Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ."

Transcript

1 Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Στα προηγούµενα κεφάλαια ορίσαµε και µελετήσαµε την τ.µ. µε τη ϐοήθεια της πιθανο- ϑεωρίας (κατανοµή, ϱοπές) και της στατιστικής (εκτίµηση, στατιστική υπόθεση). Σ αυτό το κεφάλαιο ϑα µελετήσουµε πως µια τ.µ. µεταβάλλεται όταν αλλάζει µια άλλη µεταβλητή (τυχαία ή µη). Πρώτα ϑα µελετήσουµε τη σχέση δύο τ.µ. και. Συχνά στη µελέτη ενός τεχνικού συστήµατος ή ϕυσικού ϕαινοµένου ενδιαφερόµαστε να προσδιορίσουµε τη σχέση µεταξύ δύο µεταβλητών. Για παράδειγµα στην παρασκευή σκυροδέµατος µας ενδιαφέρει η σχέση της αντοχής συµπίεσης και της αντοχής κάµψης. Θα προσδιορίσουµε και ϑα εκτιµήσουµε το συντελεστή συσχέτισης που µετράει τη γραµµική συσχέτιση δύο τ.µ.. Στη συνέχεια ϑα µελετήσουµε τη συναρτησιακή σχέση εξάρτησης µιας τ.µ. ως προς µια άλλη µεταβλητή. Η σχέση αυτή είναι πιθανοκρατική κι ορίζεται µε την κατανοµή της για κάθε τιµή της. Για παράδειγµα η διατµητική αντοχή του αργίλου είναι τ.µ. µε κατανοµή που µεταβάλλεται µε το ϐάθος τους εδάφους. Συνήθως η µεταβολή αφορά µόνο τη µέση τιµή (και σπανιότερα και τη διασπορά), γι αυτό κι η περιγραφή της κατανοµής της ως προς τη περιορίζεται στη δεσµευµένη µέση τιµή E( ) και γίνεται µε τη λεγόµενη ανάλυση παλινδρόµησης. Θα µελετήσουµε την απλή γραµµική παλινδρόµηση, δηλαδή ϑα περιοριστούµε να εκτιµήσουµε τη γραµµική σχέση για τη µέση τιµή E( ) ως προς µια τ.µ.. 4. Συσχέτιση δύο τ.µ. ύο τ.µ. και µπορεί να συσχετίζονται µε κάποιο τρόπο. Αυτό συµβαίνει όταν επηρεάζει η µία την άλλη, ή αν δεν αλληλοεπηρεάζονται όταν επηρεάζονται και οι δύο από µια άλλη µεταβλητή. Για παράδειγµα η αντοχή συµπίεσης σκυροδέµατος και η περιεκτικότητα του σε τσιµέντο µπορούν να ϑεωρηθούν σαν δύο τ.µ. που συσχετίζονται, όπου η αντοχή συµπίεσης εξαρτάται από την περιεκτικότητα σε τσιµέντο (το αντίθετο δεν έχει πρακτική σηµασία). Μ- πορούµε επίσης να ϑεωρήσουµε τη συσχέτιση της αντοχής συµπίεσης και της αντοχής κάµψης σκυροδέµατος, αλλά τώρα δεν εξαρτάται η µια από την άλλη παρά εξαρτιούνται κι οι δύο από τον τρόπο παρασκευής του σκυροδέµατος, π.χ. από την περιεκτικότητα σε τσιµέντο. Στη συνέχεια ϑα ϑεωρήσουµε ότι οι δύο τ.µ. και είναι συνεχείς. Για διακριτές τ.µ. µπορούµε πάλι να ορίσουµε µέτρο συσχέτισης τους αλλά δε ϑα µας απασχολήσει εδώ. 67

