Ψηφιακές Τηλεπικοινωνίες

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ψηφιακές Τηλεπικοινωνίες"

Transcript

1 Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού

2 Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση πληροφορία έχει μια πηγή; πόσο μπορώ να τη συμπιέσω; τι παραμόρφωση εισάγεται κατά τη συμπίεση; γιατί χρησιμοποιούνται κωδικοποιητές πηγής; Κωδικοποίηση καναλιού: πόσο «καλό» είναι ένα κανάλι; πόσο υποβαθμίζεται η πληροφορία που διέρχεται από αυτό; ποιος είναι ο μέγιστος ρυθμός μετάδοσης δεδομένων από ένα κανάλι; γιατί χρησιμοποιούνται κωδικοποιητές καναλιού; 2

3 Κωδικοποίηση Καναλιού Στόχος: η μετάδοση πληροφορίας μέσα από ένα κανάλι με όσο το δυνατόν μεγαλύτερο ρυθμό αλλά και αξιόπιστα Είσοδος Σήμα Κανάλι Έξοδος Ενθόρυβο Σήμα Κάθε κανάλι εισάγει θόρυβο στο μεταδιδόμενο σήμα Αποτέλεσμα: Θόρυβος η μετάδοση μπορεί να περιέχει λάθη (λίγα ή πολλά) θεμελιώδη όρια στο ρυθμό/ισχύ μετάδοσης και στην πιθανότητα σφάλματος Μπορεί να γίνει μετάδοση χωρίς λάθη όταν υπάρχει θόρυβος; 3

4 Διάκριση Καναλιών Η κατηγοριοποίηση των καναλιών είναι αντίστοιχη της κατηγοριοποίησης των πηγών Ως προς το χρόνο: συνεχούς χρόνου διακριτού χρόνου Ως προς το αλφάβητο του μεταδιδόμενου σήματος: συνεχούς αλφαβήτου (κυματομορφή) διακριτού αλφαβήτου (π.χ. bits, σύμβολα) Το κανάλι συνεχούς χρόνου μπορεί να μετατραπεί σε διακριτού: θα πρέπει όμως να είναι πεπερασμένου εύρους ζώνης και να δειγματοληπτηθεί σύμφωνα με το όριο Nyquist Εστιάζουμε σε κανάλια διακριτού χρόνου και διακριτού αλφαβήτου Σημείωση: Τα κανάλια αυτά εμπεριέχουν ως μέρη τους τα συνεχή κανάλια 4

5 Βλ. Εισαγωγή: Βασική Δομή Ψ.Τ.Σ. Μ-αδικά σύμβολα ή αναλογικό σήμα Δυαδικά σύμβολα Δυαδικά σύμβολα Αναλογικά σήματα Αναλογικά σήματα 5

6 Διακριτό Κανάλι Χωρίς Μνήμη Discrete Memoryless Channel (DMC) Είναι το απλούστερο αλλά και βασικότερο μοντέλο καναλιού X Κανάλι Y Διακριτό: διακριτού χρόνου η είσοδος και η έξοδος ανήκουν σε διακριτά αλφάβητα Χωρίς Μνήμη: κάθε έξοδος εξαρτάται μόνο από την αντίστοιχη είσοδο και όχι από παλαιότερες 6

7 Περιγραφή ενός DMC Αλφάβητο Εισόδου Αλφάβητο Εξόδου X x, x,, xj Y y, y,, yk Το πλήθος των δύο αλφαβήτων δεν είναι απαραίτητα ίσο, ενδεχομένως J>Κ ή J<K (βλέπε ασκήσεις) Για ευκολία θα θεωρήσουμε στη συνέχεια J=K Η είσοδος και η έξοδος είναι τυχαίες μεταβλητές Πιθανότητες μετάβασης p y x P Y y X x k, j k j k j Φυσική Σημασία: η πιθανότητα να λάβω στην έξοδο του καναλιού y k, αν έστειλα x j δεσμευμένη (υπό συνθήκη πιθανότητα) 7

8 Βασικές Σχέσεις 1. Πιθανότητες μετάβασης: εφόσον πρόκειται για πιθανότητες 0 p y x 1 k j JxK πίνακας πιθανοτήτων μετάβασης 2. Κατά σύμβαση (συνήθως) θεωρούμε j=k, σωστή μετάδοση συμβόλου x j j k, λανθασμένη μετάδοση συμβόλου x j 3. Άθροισμα ως προς τις εξόδους K 1 k 0 p y k x 1 j Οι δεσμευμένες πιθανότητες του αθροίσματος είναι τα στοιχεία μιας αντίστοιχης γραμμής του πίνακα μετάβασης Ερμηνεία: Αν στάλθηκε το x j, τότε η έξοδος θα είναι σίγουρα κάποιο από τα y k 8

9 Βασικές Σχέσεις (2) 4. Από κοινού πιθανότητα (κανόνας Bayes), p x y p y x p x p x y p y j k k j j j k k p(x j ): η (a-priori) πιθανότητα του συμβόλου x j, δηλαδή η πιθανότητα εμφάνισης του συμβόλου x j 5. Για τις πιθανότητες εμφάνισης των συμβόλων εξόδου ισχύει p y p x, y p x, y k 0 k J1 k J1 J1, j k k j j p x y p y x p x j0 j0 9

10 Βασικές Σχέσεις (3) 6. Πιθανότητα εσφαλμένης μετάδοσης: το σφάλμα συμβαίνει όταν j k (με p(y k x j ) ) για συγκεκριμένο x j η πιθανότητα λάθους είναι k j p y k x j Η μέση πιθανότητα λάθους είναι: η μέση τιμή της για όλα τα x j δίνεται ως J1 J1, P p x p y x p x y e j k j j k j0 k j j0 k j η πιθανότητα σωστής μετάδοσης είναι P c 1 P e 10

11 Πότε ένα κανάλι είναι «καλό»; Ερωτήματα που θέλουμε να απαντήσουμε: Πότε ένα κανάλι δεν εισάγει πολλά σφάλματα; πόσο γρήγορα μπορώ να στείλω μέσα από ένα κανάλι; Είναι δυνατόν να υπάρχει θόρυβος και παρόλα αυτά να μην έχουμε σφάλματα; Παράδειγμα: Έστω δυαδική πηγή (χωρίς μνήμη) που παράγει ισοπίθανα σύμβολα με ρυθμό 1000/sec τα οποία στη συνέχεια διέρχονται μέσα από ένα δυαδικό συμμετρικό και χωρίς μνήμη κανάλι. Η πιθανότητα σωστής μετάβασης μέσα από το κανάλι είναι Ποιος είναι ο ρυθμός μεταβίβασης πληροφορίας; 11

