ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ"

Transcript

1 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας Βόλος, Οκτώβριος 2005

2 Πρόλογος Το µάθηµα των Υπολογιστικών Μεθόδων εισήχθη στα πλαίσια της δεύτερης αναµόρφωσης του Προγράµµατος Σπουδών και συγκεκριµένα την ακαδηµαϊκή χρονιά ιδάσκεται στο 5ο εξάµηνο και οι φοιτητές που το παρακολουθούν θα πρέπει να έχουν ολοκληρώσει µε επιτυχία τα µαθήµατα των Συνήθων και Μερικών ιαφορικών Εξισώσεων, του Προγραµµατισµού, της Αριθµητικής Ανάλυσης και να έχουν αποκτήσει βασικές γνώσεις στην Μηχανική των Ρευστών και Στερεών. Στόχος του µαθήµατος είναι να ενισχύσει την θεωρητική και εφαρµοσµένη γνώση του φοιτητή στην υπολογιστική επίλυση µηχανολογικών προβληµάτων. Το µάθηµα εντάσσεται στη γενικότερη προσπάθεια που γίνεται στο ΤΜΜΒ ώστε να αναβαθµιστούν οι ικανότητες των φοιτητών του τµήµατος στις νέες τεχνολογίες, στη πληροφορική και στην ανάπτυξη και εφαρµογή τεχνικού λογισµικού. Η ύλη του µαθήµατος περιλαµβάνει την αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων (Σ Ε) που περιγράφουν προβλήµατα αρχικών τιµών, την ταξινόµηση των µερικών διαφορικών εξισώσεων (Μ Ε), την αριθµητική επίλυση συνήθων και µερικών διαφορικών εξισώσεων µε τη µέθοδο των πεπερασµένων διαφορών και τέλος µία εισαγωγή στη µέθοδο των πεπερασµένων όγκων. Συγκεκριµένα στο 1 ο Κεφάλαιο αναπτύσσονται οι µέθοδοι αριθµητικής ολοκλήρωσεης Σ Ε και συστηµάτων Σ Ε και διατυπώνονται οι συνθήκες σύγκλισης και ευστάθειας των µεθόδων ολοκλήρωσης. Στο 2 ο Κεφάλαιο παρουσιάζεται η αριθµητική παραγώγιση και µία εισαγωγή στη µέθοδο των πεπερασµένων διαφορών µε πιλοτικές εφαρµογές σε προβλήµατα οριακών τιµών που περιγράφονται από συνήθεις διαφορικές εξισώσεις. Στη συνέχεια στο 3 ο Κεφάλαιο γίνεται η µαθηµατική ταξινόµηση των µερικών διαφορικών εξισώσεων 2 ου βαθµού και εξηγείται η φυσική της σηµασία. Στα Κεφάλαια 4 και 5 η µέθοδος των πεπερασµένων διαφορών αναπτύσσεται µε λεπτοµέρεια και εφαρµόζεται σε 2

3 µεγάλο εύρος ελλειπτικών και παραβολικών προβληµάτων αντίστοιχα. ίδεται έµφαση στις έννοιες της ευστάθειας, της συνοχής και της σύγκλισης του αριθµητικού σχήµατος και στα προβλήµατα που εµφανίζονται από την διακριτοποίηση των συνεχών διαφορικών εξισώσεων. Στο 6 ο Κεφάλαιο διατυπώνεται η βασική µεθοδολογία των πεπερασµένων όγκων, επιλύεται µία σειρά απλών προβληµάτων και κυρίως περιγράφονται οι απαραίτητες προϋποθέσεις ώστε να υπάρχει αντιστοιχία ανάµεσα στις µεθόδους των πεπερασµένων διαφορών και όγκων. Επίσης περιγράφεται ο φαινοµενολογικός χαρακτήρας της ευστάθειας στις εξισώσεις πεπερασµένων όγκων. Τέλος στο 7 ο Κεφάλαιο εφαρµόζεται η µέθοδος των πεπερασµένων διαφορών στις εξισώσεις κύµατος 1 ης και 2 ης τάξης και γενικότερα σε προβλήµατα υπερβολικού χαρακτήρα. Στη συνέχεια των σπουδών τους οι φοιτητές του ΤΜΜΒ έχουν την δυνατότητα να παρακολουθήσουν τα µαθήµατα των Πεπερασµένων Στοιχείων και των Υπολογιστικών Μεθόδων στην Ενεργειακή Περιοχή του 6 ου και 7 ου εξαµήνου αντίστοιχα, και να ολοκληρώσουν ένα βασικό κύκλο µαθηµάτων στην Υπολογιστική Μηχανική. Βόλος, Οκτώβριος

4 Περιεχόµενα 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων (Σ Ε) και συστηµάτων προβλήµατα αρχικών τιµών (8 ώρες) 1.1 Εισαγωγή 1.2 Μέθοδος Euler 1.3 Μέθοδοι Runge-Kutta 1.4 Αριθµητική επίλυση συστηµάτων διαφορικών εξισώσεων 1.5 Ευστάθεια και σφάλµατα µεθόδων Euler και Runge-Kuttta 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών σε Σ Ε (6 ώρες) 2.1 Εισαγωγή 2.2 Εκφράσεις πεπερασµένων διαφορών Σειρά Taylor Πολυώνυµα παρεµβολής 2.3 Προβλήµατα δύο οριακών τιµών 2.4 Η µέθοδος των πεπερασµένων διαφορών 2.5 Οριακές συνθήκες µε παραγώγους 3. Ταξινόµηση µερικών διαφορικών εξισώσεων 2 ης τάξης (4 ώρες) 3.1 Εισαγωγή 3.2 Ταξινόµηση Μ Ε. 2 ης τάξης µε δυο ανεξάρτητες µεταβλητές 3.3 Ταξινόµηση Μ Ε. 2 ης τάξης µε περισσότερες από δυο ανεξάρτητες µεταβλητές 3.4 Οριακές συνθήκες τύπου Dirichlet, Neumann και Robin 3.5 Σωστά τοποθετηµένα προβλήµατα 3.6 Φυσική σηµασία ταξινόµησης Μ Ε 4. Επίλυση ελλειπτικών µερικών διαφορικών εξισώσεων µε 4.1 Εισαγωγή (Εξισώσεις Laplace, Poisson, Helmholtz, ιαρµονική) 4.2 Εξισώσεις πέντε και εννέα σηµείων 4.3 Επίλυση συστηµάτων 4.4 Μέθοδος ADI 4.5 Οριακές συνθήκες µικτού τύπου και ακανόνιστα όρια 4.6 Κυλινδρικές και σφαιρικές συντεταγµένες 4

