MIDTERM (A) riešenia a bodovanie

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MIDTERM (A) riešenia a bodovanie"

Transcript

1 MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude mat jednotková kružnica Q v súradnicovej sústave S 2 := P, u, v, ak v S 1 má stred v začiatku súradnicovej sústavy O? Riešenie: (2b) Sústava S 2 je určená prvkami P = [0, 1], u = (1, 0), v = (0, 2) resp. maticou M 2 := ( u v P ) = (3b) Pre sústavy S 1 a S 2 platí M 1 X 1 = M 2 X 2, x x y 1 = y 2, x x 2 y 1 = y 2, čím získavame transformačné rovnice x 1 = x 2, y 1 = 2 y (1) (2b) Dosadením rovníc (1) do implicitného vyjadrenia jednotkovej kružnice so stredom v začiatku S 1 získavame jej vyjadrenie v súradnicovej sústave S 2 : x y = 0, (x 2 ) 2 + (2 y 2 + 1) 2 1 = 0, x y y 2 = (8b) Určite analytický predpis asymptot kužel osečky Q: 2x 2 4xy + y 2 2x + 6y 3 = Q =

2 Úloha má zmysluplné riešenie pre regulárnu kužel osečku hyperbolického typu: = det Q = = 2 4 = 2 < 0 hyperbolický typ. (1b) Asymptoty prechádzajú stredom S kužel osečky, ktorého súradnice získame vyriešením sústavy rovníc s výsledkom S = [ 5 /2, 2]. 2 x 2 y 1 = 0, 2 x + y + 3 = 0 (1b+2b) Smerom asymptoty je asymptotický smer u = (u, v) kužel osečky. Jeho súradnice určíme vyriešením rovnice 2 u 2 4 u v + v 2 = 0. Ked že ide o hyperbolu, očakávame a aj naozaj získame dve rôzne riešenia u 1 = (u 1, v 1 ) = (2 + 2, 2) u 2 = (u 2, v 2 ) = (2 2, 2). Normálovým vektorom asymptoty sú vektory n 1 = (v 1, u 1 ) = (2, (2 + 2)), n 2 = (v 2, u 2 ) = (2, (2 2)). Dosadením súradníc stredu S = [ 5 /2, 2] do rovníc získavame predpis asymptot 3. (10b) Určite množinu stredov kužel osečky 2 x (2 + 2) y + d 1 = 0, 2 x (2 2) y + d 2 = 0 a 1 : 2 x (2 + 2) y = 0, a 2 : 2 x (2 2) y = 0. Q: x 2 xy 2y 2 + x + 13y 20 = 0. Sú medzi nimi singulárne body? Ak áno, určite ich súradnice. Kol ko reálnych komponentov má kužel osečka? Aké sú ich analytické predpisy? 1 1 /2 1/ Q 1 := 1 /2 2 13/ =: Q 2. 1/2 13/ Pre zjednodušenie výpočtov a zápisov budeme používat maticu Q 2.

3 Na základe = det Q 2 = 0, = 8 1 = 9 < 0. vidíme, že ide o singulárnu kužel osečku hyperbolického typu. (2b) Stredom kužel osečky je bod S = [1, 3], lebo jeho súradnice sú riešením sústavy rovníc 2 x y + 1 = 0, x 4 y + 13 = 0. (1b) Súradnice bodu S navyše vyhovujú i rovnici x + 13 y 40 = 0, a teda bod S je singulárnym bodom kužel osečky. (1b) Singulárna kužel osečka hyperbolického typu je tvorená dvoma reálnymi rôznobežkami. Tieto priamky sú hl adané komponenty, ich počet je teda dva. (2b) Smerový vektor každého z komponentov je asymptotickým smerom kužel osečky. Ich súradnice získame vyriešením rovnice 2 u 2 2 u v 4 v 2 = 0, u 2 u v 2 v 2 = 0, (u + v) (u 2 v) = 0, pričom vidíme, že naozaj získavame dva (jednoduché) asymptotické smery u 1 = (u 1, v 1 ) = ( 1, 1), u 2 = (u 2, v 2 ) = (2, 1). (2b) Komponenty kužel osečky sú rôznobežky, pretínajú sa v singulárnom bode (strede) a majú asymptotické smery. Ich normálové vektory sú n 1 = (v 1, u 1 ) = (1, 1), n 2 = (v 2, u 2 ) = (1, 2), ich analytické vyjadrenia sú 4. (10b) Určite predpis dotyčníc kužel osečky v jej priesečníkoch s priamkou y 1 = 0. l 1 : x + y 4 = 0, l 2 : x 2 y + 5 = 0. Q: x 2 y 2 4x + 2y + 1 = Q :=

4 Úloha má zmysluplné riešenie pre regulárnu kužel osečku s reálnymi bodmi: = det Q = = 1 < 0 hyperbolický typ. (3b) Priesečníky kužel osečky s priamkou l: y 1 = 0 sú práve body [x, 1]. Jednoduchým dosadením y = 1 získavame rovnicu x 2 4 x + 2 = 0 a po jej vyriešení máme súradnice priesečníkov P 1 = [2 + 2, 1], P 2 = [2 2, 1]. (2,5b + 2,5b) Dotyčnice v bodoch P 1, P 2 sú ich poláry p 1, p 2 s predpismi 5. (10b) Určite rovnicu priemeru kužel osečky prechádzajúcu bodom A = [1, 0]. p 1 : 2 x = 0, p 2 : 2 x = 0. Q: x 2 2xy + 2y 2 + 2x + 2y + 1 = 0 S ktorým smerom v je smer tohto priemeru združený? Existujte nejaký vzt ah medzi v a polárou bodu A? Ak áno, aký a prečo? Q = Úloha má zmysluplné riešenie pre regulárnu kužel osečku, jej typ (stredová, nestredová) naznačuje metódu riešenia: = det Q = = 1 0 stredová eliptického typu. (4b) Určíme rovnicu priemeru l. Máme niekol ko možností, napr. si stačí uvedomit, že každý priemer kužel osečky prechádza jej stredom S. Súradnice S = [ 3, 2] získame vyriešením sústavy x y + 1 = 0, x + 2 y + 1 = 0. Smerovým vektorom l je u = S A = ( 4, 2) (2, 1) a normálovým n = (1, 2). Jednoduchým dopočítaním získame analytické vyjadenie priemeru l: x 2 y 1 = 0.

5 (2b) Smer u = (2, 1) priemeru l je združený so smerom v = (v 1, v 2 ) práve vtedy, ak u Q v = ( ) v v 2 = v 1 = 0, čiže ak v = (0, 1). (1b) Polára bodu A = [1, 0] je zadaná rovnicou A Q X = ( ) x y = 2 x + 2 = (1b) Vidíme, že smer poláry Q(A) má súradnice (0, 2), a teda je lineárne závislý so smerom v. Táto závislost nie je náhodná (veta z prednášky). 6. (5b) Uvažujme kužel osečku Q: x 2 + 4xy y 2 + 6y = 0. Rozhodnite, či bod A = [1, 0] je vnútorným bodom Q Q = (1b) Úloha má zmysluplné riešenie pre regulárnu kužel osečku: = det Q = 9 0. (2b) Bod A = [a 1, a 2 ] roviny leží vonku resp. vo vnútri kužel osečky Q zadanej kvadratickou formou q(x, y) := x 2 + 4xy y 2 + 6y práve vtedy, ak q(a 1, a 2 ) má rôzne resp. rovnaké znamienko ako, t.j. A Int(Q) sgn q(a 1, a 2 ) = sgn q(a 1, a 2 ) < 0, A Ext(Q) sgn q(a 1, a 2 ) sgn q(a 1, a 2 ) > 0. Táto podmienka je zjavne ekvivalentná s podmienkou z prednášky, kedy A Int(Q) q(a 1, a 2 ) > 0, A Ext(Q) q(a 1, a 2 ) < 0. (1b) Po dosadení A = [1, 0] vidíme, že q(1, 0) = 1 > 0. (1b) Bod A = [1, 0] nie je vnútorným bodom kužel osečky.

6 MIDTERM (B) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [1, 0], u = 2 e 1, v = e 2. Aký predpis bude mat jednotková kružnica Q v súradnicovej sústave S 2 := P, u, v, ak v S 1 má stred v začiatku súradnicovej sústavy O? Riešenie: (2b) Sústava S 2 je určená prvkami P = [1, 0], u = (2, 0), v = (0, 1) resp. maticou M 2 := ( u v P ) = (3b) Pre sústavy S 1 a S 2 platí M 1 X 1 = M 2 X 2, x x y 1 = y 2, x x 2 y 1 = y 2, čím získavame transformačné rovnice x 1 = 2 x 2 + 1, y 1 = y 2. (2) (2b) Dosadením rovníc (2) do implicitného vyjadrenia jednotkovej kružnice so stredom v začiatku S 1 získavame jej vyjadrenie v súradnicovej sústave S 2 : x y = 0, (2 x 2 + 1) 2 + (y 2 ) 2 1 = 0, 4 x x 2 + y 2 2 = (8b) Určite analytický predpis asymptot kužel osečky Q: x 2 2xy 3y 2 4x 6y + 3 = Q =

7 Úloha má zmysluplné riešenie pre regulárnu kužel osečku hyperbolického typu: = det Q = = 3 1 = 4 < 0 hyperbolický typ. (1b) Asymptoty prechádzajú stredom S kužel osečky, ktorého súradnice získame vyriešením sústavy rovníc s výsledkom S = [ 3 /4, 5 /4]. x y 2 = 0, x 3 y 3 = 0 (1b+2b) Smerom asymptoty je asymptotický smer u = (u, v) kužel osečky. Jeho súradnice určíme vyriešením rovnice u 2 2 u v 3 v 2 = 0. Ked že ide o hyperbolu, očakávame a aj naozaj získame dve rôzne riešenia u 1 = (u 1, v 1 ) = (3, 1) u 2 = (u 2, v 2 ) = ( 1, 1). Normálovým vektorom asymptoty sú vektory n 1 = (v 1, u 1 ) = (1, 3), n 2 = (v 2, u 2 ) = (1, 1). Dosadením súradníc stredu S = [ 3 /4, 5 /4] do rovníc získavame predpis asymptot 3. (10b) Určite množinu stredov kužel osečky x 3 y + d 1 = 0, x + y + d 2 = 0 a 1 : x 3 y 9 /2 = 0, a 2 : x + y + 1 /2 = 0. Q: x 2 + xy 2y 2 x + 13y 20 = 0. Sú medzi nimi singulárne body? Ak áno, určite ich súradnice. Kol ko reálnych komponentov má kužel osečka? Aké sú ich analytické predpisy? 1 1/2 1 / Q 1 := 1/2 2 13/ =: Q 2. 1 /2 13/ Pre zjednodušenie výpočtov a zápisov budeme používat maticu Q 2.

8 Na základe = det Q 2 = 0, = 8 1 = 9 < 0. vidíme, že ide o singulárnu kužel osečku hyperbolického typu. (2b) Stredom kužel osečky je bod S = [ 1, 3], lebo jeho súradnice sú riešením sústavy rovníc 2 x + y 1 = 0, x 4 y + 13 = 0. (1b) Súradnice bodu S navyše vyhovujú i rovnici x + 13 y 40 = 0, a teda bod S je singulárnym bodom kužel osečky. (1b) Singulárna kužel osečka hyperbolického typu je tvorená dvoma reálnymi rôznobežkami. Tieto priamky sú hl adané komponenty, ich počet je teda dva. (2b) Smerový vektor každého z komponentov je asymptotickým smerom kužel osečky. Ich súradnice získame vyriešením rovnice 2 u u v 4 v 2 = 0, u 2 + u v 2 v 2 = 0, (u v) (u + 2 v) = 0, pričom vidíme, že naozaj získavame dva (jednoduché) asymptotické smery u 1 = (u 1, v 1 ) = (1, 1), u 2 = (u 2, v 2 ) = ( 2, 1). (2b) Komponenty kužel osečky sú rôznobežky, pretínajú sa v singulárnom bode (strede) a majú asymptotické smery. Ich normálové vektory sú n 1 = (v 1, u 1 ) = (1, 1), n 2 = (v 2, u 2 ) = (1, 2), ich analytické vyjadrenia sú 4. (10b) Určite predpis dotyčnice kužel osečky v jej priesečníkoch s priamkou y + 1 = 0. l 1 : x y + 4 = 0, l 2 : x + 2 y 5 = 0. Q: x 2 y 2 + 4x 2y + 1 = Q :=

9 Úloha má zmysluplné riešenie pre regulárnu kužel osečku s reálnymi bodmi: = det Q = = 1 < 0 hyperbolický typ. (3b) Priesečníky kužel osečky s priamkou l: y+1 = 0 sú práve body [x, 1]. Jednoduchým dosadením y = 1 získavame rovnicu x x + 2 = 0 a po jej vyriešení máme súradnice priesečníkov P 1 = [ 2 + 2, 1], P 2 = [ 2 2, 1]. (2,5b + 2,5b) Dotyčnice v bodoch P 1, P 2 sú ich poláry p 1, p 2 s predpismi 5. (10b) Určite rovnicu priemeru kužel osečky prechádzajúcu bodom A = [0, 1]. p 1 : 2 x = 0, p 2 : 2 x = 0. Q: x 2 2xy + 2y 2 + 2x + 2y + 1 = 0 S ktorým smerom v je smer tohto priemeru združený? Existujte nejaký vzt ah medzi v a polárou bodu A? Ak áno, aký a prečo? Q = Úloha má zmysluplné riešenie pre regulárnu kužel osečku, jej typ (stredová, nestredová) naznačuje metódu riešenia: = det Q = = 1 0 stredová eliptického typu. (4b) Určíme rovnicu priemeru l. Máme niekol ko možností, napr. si stačí uvedomit, že každý priemer kužel osečky prechádza jej stredom S. Súradnice S = [ 3, 2] získame vyriešením sústavy x y + 1 = 0, x + 2 y + 1 = 0. Smerovým vektorom l je u = S A = ( 3, 3) (1, 1) a normálovým n = (1, 1). Jednoduchým dopočítaním získame analytické vyjadenie priemeru l: x y + 1 = 0.

10 (2b) Smer u = (1, 1) priemeru l je združený so smerom v = (v 1, v 2 ) práve vtedy, ak u Q v = ( ) v v 2 = v 2 = 0, čiže ak v = (1, 0). (1b) Polára bodu A = [0, 1] je zadaná rovnicou A Q X = ( ) x y = 3 y + 2 = (1b) Vidíme, že smer poláry Q(A) má súradnice (3, 0), a teda je lineárne závislý so smerom v. Táto závislost nie je náhodná (veta z prednášky). 6. (5b) Uvažujme kužel osečku Q: x 2 + 4xy y 2 + 6y = 0. Rozhodnite, či bod A = [1, 0] je vonkajším bodom Q Q = (1b) Úloha má zmysluplné riešenie pre regulárnu kužel osečku: = det Q = 9 0. (2b) Bod A = [a 1, a 2 ] roviny leží vonku resp. vo vnútri kužel osečky Q zadanej kvadratickou formou q(x, y) := x 2 + 4xy y 2 + 6y práve vtedy, ak q(a 1, a 2 ) má rôzne resp. rovnaké znamienko ako, t.j. A Int(Q) sgn q(a 1, a 2 ) = sgn q(a 1, a 2 ) < 0, A Ext(Q) sgn q(a 1, a 2 ) sgn q(a 1, a 2 ) > 0. Táto podmienka je zjavne ekvivalentná s podmienkou z prednášky, kedy A Int(Q) q(a 1, a 2 ) > 0, A Ext(Q) q(a 1, a 2 ) < 0. (1b) Po dosadení A = [1, 0] vidíme, že q(1, 0) = 1 > 0. (1b) Bod A = [1, 0] je vonkajším bodom kužel osečky.