12 Πότε ένα κανάλι είναι «καλό»; Για να προχωρήσουμε θα πρέπει να χρησιμοποιήσουμε κατάλληλα κάποιες βασικές έννοιες που σχετίζονται με την ποσοτικοποίηση της πληροφορίας Εντροπία H(X): η αβεβαιότητα που έχουμε για την τυχαία μεταβλητή Χ στα προηγούμενα μαθήματα το Χ ήταν η πηγή εδώ, η πηγή είναι πλέον η είσοδος του καναλιού δηλαδή η πληροφορία που θέλω να μεταδώσω η Χ είναι άγνωστη στο δέκτη και έχει εντροπία: J 1 H X p xj 2 p x log j0 j 12

13 Από Κοινού Εντροπία Αν συνδυάσω δύο πηγές Χ και Υ, μπορώ να δημιουργήσω μία τρίτη Ζ=(Χ,Υ) Η εντροπία της Ζ συνδέεται με τις από κοινού πιθανότητες εμφάνισης των δύο τ.μ. Από Κοινού (Συνδυασμένη) Εντροπία,, log, H XY pxy pxy x y 2 Φυσική Σημασία: η αβεβαιότητα που έχω για το συνδυασμό των δύο τ.μ. (της από κοινού εμφάνισης τους) Παράδειγμα: Χ: ύψος βροχής τον Μάιο {x 0,x 1 }={«μικρό», «καλό»} Υ: αγροτική παραγωγή τον Ιούλιο {y 0,y 1 }={«μέτρια»,«καλή»} 13

14 Υπό Συνθήκη Εντροπία Τι γίνεται όταν γνωρίζω την τιμή της μίας εκ των δύο τ.μ.; Γνωρίζοντας το Υ, αλλάζει η αβεβαιότητα για την έκβαση του Χ Αν, π.χ., προκύψει στην έξοδο το y 1 τότε η μέση αβεβαιότητα για το Χ είναι: J 1 1 j 1 log2 j 1 H X Y y p x y p x y j0 Για κάθε τιμή y κ της τ.μ. Υ έχουμε μία αντίστοιχη μεση αβεβαιότητα για την Χ, την Η(X Y=y κ ) Η μέση τιμή των παραπάνω ποσοτήτων είναι η υπό συνθήκη εντροπία 14

15 Υπό Συνθήκη Εντροπία (2) Υπό Συνθήκη Εντροπία: K 1 H X Y H X y p y k 0 j k J1 K1 j0 k0 log j k k 2 j k, log j k 2 j k Φυσική Σημασία: Πόση είναι η αβεβαιότητα για την Χ, αν γνωρίζω την τιμή (έκβαση) της Υ. Εναλλακτικά, πόση είναι η πληροφορία που απομένει στην Χ δοθέντος ότι έχω παρατηρήσει την Υ. Ερώτηση: Αν γνωρίζω το Υ, η αβεβαιότητα για το Χ αυξάνεται, μειώνεται, ή παραμένει σταθερή; k k p x y p y p x y p x y p x y 15

16 Υπό Συνθήκη Εντροπία (3) Ιδιότητα 1: Χρησιμοποιώντας τους ορισμούς και τις προηγούμενες ιδιότητες, μπορεί να αποδειχθεί ότι H X, Y H X Y H Y Ιδιότητα 2: Αν οι πηγές είναι ανεξάρτητες, τότε H X, Y H X H Y 16

17 Αμοιβαία Πληροφορία Η αμοιβαία πληροφορία είναι ένα σημαντικό μέγεθος για την κωδικοποίηση πηγής την κωδικοποίηση καναλιού Εντροπία πηγής H(X): η πληροφορία (αβεβαιότητα) της Χ Υπό Συνθήκη Εντροπία H(X Y): η αβεβαιότητα για την Χ αν ξέρω την τιμή της Y Αμοιβαία Πληροφορία: είναι η διαφορά των δύο μεγεθών, I XY H X H XY ; Δηλαδή: η ποσότητα πληροφορίας που παρέχεται από την τυχαία μεταβλητή Υ για την Χ, ή ισοδύναμα: η ποσότητα της αβεβαιότητας που διαλύεται για την Χ όταν παρατηρώ την Υ 17

18 Αμοιβαία Πληροφορία και Κανάλι Ο δέκτης δε γνωρίζει την είσοδο του καναλιού (Χ), αλλά βλέπει την έξοδό του (Υ) Η Χ μεταφέρει ποσότητα πληροφορίας Η(Χ) Αρχικά, ο δέκτης έχει αβεβαιότητα Η(Χ) για την Χ Η Υ είναι εξαρτημένη από την είσοδο του καναλιού στην ουσία είναι μια ενθόρυβη έκδοση της Χ Η αβεβαιότητα του δέκτη μειώνεται σε Η(Χ Υ) Ο δέκτης έμαθε πληροφορία Η(Χ)-Η(Χ Υ) 18

19 Αμοιβαία Πληροφορία και Κανάλι (2) Η αμοιβαία πληροφορία είναι το ποσό της πληροφορίας που έμαθε ο δέκτης για την είσοδο του καναλιού Χ παρατηρώντας την έξοδο του καναλιού Υ Όσο μεγαλύτερη είναι η αμοιβαία πληροφορία, τόσο καλύτερο είναι το κανάλι τόσο περισσότερα μας λέει η έξοδος Υ για την είσοδο Χ I X Y H X H X Y ; J1 K1 p( y / ) ( ; ), k xj I X Y p xj yk log2 j0 k0 p( yk ) 19

20 Ιδιότητες Αμοιβαίας Πληροφορίας 1. Μη αρνητική: Ι(X;Y) 0 πότε ισχύει η ισότητα; 2. Συμμετρία: I X; Y I Y; X 3. I X; Y H Y H Y / X 4. I X; Y H X H Y H X, Y 5. ; min, I X Y H X H Y 20

