1 (1+x 1 ) m vv3 - rotok (oticajnog) vlaznog vazduha, m vv3 = m sv3 (1+x 3 ) 3. GRAFICKI PRIKAZ PROMENA STANJA VLAZNOG VAZDUHA 2-M: x = const 2-3: i = const x m = g 1. x 1 + g 3. x 3 i m = g 1. i 1 + g 3. i 3

Slično važi i za bilo koje druge kombinacije nekondenzujućih ( O

Slično važi i za bilo koje druge kombinacije nekondenzujućih ( O 8. Vlažni gasovi 8.1 Uvod - smeše realnog i idealnog gasa - smeše kondenzujućeg i nekondenzujućeg gasa - arno gasne smeše - najoznatiji redstavnik ažan vazduh - smeša (suvog) vazduha idealnog gasa i age

Διαβάστε περισσότερα

0. OSNOVNE DEFINICIJE

0. OSNOVNE DEFINICIJE 0. OSNOVNE DEFINICIJE Termodinamicki sistem je deo opsteg prostora odvojen od okoline granicom sistema. Ako kroz granice sistema ne dolazi do toplotnih interakcija sistema i okoline takav sistem zave se

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

TERMODINAMIKA. Vježbe II

TERMODINAMIKA. Vježbe II ERMODINAMIKA Vježbe II Zadatak br. 9 kg neke materije mijenja stanje kvazistatički o zakonu = ks, gdje je od stanja ( 00K ) do stanja ( k kg K kj 900K ). Potrebna količina tolote dovodi se od tolotnog

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE

TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE (Generatori are) List: TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE Generator are je energetski uređaj u kojemu se u sklou Clausius-Rankineova kružnog rocesa redaje tolina

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

kvazistatičke (ravnotežne) promene stanja idealnih gasova

kvazistatičke (ravnotežne) promene stanja idealnih gasova zbirka zadataka iz termodinamike strana 1/71 kvazistatičke (ravnotežne) promene stanja idealnih gasova 1.1. Vazduh (idealan gas), (p 1 =2 bar, t 1 =27 o C) kvazistatički menja stanje pri stalnoj zapremini

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Drugi zakon termodinamike

Drugi zakon termodinamike Drugi zakon termodinamike Uvod Drugi zakon termodinamike nije univerzalni prirodni zakon, ne važi za sve sisteme, naročito ne za neobične sisteme (mikrouslovi, svemirski uslovi). Zasnovan je na zajedničkom

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Otvorene mreže. Zadatak 1

Otvorene mreže. Zadatak 1 Otvorene mreže Zadatak Na slici je data otvorena mreža u kojoj je rocesor centralni server. Prosečan intenzitet ulaznog toka rocesa u sistem iznosi X rocesa/sec. Posle rocesorske obrade, roces u % slučajeva

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

8 Funkcije više promenljivih

8 Funkcije više promenljivih 8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

NULTI I PRVI ZAKON TERMODINAMIKE

NULTI I PRVI ZAKON TERMODINAMIKE NULTI I PRVI ZAKON TERMODINAMIKE NULTI ZAKON (princip)termodinamike ako su dva sistema A i B u međusobnom termičkom kontaktu, i u ravnoteži sa trećim sistemom C onda su u ravnoteži i jedan sa drugim Ako

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA

U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA HEMIJSKA TERMODINAMIKA Bavi se energetskim promenama pri odigravanju hemijskih reakcija. TERMODINAMIČKE FUNKCIJE STANJA U unutrašnja energija H entalpija S entropija Ako su određene na standardnom pritisku

Διαβάστε περισσότερα

KURS ZA ENERGETSKI AUDIT 1.1

KURS ZA ENERGETSKI AUDIT 1.1 KURS ZA ENERGETSKI AUDIT 1.1 TEORIJSKE OSNOVE Priremio: Dr Nenad Kažić 1 Osnovni ojmovi Sistemi mjera i jedinice ISM - INTERNACIONALNI SISTEM MJERA ASM - ANGLOSAKSONSKI SISTEM MJERA 2 ISM ASM DUŽINA Metar

Διαβάστε περισσότερα

POGON SA ASINHRONIM MOTOROM

POGON SA ASINHRONIM MOTOROM OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. 1 Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. Pravilo 2. Svaki atribut entiteta postaje atribut relacione šeme pod istim imenom. Pravilo 3. Primarni ključ entiteta postaje

Διαβάστε περισσότερα

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

Pneumatski sistemi. Pneumatski sistem je tehnički sistem za pretvaranje i prenos energije, kao i za

Pneumatski sistemi. Pneumatski sistem je tehnički sistem za pretvaranje i prenos energije, kao i za 1 Pneumatsi sistemi Pneumatsi sistem je tehniči sistem za pretvaranje i prenos energije, ao i za upravljanje energijom. Ovo poglavlje obuhvata sledeće teme: osnovne funcije pneumatsog sistema osnovna svojstva

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

ZMESI IDEALNIH PLINOV

ZMESI IDEALNIH PLINOV ZMESI IDEALNIH PLINOV zmes je sestavljena iz dveh ali več komonent, nr. zrak, zemeljski lin, dimni lini linska zmes suha linska zmes mešanica dveh ali več idealnih linov vlažna linska zmes mešanica več

Διαβάστε περισσότερα

12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016.

12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016. 12 SKUPIN ZDK IZ FIZIKE I 6 linja 2016 Zadatak 121 U osudi - sremniku očetnog volumena nalazi se n molova dvoatomnog lina na temeraturi rema slici) Plin izobarno ugrijemo na temeraturu, adijabatski ga

Διαβάστε περισσότερα

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku.