2 68 ΚΕΦ ΑΛΑΙΟ 4. ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ 4.. Ο συντελεστής συσχέτισης ρ Ο ϐαθµός της γραµµικής συσχέτισης δύο τ.µ. και µε διασπορά σ και σ αντίστοιχα και συνδιασπορά σ = Cov(, ) = E(, ) E()E( ), µετριέται µε τον συνετελεστή συσχέτισης (correlation coefficient) ρ που ορίζεται ως ρ = σ σ σ. (4.) Ο συντελεστής συσχέτισης ρ, όπως και η συνδιασπορά σ, εκφράζει το ϐαθµό και τον τρόπο που οι δύο µεταβλητές συσχετίζονται, δηλαδή πως η µία τ.µ. µεταβάλλεται ως προς την άλλη. Η σ παίρνει τιµές που εξαρτώνται από το πεδίο τιµών των και ενώ ο συντελεστής ρ παίρνει τιµές στο διάστηµα [, ]. Οι χαρακτηριστικές τιµές του ρ ερµηνεύονται ως εξής: ρ = : υπάρχει τέλεια ϑετική συσχέτιση µεταξύ των και, ρ = : δεν υπάρχει καµιά (γραµµική) συσχέτιση µεταξύ των και, ρ = : υπάρχει τέλεια αρνητική συσχέτιση µεταξύ των και. Οταν ρ = ± η σχέση είναι αιτιοκρατική κι όχι πιθανοκρατική γιατί γνωρίζοντας την τιµή της µιας τ.µ. γνωρίζουµε και την τιµή της άλλης τ.µ. ακριβώς. Οταν ο συνετελεστής συσχέτισης είναι κοντά στο ή η γραµµική συσχέτιση των δύο τ.µ. είναι ισχυρή (συνήθως χαρακτηρί- Ϲουµε ισχυρές τις συσχετίσεις όταν ρ >.9) ενώ όταν είναι κοντά στο οι τ.µ. είναι πρακτικά ασυσχέτιστες. Οπως ϕαίνεται από τον ορισµό στη σχέση (4.), ο συντελεστής συσχέτισης ρ δεν εξαρτάται από τη µονάδα µέτρησης των και και είναι συµµετρικός ως προς τις και. 4.. Σηµειακή εκτίµηση του συντελεστή συσχέτισης Οταν έχουµε παρατηρήσεις των δύο τ.µ. και κατά Ϲεύγη (x, y ),..., (x n, y n ), µ- πορούµε να εκτιµήσουµε τη συσχέτιση τους ποιοτικά από το διάγραµµα διασποράς (scatter diagram), που είναι η απεικόνιση των σηµείων (x i, y i ), i =,..., n, σε καρτεσιανό σύστηµα συντεταγµένων. Στο Σχήµα 4. παρουσιάζονται τυπικά διαγράµµατα διασποράς για ισχυρές κι ασθενείς συσχετίσεις δύο τ.µ. και. Στα Σχήµατα 4.α και 4.δ η σχέση είναι τέλεια (ρ = και ρ = αντίστοιχα), στα Σχήµατα 4.ϐ και 4.ε είναι ισχυρή (ϑετική µε ρ =.97 κι αρνητική µε ρ =.97 αντίστοιχα) και στα Σχήµατα 4.γ και 4.Ϲ είναι λιγότερο ισχυρή (ϑετική µε ρ =.8 κι αρνητική µε ρ =.8 αντίστοιχα). Στο Σχήµα 4.η είναι ρ = γιατί οι τ.µ. και είναι ανεξάρτητες ενώ στο Σχήµα 4.ϑ είναι πάλι ρ = αλλά οι και δεν είναι ανεξάρτητες αλλά συσχετίζονται µόνο µη-γραµµικά. Τέλος για το Σχήµα 4.ι ο συντελεστής συσχέτισης δεν ορίζεται γιατί η είναι σταθερή (σ = στον ορισµό του ρ στην (4.)). Η σηµειακή εκτίµηση του συντελεστή συσχέτισης ρ του πληθυσµού από το δείγµα των n Ϲευγαρωτών παρατηρήσεων των και γίνεται µε την αντικατάσταση στη σχέση (4.) της συνδιασποράς σ και των διασπορών σ και σ από τις αντίστοιχες εκτιµήσεις από το δείγµα ˆρ r = s s s. (4.)

3 4.. ΣΥΣΧ ΕΤΙΣΗ ΥΟ Τ.Μ (α) 5 (β) 6 (γ) ρ = r = (δ) ρ = r = 3 ρ =.97 r = (ε) ρ =.97 r =.96 4 ρ =.8 r = (ζ) ρ =.8 r = (η) 5 3 (θ) (ι) ρ = r =.34.5 ρ,r = αoριστo ρ = r = Σχήµα 4.: ιάγραµµα διασποράς δύο τ.µ. και από n = παρατηρήσεις για ϑετική συσχέτιση στα σχήµατα (α), (ϐ) και (γ), για αρνητική συσχέτιση στα σχήµατα (δ), (ε) και (Ϲ) και για ασυσχέτιστες τ.µ. στα σχήµατα (η), (ϑ) και (ι). Σε κάθε σχήµα δίνεται η πραγµατική τιµή του συντελεστή συσχέτισης ρ κι η δειγµατική r. Στο (ι) ο συντελεστής συσχέτισης δεν ορίζεται. Οι αµερόληπτες εκτιµήτριες s, s και s δίνονται ως s = n (x i x)(y i ȳ) = n ( ) x i y i n xȳ (4.3) s = n (x i x) = n ( ) x i n x (4.4) όπου x και ȳ είναι οι δειγµατικές µέσες τιµές των και. Από τα παραπάνω προκύπτει η

4 7 ΚΕΦ ΑΛΑΙΟ 4. ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ έκφραση της εκτιµήτρια r r = x i y i n xȳ ( )( ). (4.5) x i n x yi nȳ Είναι προφανές πως η παραπάνω σχέση για το r δεν αλλάζει αν ϑεωρήσουµε τις µεροληπτικές εκτιµήτριες των σ, σ και σ. Στο Σχήµα 4. δίνεται ο δειγµατικός συντελεστής συσχέτισης r για κάθε περίπτωση. Επειδή το δείγµα είναι µικρό (n = ) η τιµή του r δεν είναι πάντα κοντά στην πραγµατική τιµή ρ. Αυτό συµβαίνει γιατί η εκτιµήτρια r όπως δίνεται στη σχέση (4.5) είναι µια τ.µ. που εξαρτάται από τις τιµές και το πλήθος των Ϲευγών των παρατηρήσεων. Για να εκφράσουµε τη συσχέτιση δύο τ.µ. χρησιµοποιούµε επίσης την ποσότητα r που λέγεται και συντελεστής προσδιορισµού (coefficient of determination) (εκφράζεται συνήθως σε ποσοστό %, r ). Ο συντελεστής προσδιορισµού δίνει το ποσοστό µεταβλητότητας των τιµών της που υπολογίζεται από τη (κι αντίστροφα) κι είναι ένας χρήσιµος τρόπος να συνοψίσουµε τη συσχέτιση δύο τ.µ.. Παράδειγµα 4. Θέλουµε να διερευνήσουµε τη συσχέτιση της αντοχής συµπίεσης κι αντοχής κάµψης σκυροδέµατος κάποιας παρασκευής. Γι αυτό πήραµε τις αντίστοιχες µετρήσεις από δείγµα δοκιµίων σκυροδέµατος που παρουσιάζονται στον Πίνακα 4.. Για να ϐρούµε τον συντελεστή συσχέτισης r υπολογίζουµε πρώτα τα παρακάτω x = 39.9 ȳ = 48.5 x i = 6856 yi = x i y i = Αντικαθιστώντας τα παραπάνω αποτελέσµατα στη σχέση (4.5) ϐρίσκουµε r = ( )( ) =.87. Η τιµή r =.87 υποδηλώνει ότι η αντοχή συµπίεσης κι η αντοχή κάµψης έχουν γραµµική ϑετική συσχέτιση αλλά όχι πολύ ισχυρή. Αυτό ϕαίνεται κι από το διάγραµµα διασποράς στο Σχήµα 4.. Η µεταβλητότητα της µιας τ.µ. (αντοχή συµπίεσης ή αντοχή κάµψης) µπορεί να εξηγηθεί από τη συσχέτιση της µε την άλλη κατά ποσοστό που δίνεται από το συντελεστή προσδιορισµού, που είναι r =.87 = 65%. Συµπεραίνουµε λοιπόν πως η γνώση της µιας τ.µ. δε µας επιτρέπει να προσδιορίσουµε την άλλη µε ακρίβεια. Πρέπει επίσης να σηµειωθεί ότι η εκτίµηση r του συνετελεστή συσχέτισης µπορεί να αλλάξει σηµαντικά µε την πρόσθεση ή αφαίρεση λίγων Ϲευγών παρατηρήσεων γιατί το µέγεθος του δείγµατος είναι µικρό. Για τον συντελεστή συσχέτισης ρ µπορούµε να υπολογίσουµε διαστήµατα εµπιστοσύνης αν ϑεωρήσουµε γνωστή την κατανοµή της εκτιµήτριας r. Μπορούµε επίσης να κάνουµε στατιστικό έλεγχο για κάποια τιµή r, αλλά εδώ δε ϑα ασχοληθούµε µε αυτά τα ϑέµατα.