21 Ιδιότητες Αμοιβαίας Πληροφορίας (ΟΧΙ) 6. Υπό συνθήκη αμοιβαία πληροφορία ; I X; Y z p z I X Y Z 7. Κανόνας αλυσίδας για την αμοιβαία πληροφορία z HX Y, Z H X Z, ; ; ; I X Y Z I X Z I Y Z X 8. Γενίκευση κανόνα αλυσίδας 1, 2,, n; 1; 2; 1 I X X X Y I X Y I X Y X I Xn; Y X, X,, X 1 2 n 1 21

22 Σχέση Ποσοτήτων Εντροπία Υπό Συνθήκη Εντροπία Αμοιβαία Πληροφορία Ερώτηση: Ποια ποσότητα είναι η ένωση όλων των γραμμοσκιασμένων περιοχών; Απάντηση: Η(Χ,Υ) 22

23 Χωρητικότητα Καναλιού C Χωρητικότητα Καναλιού (Channel Capacity): ο μέγιστος ρυθμός μετάδοσης από ένα κανάλι εκφράζεται ανά χρήση του καναλιού (bits/channel use) (channel use º symbol slot, χωρίς κωδικ. καναλιού) Χωρητικότητα Καναλιού και Αμοιβαία Πληροφορία Ι(Χ;Υ) είναι το ποσό της πληροφορίας που έμαθε ο δέκτης για την είσοδο καναλιού Χ παρατηρώντας την έξοδο Υ Η χωρητικότητα C είναι η μέγιστη πληροφορία που μπορεί να περάσει σωστά από το κανάλι Διαφορές: η χωρητικότητα είναι ένα μέγεθος που χαρακτηρίζει το κανάλι αποκλειστικά η αμοιβαία πληροφορία εξαρτάται από» τις πιθανότητες μετάβασης p(y k x j ) (κανάλι)» τις πιθανότητες εμφάνισης p(x j ) (πηγή) 23

24 Χωρητικότητα Καναλιού (2) Παράδειγμα 1: δύο πηγές μεταδίδονται πάνω από το ίδιο κανάλι και παρατηρούνται οι αντίστοιχες έξοδοι Η (Χ 1 )=1, Η (Χ 1 Υ 1 )=0.8, Ι (Χ 1 ;Υ 1 )=0.2 Η (Χ 2 )=1.5, Η (Χ 2 Υ 2 )=0.3, Ι (Χ 2 ;Υ 2 )=1.2 ποια είναι η χωρητικότητα του καναλιού; σίγουρα είναι μεγαλύτερη από 1.2 (ή ίση) Παράδειγμα 2: μία πηγή μεταδίδεται μέσα από δύο κανάλια Η(Χ)=1, Η 1 (Χ Υ 1 )=0.8, Ι 1 (Χ;Υ 1 )=0.2 Η 2 (Χ Υ 2 )=0.5, Ι 2 (Χ;Υ 2 )=0.5 στην πηγή αυτή το δεύτερο κανάλι «φέρθηκε» καλύτερα ίσως η πηγή αυτή ήταν καλύτερα προσαρμοσμένη να περάσει πάνω από το δεύτερο κανάλι αυτό δεν σημαίνει ότι το πρώτο κανάλι είναι πάντοτε χειρότερο 24

25 Ορισμός Χωρητικότητας Προκειμένου να μην εξαρτάται η χωρητικότητα από την εκάστοτε πηγή, ορίζουμε Χωρητικότητα ενός DMC είναι η μέγιστη τιμή της αμοιβαίας πληροφορίας Ι(Χ;Υ) ως προς όλες τις δυνατές κατανομές του αλφαβήτου εισόδου Χ C max I X; Y px j Η C είναι συνάρτηση πλέον μόνο των πιθανοτήτων μετάβασης του καναλιού και όχι και των a-priori πιθανοτήτων Σημείωση: ανατρέξτε στον ορισμό της συνάρτησης ρυθμούπαραμόρφωσης και συγκρίνετέ τον με αυτόν της χωρητικότητας 25

26 Υπολογισμός Χωρητικότητας Για να υπολογίσουμε τη χωρητικότητα ενός καναλιού: μεγιστοποιούμε την έκφραση που δίνει την I(X;Υ) ως προς τα p(x j ) λαμβάνοντας υπόψη ότι px j px 0 1 J 1 j0 j 1 Πρόκειται για ένα πρόβλημα μεγιστοποίησης υπό συνθήκες (constrained maximization) Γενικά δεν είναι εύκολη η λύση του Στη συνέχεια θα μελετήσουμε την απλή περίπτωση του δυαδικού συμμετρικού καναλιού 26

27 Δυαδικό Συμμετρικό Κανάλι Binary Symmetric Channel (BSC) Το απλούστερο και βασικότερο μοντέλο καναλιού p x 0 y 0 1-p 1-p x 1 p y 1 Δυαδικό: δυαδικά αλφάβητα εισόδου & εξόδου {0,1} Συμμετρικό: το κανάλι αντιμετωπίζει ισότιμα τα 0 και 1 Χωρίς μνήμη πιθανότητες εμφάνισης {p(x 0 ), 1-p(x o )} πιθανότητα σωστής μετάδοσης p 27

28 Χωρητικότητα BSC Αποτέλεσμα 1: η αμοιβαία πληροφορία μεγιστοποιείται για ισοπίθανη είσοδο p(x 0 )=0.5 δικαιολογείται διαισθητικά λόγω της δίκαιης συμπεριφοράς του καναλιού (συμμετρία) θυμηθείτε ότι η ομοιόμορφη πηγή έχει μέγιστη εντροπία Αποτέλεσμα 2: η χωρητικότητα του BSC δίνεται ως C p 1 H p, H p plog p 1 p log 1 p b b 2 2 H b (p) η συνάρτηση δυαδικής εντροπίας 28

29 Χωρητικότητα BSC (2) H b (p) Σχολιάστε: C(0) C(0.5) συμμετρία C(p) p 29

30 Θεώρημα Χωρητικότητας Καναλιού ή «Δεύτερο Θεώρημα του Shannon» Χρησιμότητα: ποιος είναι ο μέγιστος ρυθμός αξιόπιστης μετάδοσης μέσα από ένα ενθόρυβο κανάλι; Θεώρημα: Έστω κανάλι με χωρητικότητα C, μέσα από το οποίο επιθυμούμε να μεταδώσουμε με ρυθμό R Αν R C, τότε για οσοδήποτε μικρό δ>0 υπάρχει κώδικας (κωδικοποιητής καναλιού) που να πετυχαίνει πιθανότητα σφάλματος μικρότερη του δ Αν R>C, τότε όσο πολύπλοκος κι αν είναι ο κωδικοποιητής καναλιού, η πιθανότητα σφάλματος θα είναι μακριά από το 0 Για να προσεγγίσουμε το όριο του C, θα πρέπει να χρησιμοποιηθούν πολύπλοκοι κώδικες Το θεώρημα δεν προτείνει μεθοδολογία κατασκευής κωδικοποιητή καναλιού 30