Súradnicová sústava (karteziánska)

Súradnicová sústava (karteziánska) Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

Analytická geometria

Analytická geometria Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

G. Monoszová, Analytická geometria 2 - Kapitola III

G. Monoszová, Analytická geometria 2 - Kapitola III text obsahuje znenia viet, ktoré budeme dokazovat na prednáškach text je doplnený aj o množstvo poznámok, ich ciel om je dopomôct študentom k lepšiemu pochopeniu pojmov aj súvislostí medzi nimi text je

Διαβάστε περισσότερα

Goniometrické funkcie

Goniometrické funkcie Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Numerické metódy matematiky I

Numerické metódy matematiky I Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)

Διαβάστε περισσότερα

ANULOID GEOMETRICKÉ VARIÁCIE NA TÉMU ANULOID

ANULOID GEOMETRICKÉ VARIÁCIE NA TÉMU ANULOID ANULOID ÚVOD Matematická analýza a deskriptívna (prípadne konštrukčná) geometria sú dva rôzne predmety, ktoré úzko spolu súvisia. Anuloid a guľová plocha sú plochy technickej praxe.v texte sú z geometrického

Διαβάστε περισσότερα

Matematika 2. Lineárna algebra. (ver )

Matematika 2. Lineárna algebra. (ver ) Matematika 2 Lineárna algebra (ver.01.03.2011) 1 Úvod Prehľad. Tieto poznámky obsahujú podklady k prednáške Matematika 2 na špecializácii Aplikovaná informatika: jedná sa o 12 dvojhodinových prednášok

Διαβάστε περισσότερα

16. Základne rovinné útvary kružnica a kruh

16. Základne rovinné útvary kružnica a kruh 16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)

Διαβάστε περισσότερα

stereometria - študuje geometrické útvary v priestore.

stereometria - študuje geometrické útvary v priestore. Geometria Geometria (z gréckych slov Geo = zem a metro = miera, t.j. zememeračstvo) je disciplína matematiky prvýkrát spopularizovaná medzi starovekými grékmi Tálesom (okolo 624-547 pred Kr.), ktorý sa

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický

Διαβάστε περισσότερα

FUNKCIE N REÁLNYCH PREMENNÝCH

FUNKCIE N REÁLNYCH PREMENNÝCH FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE

Διαβάστε περισσότερα

Zhodné zobrazenia (izometria)

Zhodné zobrazenia (izometria) Zobrazenie A, B R R (zobrazenie v rovine) usporiadaná dvojica bodov dva body v danom poradí (záleží na poradí) zápis: [a; b] alebo (a; b) karteziánsky (kartézsky) súčin množín množina všetkých usporiadaných

Διαβάστε περισσότερα

ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol

ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol II. ZÁKLADNÉ GEOMETRICKÉ TELESÁ Hranolová plocha Hranolový priestor Hranol Definícia II.1 Nech P n je ľubovoľný n-uholník v rovine α a l je priamka rôznobežná s rovinou α. Hranolová plocha - množina bodov

Διαβάστε περισσότερα

Goniometrické substitúcie

Goniometrické substitúcie Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať

Διαβάστε περισσότερα

AFINNÉ TRANSFORMÁCIE

AFINNÉ TRANSFORMÁCIE AFINNÉ TRANSFORMÁCIE Definícia0..Zobrazenie f: R n R m sanazývaafinné,ak zachováva kolinearitu(t.j. priamka sa zobrazí buď na priamku alebo na jeden bod), zachovávadeliacipomer(t.j.akprekolineárnebody

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

DESKRIPTÍVNA GEOMETRIA

DESKRIPTÍVNA GEOMETRIA EKRIÍN GEERI meódy zobrzovni priesorových úvrov do roviny (premieni) mericé polohové vzťhy priesorových úvrov riešené v rovine bsh predmeu G Zobrzovcie meódy: olohové mericé úlohy: ongeov projeci Rezy

Διαβάστε περισσότερα

Obyčajné diferenciálne rovnice

Obyčajné diferenciálne rovnice (ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú

Διαβάστε περισσότερα

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a ) Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

Planárne a rovinné grafy

Planárne a rovinné grafy Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

MATEMATIKA I ZBIERKA ÚLOH

MATEMATIKA I ZBIERKA ÚLOH TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA ÚSTAV TECHNOLÓGIÍ, EKONOMIKY A MANAŽMENTU V STAVEBNÍCTVE KATEDRA APLIKOVANEJ MATEMATIKY RNDr. Pavol PURCZ, PhD. Mgr. Adriana ŠUGÁROVÁ MATEMATIKA I ZBIERKA

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan

Διαβάστε περισσότερα

Matematická analýza pre fyzikov IV.

Matematická analýza pre fyzikov IV. 119 Dodatok - klasické riešenia PDR 8.1. Parciálne diferenciálne rovnice Príklady parciálnych diferenciálnych rovníc: Lalpaceova rovnica u = 0 Helmholtzova rovnica u = λu n Lineárna transportná rovnica

Διαβάστε περισσότερα

Ján Buša Štefan Schrötter

Ján Buša Štefan Schrötter Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako

Διαβάστε περισσότερα

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie, Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne

Διαβάστε περισσότερα

3. ročník. 1. polrok šk. roka 2016/2017

3. ročník. 1. polrok šk. roka 2016/2017 Príklady z MAT 3. ročník 1. polrok šk. roka 016/017 GONIOMETRIA 1. Načrtnite grafy daných funkcií na intervale 0, : f: y= tg x, g: y = -3.cos x, h: y = sin (x + ) -1. Určte hodnoty ostatných goniometrických

Διαβάστε περισσότερα

Smernicový tvar rovnice priamky

Smernicový tvar rovnice priamky VoAg1-T List 1 Smernicový tvar rovnice priamk RNDr.Viera Vodičková U: Medzi prevratné objav analtickej geometrie patrí to, že s priamkou nenarábame ako s geometrickým objektom, ale popisujeme ju rovnicou.

Διαβάστε περισσότερα

SK skmo.sk. 2009/ ročník MO Riešenia úloh domáceho kola kategórie A

SK skmo.sk. 2009/ ročník MO Riešenia úloh domáceho kola kategórie A SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/2010 59. ročník MO Riešenia úloh domáceho kola kategórie A 1. V obore reálnych čísel riešte sústavu rovníc x2 y = z 1, y2 z = x 1, z2 x = y 1. (Radek Horenský) Riešenie.

Διαβάστε περισσότερα

Vektorové a skalárne polia

Vektorové a skalárne polia Vetorové a salárne pola Ω E e prestorová oblasť - otvorená alebo uavretá súvslá podmnožna bodov prestoru E určených arteánsm súradncam usporadaným trocam reálnch čísel X [ ] R. Nech e salárna unca torá

Διαβάστε περισσότερα

SK skmo.sk. 66. ročník Matematickej olympiády 2016/2017 Riešenia úloh domáceho kola kategórie B

SK skmo.sk. 66. ročník Matematickej olympiády 2016/2017 Riešenia úloh domáceho kola kategórie B SK MATEMATICKÁOLYMPIÁDA skmo.sk 66. ročník Matematickej olympiády 2016/2017 Riešenia úloh domáceho kola kategórie B 1. Každému vrcholu pravidelného 66-uholníka priradíme jedno z čísel 1 alebo 1. Ku každej

Διαβάστε περισσότερα

Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.

Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie. Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny

Διαβάστε περισσότερα

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17 Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy

Διαβάστε περισσότερα

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA S MATEMATICÁ OLYMPIÁDA skmo.sk 2008/2009 58. ročník Matematickej olympiády Riešenia úloh IMO. Nech n je kladné celé číslo a a,..., a k (k 2) sú navzájom rôzne celé čísla z množiny {,..., n} také, že n

Διαβάστε περισσότερα

doc. Ing. František Palčák, PhD., Ústav aplikovanej mechaniky a mechatroniky, Strojnícka fakulta STU v Bratislave,

doc. Ing. František Palčák, PhD., Ústav aplikovanej mechaniky a mechatroniky, Strojnícka fakulta STU v Bratislave, -550 Technická mechanika I 9. rednáška Kinematika bodu, translačný, rotačný a všeobecný pohyb telesa Ciele v kinematike. remiestňovanie súradnicovej sústavy po priestorovej krivke. riamočiary pohyb bodu.