5 5. Επίλυση παραβολικών µερικών διαφορικών εξισώσεων µε 5.1 Εισαγωγή θερµότητας ή διάχυσης 5.2 ιακριτοποίηση του πεδίου ορισµού 5.3 Ρητό σχήµα 5.4 Πεπλεγµένο σχήµα 5.5 Πεπλεγµένο σχήµα Crank-Nicolson 5.6 Ευστάθεια 5.7 Συνοχή 5.8 Σύγκλιση 5.9 Εξίσωση θερµότητας ή διάχυσης σε δύο διαστάσεις 5.10 Ανάλυση ευστάθειας σε δύο διαστάσεις 5.11 Εφαρµογή της µεθόδου ADI σε παραβολικές εξισώσεις 5.12 Αντιστοιχία παραβολικών και ελλειπτικών σχηµάτων 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων (12 ώρες) 6.1 Εισαγωγή 6.2 Ολοκλήρωση σε όγκο αναφοράς 6.3 Οριακές συνθήκες 6.4 Χρονικά µεταβαλλόµενα προβλήµατα 6.5 Ολοκλήρωση σε δισδιάστατο και τρισδιάστατο όγκο αναφοράς 6.6 Κυλινδρικές συντεταγµένες 6.7 Επίλυση ελλειπτικών και παραβολικών προβληµάτων 6.8 Σύγκριση µεταξύ των µεθόδων πεπερασµένων διαφορών και όγκων 7. Επίλυση υπερβολικών µερικών διαφορικών εξισώσεων µε 7.1 Εξισώσεις κύµατος 1 ης και 2 ης τάξης 7.2 Πρόδροµη στο χρόνο ανάδροµη στο χώρο 7.3 Σύγκριση αριθµητικής και αναλυτικής λύσης 7.4 Ρητά σχήµατα Lax-Wendroff και McCormack 7.5 Πεπλεγµένα σχήµατα Euler και Τραπεζίου 7.6 Αριθµητική επίλυση εξίσωσης κύµατος 2 ης τάξης Παράρτηµα 1. Αναλυτικές λύσεις µερικών διαφορικών εξισώσεων 5

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Φόρτος εργασίας. 4 ( ώρες): Επίπ εδο μαθήματος: Ώρες διδασκαλίας: 7 διδασκαλίας εβδομαδιαίως:

Φόρτος εργασίας. 4 ( ώρες): Επίπ εδο μαθήματος: Ώρες διδασκαλίας: 7 διδασκαλίας εβδομαδιαίως: Γενικές π ληροφορίες μαθήματος: Τίτλος Υπ ολογιστική μαθήματος: Υδραυλική με Εφαρμογές σε Υδραυλικά Έργα Πιστωτικές μονάδες: 5 Κωδικός μαθήματος: CE07_H05 Φόρτος εργασίας ( ώρες): Επίπ εδο μαθήματος: Προπτυχιακό

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

Πίνακας Περιεχομένων 7

Πίνακας Περιεχομένων 7 Πίνακας Περιεχομένων Πρόλογος...5 Πίνακας Περιεχομένων 7 1 Εξισώσεις Ροής- Υπολογιστική Μηχανική Ρευστών...15 1.1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ.....15 1.1.1 Γενικά θέματα. 15 1.1.2 Υπολογιστικά δίκτυα...16

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφ 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 71 Εισαγωγή πρότυπες εξισώσεις 7 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων 73 Οριακές συνθήκες μικτού τύπου και ακανόνιστα

Διαβάστε περισσότερα

http://kesyp.didefth.gr/ 1

http://kesyp.didefth.gr/ 1 248_Τµήµα Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης, Ηράκλειο Προπτυχιακό Πρόγραµµα Σκοπός του Τµήµατος Εφαρµοσµένων Μαθηµατικών είναι η εκαπαίδευση επιστηµόνων ικανών όχι µόνο να υπηρετήσουν και να

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

z είναι οι τρεις ανεξάρτητες

z είναι οι τρεις ανεξάρτητες Κεφάλαιο 5 Επίλυση παραβολικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές 5. Εξίσωση θερµότητας ή διάχυσης Η πλέον αντιπροσωπευτική εξίσωση µεταξύ των παραβολικών εξισώσεων είναι η εξίσωση θερµότητας

Διαβάστε περισσότερα

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων.

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων. Πανεπιστήµιο Κύπρου Το µάθηµα περιλαµβάνει Αριθµητικές και Υπολογιστικές Μεθόδους για Μηχανικούς, µε έµφαση στις µεθόδους: αριθµητικής ολοκλήρωσης/παραγώγισης, αριθµητικών πράξεων µητρώων, λύσεων µητρώων

Διαβάστε περισσότερα

Χ. Α. Αλεξόπουλος. Τµήµα Μηχ. Η/Υ και Πληροφορικής Πανεπιστήµιο Πατρών

Χ. Α. Αλεξόπουλος. Τµήµα Μηχ. Η/Υ και Πληροφορικής Πανεπιστήµιο Πατρών ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΥΛΟΠΟΙΗΣΗΣ Χ. Α. Αλεξόπουλος Τµήµα Μηχ. Η/Υ και Πληροφορικής Πανεπιστήµιο Πατρών Πάτρα 2014 Αφιερωµένο σε δύο εκλεκτούς ανθρώπους, πανεπιστηµιακούς δασκάλους

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφάλαιο 7 Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 7. Εξισώσεις κύματος ης ης τάξης Οι κλασσικές αντιπροσωπευτικές εξισώσεις της κατηγορίας των υπερβολικών εξισώσεων είναι οι

Διαβάστε περισσότερα

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων Κεφάλαιο Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων. Εισαγωγή Η µοντελοποίηση πολλών φυσικών φαινοµένων και συστηµάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται µε

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1 i ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1 ΚΕΦΑΛΑΙΟ 1 Αριθµοί και Μεταβλητές... 5 1.1. Το σύνολο των φυσικών αριθµών Φ... 5 1.2. Το σύνολο Φ 0 των ακέραιων της Αριθµητικής... 7 1.3. Το σύνολο των σύµµετρων αριθµών Σ...

Διαβάστε περισσότερα

Σε ότι αφορά τα επί μέρους μαθήματα ισχύουν τα εξής: ΜΕΤΑΒΑΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ για τα ΥΠΟΧΡΕΩΤΙΚΑ ΜΑΘΗΜΑΤΑ

Σε ότι αφορά τα επί μέρους μαθήματα ισχύουν τα εξής: ΜΕΤΑΒΑΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ για τα ΥΠΟΧΡΕΩΤΙΚΑ ΜΑΘΗΜΑΤΑ ΜΕΤΑΒΑΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ Παλαιού Προγράμματος Σπουδών (Οι διατάξεις αυτές αφορούν τους φοιτητές του Τμήματος Φυσικής, οι οποίοι παρακολουθούν το παλαιό πρόγραμμα σπουδών, δηλ. γράφτηκαν στο Α εξάμηνο το Ακαδ.

Διαβάστε περισσότερα

Κεφάλαιο 4. Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές

Κεφάλαιο 4. Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές Κεφάλαιο 4 Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές 4 Εισαγωγή πρότυπες εξισώσεις Οι πλέον συνηθισµένες ελλειπτικές εξισώσεις µε πλήθος εφαρµογών σε πολλά επιστηµονικά και τεχνολογικά

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1 i ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1 ΚΕΦΑΛΑΙΟ 1 Αριθµοί και Μεταβλητές... 5 1.1. Το σύνολο των φυσικών αριθµών Φ... 5 1.2. Το σύνολο Φ 0 των ακέραιων της Αριθµητικής... 7 1.3. Το σύνολο των σύµµετρων αριθµών Σ...

Διαβάστε περισσότερα

Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων

Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

Μ Ε: Αναλυτικό Πρόγραµµα- Υλη Μαθήµατος 2017

Μ Ε: Αναλυτικό Πρόγραµµα- Υλη Μαθήµατος 2017 ΚΕΦΑΛΑΙΟ 1 Μ Ε: Αναλυτικό Πρόγραµµα- Υλη Μαθήµατος 2017 Αντικείµενο του µαθήµατος είναι η µελέτη Μερικών ιαφορικών Εξισώσεων. Τον όρο Μερική ια- ϕορική Εξίσωση ϑα συµβολίζουµε µε (Μ Ε). Η ιστοσελίδα του

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 11 Κεφάλαιο 1o: Εισαγωγικά... 15 1.1 Με τι ασχολείται η Αριθμητική Ανάλυση... 15 1.2 Πηγές Σφαλμάτων... 17 1.2.1 Εισόδου... 17 1.2.2 Αριθμητικής Υπολογιστών... 18 1.2.3

Διαβάστε περισσότερα

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενότητα 1: Εισαγωγή Βασικές Έννοιες Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΛΙΕΡΗΣ Εισαγωγή 2 Περιεχόμενα 1. Εισαγωγή 2. Αριθμητική παραγώγιση

Διαβάστε περισσότερα

ΑΝΑΜΟΡΦΩΣΗ ΠΠΣ ΣΥΝΟΠΤΙΚΗ ΕΚΘΕΣΗ

ΑΝΑΜΟΡΦΩΣΗ ΠΠΣ ΣΥΝΟΠΤΙΚΗ ΕΚΘΕΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ ΠΠΣ ΣΥΝΟΠΤΙΚΗ ΕΚΘΕΣΗ ΠΕ 7 ΕΙΣΑΓΩΓΗ ΟΜΑΔΑΣ ΕΞΕΙΔΙΚΕΥΜΕΝΩΝ ΜΑΘΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΜΠΛΟΥΤΙΣΜΟΣ ΠΕΡΙΕΧΟΜΕΝΟΥ

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις

Διαβάστε περισσότερα

ΠΡΟΤΑΣΗ ΝΕΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ

ΠΡΟΤΑΣΗ ΝΕΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΕΠΙΤΡΟΠΗ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΗΣ Α.Π.Θ. 2010-2011 ΠΡΟΤΑΣΗ ΝΕΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ Εισαγωγικά: Το σχέδιο περιλαµβάνει τον προτεινόµενο κατάλογο υποχρεωτικών µαθηµάτων µε τις αντίστοιχες

Διαβάστε περισσότερα

Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3.

Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3. Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3. Η δημιουργία ικανών και άριστα εκπαιδευμένων επιστημόνων Γιατί Μαθηματικά

Διαβάστε περισσότερα

Άσκηση 1 Έχουµε να επιλύσουµε την εξίσωση κύµατος 1 ης τάξης (υπερβολική εξίσωση) (1)

Άσκηση 1 Έχουµε να επιλύσουµε την εξίσωση κύµατος 1 ης τάξης (υπερβολική εξίσωση) (1) Άσκηση Έχουµε να επιλύσουµε την εξίσωση κύµατος ης τάξης (υπερβολική εξίσωση) u t + cu = 0 () Θα χρησιµοποιήσουµε τις ακόλουθες µεθόδους: α) Μέθοδος FTBS (Πρόδροµη στο χρόνο, ανάδροµη στο χώρο) Το σχήµα

Διαβάστε περισσότερα

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Ύλη που διδάχτηκε κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους 2005-2006 στα πλαίσια του µαθήµατος ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑ ΥΛΙΚΩΝ Ι ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Επιστηµών

Διαβάστε περισσότερα

ΩΡΙΑΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. Ακαδημαϊκό Έτος

ΩΡΙΑΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. Ακαδημαϊκό Έτος 1 ο Εξάμηνο Προγραμματισμός & Χρήση Ηλεκτρονικών Υπολογιστών Βασικά Εργαλεία Λογισμικού 3-3 Ανόργανη Χημεία 3-5 Τεχνικές Σχεδιάσεις Χρήση Η/Υ (Διαγράμματα Ροής, CAD/CAM) 3 - - Φυσική Ι 3-2 Μαθηματικά Ι

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή 4. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 ΚΕΦΑΛΑΙΟ 2: ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΣΤΑΘΜΙΚΕΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ 35

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 ΚΕΦΑΛΑΙΟ 2: ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΣΤΑΘΜΙΚΕΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ 35 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 1. Γενικά.. 15 Επιφάνεια 15 Ευθειογενεί επιφάνειε. 15 Επιφάνειε δευτέρου βαθμού.. 16 2. Μερικέ επιφάνειε δευτέρου

Διαβάστε περισσότερα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1 Σφάλματα 1.1 Εισαγωγή...17 1.2 Αρχικά Σφάλματα (σφάλματα μετρήσεων)...18 1.2.1 Απλές μετρήσεις...18 1.2.2 Σύνθετες μετρήσεις...19 1.2.3 Σημαντικά ψηφία και

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Ι ΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΩΝ

ΕΝ ΕΙΚΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Ι ΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΩΝ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Τ Μ Η Μ Α ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΝ ΕΙΚΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Ι ΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΩΝ ΓΙΑ ΤΟ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2010-2011 ΚΑΤΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Πρόλογος... 11 Μέρος Α: Στοιχεία Αλγοριθμικής... 15 1 Επίλυση προβλημάτων με Η/Υ... 19 1.1 Εισαγωγή... 19 1.2 Αλγόριθμοι-αλγοριθμικά προβλήματα... 20 1.3 Το μαθηματικό μοντέλο... 26

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0. ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Άσκηση Έστω ένα κύμα που κινείται εντός αγωγού με ταχύτητα c 0 m/s. Η κατανομή

Διαβάστε περισσότερα

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων 1 Επίλυση Συνήθων ιαφορικών Εξισώσεων Εξίσωση πρώτης τάξης µε συνθήκες αρχικών τιµών ΠΡΟΒΛΗΜΑ : Να ευρεθεί συνάρτηση y = y(x) η οποία για x [a, b] ικανοποιεί την εξίσωση y = f(x, y) υπό την αρχική συνθήκη

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΧΕΙΜΕΡΙΝΩΝ ΕΞΑΜΗΝΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΧΕΙΜΕΡΙΝΩΝ ΕΞΑΜΗΝΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 20-201 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΧΕΙΜΕΡΙΝΩΝ ΕΞΑΜΗΝΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 20-201 ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ ΟΡΘΗ

Διαβάστε περισσότερα

4.1 Πράξεις με Πολυωνυμικές Εκφράσεις... 66

4.1 Πράξεις με Πολυωνυμικές Εκφράσεις... 66 Περιεχόμενα Ευρετήριο Πινάκων... 7 Ευρετήριο Εικόνων... 8 Εισαγωγή... 9 Κεφάλαιο 1-Περιβάλλον Εργασίας - Στοιχεία Εντολών... 13 1.1 Το Πρόγραμμα... 14 1.2.1 Εισαγωγή Εντολών... 22 1.2.2 Εισαγωγή Εντολών

Διαβάστε περισσότερα

Αναμόρφωση και Υλοποίηση του Προγράμματος Σπουδών της Σχολής Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών

Αναμόρφωση και Υλοποίηση του Προγράμματος Σπουδών της Σχολής Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Αναμόρφωση και Υλοποίηση του Προγράμματος Σπουδών της Σχολής Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Επιστημονικός υπεύθυνος: Κ. Χριστοδουλίδης Αναπληρωτής Καθηγητής, ΣΕΜΦΕ, ΕΜΠ (cchrist@central.ntua.gr)

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Φυσικά µεγέθη... 1 1.2 ιανυσµατική άλγεβρα... 2 1.3 Μετατροπές συντεταγµένων... 6 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες...

Διαβάστε περισσότερα

ΑΝΑΜΟΡΦΩΣΗ ΠΠΣ ΣΥΝΟΠΤΙΚΗ ΕΚΘΕΣΗ

ΑΝΑΜΟΡΦΩΣΗ ΠΠΣ ΣΥΝΟΠΤΙΚΗ ΕΚΘΕΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ ΠΠΣ ΣΥΝΟΠΤΙΚΗ ΕΚΘΕΣΗ ΣΥΝΟΠΤΙΚΗ ΕΚΘΕΣΗ ΠΕ 6 ΕΝΙΣΧΥΣΗ ΤΩΝ ΓΝΩΣΕΩΝ ΚΑΙ ΔΕΞΙΟΤΗΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Δ 6.1 Διαμόρφωση

Διαβάστε περισσότερα

Π Ρ Ο Γ Ρ Α Μ Μ Α Ε Ξ Ε Τ Α Σ Ε Ω Ν. ΤΕΧΝΙΚΗ ΚΑΥΣΗΣ & ΑΕΡΙΟΠΟΙΗΣΗΣ Κτ. Χ-Μ Αμφ. 1. ΔΙΑΧΕΙΡΙΣΗ & ΕΛΕΓΧΟΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κτ. Χ-Μ ΑΙΘ.