31 Αναλογικό Κανάλι Τα παραπάνω ισχύουν για την περίπτωση καναλιών διακριτού χρόνου και διακριτού αλφαβήτου Ας δούμε τι γίνεται στην περίπτωση του αναλογικού καναλιού σύμβολα Φίλτρο πομπού + Διαμορφωτής σήμα Κανάλι+ θόρυβος σήμα Αποδιαμορφωτής + Φίλτρο δέκτη + φωρατής σύμβολα Αναλογικό κανάλι Διακριτό κανάλι 31

32 Αναλογικό Κανάλι Το αναλογικό τμήμα του όλου καναλιού Το συνολικό κανάλι είδαμε ότι περιγράφεται ως διακριτό κανάλι Τα προηγούμενα αποτελέσματα γενικεύονται στα κανάλια συνεχούς αλφαβήτου Επομένως αρκεί να μελετήσουμε την περίπτωση των καναλιών συνεχούς αλφαβήτου Άλλωστε ένα αναλογικό κανάλι μπορεί να δειγματοληπτηθεί κατάλληλα (η είσοδος και η έξοδός του), και να μετατραπεί σε διακριτού χρόνου 32

33 Διαφορική Εντροπία Έστω πηγή διακριτού χρόνου αλλά συνεχούς αλφάβητου Έξοδος πηγής: πραγματικός αριθμός άπειρα bits για αναπαράσταση Δε μπορεί να οριστεί η εντροπία Ορίζεται η λεγόμενη διαφορική εντροπία ως hx f X xlog 2 f X xdx f X (x): η συνάρτηση πυκνότητας πιθανότητας της Χ Η h(x) δεν έχει το διαισθητικό νόημα της εντροπίας μπορεί να πάρει και αρνητικές τιμές 33

34 Διαφορική Εντροπία Ομοιόμορφης Χ ομοιόμορφα κατανεμημένο στο συνεχές διάστημα [0,α] 1 f X x, 0 xa a Διαφορική Εντροπία: a 1 1 hx log2 dxlog2a a a 0 Για α<1, μπορεί να πάρει και αρνητικές τιμές 34

35 Διαφορική Εντροπία Gaussian Χ Gaussian κατανεμημένη Ν(0,σ 2 ) Διαφορική Εντροπία: h X x 2 1 f X x e e Παρατήρηση: Όπως η ομοιόμορφη κατανομή μεγιστοποιεί την εντροπία για τις πηγές διακριτού αλφαβήτου Η Gaussian κατανομή μεγιστοποιεί τη διαφορική εντροπία για τις πηγές συνεχούς αλφαβήτου log2 2e ln 2 nats bits 2 2 log e 2 35

36 Κανάλια με Συνεχές Αλφάβητο Στις πηγές συνεχούς αλφαβήτου ορίστηκε η διαφορική εντροπία Αντίστοιχα για κανάλια συνεχούς αλφαβήτου ορίζονται: Από Κοινού Διαφορική Εντροπία h X, Y f x, y log f x, y dxdy XY, 2 XY, Υπό Συνθήκη Διαφορική Εντροπία h X Y h X, Y h Y Αμοιβαία Πληροφορία I X; Y h X h X Y 36

37 Κανάλι AWGN Από τα κανάλια συνεχούς αλφαβήτου, το απλούστερο και βασικότερο είναι το κανάλι AWGN Κανάλι Προσθετικού Λευκού Gaussian Θορύβου (Additive White Gaussian Noise (AWGN) Channel) 37

38 Μοντέλο AWGN 1. Τα αλφάβητα εισόδου Χ και εξόδου Υ είναι συνεχή 2. Στην είσοδο τίθεται περιορισμός μέσης ισχύος 1 n n i1 x 2 i P όπου n είναι το μέγεθος του μπλοκ κωδικοποίησης 3. Προστίθεται θόρυβος λευκός (διαδοχικά δείγματα θορύβου είναι ανεξάρτητα) ακολουθεί Gaussian κατανομή N(0,N) 38

39 Χωρητικότητα Καναλιού AWGN Θεώρημα: Η χωρητικότητα ενός καναλιού AWGN με εύρος ζώνης W είναι log P C W 2 1 N Πόρισμα: Η αμοιβαία πληροφορία ενός καναλιού AWGN μεγιστοποιείται όταν η είσοδος είναι επίσης Gaussian, Χ~N(0,P) Το παραπάνω θεώρημα είναι υποπερίπτωση του θεωρήματος χωρητικότητας του Shannon Είναι γνωστό ως Θεώρημα Shannon-Hartley Είναι το άνω όριο ρυθμού μετάδοσης για οποιοδήποτε τηλεπικοινωνιακό κανάλι. Δεν είναι εύκολο να επιτευχθεί. 39

40 Shannon-Hartley + Ισχύς Θορύβου Αντί της μέσης ισχύος θορύβου Ν, μπορεί να χρησιμοποιηθεί η πυκνότητα φάσματος ισχύος, Ν 0 /2 N 0 /2 P(f) 0 -W W f Επειδή το εύρος ζώνης κυμαίνεται και σε αρνητικές τιμές, N 2 0 N 2W N0W Άλλη διατύπωση του Shannon-Hartley C W log 2 1 P NW 0 40

41 Κωδικοποιητής Καναλιού Είδαμε ότι κατά τη μετάδοση πληροφορίας, ο ρυθμός μετάδοσης δεν εξαρτάται μόνο από το ίδιο το κανάλι (χωρητικότητα καναλιού), αλλά και από την πηγή που μεταδίδεται Για ένα συγκεκριμένο κανάλι, μπορούμε να βρούμε εκείνη την κατανομή εισόδου που να μεγιστοποιεί την αμοιβαία πληροφορία Ωστόσο, το σήμα που θέλουμε να μεταδώσουμε έχει προκαθορισμένα στατιστικά χαρακτηριστικά Ο κωδικοποιητής καναλιού αναλαμβάνει να μετατρέψει το σήμα προς μετάδοση σε μια τυχαία μεταβλητή με στατιστικά «φιλικότερα» και προσαρμοσμένα στο συγκεκριμένο κανάλι 41