5 4.. ΑΠΛ Η ΓΡΑΜΜΙΚ Η ΠΑΛΙΝ Ρ ΟΜΗΣΗ 7 Α/Α Αντοχή συµπίεσης x i (ksi) Αντοχή κάµψης y i (psi) Πίνακας 4.: εδοµένα αντοχής συµπίεσης (x i ) κι αντοχής κάµψης (y i ) σκυροδέµατος. 7 αντοχη καµψης y (psi) r= αντοχη συµπιεσης x (ksi) Σχήµα 4.: ιάγραµµα διασποράς για το δείγµα παρατηρήσεων αντοχής συµπίεσης κι αντοχής κάµψης σκυροδέµατος του Πίνακα Απλή Γραµµική Παλινδρόµηση Στη συσχέτιση που µελετήσαµε παραπάνω µετρήσαµε µε το συντελεστή συσχέτισης τη γραµ- µική συσχέτιση δύο τ.µ. και. Στην παλινδρόµηση που ϑα µελετήσουµε τώρα σχεδιάζουµε

6 7 ΚΕΦ ΑΛΑΙΟ 4. ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ την εξάρτηση µιας τ.µ., που την ονοµάζουµε εξαρτηµένη µεταβλητή (dependent variable), από κάποια άλλη µεταβλητή που την ονοµάζουµε ανεξάρτητη µεταβλητή (independent variable). Η ανεξάρτητη µεταβλητή δε ϑεωρείται τυχαία αλλά παίρνει καθορισµένες τιµές που διαλέγουµε εµείς ή δίνονται από το πρόβληµα που µελετάµε. Ενώ λοιπόν η συσχέτιση είναι συµµετρική ως προς τα και, στην παλινδρόµηση η εξαρτηµένη µεταβλητή καθοδηγείται από την ανεξάρτητη µεταβλητή. Γι αυτό και στην ανάλυση που κάνουµε παίζει ϱόλο ποιόν από τους δύο παράγοντες που µετράµε ορίζουµε σαν ανεξάρτητη µεταβλητή και ποιόν σαν εξαρτηµένη, όταν αυτές δεν ορίζονται ξεκάθαρα από το πρόβληµα. Για παράδειγµα, όταν µετράµε τη διατµητική αντοχή του αργίλου σε διάφορα ϐάθη, ϑέλουµε να µελετήσουµε την (γραµµική) εξάρτηση της διατµητικής αντοχής του αργίλου από το ϐάθος τους εδάφους και γι αυτό η διατµητική αντοχή του αργίλου είναι η εξαρτηµένη µεταβλητή και το ϐάθος του εδάφους η ανεξάρτητη µεταβλητή. 4.. Το πρόβληµα της γραµµικής παλινδρόµησης Η εξαρτηµένη τ.µ. ακολουθεί κάποια κατανοµή µε αθροιστική συνάρτηση κατανοµής F (y = x), δεσµευµένη για κάθε τιµή x της µεταβλητής. Περιορίζουµε τη µελέτη του προβλήµατος στη µέση τιµή και υποθέτουµε εδώ ότι η εξάρτηση εκφράζεται από µια γραµµική σχέση E( = x) = α + βx (4.6) και η σχέση αυτή λέγεται γραµµική παλινδρόµηση της στη (linear regression) [οι τιµές της για κάθε τιµή = x παλινδροµούνται γύρω από το σηµείο y = E( = x) της ευθείας y = α + βx, δηλαδή οι τιµές της για κάθε τιµή της ϐρίσκονται πάνω και κάτω από αυτήν την ευθεία]. Το πρόβληµα της παλινδρόµησης είναι η εύρεση των παραµέτρων α και β που εκφρά- Ϲουν καλύτερα τη γραµµική εξάρτηση της από τη. Κάθε Ϲεύγος τιµών (α, β) καθορίζει µια διαφορετική γραµµική σχέση που εκφράζεται γεωµετρικά από ευθεία γραµµή και οι δύο παράµετροι ορίζονται ως: Ο σταθερός όρος α είναι η τιµή του y για x = (intercept). Ο συντελεστής β του x είναι η κλίση (slope) της ευθείας ή αλλιώς ο συντελεστής παλινδρόµησης (regression coefficient). Αν ϑεωρήσουµε τις παρατηρήσεις (x, y ),...,(x n, y n ) και το διάγραµµα διασποράς που τις απεικονίζει σαν σηµεία, µπορούµε να σχηµατίσουµε πολλές τέτοιες ευθείες που προσεγγίζουν την υποτιθέµενη γραµµική εξάρτηση της E( = x) ως προς, όπως ϕαίνεται στο Σχήµα 4.3. Για κάποια τιµή x i της αντιστοιχούν διαφορετικές τιµές y i της, σύµφωνα µε κάποια κατανοµή πιθανότητας F (y i = x i ), δηλαδή µπορούµε να ϑεωρήσουµε την y i σαν τ.µ. [ϑα ή- ταν σωστότερο να χρησιµοποιούσαµε το συµβολισµό i αντί y i, όπου ο δείκτης i ορίζει την εξάρτηση από το = x i, αλλά ϑα χρησιµοποιήσουµε εδώ τον ίδιο συµβολισµό y i για την τ.µ. και την παρατήρηση]. Η τ.µ. y i για κάποια τιµή x i της ϑα δίνεται κάτω από την υπόθεση της γραµµικής παλινδρόµησης ως y i = α + βx i + ǫ i, (4.7) όπου ǫ i είναι κι αυτή τ.µ., λέγεται σφάλµα παλινδρόµησης (regression error) κι ορίζεται ως η διαφορά της y i από τη δεσµευµένη µέση τιµή E( = x i ) (δες σχέση (4.6)).

7 4.. ΑΠΛ Η ΓΡΑΜΜΙΚ Η ΠΑΛΙΝ Ρ ΟΜΗΣΗ 73 y α3 β 3 y = + x y = + x α β y = + x α β β α Σχήµα 4.3: Ευθείες γραµµικής παλινδρόµησης x Για την ανάλυση της γραµµικής παλινδρόµησης κάνουµε τις παρακάτω υποθέσεις: Η µεταβλητή είναι ελεγχόµενη για το πρόβληµα που µελετάµε, δηλαδή γνωρίζουµε τις τιµές της χωρίς καµιά αµφιβολία. Η σχέση (4.6) ισχύει, δηλαδή η εξάρτηση της από τη είναι γραµµική. E(ǫ i ) = και Var(ǫ i ) = σ ǫ για κάθε τιµή x i της, δηλαδή το σφάλµα παλινδρόµησης έχει µέση τιµή µηδέν για κάθε τιµή της και η διασπορά του είναι σταθερή και δεν εξαρτάται από τη. Η τελευταία συνθήκη είναι ισοδύναµη µε τη συνθήκη Var( = x) = σ, δηλαδή ότι η διασπορά της εξαρτηµένης µεταβλητής είναι η ίδια για κάθε τιµή της και µάλιστα είναι σ = σ ǫ σ, όπως προκύπτει από τη σχέση (4.7), αφού οι παράµετροι α και β είναι σταθερές και το x i γνωστό. Η ιδιότητα αυτή λέγεται οµοσκεδαστικότητα (δες επίσης..4) και αντίθετα έχουµε ετεροσκεδαστικότητα όταν η διασπορά της (ή του σφάλµατος ǫ) µεταβάλλεται µε τη. Γενικά για να εκτιµήσουµε τις παραµέτρους της γραµµικής παλινδρόµησης µε τη µέθοδο των ελαχίστων τετραγώνων, όπως ϑα δούµε παρακάτω, δεν είναι απαραίτητο να υποθέσουµε κάποια συγκεκριµένη δεσµευµένη κατανοµή F (y i = x i ) της ως προς τη. Αν ϑέλουµε όµως να υπολογίσουµε διαστήµατα εµπιστοσύνης για τις παραµέτρους ϑα χρειαστούµε να υποθέσουµε κανονική δεσµευµένη κατανοµή για τη. Επίσης οι παραπάνω υποθέσεις για γραµµική σχέση και σταθερή διασπορά αποτελούν χαρακτηριστικά πληθυσµών µε κανονική κατανοµή. Συνήθως λοιπόν σε προβλήµατα γραµµικής παλινδρόµησης υποθέτουµε ότι η δεσµευµένη κατανοµή της είναι κανονική = x N(α + βx, σ ).