Π Ρ Ο Γ Ρ Α Μ Μ Α Ε Ξ Ε Τ Α Σ Ε Ω Ν. ΤΕΧΝΙΚΗ ΚΑΥΣΗΣ & ΑΕΡΙΟΠΟΙΗΣΗΣ Κτ. Χ-Μ Αμφ. 1. ΔΙΑΧΕΙΡΙΣΗ & ΕΛΕΓΧΟΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κτ. Χ-Μ ΑΙΘ. ΗΜΕΡΟΜΗΝΙΕΣ 1 ο & 2 Ο ΕΞΑΜΗΝΟ 3 ο & 4 Ο ΕΞΑΜΗΝΟ 5 ο & 6 Ο ΕΞΑΜΗΝΟ 7 ο & 8 Ο ΕΞΑΜΗΝΟ 9 ο ΕΞΑΜΗΝΟ ΜΑΚΡΟΟΙΚΟΝΟΜΙΑ ΤΕΧΝΙΚΗ ΚΑΥΣΗΣ & ΑΕΡΙΟΠΟΙΗΣΗΣ Κτ. Χ-Μ Αμφ. 1 ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΑΝΟΡΓΑΝΗΣ ΧΗΜΕΙΑΣ Κτ. Χ.-Μ. Αιθ.

Διαβάστε περισσότερα

ΤΡΟΠΟΠΟΙΗΣΗ ΜΟΝΑ ΩΝ ECTS ΣΤΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΙΩΑΝΝΙΝΩΝ

ΤΡΟΠΟΠΟΙΗΣΗ ΜΟΝΑ ΩΝ ECTS ΣΤΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΙΩΑΝΝΙΝΩΝ ΤΡΟΠΟΠΟΙΗΣΗ ΜΟΝΑ ΩΝ ΣΤΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΙΩΑΝΝΙΝΩΝ Στην υπ αριθµ. 361/30-11-2009 Γ.Σ. το Τµήµα Φυσικής του Πανεπιστηµίου Ιωαννίνων υιοθέτησε, σε εναρµόνιση µε το

Διαβάστε περισσότερα

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων Ενότητα 8: Μοντέλα προσομοίωσης σε πορώδεις υδροορείς Αναπληρωτής Καθηγητής Νικόλαος

Διαβάστε περισσότερα

Υδραυλική των Υπόγειων Ροών

Υδραυλική των Υπόγειων Ροών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Αριθμητικά μοντέλα υπόγειων υδροορέων Καθηγητής Κωνσταντίνος Λ. Κατσιαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου Καθηγητής

Διαβάστε περισσότερα

Βιβλιογραφία Λ.Τσίτσα -Εφαρμοσμένος Απειροστικός Λογισμός

Βιβλιογραφία Λ.Τσίτσα -Εφαρμοσμένος Απειροστικός Λογισμός ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ANAΛΥΣΗ Ι 1) Πραγματικοί και φυσικοί αριθμοί -Αξιώματα του συνόλου R των πραγματικών αριθμών -Τέλεια Επαγωγή 2) Ακολουθίες -Ορια ακολουθιών -Κριτήρια σύγκλισης -Ακολουθίες Cauchy

Διαβάστε περισσότερα

ΤΟ ΕΝ ΡΟ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΟ ΕΝ ΡΟ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟ ΕΝ ΡΟ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΥΠΟ ΙΑΙΡΕΣΕΙΣ ΤΟΥ Jahrbuch uber die Fortschritte der Mathematik, 1868 1. ΙΣΤΟΡΙΑ ΚΑΙ ΦΙΛΟΣΟΦΙΑ 2. ΑΛΓΕΒΡΑ 3. ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4. ΠΙΘΑΝΟΤΗΤΕΣ 5. ΣΕΙΡΕΣ 6. ΙΑΦΟΡΙΚΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΣ

Διαβάστε περισσότερα

Κεφάλαιο 1 Βασικές αρχές µελέτης των κατασκευών 1

Κεφάλαιο 1 Βασικές αρχές µελέτης των κατασκευών 1 Περιεχόµενα Εισαγωγή Σύµβολα Ε1-Ε9 Σ1-Σ10 Κεφάλαιο 1 Βασικές αρχές µελέτης των κατασκευών 1 2. Σύµβαση πρόσηµων 2.1 Συστήµατα αναφοράς 2.2 υνάµεις και ροπές 2.3 Tάσεις 2.4 Τέµνουσες δυνάµεις και καµπτικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΕΑΡΙΝΗ ΕΞΕΤΑΣΤΙΚΗ

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΕΑΡΙΝΗ ΕΞΕΤΑΣΤΙΚΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΕΥΤΕΡΑ 23/1/2017 ΤΡΙΤΗ 24/1/2017 1η 1ο ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ, 4 3ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ, 4 Γαλλικά (9.00 11.00)

Διαβάστε περισσότερα

ΑΚ. ΕΤΟΥΣ 2015-2016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ 9/10/2015 TMHMA MHXΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΩΡΑ ΔEYTEPA TPITH TETAPTH ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ

ΑΚ. ΕΤΟΥΣ 2015-2016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ 9/10/2015 TMHMA MHXΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΩΡΑ ΔEYTEPA TPITH TETAPTH ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ 1ου ΕΞΑΜΗΝΟΥ ΑΚ. ΕΤΟΥΣ 2015-2016 9/10/2015 ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ (Θεωρία) ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι 8-9 (Δ. Παντελής) (Ι. Λυχναρόπουλος) (Δ. Παντελής) Αμφιθέατρο

Διαβάστε περισσότερα

Α Ν Α Κ Ο Ι Ν Ω Σ Η. Ανακοινώνεται ότι κατόπιν. διόρθωσης τυπογραφικού λάθους. το Πρόγραμμα των Επαναληπτικών Εξετάσεων

Α Ν Α Κ Ο Ι Ν Ω Σ Η. Ανακοινώνεται ότι κατόπιν. διόρθωσης τυπογραφικού λάθους. το Πρόγραμμα των Επαναληπτικών Εξετάσεων Ε.Μ.ΠΟΛΥΤΕΧΝΕΙΟ Αθήνα, 29/08/2012 Α Ν Α Κ Ο Ι Ν Ω Σ Η Ανακοινώνεται ότι κατόπιν διόρθωσης τυπογραφικού λάθους το Πρόγραμμα των Επαναληπτικών Εξετάσεων Περιόδου Σεπτεμβρίου 2011-2012 διαμορφώνεται ως εξής:

Διαβάστε περισσότερα

221 Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Πάτρας

221 Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Πάτρας 221 Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Πάτρας Το Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ιδρύθηκε το 1967 ως το πρώτο Τμήμα της Πολυτεχνικής Σχολής. Ο αρχικός τίτλος του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ ΠΑΡΑ ΟΣΕΙΣ ΑΣΚΗΣΕΙΣ ΚΑΘΗΓΗΤΕΣ/ΤΡΙΕΣ

ΜΑΘΗΜΑΤΑ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ ΠΑΡΑ ΟΣΕΙΣ ΑΣΚΗΣΕΙΣ ΚΑΘΗΓΗΤΕΣ/ΤΡΙΕΣ Τεχνικές Προγραµµατισµού Εισαγωγή στον Προγραµµατισµό Γλώσσες Προγραµµατισµού, Θεωρία Γλωσσών Προγραµµατισµού 1999-2002 Θεωρία Γλωσσών 1996-2000, 2000-2002 Αρχές Γλωσσών Προγραµµατισµού 2002-2005 Τυπικές

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Αναμόρφωση και Υλοποίηση του Προγράμματος Σπουδών της Σχολής Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών ΕΠΙΣΤΗΜΟΝΙΚΟΣ

Διαβάστε περισσότερα

ΕΙΣΗΓΗΣΗ ΕΠΙΤΡΟΠΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΑ ΚΟΡΜΟΥ

ΕΙΣΗΓΗΣΗ ΕΠΙΤΡΟΠΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΑ ΚΟΡΜΟΥ ΕΙΣΗΓΗΣΗ ΕΠΙΤΡΟΠΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΑ ΚΟΡΜΟΥ Η Εισηγητική Επιτροπή για το Πρόγραµµα Σπουδών, που ορίστηκε στην υπ αριθ. 7/18-1-2005 ΓΣ του Τµήµατος, πραγµατοποίησε πολλές πολύωρες συνεδριάσεις

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 3 1.1 Γενικά.......................... 3 1.2 Ορισµοί......................... 4 1.3 Στοιχειώδεις Πράξεις Μεταξύ ιανυσµάτων....... 8 1.3.1 Γινόµενο Αριθµού επί ιάνυσµα.........

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Πρόλογος... 11 Μέρος Α: Στοιχεία Αλγοριθμικής... 15 1 Επίλυση προβλημάτων με Η/Υ... 19 1.1 Εισαγωγή... 19 1.2 Αλγόριθμοι αλγοριθμικά προβλήματα... 20 1.3 Το μαθηματικό μοντέλο... 26

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ưƪƶƭʈƪƶ ƩƭƧĭƳƵƭƮƪƶ ƪƲƭƶƻƶƪƭƶ & ưƭīƨʃƭʈƪƶ ƶƹʊƨƶʒƭƶƪƭƶ:

ưƪƶƭʈƪƶ ƩƭƧĭƳƵƭƮƪƶ ƪƲƭƶƻƶƪƭƶ & ưƭīƨʃƭʈƪƶ ƶƹʊƨƶʒƭƶƪƭƶ: & i iii & :, 2016 Πρόλογος vii Το βιβλίο αυτό αποτελεί μια εισαγωγική προσέγγιση στη θεωρία των Μερικών Διαφορικών Εξισώσεων και των Μιγαδικών Συναρτήσεων. Στις μέρες μας οι Μερικές Διαφορικές Εξισώσεις

Διαβάστε περισσότερα

1 ο ΕΤΟΣ 1 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ. 2 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ

1 ο ΕΤΟΣ 1 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ. 2 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ 1 ο ΕΤΟΣ 1 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Α1Υ Α2Υ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΚΑΙ ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ 3 1 1 5 2 2 5 Α3Υ ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Ι 3 1 1 6 Α10Υ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΟΥ ΜΠ&Δ

Διαβάστε περισσότερα

Το Πρόγραµµα Σπουδών Χηµικού Μηχανικού Στο Ε. Μ. Πολυτεχνείο

Το Πρόγραµµα Σπουδών Χηµικού Μηχανικού Στο Ε. Μ. Πολυτεχνείο Υποδοχή Πρωτοετών ΧΜ ΕΜΠ 3 Οκτωβρίου 200 Το Πρόγραµµα Σπουδών Χηµικού Μηχανικού Στο Ε. Μ. Πολυτεχνείο Εµµ. Κούκιος Καθηγητής ΕΜΠ Πρόεδρος Σχολής ΧΜ Στόχοι Προγράµµατος Σπουδών ΧΜ Παροχή γνώσεων, µεθόδων