42 Συνέπειες του Θεωρήματος S-H 1. Μας δίνει ένα ανώτατο όριο αξιόπιστης μετάδοσης δεδομένων μέσα από AWGN κανάλι. 2. Προσφέρει τη δυνατότητα για ανταλλαγή (trade-off) σήματος-προς-θόρυβο (SNR) με εύρος ζώνης 3. «Συμπίεση» εύρους ζώνης μεταδιδόμενου σήματος 42

43 Όριο Shannon Ποια είναι η χωρητικότητα ενός αθόρυβου καναλιού ; Άπειρη. Προκύπτει εύκολα από τον τύπο Shannon-Hartley Όταν υπάρχει θόρυβος και η ισχύς του μεταδιδόμενου σήματος είναι σταθερή τότε η χωρητικότητα του καναλιού τείνει σε ένα πεπερασμένο ανώτατο όριο καθώς το εύρος ζώνης τείνει στο άπειρο. NW 0 P P P NW 0 P P P CWlog 2 1 log 2 1 log 2 1 NW 0 N0 P NW 0 N0 NW 0 1 lim 1 x x x e Επειδή όμως καταλήγουμε ότι 0 P P limw C log2 e1.44 N0 N0 43

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Κωδικοποίηση Πηγής Ψηφιακή Μετάδοση Υπάρχουν ιδιαίτερα εξελιγμένες τεχνικές αναλογικής μετάδοσης (που ακόμη χρησιμοποιούνται σε ορισμένες εφαρμογές) Επίσης,

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πληροφορία Μέτρο πληροφορίας Μέση πληροφορία ή Εντροπία Από κοινού εντροπία

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία πληροφορίας

Εισαγωγή στη θεωρία πληροφορίας Θεωρία πληροφορίας Εισαγωγή στη θεωρία πληροφορίας Τηλεπικοινωνιακά συστήματα Όλα τα τηλεπικοινωνιακά συστήματα σχεδιάζονται για να μεταφέρουν πληροφορία Σε κάθε τηλεπικοινωνιακό σύστημα υπάρχει μια πηγή

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση

Ψηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση Ψηφιακές Τηλεπικοινωνίες Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση Σύνδεση με τα Προηγούμενα Σχεδιάστηκε ο βέλτιστος δέκτης για κανάλι AWGN Επειδή πάντοτε υπάρχει ο θόρυβος, ακόμη κι ο βέλτιστος δέκτης

Διαβάστε περισσότερα

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1 Θεωρία πληροφοριών Εισαγωγή Αµοιβαία πληροφορία Εσωτερική πληροφορία Υπό συνθήκη πληροφορία Παραδείγµατα πληροφορίας Μέση πληροφορία και εντροπία Παραδείγµατα εντροπίας Εφαρµογές Τεχνολογία Πολυµέσων 07-

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ 5. Εισαγωγή Ο σκοπός κάθε συστήματος τηλεπικοινωνιών είναι η μεταφορά πληροφορίας από ένα σημείο (πηγή) σ ένα άλλο (δέκτης). Συνεπώς, κάθε μελέτη ενός τέτοιου συστήματος

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 1: Χωρητικότητα Καναλιών Το θεώρημα Shannon - Hartley Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Δυαδική σηματοδοσία 2. Μορφές δυαδικής σηματοδοσίας 3.

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman

Διαβάστε περισσότερα

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 13 Δ. Τουμπακάρης 30 Μαΐου 2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια Παράδοση:

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από:

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από: Δίαυλος Πληροφορίας Η λειτουργία του περιγράφεται από: Πίνακας Διαύλου (μαθηματική περιγραφή) Διάγραμμα Διαύλου (παραστατικός τρόπος περιγραφής της λειτουργίας) Πίνακας Διαύλου Χρησιμοποιούμε τις υπό συνθήκη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 (2012-13) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #4. Έκδοση v2 με διόρθωση τυπογραφικού λάθους στο ερώτημα 6.3 Στόχος: Βασικό στόχο της 4 ης εργασίας αποτελεί η εξοικείωση με τα μέτρα ποσότητας πληροφορίας τυχαίων

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου

Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Σήματα και πληροφορία Βασικές έννοιες 2 Αναλογικά και Ψηφιακά Σήματα Στις τηλεπικοινωνίες συνήθως χρησιμοποιούμε περιοδικά αναλογικά σήματα και

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 5 : Θόρυβος Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Είδη θορύβου Περιγραφή θορύβου Θεώρημα Shannon Hartley Απόδοση ισχύος και εύρους

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση

Διαβάστε περισσότερα

Θεώρημα κωδικοποίησης πηγής

Θεώρημα κωδικοποίησης πηγής Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Δισδιάστατες Κυματομορφές Σήματος

Ψηφιακές Τηλεπικοινωνίες. Δισδιάστατες Κυματομορφές Σήματος Ψηφιακές Τηλεπικοινωνίες Δισδιάστατες Κυματομορφές Σήματος Εισαγωγή Στα προηγούμενα μελετήσαμε τη διαμόρφωση PAM δυαδικό και Μ-αδικό, βασικής ζώνης και ζωνοπερατό Σε κάθε περίπτωση προέκυπταν μονοδιάστατες

Διαβάστε περισσότερα

Σεραφείµ Καραµπογιάς. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.3-1

Σεραφείµ Καραµπογιάς. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.3-1 Ο αλγόριθµος Lempel-iv Ο αλγόριθµος Lempel-iv ανήκει στην κατηγορία των καθολικών universal αλγορίθµων κωδικοποίησης πηγής δηλαδή αλγορίθµων που είναι ανεξάρτητοι από τη στατιστική της πηγής. Ο αλγόριθµος

Διαβάστε περισσότερα

Δυαδικά Αντίποδα Σήματα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Πιθανότητα Σφάλματος σε AWGN Κανάλι. r s n E n. P r s P r s.