8 74 ΚΕΦ ΑΛΑΙΟ 4. ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ 4.. Σηµειακή εκτίµηση των παραµέτρων της γραµµικής παλινδρόµησης Λύση στο πρόβληµα της γραµµικής παλινδρόµησης µε τις υποθέσεις που ορίστηκαν παραπάνω αποτελεί ο προσδιορισµός της σταθερού όρου της παλινδρόµησης α και του συντελεστή της παλινδρόµησης β για να γνωρίζουµε την ευθεία της παλινδρόµησης αλλά και της διασποράς σ για να γνωρίζουµε το ϐαθµό µεταβλητότητας γύρω από την ευθεία. Εκτίµηση των παραµέτρων της ευθείας παλινδρόµησης Η εκτίµηση των παραµέτρων α και β γίνεται µε τη µέθοδο των ελαχίστων τετραγώνων (method of least squares). Η µέθοδος λέγεται έτσι γιατί ϐρίσκει την ευθεία παλινδρόµησης µε παραµέτρους a και b έτσι ώστε το άθροισµα των τετραγώνων των κατακόρυφων αποστάσεων των σηµείων από την ευθεία να είναι το ελάχιστο. Οι εκτιµήσεις των α και β δίνονται από την ελαχιστοποίηση του αθροίσµατος των τετραγώνων των σφαλµάτων min α,β ǫ i ή min α,β (y i α βx i ). (4.8) Για να λύσουµε αυτό το πρόβληµα ϑέτουµε τις µερικές παραγώγους ως προς τα α και β ίσες µε το µηδέν και καταλήγουµε στο σύστηµα δύο εξισώσεων µε δύο αγνώστους (y i α βx i ) α (y i α βx i ) β = = y i = nα + β x i y i = α από το οποίο παίρνουµε τις εκτιµήσεις των α και β b = s s x i x i + β, a = ȳ b x, (4.9) όπου s και s είναι η δειγµατική συνδιασπορά των και και η δειγµατική διασπορά της που ορίστηκαν στις σχέσεις (4.3) και (4.4) αντίστοιχα. Τα a και b ορίζουν την ευθεία, ŷ = a + bx, που λέγεται κι ευθεία ελαχίστων τετραγώνων. x i Εκτίµηση της διασποράς των σφαλµάτων παλινδρόµησης Για κάθε δοθείσα τιµή x i µε τη ϐοήθεια της ευθείας ελαχίστων τετραγώνων εκτιµούµε την τιµή ŷ i που γενικά είναι διαφορετική από την πραγµατική τιµή y i. Η διαφορά e i = y i ŷ i είναι η κατακόρυφη απόσταση της πραγµατικής τιµής από την ευθεία ελαχίστων τετραγώνων και λέγεται σφάλµα ελαχίστων τετραγώνων ή απλά υπόλοιπο (residual). Στο Σχήµα 4.4 απεικονίζονται τα υπόλοιπα της παλινδρόµησης. Το υπόλοιπο e i είναι η εκτίµηση του σφάλµατος παλινδρόµησης ǫ i αντικαθιστώντας απλά τις παραµέτρους παλινδρόµησης α και β µε τις εκτιµήσεις ελαχίστων τετραγώνων a και b στον ορισµό του σφαλµάτος ǫ i = y i α + βx i. Άρα η εκτίµηση της διασποράς σ του σφάλµατος

9 4.. ΑΠΛ Η ΓΡΑΜΜΙΚ Η ΠΑΛΙΝ Ρ ΟΜΗΣΗ 75 y y = a + bx y i e i= yi y ^i y ^i x i x Σχήµα 4.4: Ευθεία ελαχίστων τετραγώνων και υπόλοιπα (που είναι κι η δεσµεύµενη διασπορά της ως προς ) δίνεται από τη δειγµατική διασπορά s των υπολοίπων e i s = (y i ŷ i ), (4.) n όπου διαιρούµε µε n γιατί από τους ϐαθµούς ελευθερίας n του µεγέθους του δείγµατος αφαιρούµε δύο για τις δύο παραµέτρους που έχουν ήδη εκτιµηθεί. Η δειγµατική διασπορά s µπορεί να εκφραστεί ως προς τις δειγµατικές διασπορές των και και της συνδιασποράς τους, αν αντικαταστήσουµε τις εκφράσεις των a και b από την (4.9) στην παραπάνω σχέση (όπου ϑέτουµε ŷ i = a + bx i ) s = n ( ) s s n s = n n (s b s ) (4.) όπου και πάλι υποθέτουµε τις αµερόληπτες εκτιµήτριες για τις διασπορές. Παρατηρήσεις. Η ευθεία ελαχίστων τετραγώνων περνάει από το σηµείο ( x, ȳ) γιατί a + b x = ȳ b x + b x = ȳ. Άρα η ευθεία ελαχίστων τετραγώνων µπορεί επίσης να οριστεί ως y i ȳ = b(x i x).. Η εκτίµηση των α και β µε τη µέθοδο των ελαχίστων τετραγώνων δεν προϋποθέτει σταθερή διασπορά και κανονική κατανοµή της εξαρτηµένης µεταβλητής για κάθε τιµή της ανεξάρτητης µεταβλητής. Οταν όµως ισχύουν οι δύο αυτές συνθήκες οι εκτιµήτριες ελαχίστων τετραγώνων a και b είναι οι εκτιµήτριες µεγίστης πιθανοφάνειας (κι άρα έχουν και τις επιθυµητές ιδιότητες εκτιµητριών).

10 76 ΚΕΦ ΑΛΑΙΟ 4. ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ 3. Αν η διασπορά της δεσµευµένης κατανοµής της αλλάζει µε τη, τότε η διαδικασία των ελαχίστων τετραγώνων πρέπει να διορθωθεί έτσι ώστε να δίνει περισσότερο ϐάρος στις παρατηρήσεις που αντιστοιχούν σε µικρότερη διασπορά. 4. Για κάθε τιµή x της µπορούµε να προβλέψουµε την αντίστοιχη τιµή y της από την ευθεία ελαχίστων τετραγώνων, y = a + bx. Εδώ πρέπει να προσέξουµε ότι η τιµή x πρέπει να ανήκει στο εύρος τιµών της που έχουµε από το δείγµα. Για τιµές έξω από αυτό το διάστηµα η πρόβλεψη είναι επικίνδυνη. Επίσης οι προβλέψεις έχουν νόηµα όταν η διασπορά του σφάλµατος είναι σχετικά µικρή. Παράδειγµα 4. Θέλουµε να µελετήσουµε την αντοχή αλουµινίου και γι αυτό κάναµε ένα πεί- ϱαµα και µετρήσαµε την επιµήκυνση δοκιµίου αλουµινίου για διάφορες τάσεις. Τα αποτελέσµατα δίνονται στον Πίνακα 4.. ύναµη τάσης x i (kips) Επιµήκυνση δοκιµίου y i ( 3 inches) Πίνακας 4.: εδοµένα αντοχής αλουµινίου (y i ) για διαφορετικές τάσεις (x i ). Υποθέτουµε πως η παραµόρφωση του αλουµινίου εξαρτάται γραµµικά από την τάση και το διάγραµµα διασποράς στο Σχήµα 4.5 από το δείγµα επιβεβαιώνει αυτήν την υπόθεση. Για να επιµηκυνση αλoυµινιoυ y ( 3 inches) y 3 y = 6,65 +,99 x x δυναµη τασης x (kips) Σχήµα 4.5: ιάγραµµα διασποράς για τα δεδοµένα του Πίνακα 4. κι ευθεία ελαχίστων τετραγώνων. εκτιµήσουµε τις παραµέτρους a και b της ευθείας ελαχίστων τετραγώνων υπολογίζουµε πρώτα τα παρακάτω x = 4 ȳ = x i = 4 7 y i = x iy i = 35.5

11 4.. ΑΠΛ Η ΓΡΑΜΜΙΚ Η ΠΑΛΙΝ Ρ ΟΜΗΣΗ 77 και χρησιµοποιώντας τις σχέσεις (4.3) και (4.4) για τη δειγµατική συνδιασπορά και διασπορά αντίστοιχα, ϐρίσκουµε Οι εκτιµήσεις b και a είναι s = 5.3 s = 4.67 s = b = =.99 a = = Από τη σχέση (4.) υπολογίζουµε την εκτίµηση διασποράς των σφαλµάτων παλινδρόµησης Τα αποτελέσµατα αυτά ερµηνεύονται ως εξής: s = 6 5 ( ) = b =.99: Για αύξηση της δύναµης τάσης κατά µία µονάδα µέτρησης ( kips) το δοκίµιο αλουµινίου επιµηκύνεται κατά περίπου. ίντσες (.99 3 inches).. a = 6.65: Οταν δεν ασκείται τάση στο δοκίµιο αλουµινίου (x = ), η επιµήκυνση του δοκιµίου είναι ίντσες, που ϕυσικά είναι αδύνατον. Αυτό συµβαίνει γιατί η τιµή x = δεν ανήκει στο διάστηµα τιµών δύναµης τάσης του πειράµατος. ε ϑα πρέπει λοιπόν να επιχειρήσουµε προβλέψεις για τιµές δύναµης τάσης µικρότερης του kips και µεγαλύτερης των 7 kips. 3. s = 7.75: Η διασπορά γύρω από την ευθεία παλινδρόµησης για κάθε τιµή του (στο διάστηµα τιµών του πειράµατος) εκτιµάται να είναι 7.75, ή αλλιώς το τυπικό σφάλµα της εκτίµησης της παλινδρόµησης είναι.78 3 ίντσες, που είναι µικρό σε σχέση µε το επίπεδο τιµών της και άρα το µοντέλο της γραµµική παλινδρόµησης εξηγεί ικανοποιητικά τη σχέση επιµήκυνσης αλουµινίου και τάσης και επιτρέπει καλές προβλέψεις. Με ϐάση το µοντέλο παλινδρόµησης που εκτιµήσαµε µπορούµε να προβλέψουµε την επιµήκυνση του αλουµινίου για κάθε δύναµη τάσης στο διάστηµα [, 7] kips. Στο Σχήµα 4.5 απεικονίζεται η πρόβλεψη της επιµήκυνσης για δύναµη τάσης x = 3.5 kips και είναι y = = 3.8. Για τις παραµέτρους α και β, καθώς και για τη διασπορά σ, µπορούµε να εκτιµήσουµε διαστήµατα εµπιστοσύνης και να κάνουµε στατιστικούς ελέγχους Σχέση του συντελεστή συσχέτισης και παλινδρόµησης Η παλινδρόµηση ορίζεται ϑεωρώντας την ανέξαρτητη µεταβλητή καθορισµένη και την εξαρτηµένη µεταβλητή τυχαία, ενώ για τη συσχέτιση ϑεωρούµε και τις δύο µεταβλητές και τυχαίες. Για τις µεταβλητές και της παλινδρόµησης, µπορούµε να αγνοήσουµε ότι η δεν είναι τ.µ. και να ορίσουµε το συντελεστή συσχέτισης ρ όπως και πριν. Η σχέση µεταξύ του r (της εκτιµήτριας του ρ από το δείγµα) και του συντελεστή της παλινδρόµησης b

12 78 ΚΕΦ ΑΛΑΙΟ 4. ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ (της εκτιµήτριας του β από το δείγµα) δίνεται ως εξής (συνδιάζοντας τις σχέσεις r = s και s s b = s ) s r = b s ή b = r s. (4.) s s Και τα δύο µεγέθη, r και b, εκφράζουν ποιοτικά τη γραµµική συσχέτιση των µεταβλητών και, αλλά το b εξαρτάται από τη µονάδα µέτρησης των και ενώ το r παίρνει τιµές στο διάστηµα [, ]. Ετσι αν η συσχέτιση είναι ϑετική (r > ) τότε η κλίση της ευθείας παλινδρόµησης b είναι επίσης ϑετική, αν η συσχέτιση είναι αρνητική (r < ) τότε είναι b < και αν οι µεταβλητές και δε συσχετίζονται (r = ) τότε η ευθεία παλινδρόµησης είναι οριζόντια (b = ). Επίσης µπορούµε να εκφράσουµε το συντελεστή προσδιορισµού r ως προς τη δειγµατική διασπορά του σφάλµατος s και αντίστροφα s = n n s ( r ) ή r = n n s s. (4.3) Η παραπάνω σχέση δηλώνει πως όσο µεγαλύτερο είναι το r (ή το r ) τόσο µικρότερη είναι η διασπορά του σφάλµατος της παλινδρόµησης, δηλαδή τόσο καλύτερη είναι η πρόβλεψη που ϐασίζεται στην ευθεία παλινδρόµησης. Παράδειγµα 4.3 Στο παραπάνω παράδειγµα, ο συντελεστής συσχέτισης της επιµήκυνσης του αλουµινίου και της τάσης είναι r = s s s = =.995 που ϑα µπορούσαµε να υπολογίσουµε κι από τις σχέσεις (4.) ή (4.3). Ο συντελεστής συσχέτισης δηλώνει την πολύ ισχυρή ϑετική συσχέτιση της επιµήκυνσης του αλουµινίου και της τάσης, που δε µπορούµε όµως εύκολα να συµπεράνουµε από την τιµή του συντελεστή παλινδρόµησης b =.99 ή την τιµή της διασποράς των σφαλµάτων s = 7.75 γιατί οι τιµές τους ορίζονται σε σχέση µε το πεδίο τιµών της επιµήκυνσης του αλουµινίου και της τάσης. Σ αυτό το κεφάλαιο ασχοληθήκαµε µόνο µε την απλή γραµµική παλινδρόµηση. Η µελέτη της παλινδρόµησης επεκτείνεται στη µή-γραµµική παλινδρόµηση, που αποτελεί γενικότερη και πιο ϱεαλιστική (αλλά και πιο πολύπλοκη) προσέγγιση για τον προσδιορισµό της εξάρτησης της από τη. Επίσης η τ.µ. µπορεί να εξαρτάται από περισσότερες από µια µεταβλητές που είναι το πρόβληµα της πολλαπλής παλινδρόµησης (γραµµική ή µή-γραµµική).

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

Κεϕάλαιο 5 Συσχέτιση και Παλινδρόµηση

Κεϕάλαιο 5 Συσχέτιση και Παλινδρόµηση Κεϕάλαιο 5 Συσχέτιση και Παλινδρόµηση Στο προηγούµενο κεϕάλαιο µελετήσαµε τη διάδοση του σϕάλµατος από µια τυχαία µεταβλητή X σε µια τ.µ. Y που δίνεται ως συνάρτηση της X. Σε αυτό το κεϕάλαιο ϑα διερευνήσουµε

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Κεφάλαιο 3 ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Σε πολλά προβλήµατα της µηχανικής δεν ενδιαφερόµαστε να εκτιµήσουµε την τιµή της παραµέτρου αλλά να διαπιστώσουµε αν η παραµέτρος είναι µικρότερη ή µεγαλύτερη από

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ 6.1 Εισαγωγή Σε πολλές στατιστικές εφαρµογές συναντάται το πρόβληµα της µελέτης της σχέσης δυο ή περισσότερων τυχαίων µεταβλητών. Η σχέση

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Στατιστική ΜΕΡΟΣ Β. για Ηλεκτρολόγους Μηχανικούς. ηµήτρης Κουγιουµτζής http://www.users.auth.gr/dkugiu/teach/electricengineer/

Στατιστική ΜΕΡΟΣ Β. για Ηλεκτρολόγους Μηχανικούς. ηµήτρης Κουγιουµτζής http://www.users.auth.gr/dkugiu/teach/electricengineer/ Στατιστική για Ηλεκτρολόγους Μηχανικούς ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://www.users.auth.gr/dkugiu/teach/electricengineer/ E mail: dkugiu@gen.auth.gr Απρίλιος 2010 2 Στο Μέρος Α ασχοληθήκαµε µε την τυχαία

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Κεφάλαιο 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ. 1.1 Περιγραφή Στατιστικών εδοµένων. p i = f i n. (1.1) F i = f j. P i = p j.

Κεφάλαιο 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ. 1.1 Περιγραφή Στατιστικών εδοµένων. p i = f i n. (1.1) F i = f j. P i = p j. Κεφάλαιο 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Σ αυτό το κεφάλαιο ϑα δούµε πρώτα τρόπους να παρουσιάσουµε τα δεδοµένα µε στατιστικούς πίνακες και διαγράµµατα και µετά να συνοψίσουµε τα δεδοµένα υπολογίζοντας συνοπτικά

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

Εισαγωγή στη Βιοστατιστική

Εισαγωγή στη Βιοστατιστική Εισαγωγή στη Βιοστατιστική Π.Μ.Σ.: Έρευνα στη Γυναικεία Αναπαραγωγή Οκτώβριος Νοέµβριος 2013 Αλέξανδρος Γρυπάρης, PhD Αλέξανδρος Γρυπάρης, PhD 3 Περιεχόµενα o Ορισµός της Στατιστικής o Περιγραφική στατιστική

Διαβάστε περισσότερα

Μέτρηση κατανοµής ηλεκτρικού πεδίου

Μέτρηση κατανοµής ηλεκτρικού πεδίου ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 31 3. Άσκηση 3 Μέτρηση κατανοµής ηλεκτρικού πεδίου 3.1 Σκοπός της Εργαστηριακής Άσκησης Σκοπός της άσκησης είναι η µέτρηση της κατανοµής του ηλεκτρικού πεδίου Ε, µπροστά

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

Κεφάλαιο 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ. 1.1 Περιγραφή Στατιστικών εδοµένων. p i = f i n. (1.1) F i = f j όπου x j x i για j i. P i =

Κεφάλαιο 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ. 1.1 Περιγραφή Στατιστικών εδοµένων. p i = f i n. (1.1) F i = f j όπου x j x i για j i. P i = Κεφάλαιο 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Σ αυτό το κεφάλαιο ϑα δούµε πρώτα τρόπους να παρουσιάσουµε τα δεδοµένα µε στατιστικούς πίνακες και διαγράµµατα και µετά να συνοψίσουµε τα δεδοµένα υπολογίζοντας συνοπτικά

Διαβάστε περισσότερα

Α. 1. Μετρήσεις και Σφάλµατα

Α. 1. Μετρήσεις και Σφάλµατα Α. 1. Μετρήσεις και Σφάλµατα Κάθε πειραµατική µέτρηση υπόκειται σε πειραµατικά σφάλµατα. Με τον όρο αυτό δεν εννοούµε λάθη τα οποία γίνονται κατά την εκτέλεση του πειράµατος ή τη λήψη των µετρήσεων, τα

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Smple Lear Regresso) Να κατανοηθεί η έννοια της παλινδρόµησης Ποιες οι προϋποθέσεις για να εφαρµοσθεί η γραµµική παλινδρόµηση; Τι είναι το γραµµικό µοντέλο και πως εκτιµούνται

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι

Διαβάστε περισσότερα

Κεϕάλαιο 6. Χρονοσειρές

Κεϕάλαιο 6. Χρονοσειρές Κεϕάλαιο 6 Χρονοσειρές Στο προηγούµενο κεϕάλαιο µελετήσαµε τη σχέση ενός µεγέθους µε άλλα µεγέθη καθώς και την εξάρτηση του µεγέθους (της εξαρτηµένης τυχαίας µεταβλητής) από άλλα µεγέθη (τις ανεξάρτητες

Διαβάστε περισσότερα

n i P(x i ) P(X = x i ) = lim

n i P(x i ) P(X = x i ) = lim Κεϕάλαιο 2 Πιθανότητες και Τυχαίες Μεταβλητές Μπορούµε να καταλάβουµε την έννοια της πιθανότητας από τη σχετική συχνότητα εµϕάνισης n i κάποιας τιµής x i µιας διακριτής τ.µ. X. Αν είχαµε τη δυνατότητα

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία ΚΕΦΑΛΑΙΟ 4 ΠΙΝΑΚΕΣ ΠΟΛΛΑΠΛΩΝ ΚΙΝ ΥΝΩΝ (MULTIPLE DECREMENT TABLES) Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία αρχίζοντας από µια οµάδα γεννήσεων ζώντων που αποτελεί την ρίζα του πίνακα

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) Πολλά ΧΠ δεν µπορούν να αναπαρασταθούν αριθµητικά. Τα ΧΠ χαρακτηρίζονται συµµορφούµενα και µη-συµµορφούµενα. Τα ΧΠ τέτοιου είδους ονοµάζονται

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ)

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ) ΑΣΚΗΣΕΙΣ. Ο διευθυντής προσωπικού μιας μεγάλης εταιρείας πιστεύει ότι ίσως υφίσταται κάποια σχέση μεταξύ των ημερών απουσίας και της ηλικίας των εργαζομένων. Με βάση την υπόθεση αυτή ενδιαφέρεται να κατασκευάσει

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

γένεση των µετακινήσεων

γένεση των µετακινήσεων 3 γένεση των µετακινήσεων εισαγωγή το υπό διερεύνηση θέµα: πόσες µετακινήσεις ξεκινούν από κάθε ζώνη? πόσες µετακινήσεις κάνει ένας µετακινούµενος κατά την διάρκεια µιας µέσης εβδοµάδας? Ανάλυση κατά ζώνη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

Μάθημα Αστικής Γεωγραφίας

Μάθημα Αστικής Γεωγραφίας Μάθημα Αστικής Γεωγραφίας Διδακτικό Έτος 2015-2016 Παραδόσεις Διδακτικής Ενότητας: Πληθυσμιακή πρόβλεψη Δούκισσας Λεωνίδας, Στατιστικός, Υποψ. Διδάκτορας, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο Σελίδα

Διαβάστε περισσότερα

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER ΑΣΚΗΣΕΙΣ. Θεωρήστε το παράδειγμα που αναφέρεται στη συσχέτιση του βαθμού ικανοποίησης των εργαζομένων σε ένα εργαστήριο σε σχέση με τις οκτώ μεταβλητές που ορίστηκαν εκεί. (Χ =ηλικία, Χ =φύλο, Χ =εβδομαδιαίος

Διαβάστε περισσότερα

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Περιεχόµενα ιακριτές τυχαίες µεταβλητές Συνεχείς τυχαίες µεταβλητές Μέση τιµή τυχαίων µεταβλητών Ροπές, διασπορά, και τυπική απόκλιση τυχαίων µεταβλητών

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε Άλγεβρα υκείου επιµ.: άτσιος ηµήτρης ΣΣΤΗΜΤ ΜΜΩΝ ΞΣΩΣΩΝ Μ ΝΩΣΤΣ ΣΩΣ ΝΝΣ ρισµός: Μια εξίσωση της µορφής αχ+βψ=γ ονοµάζεται γραµµική εξίσωση µε δυο αγνώστους. ύση της εξίσωσης αυτής ονοµάζεται κάθε διατεταγµένο

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

Έργο µιας χρονικά µεταβαλλόµενης δύναµης

Έργο µιας χρονικά µεταβαλλόµενης δύναµης Έργο µιας χρονικά µεταβαλλόµενης δύναµης Κ. Ι. Παπαχρήστου Τοµέας Φυσικών Επιστηµών, Σχολή Ναυτικών οκίµων papachristou@snd.edu.gr Θα συζητήσουµε µερικά λεπτά σηµεία που αφορούν το έργο ενός χρονικά µεταβαλλόµενου

Διαβάστε περισσότερα

Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Στατιστικής Σηµειώσεις για το µάθηµα : Ανάλυση ιακύµανσης και Σχεδιασµός Πειραµάτων

Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Στατιστικής Σηµειώσεις για το µάθηµα : Ανάλυση ιακύµανσης και Σχεδιασµός Πειραµάτων Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Στατιστικής Σηµειώσεις για το µάθηµα : Ανάλυση ιακύµανσης και Σχεδιασµός Πειραµάτων Βασίλης Βασδέκης - Στέλιος Ψαράκης Αθήνα 005 Πείραµα Είναι µια δοκιµή ή ένα σύνολο

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων ΘΕ ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες που αφορούν την

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Θέμα: «Γραμμικά μοντέλα παλινδρόμησης

Διαβάστε περισσότερα