Διαβάστε περισσότερα

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΣΣΑΛΟΝΙΚΗ 2004 Κάθε γνήσιο αντίτυπο υπογράφεται από τη συγγραφέα ΑΡΙΘΜΗΤΙΚΗ

Διαβάστε περισσότερα

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό.... - v - Πρόλογος.....- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί..... - xii - ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΜΕΤΑΔΟΣΗ

Διαβάστε περισσότερα

Κατατάξεις πτυχιούχων ΑΕΙ και ΤΕΙ στο Τμήμα ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ για το έτος 2013-14

Κατατάξεις πτυχιούχων ΑΕΙ και ΤΕΙ στο Τμήμα ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ για το έτος 2013-14 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Πανεπιστημιούπολη, 700 13 Βούτες Ηρακλείου Κρήτης, (Τ.Θ. 2208) Τηλ.: (2810) 393800, 393751, 393898,

Διαβάστε περισσότερα

235 Χημικών Mηχανικών ΕΜΠ

235 Χημικών Mηχανικών ΕΜΠ 235 Χημικών Mηχανικών ΕΜΠ Επαγγελματικές Διέξοδοι Για την άσκηση του επαγγέλματος του Χημικού Μηχανικού είναι απαραίτητη άδεια που χορηγείται από το Τεχνικό Επιμελητήριο Ελλάδας κατόπιν εξετάσεων. Οι πτυχιούχοι

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΤΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ

ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΤΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΤΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ Κατωτέρω παρατίθενται ορισμένες παρατηρήσεις επί των υπολογιστικών προγραμμάτων. Οι παρατηρήσεις αυτές αποσκοπούν στην βαθύτερη κατανόηση και εφαρμογή των προγραμμάτων.

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ 1 ο ΘΕΜΑ (1,5 Μονάδες) Στην παράδοση είχε παρουσιαστεί η αριθµητική επίλυση της εξίσωσης «καθαρής συναγωγής» σε µία διάσταση, η µαθηµατική δοµή της οποίας είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ. ΑΣΚΗΣΗ 1 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-1, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 15.1.9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Δίδεται η διαφορική

Διαβάστε περισσότερα

6. Αριθμητική επίλυση συνήθων διαφορικών

6. Αριθμητική επίλυση συνήθων διαφορικών 6. Αριθμητική επίλυση συνήθων διαφορικών Η συμπεριφορά πολλών φυσικών συστημάτων περιγράφεται από συνήθεις διαφορικές εξισώσεις ή από συστήματα συνήθων διαφορικών εξισώσεων. Παραδείγματα τέτοιων συστημάτων

Διαβάστε περισσότερα

ΜΕΤΑΒΑΤΙΚΕΣ ΠΡΟΫΠΟΘΕΣΕΙΣ ΑΠΟΚΤΗΣΗΣ ΠΤΥΧΙΟΥ

ΜΕΤΑΒΑΤΙΚΕΣ ΠΡΟΫΠΟΘΕΣΕΙΣ ΑΠΟΚΤΗΣΗΣ ΠΤΥΧΙΟΥ ΜΕΤΑΒΑΤΙΚΕΣ ΠΡΟΫΠΟΘΕΣΕΙΣ ΑΠΟΚΤΗΣΗΣ ΠΤΥΧΙΟΥ Για τους φοιτητές που έχουν εισαχθεί στο Τµήµα από το Ακαδηµαϊκό Έτος 1999-2000 έως το Ακαδηµαϊκό Έτος 2003-2004 1 1. Εγγραφή και παρακολούθηση για τουλάχιστον

Διαβάστε περισσότερα

Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή

Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε

Διαβάστε περισσότερα

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) Γράφημα της συνάρτησης f( x), αν p x< 0 F( x) = f( x), αν 0 x p και F( x+ 2 p) = F( x), x R (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται στους

Διαβάστε περισσότερα

«ΕΦΑΡΜΟΓΕΣ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ» 30 Σεπτεμβρίου Αμφιθέατρο Σχολής Θετικών Επιστημών ΑΘΕ12. Ομιλητές

«ΕΦΑΡΜΟΓΕΣ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ» 30 Σεπτεμβρίου Αμφιθέατρο Σχολής Θετικών Επιστημών ΑΘΕ12. Ομιλητές Τμήμα Μαθηματικών Σπουδαστήριο Διαφορικών Εξισώσεων & Εφαρμογών «ΠΑΝΑΓΙΩΤΗΣ ΣΙΑΦΑΡΙΚΑΣ» 5 η ημερίδα με θέμα: «ΕΦΑΡΜΟΓΕΣ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ» 30 Σεπτεμβρίου 2017 Αμφιθέατρο Σχολής Θετικών Επιστημών ΑΘΕ12

Διαβάστε περισσότερα

Διευρυμένο Πρόγραμμα Εξετάσεων

Διευρυμένο Πρόγραμμα Εξετάσεων Τμήμα Χημικών Μηχανικών Πολυτεχνική Σχολή Πανεπιστήμιο Πάτρας Διευρυμένο Πρόγραμμα Εξετάσεων Χειμερινού & Εαρινού Εξάμηνο του Ακαδημαϊκού Έτους 2016 2017 Date: 04.05.2017 Rev.1 1 ΚΤΗΡΙΟ Β ΧΩΡΟΙ ΔΙΕΞΑΓΩΓΗΣ

Διαβάστε περισσότερα

Τμήμα Χημικών Μηχανικών Πολυτεχνική Σχολή Πανεπιστήμιο Πάτρας. Πρόγραμμα Εξετάσεων. Χειμερινό Εξάμηνο Ακαδημαϊκού Έτους 2015-2016