Δυαδικά Αντίποδα Σήματα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Πιθανότητα Σφάλματος σε AWGN Κανάλι. r s n E n. P r s P r s. Προχωρημένα Θέματα Τηλεπικοινωνιών Πιθανότητα Σφάλματος σε AWGN Κανάλι Δυαδικά Αντίποδα Σήματα Δυαδικά Αντίποδα Σήματα Βασικής Ζώνης) : s (t)=-s (t) Παράδειγμα: Δυαδικό PA s (t)=g T (t) (παλμός με ενέργεια

Διαβάστε περισσότερα

ιαφορική εντροπία Σεραφείµ Καραµπογιάς

ιαφορική εντροπία Σεραφείµ Καραµπογιάς ιαφορική εντροπία Σεραφείµ Καραµπογιάς Για πηγές διακριτού χρόνου µε συνεχές αλφάβητο, των οποίων οι έξοδοι είναι πραγµατικοί αριθµοί, ορίζεται µια άλλη ποσότητα που µοιάζει µε την εντροπία και καλείται

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης Δίαυλος Πληροφορίας Η λειτουργία του διαύλου πληροφορίας περιγράφεται από: Τον πίνακα διαύλου μαθηματική περιγραφή. Το διάγραμμα διάυλου παραστατικός τρόπος περιγραφής. Πίνακας Διαύλου Κατασκευάζεται με

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Αναλογικά Ψηφιακά Σήματα Αναλογικό Σήμα x t, t [t min, t max ], x [x min, x max ] Δειγματοληψία t n, x t x n, n = 1,, N Κβάντιση x n x(n) 3 Αλφάβητο

Διαβάστε περισσότερα

Θεωρία της Πληροφορίας 3 ο Εξάμηνο

Θεωρία της Πληροφορίας 3 ο Εξάμηνο Σμήμα Πληροφορικής & Επικοινωνιών Θεωρία της Πληροφορίας 3 ο Εξάμηνο Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών 1 Διεξαγωγή και Εξέταση του Μαθήματος Μάθημα Πώς? 13 Διαλέξεις.

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 5: Βασική Θεωρία Πληροφορίας Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Σύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN.

Σύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN. Προχωρημένα Θέματα Τηλεπικοινωνιών Βέλτιστος Δέκτης για Ψηφιακά Διαμορφωμένα Σήματα παρουσία AWGN Σύνδεση με τα Προηγούμενα Στις «Ψηφιακές Τηλεπικοινωνίες», αναφερθήκαμε στο βέλτιστο δέκτη ψηφιακά διαμορφωμένων

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Κωδικοποίηση Αναλογικής Πηγής: Κβάντιση Εισαγωγή Αναλογική πηγή: μετά από δειγματοληψία γίνεται διακριτού χρόνου άπειρος αριθμός bits/έξοδο για τέλεια αναπαράσταση Θεωρία Ρυθμού-Παραμόρφωσης

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

22Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Τελική Εξέταση

22Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Τελική Εξέταση 22A004 (eclass EE278) Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 11 Δ. Τουμπακάρης 6 Ιουνίου 2013 22Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Τελική Εξέταση Διάρκεια Εξέτασης: 3 ώρες. 4 ασκήσεις

Διαβάστε περισσότερα

2 η Εργαστηριακή Άσκηση

2 η Εργαστηριακή Άσκηση Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ 2 η Εργαστηριακή Άσκηση Σύγκριση Ομόδυνων Ζωνοπερατών Συστημάτων 8-PSK και 8-FSK Στην άσκηση αυτή καλείστε

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»

Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Άσκηση 1 Πρόκειται να µεταδώσουµε δυαδικά δεδοµένα σε RF κανάλι µε. Αν ο θόρυβος του καναλιού είναι Gaussian - λευκός µε φασµατική πυκνότητα W, να βρεθεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst233

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 8 ο Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Βασική Θεωρία Σε ένα σύστημα μετάδοσης

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 10 : Κωδικοποίηση καναλιού Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Απόσταση και βάρος Hamming Τεχνικές και κώδικες ανίχνευσης &

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Γεωμετρική Αναπαράσταση Κυματομορφών Σήματος

Ψηφιακές Τηλεπικοινωνίες. Γεωμετρική Αναπαράσταση Κυματομορφών Σήματος Ψηφιακές Τηλεπικοινωνίες Γεωμετρική Αναπαράσταση Κυματομορφών Σήματος Ψηφιακό Τηλ/κό Σύστημα: Τι είδαμε ως τώρα; ΠΗΓΗ ΚΩΔΙΚΟΠΟΙΗΤΗΣ ΠΗΓΗΣ ΚΩΔΙΚΟΠΟΙΗΤΗΣ ΚΑΝΑΛΙΟΥ ΦΙΛΤΡΟ ΠΟΜΠΟΥ ΑΠΟΔΙΑΜΟΡΦΩΤΗΣ ΚΑΝΑΛΙ ΔΙΑΜΟΡΦΩΤΗΣ

Διαβάστε περισσότερα

( ) log 2 = E. Σεραφείµ Καραµπογιάς

( ) log 2 = E. Σεραφείµ Καραµπογιάς Παρατηρούµε ότι ο ορισµός της Η βασίζεται στη χρονική µέση τιµή. Για να ισχύει ο ορισµός αυτός και για µέση τιµή συνόλου πρέπει η πηγή να είναι εργοδική, δηλαδή H ( X) ( ) = E log 2 p k Η εντροπία µιας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 8 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Παλμοκωδική διαμόρφωση (PCM) I + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ + Περιεχόμενα

Διαβάστε περισσότερα

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Λυμένες ασκήσεις σε Κανάλια

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Λυμένες ασκήσεις σε Κανάλια EE78 (Α4) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 4 Δ. Τουμπακάρης 5 Ιουνίου 5 EE78 (Α4) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Λυμένες ασκήσεις σε Κανάλια. *Τα κανάλια με μνήμη έχουν μεγαλύτερη

Διαβάστε περισσότερα

1 Βασικές Έννοιες Θεωρίας Πληροφορίας

1 Βασικές Έννοιες Θεωρίας Πληροφορίας 1 Βασικές Έννοιες Θεωρίας Πληροφορίας Εντροπία τυχαίων μεταβλητών X, Y : H(X) = E [log Pr(x)] (1) H(X, Y ) = E [log Pr(x, y)] (2) H(X Y ) = E [log Pr(x y)] (3) Ιδιότητες Εντροπίας: Νόμος Bayes: Pr(y x)

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 5: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Πλεονεκτήματα-Μειονεκτήματα ψηφιακών επικοινωνιών, Κριτήρια Αξιολόγησης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s5 e-mail:

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Τυχαία Σήματα Γενίκευση τυχαίων διανυσμάτων Άπειρο σύνολο πιθανά αριθμήσιμο από τυχαίες μεταβλητές Παραδείγματα τυχαίων σημάτων: Τηλεπικοινωνίες: Σήμα πληροφορίας