Διαβάστε περισσότερα

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c)

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Božena Mihalíková, Ivan Mojsej Strana 1 z 43 DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) 1 Obyčajné diferenciálne rovnice 3 1.1 Úlohy

Διαβάστε περισσότερα

Reálna funkcia reálnej premennej

Reálna funkcia reálnej premennej (ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od

Διαβάστε περισσότερα

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus 1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových

Διαβάστε περισσότερα

Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke

Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke 23.5.26 Príklad č. Riešte sústavu Bx = r (B r) 2 3 4 2 3 4 6 8 8 2 (B r) = 6 9 2 6 3 9 2 3 4 2 3 2

Διαβάστε περισσότερα

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných

Διαβάστε περισσότερα

Kapitola K2 Plochy 1

Kapitola K2 Plochy 1 Kapitola K2 Plochy 1 Plocha je množina bodov v priestore, ktorá vznikne spojitým pohybom čiary u, ktorá nie je dráhou tohto pohybu, pričom tvar čiary u sa počas pohybu môže meniť. Čiara u sa nazýva tvoriaca

Διαβάστε περισσότερα

Východ a západ Slnka

Východ a západ Slnka Východ a západ Slnka Daniel Reitzner februára 27 Je všeobecne známe, že v našich zemepisných šírkach dĺžka dňa závisí od ročného obdobia Treba však o čosi viac pozornosti na to, aby si človek všimol, že

Διαβάστε περισσότερα

MATEMATIKA I. Doc. RNDr. Michal Šabo, CSc

MATEMATIKA I. Doc. RNDr. Michal Šabo, CSc MATEMATIKA I Doc. RNDr. Michal Šabo, CSc 2 Obsah Predhovor 5 2 VYBRANÉ STATE Z ALGEBRY 2. Úvod................................... 2.2 Reálne n-rozmerné vektory...................... 2.3 Matice..................................

Διαβάστε περισσότερα

Riešenie sústavy lineárnych rovníc. Priame metódy.

Riešenie sústavy lineárnych rovníc. Priame metódy. Riešenie sústavy lineárnych rovníc. Priame metódy. Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Priame metódy 1/16 Obsah 1 Základy 2 Systémy

Διαβάστε περισσότερα

Úvod do lineárnej algebry

Úvod do lineárnej algebry Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.

Διαβάστε περισσότερα

9 Planimetria. 9.1 Uhol. Matematický kufrík

9 Planimetria. 9.1 Uhol. Matematický kufrík Matematický kufrík 89 9 Planimetria 9.1 Uhol Pojem uhol patrí k najzákladnejším pojmom geometrie. Uhol môžeme definovať niekoľkými rôznymi spôsobmi, z ktorých má každý svoje opodstatnenie. Jedna zo základných

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

Funkcie - základné pojmy

Funkcie - základné pojmy Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny

Διαβάστε περισσότερα

UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky. Dua lne c ı sla. Bakala rska pra ca. S tudijny odbor: Matematika

UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky. Dua lne c ı sla. Bakala rska pra ca. S tudijny odbor: Matematika UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky Dua lne c ı sla Bakala rska pra ca S tudijny odbor: Matematika Vedu ci bakala rskej pra ce: RNDr. Pavel Chalmoviansky, PhD.

Διαβάστε περισσότερα

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák Prednáška 6 6.1. Fourierove rady Základná myšlienka: Nech x Haφ 1,φ 2,...,φ n,... je ortonormálny systém v H, dá sa tento prvok rozvinút do radu x=c 1 φ 1 + c 2 φ 2 +...,c n φ n +...? Ako nájdeme c i,

Διαβάστε περισσότερα

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE. Chemickotechnologická fakulta. Doc. RNDr. Viliam Laurinc, CSc. a kolektív FYZIKA I

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE. Chemickotechnologická fakulta. Doc. RNDr. Viliam Laurinc, CSc. a kolektív FYZIKA I SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Chemickotechnologická fakulta Doc. RNDr. Viliam Laurinc, CSc. a kolektív FYZIKA I Zbierka príkladov a problémov Predslov Cieľom výpočtových cvičení z fyziky

Διαβάστε περισσότερα

RIEŠENIE WHEATSONOVHO MOSTÍKA

RIEŠENIE WHEATSONOVHO MOSTÍKA SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

4 Reálna funkcia reálnej premennej a jej vlastnosti

4 Reálna funkcia reálnej premennej a jej vlastnosti Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický

Διαβάστε περισσότερα

FUNKCIE. Funkcia základné pojmy. Graf funkcie

FUNKCIE. Funkcia základné pojmy. Graf funkcie FUNKCIE Funkcia základné pojm. Graf funkcie V prai sa často stretávame so skúmaním závislosti veľkosti niektorých veličín od veľkosti iných veličín, napríklad dĺžka kružnice l závisí od jej priemeru d

Διαβάστε περισσότερα

Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh

Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II Zbierka riešených a neriešených úloh Anna Grinčová Jana Petrillová Košice 06 Technická univerzita v Košiciach Fakulta

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

ZBIERKA ÚLOH Z GEOMETRIE - ZOBRAZENIA

ZBIERKA ÚLOH Z GEOMETRIE - ZOBRAZENIA ZBIERKA ÚLOH Z GEOMETRIE - ZOBRAZENIA 1. Afinné zobrazenia Definícia. Zobrazenie F z afinného priestoru A n do A m, ktoré zobrazuje každú trojicu nekolineárnych bodov do jedného bodu alebo do trojice bodov,

Διαβάστε περισσότερα

Numerické metódy Učebný text pre bakalárske štúdium

Numerické metódy Učebný text pre bakalárske štúdium Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu

Διαβάστε περισσότερα

Maturitné úlohy. Matematiky. Pre gymnázium

Maturitné úlohy. Matematiky. Pre gymnázium Jozef Vozár Maturitné úlohy Z Matematiky Pre gymnázium I. (Úlohy s krátkou odpoveďou) OBSAH ÚVOD... 3 1. ZÁKLADY MATEMATIKY... 3 1.1 Logika a množiny... 3 1.2 Čísla, premenné a výrazy... 7 1.3 Teória čísel...

Διαβάστε περισσότερα

STRIEDAVÝ PRÚD - PRÍKLADY

STRIEDAVÝ PRÚD - PRÍKLADY STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =

Διαβάστε περισσότερα

UNIVERZITA KONŠTANTÍNA FILOZOFA v NITRE FAKULTA PRÍRODNÝCH VIED GEOMETRIA V

UNIVERZITA KONŠTANTÍNA FILOZOFA v NITRE FAKULTA PRÍRODNÝCH VIED GEOMETRIA V UNIVERZITA KONŠTANTÍNA FILOZOFA v NITRE FAKULTA PRÍRODNÝCH VIED GEOMETRIA V Kužeľosečk kvdrtické ploch Ondrej Šedivý Dušn Vllo Vdné v Nitre 0 Fkultou prírodných vied Univerzit Konštntín Filozof v Nitre

Διαβάστε περισσότερα

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,... Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia

Διαβάστε περισσότερα

Mini minimaliz acia an BUˇ Koˇ sice 2011

Mini minimaliz acia an BUˇ Koˇ sice 2011 Mini minimalizácia Ján BUŠA Košice 2011 RECENZOVALI: Prof. RNDr. Noname, CSc. Doc. RNDr. Emanname, PhD. Prvé vydanie Za odbornú stránku učebného textu zodpovedá autor. Rukopis neprešiel redakčnou ani jazykovou

Διαβάστε περισσότερα

Diferenciálne rovnice

Diferenciálne rovnice Diferenciálne rovnice Juraj Tekel Katedra teoretickej fyziky a didaktiky fyziky FMFI UK Mlynska Dolina 842 48 Bratislava juraj(a)tekel(b)gmail(c)com http://fks.sk/~juro/phys_teaching.html Aktualizované

Διαβάστε περισσότερα

Numerické metódy, pravdepodobnosť a matematická štatistika

Numerické metódy, pravdepodobnosť a matematická štatistika Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Strana 1 z 262 Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Strana

Διαβάστε περισσότερα

Numerické metódy, pravdepodobnosť a matematická štatistika. Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER

Numerické metódy, pravdepodobnosť a matematická štatistika. Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Prvé vydanie Za

Διαβάστε περισσότερα

NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky

NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory

Διαβάστε περισσότερα

MATEMATIKA. Martin Kalina

MATEMATIKA. Martin Kalina MATEMATIKA Martin Kalina Slovenská technická univerzita v Bratislave Všetky práva vyhradené. Nijaká časť textu nesmie byť použitá na ďalšie šírenie akoukoľvek formou bez predchádzajúceho súhlasu autorov

Διαβάστε περισσότερα