Τμήμα Χημικών Μηχανικών Πολυτεχνική Σχολή Πανεπιστήμιο Πάτρας. Πρόγραμμα Εξετάσεων. Χειμερινό Εξάμηνο Ακαδημαϊκού Έτους 2015-2016 Τμήμα Χημικών Μηχανικών Πολυτεχνική Σχολή Πανεπιστήμιο Πάτρας Πρόγραμμα Εξετάσεων Χειμερινό Εξάμηνο Ακαδημαϊκού Έτους 2015-2016 18.11.2015 1 ΚΤΗΡΙΟ Β ΧΩΡΟΙ ΔΙΕΞΑΓΩΓΗΣ ΕΞΕΤΑΣΕΩΝ Οι εξετάσεις των μαθημάτων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο : Θεωρητική προσέγγιση της FDTD

ΚΕΦΑΛΑΙΟ 4ο : Θεωρητική προσέγγιση της FDTD ΚΦΑΛΑΙΟ 4ο : Θεωρητική προσέγγιση της DTD 4.. ισαγωγή Από τις τρεις µεθόδους πρόβλεψης των επενεργειών της ηλεκτροµαγνητικής ακτινοβολίας πειραµατική αναλυτική υπολογιστική- η υπολογιστική είναι η νεότερη

Διαβάστε περισσότερα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Λογισμός ΙΙ Χρήστος Θ. Αναστασίου Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Κεφάλαιο 6 Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Σε αυτό το κεφάλαιο θεωρούμε την εξίσωση της θερμότητας στη μια διάσταση ως προς τον χώρο και θα κατασκευάσουμε μεθόδους πεπερασμένων

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Χώρος Κατάστασης Παραστάσεις στο Πεδίο του

Διαβάστε περισσότερα

239 Χημικών Μηχανικών Πάτρας

239 Χημικών Μηχανικών Πάτρας 239 Χημικών Μηχανικών Πάτρας Το Τμήμα Χημικών Μηχανικών του Πανεπιστημίου Πατρών ιδρύθηκε το 1977. Οι πρώτοι προπτυχιακοί φοιτητές του εισήχθησαν το 1978 και αποφοίτησαν το 1983. Από την ίδρυσή του το

Διαβάστε περισσότερα

ΚΟΡΜΟΥ. ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ 5ο 7ο 9ο

ΚΟΡΜΟΥ. ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ 5ο 7ο 9ο ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-17 1η 5ο 7ο 9ο ΔΕΥΤΕΡΑ 23/1/2017 ΘΕΡΜΟΔΥΝΑΜΙΚΗ, 4 --------- Γαλλικά

Διαβάστε περισσότερα

Λογισμικό για Μαθηματικά

Λογισμικό για Μαθηματικά Λογισμικό για Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 6 Αυγούστου 2012 Λογισμικό 2 Λογισμικό Με τον όρο λογισμικό υπολογιστών, ή λογισμικό (software), ορίζεται η συλλογή από προγράμματα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2014-2015 Εξαμ 2ον

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2014-2015 Εξαμ 2ον ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2014-2015 Εξαμ 2ον ΩΡΕΣ ΔΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ ΘΕΡΜΟΤΗΤΑ-ΚΥΜΑΤΙΚΗ- ΘΕΡΜΟΤΗΤΑ- ΚΥΜΑΤΙΚΗ- ΘΕΡΜΟΤΗΤΑ-ΚΥΜΑΤΙΚΗ- ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΜΦ11 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΘΕΡΜΟΤΗΤΑ-ΚΥΜΑΤΙΚΗ-

Διαβάστε περισσότερα

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Σύνθετοι αναλυτικοί - αριθμητικοί υπολογισμοί Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-17 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 1η 5ο 7ο 9ο ΠΑΡΑΣΚΕΥΗ 27/1/201 ΠΕΜΠΤΗ 26/1/2017

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ ΠΕ 1/9 Φυσική /ΑΒΓ Ε Ηλεκτρικές Μηχανές, Ηλεκτροτεχνία /ΑΒΓ Ε Οργάνωση και ιοίκηση Εργοστασίων /ΒΓ Σελίδα 1 από 5 ιερεύνηση περιβαλλοντικών επιπτώσεων / Εµβιοµηχανική /Α ΠΑ 2/9 Στατιστική /ΑΒΓ Ε Αεροδυναµική

Διαβάστε περισσότερα

προβλήµατα ανάλυσης ροής

προβλήµατα ανάλυσης ροής προβλήµατα ανάλυσης ροής ΕΚ ΟΣΗ Νοέµβριος 2006 Σελίδα 1 ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΑΝΑΛΥΣΗ ΣΥΝ ΥΑΣΜΕΝΑ ΠΡΟΒΛΗΜΑΤΑ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΝΑΛΥΣΗΣ ΑΝΤΟΧΗΣ Ενσωµατώνεται το εξελιγµένο πρόγραµµα ανάλυσης προβληµάτων

Διαβάστε περισσότερα

Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος

Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Διαπανεπιστημιακό Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών ΔΙΔΑΚΤΙΚΗ ΚΑΙ

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ 17 ΣΥΝΟΛΑ ΣΧΕΣΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ 17 1. Η έννοια του συνόλου 17 2. Εγκλεισμός και ισότητα συνόλων 19

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΑΜΗΝΟ 1ο ΩΡΕΣ ΔΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ ΩΡΕΣ 9-10

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΑΜΗΝΟ 1ο ΩΡΕΣ ΔΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ ΩΡΕΣ 9-10 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΑΜΗΝΟ 1ο Τεχνικές Σχεδιάσεις και CAD Τεχνικές Σχεδιάσεις και CAD Προγραμματισμός Η/Υ (Τμήμα Α) (Τμήμα B) Φυσική Ι (Πρακτική Τμήμα Β) Α. Κουτσελίνης Χημεία

Διαβάστε περισσότερα