Διαβάστε περισσότερα

Αναλογικές και Ψηφιακές Επικοινωνίες

Αναλογικές και Ψηφιακές Επικοινωνίες Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα : Βέλτιστος δέκτης για ψηφιακά διαμορφωμένα σήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Ενότητα: Ασκήσεις Αυτοαξιολόγησης Καθηγητής Κώστας Μπερμπερίδης Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Τμήμα Μηχανικών Η/Υ και Πληροφορικής Περιεχόμενα Σκοπός Ενότητας

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 8 ο : Προσαρμοσμένα Φίλτρα Βασική

Διαβάστε περισσότερα

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Ενδεικτικές Λύσεις

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Ενδεικτικές Λύσεις EE78 (Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 15 Δ Τουμπακάρης 3 Ιουνίου 015 EE78 (Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Ενδεικτικές Λύσεις 1 Υποβέλτιστοι κώδικες

Διαβάστε περισσότερα

ΦΡΟΝ ΑΣΚΗΣΕΙΣ-2 ΕΙΣΑΓ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΦΡΟΝ ΑΣΚΗΣΕΙΣ-2 ΕΙΣΑΓ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Πρόβλημα 24 a. Να υπολογίσετε το δείκτη d 2 min/eb για ένα 16-QAM. b. Να υπολογίσετε το [(d 2 min/eb)16qam/(d 2 min/eb)qpsk]db. c. Αν θεωρήσουμε ότι το μέγεθος των αστερισμών του Ερωτήματος b) έχουν επιλεγεί

Διαβάστε περισσότερα

Επεξεργασία Στοχαστικών Σημάτων

Επεξεργασία Στοχαστικών Σημάτων Επεξεργασία Στοχαστικών Σημάτων Ψηφιακή Μετάδοση Αναλογικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Μετάδοση Αναλογικών Σημάτων Τα σύγχρονα συστήματα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 5 ο : Προσαρμοσμένα Φίλτρα Βασική

Διαβάστε περισσότερα

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3)

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3) ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 19 Φεβρουαρίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα

Διαβάστε περισσότερα

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission Ψηφιακή μετάδοση στη βασική ζώνη Baseband digital transmission Ψηφιακά σήματα Ένα ψηφιακό σήμα δεν είναι τίποτα άλλο από μια διατεταγμένη ακολουθία συμβόλων Η πηγή πληροφορίας παράγει σύμβολα από ένα αλφάβητο

Διαβάστε περισσότερα

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission Ψηφιακή μετάδοση στη βασική ζώνη Baseband digital transmission Ψηφιακά σήματα Το ψηφιακό σήμα δεν είναι τίποτε άλλο από μια διατεταγμένη σειρά συμβόλων παραγόμενη από μια διακριτή πηγή πληροφορίας Η πηγή

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 3: Σύγκριση ψηφιακών Συστημάτων Σαγκριώτης Εμμανουήλ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας 1. Ανάδειξη τεχνικών για τη σύγκριση των

Διαβάστε περισσότερα

Θόρυβος και λάθη στη μετάδοση PCM

Θόρυβος και λάθη στη μετάδοση PCM Θόρυβος και λάθη στη μετάδοση PCM Πότε συμβαίνουν λάθη Για μονοπολική (on-off) σηματοδότηση το σήμα στην έξοδο είναι, όπου α k =0 όταν y( kts) ak n( kts) μεταδίδεται το bit 0 και α k =Α όταν μεταδίδεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 1 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst233

Διαβάστε περισσότερα

Ψηφιακές Επικοινωνίες

Ψηφιακές Επικοινωνίες Ψηφιακές Επικοινωνίες Ενότητα 2: Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εισαγωγή (1) Οι Ψηφιακές Επικοινωνίες (Digital Communications) καλύπτουν σήμερα το

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 10: Ψηφιακή Μετάδοση Βασικής Ζώνης Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση των πινάκων αναζήτησης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 6 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 15 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

Θεωρία της Πληροφορίας 3 ο Εξάμηνο

Θεωρία της Πληροφορίας 3 ο Εξάμηνο Τμήμα Πληροφορικής & Επικοινωνιών Θεωρία της Πληροφορίας 3 ο Εξάμηνο Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών 1 Διεξαγωγή και Εξέταση του Μαθήματος Μάθημα Κάθε πότε?

Διαβάστε περισσότερα

ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη

ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 15 Μαρτίου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η

Διαβάστε περισσότερα

Απαντήσεις σε απορίες

Απαντήσεις σε απορίες Ερώτηση Η µέση ποσότητα πληροφορίας κατά Shannon είναι Η(Χ)=-Σp(xi)logp(xi)...σελ 28 Στο παραδειγµα.3 στη σελιδα 29 στο τέλος δεν καταλαβαίνω πως γίνεται η εφαρµογή του παραπάνω τύπου ηλαδη δεν βλεπω συντελεστη

Διαβάστε περισσότερα

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΑΝΑΛΟΓΙΚΑ - ΨΗΦΙΑΚΑ ΣΗΜΑΤΑ & ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Πληροφορία Επικοινωνία συντελείται με τη μεταβίβαση μηνυμάτων από ένα πομπό σε ένα δέκτη. Μήνυμα

Διαβάστε περισσότερα

ΕΑΠ/ΠΛΗ22/ΑΘΗ.3. 4 η ΟΣΣ

ΕΑΠ/ΠΛΗ22/ΑΘΗ.3. 4 η ΟΣΣ ΕΑΠ/ΠΛΗ22/ΑΘΗ.3 4 η ΟΣΣ 19.03.2017 Σχόλια για τη ΓΕ3 & Συμπληρωματικές Διαφάνειες στα Κανάλια Επικοινωνίας και τους Κώδικες Διόρθωσης Σφαλμάτων Νίκος Δημητρίου ΕΑΠ / ΠΛΗ22 /ΑΘΗ.3 / 4η ΟΣΣ / 19.03.2017

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣΟΡ Κεφάλαιο 1 : Εισαγωγή στη Θεωρία ωία Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Έννοια της πληροφορίας Άλλες βασικές έννοιες Στόχος

Διαβάστε περισσότερα

Κεφάλαιο 2 Πληροφορία και εντροπία

Κεφάλαιο 2 Πληροφορία και εντροπία Κεφάλαιο 2 Πληροφορία και εντροπία Άσκηση. Έστω αλφάβητο Α={0,} και δύο πηγές p και q. Έστω οτι p(0)=-r, p()=r, q(0)=-s και q()=s. Να υπολογιστούν οι σχετικές εντροπίες Η(Α,p/q) και Η(Α,q/p). Να γίνει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 5.1: Εισαγωγή 5.2: Πιθανότητες 5.3: Τυχαίες Μεταβλητές καθ. Βασίλης Μάγκλαρης

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 3: Ο Θόρυβος στα Τηλεπικοινωνιακά Συστήματα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Εισαγωγή Τύποι Θορύβου Θερμικός θόρυβος Θόρυβος βολής Θόρυβος περιβάλλοντος

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Αναλογικά και ψηφιακά συστήματα Μετατροπή

Διαβάστε περισσότερα

8ο Φροντιστηριο ΗΥ217

8ο Φροντιστηριο ΗΥ217 8ο Φροντιστηριο ΗΥ217 Επιµέλεια : Γ. Καφεντζής 10 Ιανουαρίου 2014 Ασκηση 0.1 Εστω ότι η τ.µ. X ακολουθεί Γκαουσιανή κατανοµή µε µέση τιµή 10 και διασπορά σ 2 = 4, δηλαδή X N( 10, 4). Να υπολογίσετε τις

Διαβάστε περισσότερα

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 17 Μαΐου 2011 (2η έκδοση, 21/5/2011) ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ` Εφαρμογές της Θεωρίας Πληροφορίας στην ασφάλεια δικτύων ` ΦΟΙΤΗΤΡΙΑ: Καμπανά Νεκταρία ΜΕ/08051

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ` Εφαρμογές της Θεωρίας Πληροφορίας στην ασφάλεια δικτύων ` ΦΟΙΤΗΤΡΙΑ: Καμπανά Νεκταρία ΜΕ/08051 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΔΙΔΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ (ΠΜΣ) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ` Εφαρμογές της Θεωρίας Πληροφορίας στην ασφάλεια δικτύων ` ΦΟΙΤΗΤΡΙΑ: Καμπανά Νεκταρία ΜΕ/0805 ΕΠΙΒΛΕΠΩΝ

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 10: Παλμοκωδική Διαμόρφωση, Διαμόρφωση Δέλτα και Πολύπλεξη Διαίρεσης Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Παλμοκωδική Διαμόρφωση (PCM) Παλμοκωδική Διαμόρφωση

Διαβάστε περισσότερα

Δεύτερη Σειρά Ασκήσεων

Δεύτερη Σειρά Ασκήσεων Δεύτερη Σειρά Ασκήσεων ΑΣΚΗΣΗ 1 Από ένα αθόρυβο κανάλι 4 khz παίρνουμε δείγματα κάθε 1 msec. - Ποιος είναι ο μέγιστος ρυθμός μετάδοσης δεδομένων; - Πώς μεταβάλλεται ο μέγιστος ρυθμός μετάδοσης δεδομένων

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 9 ο : Διαμόρφωση BPSK & QPSK Βασική Θεωρία Εισαγωγή Κατά την μετάδοση ψηφιακών δεδομένων

Διαβάστε περισσότερα

ΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ

ΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ ΕΙΣ. ΣΥΣΤ. ΕΠΙΚΟΙΝΩΝΙΩΝ 011-1 16/1/011 9:45:1 µµ ΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ ΑΠΑΙΤΗΣΕΙΣ ΣΕ ΕΥΡΟΣ ΖΩΝΗΣ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΙΑΒΙΒΑΣΗΣ ΙΑΚΡΙΤΩΝ Ε ΟΜΕΝΩΝ Η ΣΧΕΣΗ ΜΕΤΑΞΥ ΕΥΡΟΥΣ

Διαβάστε περισσότερα

Κινητά Δίκτυα Επικοινωνιών

Κινητά Δίκτυα Επικοινωνιών Κινητά Δίκτυα Επικοινωνιών Ενότητα 8: Πιθανότητα Σφάλματος σε AWGN Κανάλι Καθ. Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Η εξοικείωση του φοιτητή με τεχνικές

Διαβάστε περισσότερα

Μάθημα Επισκόπηση των Τηλεπικοινωνιών

Μάθημα Επισκόπηση των Τηλεπικοινωνιών Μάθημα Επισκόπηση των Τηλεπικοινωνιών Κωδικοποίηση Πηγής & Καναλιού Μάθημα 8 ο 9 ο ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τομέας Επικοινωνιών και Επεξεργασίας Σήματος Τμήμα Πληροφορικής & Τηλεπικοινωνιών

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 4: Ψηφιακή Διαμόρφωση Φάσης Phase Shift Keying (PSK) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Μαθηματική περιγραφή δυαδικής PSK (BPSK) Φάσμα σήματος διαμορφωμένου

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 9: Παλμοκωδική Διαμόρφωση (PCM) Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της μεθόδου παλμοκωδικής

Διαβάστε περισσότερα

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2) Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης Μαρκάκης Ευάγγελος marias@aueb.gr markakis@gmail.com Περίληψη Shannon theory Εντροπία Μελέτη κρυπτοσυστηµάτων

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

Μοντέλο Επικοινωνίας Δεδομένων. Επικοινωνίες Δεδομένων Μάθημα 6 ο

Μοντέλο Επικοινωνίας Δεδομένων. Επικοινωνίες Δεδομένων Μάθημα 6 ο Μοντέλο Επικοινωνίας Δεδομένων Επικοινωνίες Δεδομένων Μάθημα 6 ο Εισαγωγή Με τη βοήθεια επικοινωνιακού σήματος, κάθε μορφή πληροφορίας (κείμενο, μορφή, εικόνα) είναι δυνατόν να μεταδοθεί σε απόσταση. Ανάλογα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 3 ο : Πολυπλεξία με διαίρεση

Διαβάστε περισσότερα

Εξίσωση Τηλεπικοινωνιακών Διαύλων

Εξίσωση Τηλεπικοινωνιακών Διαύλων Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα 2 η Φίλτρα Μηδενισμού της ISI Νικόλαος Χ.

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την

Διαβάστε περισσότερα

Εξίσωση Τηλεπικοινωνιακών Διαύλων

Εξίσωση Τηλεπικοινωνιακών Διαύλων Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα η Φίλτρα Nyquis Νικόλαος Χ. Σαγιάς Επίκουρος

Διαβάστε περισσότερα