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku. VEKTOR OENT SILE Z TČKU Vekto momenta sile, koja dejstvuje na neku tačku tela, za poizvoljno izabanu tačku pedstavlja meu obtnog dejstva sile u odnosu na tu poizvoljno izabanu tačku. Ovde je tačka momentna

Διαβάστε περισσότερα

7 SISTEMI VENTILACIJE I KLIMATIZACIJE

7 SISTEMI VENTILACIJE I KLIMATIZACIJE 7 SISTEMI VENTILACIJE I KLIMATIZACIJE Kao nosilac toplote (radni fluid) u vazdušnim sistemima javlja se vazduh. Vazduh se zagreva u grejaču ili hladi, vlaži ili suši, filtrira i, pripremljen na odgovarajući

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 7: Η χρήση των πτώσεων στον σχηματισμό προτάσεων. Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 7: Η χρήση των πτώσεων στον σχηματισμό προτάσεων. Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 7: Η χρήση των πτώσεων στον σχηματισμό προτάσεων Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Termofizika. Glava Temperatura

Termofizika. Glava Temperatura Glava 7 Termofizika Toplota je jedan od oblika energije sa čijim transferom sa tela na telo se svakodnevno srećemo. Tako nas na primer, leti Sunce zagreva tokom dana dok su vedre letnje noći često prilično

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

1.0. Osnovni pojmovi Termodinamiчki sistem "S" L

1.0. Osnovni pojmovi Termodinamiчki sistem S L "O".0. Osnoni ojmoi.. ermodinamiчki sistem m "S" L ermodinamiчki sistem (dalje sistem) je onaj deo seta koji je redmet termodinamiчkog izuчaanja. On je na sl.. oznaчen sa S. aj deo seta izdojen je od ostalog

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

2. TERMODINAMIKA 2.1. Prvi zakon termodinamike

2. TERMODINAMIKA 2.1. Prvi zakon termodinamike . ERMODINAMIKA.. rvi zakon termodinamike ermodinamika je naučna disciplina koja proučava energetske promene koje prate univerzalne procese u prirodi kao i vezu tih promena sa osobinama materije koja učestvuje

Διαβάστε περισσότερα

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: Refleksija S φ u odnosu na pravu kroz koordinatni početak Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: ( ) ( ) ( ) x cos 2φ

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

Tako se dobivaju linije kondenzacije i linije ključanja tekuće smjese

Tako se dobivaju linije kondenzacije i linije ključanja tekuće smjese DESTILCIJ Je tehnološka oeracija kojom se tekuća smjesa hlaivih komonenata isaravanjem i naknadnim ukaljivanjem ara razdvaja na relativno čiste komonente Destilacija se zasniva na različitoj hlaivosti

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

SPONTANI PROCESI II ZAKON TERMODINAMIKE

SPONTANI PROCESI II ZAKON TERMODINAMIKE SPONANI PROCESI II ZAKON ERMODINAMIKE I zakon termodinamike se bavi termodinamičkim procesom kao procesom koji je praćen ekvivalentnošću različitih oblika energije bez ikakvih ograničenja odnosno ne govori

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia. Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

METODA SEČICE I REGULA FALSI

METODA SEČICE I REGULA FALSI METODA SEČICE I REGULA FALSI Zadatak: Naći ulu fukcije f a itervalu (a,b), odoso aći za koje je f()=0. Rešeje: Prvo, tražimo iterval (a,b) a kome je fukcija eprekida, mootoa i važi: f(a)f(b)

Διαβάστε περισσότερα

SISTEMI VENTILACIJE I KLIMATIZACIJE

SISTEMI VENTILACIJE I KLIMATIZACIJE SISTEMI VENTILAIJE I KLIMATIZAIJE Kao nosilac toplote (radni fluid) u vazdušnim sistemima javlja se vazduh. Vazduh se zagreva u grejaču ili hladi, vlaži ili suši, filtrira i, pripremljen na odgovarajući

Διαβάστε περισσότερα

ΣΥΣΕΥΕΣ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ 1η Ενότητα

ΣΥΣΕΥΕΣ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ 1η Ενότητα ΣΥΣΕΥΕΣ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ 1η Ενότητα Οκτώβριος 2013 1. Εναλλάκτης σχεδιάζεται ώστε να θερμαίνει 2 kg/s νερού από τους 20 ο C στους 60 ο C. Το θερμό ρευστό είναι επίσης νερό, με θερμοκρασία εισόδου 95

Διαβάστε περισσότερα

TEHNO-EKONOMSKI I EKOLOŠKI ASPEKTI KORIŠĆENJA OSUŠENOG UGLJA KAO GORIVA NA TERMOELEKTRANAMA JP ELEKTROPRIVREDA SRBIJE

TEHNO-EKONOMSKI I EKOLOŠKI ASPEKTI KORIŠĆENJA OSUŠENOG UGLJA KAO GORIVA NA TERMOELEKTRANAMA JP ELEKTROPRIVREDA SRBIJE TEHNO-EKONOMSKI I EKOLOŠKI ASPEKTI KORIŠĆENJA OSUŠENOG UGLJA KAO GORIVA NA TERMOELEKTRANAMA JP ELEKTROPRIVREDA SRBIJE Apstrakt P. Škobalj, P. Stefanović, P. Radovanović, M.Stakić, D. Cvetinović, M. Erić,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα