Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort"

Transcript

1 Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ο αλγόριθμος ταξινόμησης Radix Sort -Δυο εκδοχές: Most Significant Digit (MSD) και Least Significant Digit (LSD) - Επίλυση δυο ασκήσεων στο χαρτί ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 1

2 Επανάληψη BucketSort Έστω ότι ο πίνακας A n στοιχείων περιέχει στοιχεία που ανήκουν στο διάστημα [1..m]. O αλγόριθμος BucketSort βασίζεται πάνω στα ακόλουθα βήματα: 1.Δημιουργούμε ένα πίνακα bucketsμήκουςmκαι θέτουμε buckets[i]=0,για όλα τα i(αυτά τα είναι τα buckets -κάδοι) 2.Διαβάζουμε τον πίνακα Αξεκινώντας από το πρώτο στοιχείο. Αν διαβάσουμε το στοιχείο α, τότε αυξάνουμε την τιμή του buckets[α]κατά ένα. Επαναλαμβάνουμε το βήμα μέχρι το τελευταίο στοιχείο. 3.Τέλος, διαβάζουμε γραμμικά τον πίνακα buckets, o oποίος περιέχει αναπαράσταση του ταξινομημένου πίνακα, και θέτουμε τα στοιχεία του πίνακα Α με την ταξινομημένη ακολουθία. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 2

3 Επανάληψη BucketSort: Παράδειγμα Δεδομένο Εισόδου: Τα στοιχεία είναι στο εύρος m=[0,14], n= n-1 Μετά την 1 η εκτέλεση του Bucketsort(Εισαγωγή του 1) Μετά τη 2 η εκτέλεση του Bucketsort(Εισαγωγή του 11) Μετά τη 3 η εκτέλεση του Bucketsort(Εισαγωγή του 1) Μετά την 8ή εκτέλεση του Bucketsort m m m m ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 3

4 Επανάληψη BucketSort: Πρόγραμμα στην C // Α: Πίνακας για ταξινόμηση μεγέθους n // Buckets: Βοηθητικός πίνακας μεγέθους m void BucketSort(int A[], int buckets[], int n, int m){ int i, j, k=0; } // Κατανομή στοιχείων στους σωστούς κάδους for (i=0; i<n; i++) { buckets[a[i]]++; } // Αντιγραφή στοιχείων από πίνακα BUCKETS // στον πίνακα A for (i=0; i<m; i++) { for (j=0; j<buckets[i]; j++) { A[k] = i; k++; } } Ο(n) Ο(n+m) Συνολικά περνάμε 1 φορά από τα στοιχεία του πίνακα BUCKETS (m) και μια φορά από αυτά του A (n) ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 4

5 Ο αλγόριθμος Bucket Sort Bucket Sort Κατανέμουμε τα n στοιχείασε ένα σύνολο από m κάδους. Περνούμε μία φορά από κάθε στοιχείο του πίνακα και γεμίζουμε τους κάδους. Ακολούθως τυπώνουμε τους m κάδους μου μας παράγει το ταξινομημένο αποτέλεσμα) ΜΕΙΟΝΕΚΤΗΜΑ:Δουλεύει μόνο για ακέραιους αριθμούς. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 5

6 Ο αλγόριθμος Radix Sort Η ιδέα του Αλγόριθμου Radix Sort Είναι κατάλληλος για ταξινόμηση m-αδικών πλειάδων Παράδειγμα: m=3, {(1,2,4), (1,5,3), } Μία m-αδικήπλειάδα μπορεί να συμβολίζει συμβολοσειρές (Strings με ASCII), π.χ., cat=(99,97,116) Ο Radix Sort εκτελεί m διαδοχικά καλέσματα στον Bucket Sort αρχίζοντας από την αρχή της πλειάδας (Most-Significant-Digit) ή το τέλος (Least-Significant- Digit) Most Significant Digit (MSD): Αρχίζει την επεξεργασία των δεδομένων από το πιο σημαντικό ψηφίο (most significant digit) και προχωρεί μέχρι το λιγότερο σημαντικό στοιχείο (least significant digit) από αριστερά προς δεξιά Least Significant Digit (LSD): το αντίστροφο από δεξιά προς αριστερά ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 6

7 Radix Sort: Most-Significant-Digit (MSD) Ένας αναδρομικό MSD RadixSort αλγόριθμος δουλεύει ως εξής: Πάρε το πιο σημαντικό ψηφίο από κάθε κλειδί Ταξινόμησε τα στοιχεία βάση αυτού του κλειδιού και παράλληλα ομαδοποίησε τα στοιχεία με το ίδιο κλειδί στον ίδιο κάδο Αναδρομικά, ταξινόμησε κάθε κάδο ξεκινώντας με το πιο σημαντικό ψηφίο Συνένωσε όλους τους κάδους με ταξινομημένη σειρά ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 7

8 Παράδειγμα Αναδρομικού Radix Sort-MSD Ταξινόμησε τη λίστα: 170, 045, 075, 090, 002, 024, 802, 066 Ταξινόμησε με το πιο σημαντικό ψηφίο (δηλ. εκατοντάδες 100s): Κάδος -Μηδέν εκατοντάδες (0xx): 045, 075, 090, 002, 024, 066 Κάδος -Μία εκατοντάδα (1xx): 170 Κάδος Οκτώ (8xx): 802 ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 8

9 Παράδειγμα Αναδρομικού Radix Sort-MSD(συν.) Ταξινόμησε βάση του επόμενου ψηφίου (δεκάδες 10s): Παρατήρηση: Χρειάζεται να ταξινομήσουμε μόνο τα στοιχεία με 0 εκατοντάδες (οι άλλοι κάδοι έχουν μόνο ένα στοιχείο) Κάδος -Μηδέν δεκάδες (0x): 002 Κάδος -Δύο δεκάδες (2x) : 024 Κάδος -Τέσσερις δεκάδες (4x) : 045 Κάδος -Έξι δεκάδες (6x): 066 Κάδος -Επτά δεκάδες (7x):075 Κάδος -Εννέα δεκάδες (9x):090 ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 9

10 Παράδειγμα Αναδρομικού Radix Sort-MSD(συν.) Ταξινόμηση με μονάδες (1s) δεν χρειάζεται γιατί δεν υπάρχει κάδος με δεκάδες που να έχει περισσότερο από ένα στοιχείο Στο επόμενο βήμα, ο ταξινομημένος κάδος των 0xxάδων (που φαίνεται πιο πάνω) συνενώνεται με τους κάδους των 100άδων και 800άδων για να παράξουν την τελική ταξινομημένη σειρά: 002, 024, 045, 066, 075, 090, 170, 802 ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 10

11 Ο αλγόριθμος Radix Sort Δουλεύει ο αλγόριθμος; Προφανώς, αν το πιο σημαντικό ψηφίο μεταξύ ακαι β είναι διαφορετικό και α<βτότε στο τέλος το αθα έρθει πριν από το β Αν το πιο σημαντικό ψηφίο μεταξύ ακαι βείναι ίσο και το δεύτερο πιο σημαντικό ψηφίο του β είναι πιο μικρό από το ατότε το βθα έρθει πριν από το α ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 11

12 RadixSort: Least-Significant-Digit (LSD) Αλγόριθμος Ταξινόμησε βάση του λιγότερο σημαντικού ψηφίου Αριθμοί με το ίδιο ψηφίο καταλήγουν στον ίδιο κάδο Ανακατάταξε όλους τους αριθμούς ως εξής: οι αριθμοί στον κάδο 0 προηγούνται τους αριθμούς στον κάδο 1, οι αριθμοί στον κάδο 1 προηγούνται τους αριθμούς στον κάδο 2, κοκ. Ταξινόμησε βάση του λιγότερο σημαντικού ψηφίου Συνέχισε αυτή την διαδικασία μέχρι όλοι οι αριθμοί να έχουν ταξινομηθεί για όλα τα ψηφία τους Σε αντίθεση με τον Radix Sort MSD, στον Radix Sort LSD τα στοιχεία μέσα στον ίδιο κάδο είναι στη σωστή σειρά κατά την διάρκεια της εκτέλεσης ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 12

13 Παράδειγμα Radix Sort-LSD Input data: a b a b a c c a a a c b b a b c c a a a c b b a ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 13

14 Παράδειγμα Radix Sort-LSD Pass 1: Looking at rightmost position. a b a b a c c a a a c b b a b c c a a a c b b a Place into appropriate pile. a b c ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 14

15 Παράδειγμα Radix Sort-LSD Pass 1: Looking at rightmost position. b b a Join piles. c c a c a a b a b a a c a b a a c b b a c a b c ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 15

16 Παράδειγμα Radix Sort-LSD Pass 2: Looking at next position. a b a c a a c c a b b a a c b b a b b a c a a c Place into appropriate pile. a b c ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 16

17 Παράδειγμα Radix Sort-LSD Pass 2: Looking at next position. a a c Join piles. b a c b a b b b a a c b c a a a b a c c a a b c ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 17

18 Παράδειγμα Radix Sort-LSD Pass 3: Looking at last position. c a a b a b b a c a a c a b a b b a c c a a c b Place into appropriate pile. a b c ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 18

19 Παράδειγμα Radix Sort-LSD Pass 3: Looking at last position. Join piles. a c b a b a b b a b a c c c a a a c b a b c a a a b c ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 19

20 Παράδειγμα Radix Sort-LSD Result is sorted. a a c a b a a c b b a b b a c b b a c a a c c a ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 20

21 Άσκηση 1 Υποθέστε ότι για είσοδο μας δίνονται δύο ταξινομημένες ακολουθίες Α και Β με n στοιχεία Οι ακολουθίες μπορεί να περιέχουν διπλά, τριπλά, κοκ. στοιχεία Περιγράψετε ένα αποδοτικό αλγόριθμο για να καθορίσετε αν η A και Β περιέχουν τον ίδιο σύνολο από στοιχεία. Τι είναι η χρονική πολυπλοκότητα του αλγόριθμου που προτείνετε; ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 21

22 Άσκηση 2 Υποθέστε ότι για είσοδο μας δίνονται δύο ταξινομημένες ακολουθίες Α και Β με n στοιχεία Περιγράψετε ένα αποδοτικό αλγόριθμο της τάξης O(nlgn) ο οποίος καθορίζει αν υπάρχουν στοιχεία a A και b B ώστε m=a+b. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 22

23 Λύσεις Άσκηση 1 We will move along the elements of A. For each new element we will compare the element with the current element of B. If they match, we will traverse A and B until we find a new element in A and a new element in B accordingly. If the elements are the same we repeat the previous step until the end of the lists. Else we report that the lists do not have the same set of elements. The above algorithm is O(n) ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 23

24 Λύσεις Άσκηση 2 Examine linearly all the elements a of A. For each element a, perform a binary search in the elements of B looking for an element b such that b=m-a Ex2(m, A, B) { Foreach a A { b=binarysearch(m-a, B); if (found(b)) { print ( %d + %d = %d, a, b, m) return; } } print ( element was not found in b ) } ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 24

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 10: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Δ. QuickSort Γρήγορη Ταξινόμηση Ε. BucketSort Ταξινόμηση με Κάδους - Έμμεση Ταξινόμηση

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 22 Counting sort, bucket sort και radix sort 1 / 16 Ιδιότητες αλγορίθμων ταξινόμησης ευστάθεια (stable

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Bucket-Sort και Radix-Sort

Αλγόριθμοι και πολυπλοκότητα Bucket-Sort και Radix-Sort ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Bucket-Sort και Radix-Sort Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Bucket-Sort και Radix-Sort 1, c 3, a 3, b 7, d 7, g 7, e B 0 1

Διαβάστε περισσότερα

Ταξινόμηση. 1. Ταξινόμηση με Μέτρημα 2. Ταξινόμηση με βάση τη Ρίζα. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Ταξινόμηση με Μέτρημα 2. Ταξινόμηση με βάση τη Ρίζα. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση 1. Ταξινόμηση με Μέτρημα 2. Ταξινόμηση με βάση τη Ρίζα Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση με Μέτρημα Ας υποθέσουμε ότι δίνεται ένας πίνακας Α με n στοιχεία, που λαμβάνουν

Διαβάστε περισσότερα

Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εύρεση, εισαγωγή, διαγραφή) - Σύγκριση Συνδεδεμένων Λιστών με Πίνακες

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)

Διαβάστε περισσότερα

Εργαστήριο 2: Πίνακες

Εργαστήριο 2: Πίνακες Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035

Διαβάστε περισσότερα

Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort

Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort 1, c 3, a 3, b 7, d 7, g 7, e B 0 1 3 4 5 6 7 8 9 1 BucketSort (Ταξινόμηση Κάδου) - Αρχικά θεωρείται ένα κριτήριο κατανομής με βάση το οποίο

Διαβάστε περισσότερα

Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1

Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1 Merge Sort (Ταξινόμηση με συγχώνευση) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 6/14/2007 3:04 AM Merge Sort 1 Κύρια σημεία για μελέτη Το παράδειγμα του «διαίρει και βασίλευε» ( 4.1.1) Merge-sort

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πίνακες Κλάσεις και Αντικείμενα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πίνακες Κλάσεις και Αντικείμενα ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Πίνακες Κλάσεις και Αντικείμενα Μαθήματα από το πρώτο εργαστήριο Έλεγχος ισότητας για Strings: Διαβάζουμε το String option και θέλουμε ένα loop να συνεχίσει

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα.0 Σταύρος Δ. Νικολόπουλος 06-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ταξινόμηση Selection-Sort Bubble-Sort και

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

Στόχοι και αντικείμενο ενότητας. Πέρασμα Πίνακα σε Συνάρτηση (συν.) Πέρασμα Πίνακα σε Συνάρτηση. #8.. Ειδικά Θέματα Αλγορίθμων

Στόχοι και αντικείμενο ενότητας. Πέρασμα Πίνακα σε Συνάρτηση (συν.) Πέρασμα Πίνακα σε Συνάρτηση. #8.. Ειδικά Θέματα Αλγορίθμων Στόχοι και αντικείμενο ενότητας Πέρασμα Πίνακα σε Συνάρτηση #8.. Ειδικά Θέματα Αλγορίθμων Προβλήματα Αναζήτησης Γραμμική Αναζήτηση (Linear Search) Ενημέρωση Μέτρηση Δυαδική Αναζήτηση (Binary Search) Προβλήματα

Διαβάστε περισσότερα

Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ

Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα

Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Λίστες -Υλοποίηση ταξινομημένης λίστας με δυναμική δέσμευση μνήμης ΕΠΛ035

Διαβάστε περισσότερα

Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας

Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Αναζήτηση με linearsearch, binarysearch, ternarysearch - Ανάλυση Πολυπλοκότητας ternarysearch

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 1

Αλγόριθμοι Ταξινόμησης Μέρος 1 Αλγόριθμοι Ταξινόμησης Μέρος 1 Μανόλης Κουμπαράκης 1 Το Πρόβλημα της Ταξινόμησης Το πρόβλημα της ταξινόμησης (sorting) μιας ακολουθίας στοιχείων με κλειδιά ενός γνωστού τύπου (π.χ., τους ακέραιους ή τις

Διαβάστε περισσότερα

Σημειώσεις δεύτερης εβδομάδας

Σημειώσεις δεύτερης εβδομάδας Σημειώσεις δεύτερης εβδομάδας 1. Δυαδική αναζήτηση: /* BINARY SEARCH */ /* use sorted input */ #include int main() { int c, first, last, middle, n, search, array[100]; printf("enter number of

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική

Διαβάστε περισσότερα

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

11/23/2014. Στόχοι. Λογισμικό Υπολογιστή

11/23/2014. Στόχοι. Λογισμικό Υπολογιστή ονάδα Δικτύων και Επικοινωνιών ΗΥ Τομέας Πληροφορικής, αθηματικών και Στατιστικής ΓΕΩΠΟΙΚΟ ΠΑΕΠΙΣΤΗΙΟ ΑΘΗΩ Εισαγωγή στην Επιστήμη των ΗΥ άθημα-4 url: http://openeclass.aua.gr (AOA0) Λογισμικό Υπολογιστή

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 20: Αλγόριθμοι ΤαξινόμησηςIII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Ε. QuickSort Γρήγορη Ταξινόμηση - Έμμεση Ταξινόμηση - Εξωτερική Ταξινόμηση Διδάσκων:

Διαβάστε περισσότερα

ΜΥΥ105: Εισαγωγή στον Προγραμματισμό. Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016

ΜΥΥ105: Εισαγωγή στον Προγραμματισμό. Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016 ΜΥΥ105: Εισαγωγή στον Προγραμματισμό Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016 Αναζήτηση και Ταξινόμηση Βασικές λειτουργίες σε προγράμματα Αναζήτηση (searching): Βρες ένα ζητούμενο στοιχείο σε μια

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Ενότητα 8: Ειδικά Θέματα Αλγορίθμων

Προγραμματισμός Η/Υ. Ενότητα 8: Ειδικά Θέματα Αλγορίθμων Προγραμματισμός Η/Υ Ενότητα 8: Ειδικά Θέματα Αλγορίθμων Νίκος Καρακαπιλίδης, Καθηγητής Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Κατανόηση

Διαβάστε περισσότερα

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing)

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit Διανύσματα Τεχνικές Κατακερματισμού & Συναρτήσεις

Διαβάστε περισσότερα

Διάλεξη 11: Φροντιστήριο για Στοίβες. Διδάσκων: Παναγιώτης Ανδρέου. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ.

Διάλεξη 11: Φροντιστήριο για Στοίβες. Διδάσκων: Παναγιώτης Ανδρέου. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. Διάλεξη 11: Φροντιστήριο για Στοίβες Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 1 ΑΤΔ Στοίβα- Πράξεις Θυμηθείτε τον ΑΤΔ στοίβα με τις πράξεις του: MakeEmptyStack()

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 28: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Αλγόριθμοι Ωμή Βία http://delab.csd.auth.gr/courses/algorithms/ auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Ωμή Βία Είναι μία άμεση προσέγγιση που βασίζεται στην εκφώνηση του προβλήματος και

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 4

Αλγόριθμοι Ταξινόμησης Μέρος 4 Αλγόριθμοι Ταξινόμησης Μέρος 4 Μανόλης Κουμπαράκης Δομές Δεδομένων και Τεχνικές 1 Μέθοδοι Ταξινόμησης Βασισμένοι σε Συγκρίσεις Κλειδιών Οι αλγόριθμοι ταξινόμησης που είδαμε μέχρι τώρα αποφασίζουν πώς να

Διαβάστε περισσότερα

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος

Διαβάστε περισσότερα

Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι

Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n

Διαβάστε περισσότερα

Εργαστήριο 5: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Διπλά Συνδεδεμένη Λίστα

Εργαστήριο 5: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Διπλά Συνδεδεμένη Λίστα Εργαστήριο 5: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Διπλά Συνδεδεμένη Λίστα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Διπλά Συνδεδεμένες Λίστες -Υλοποίηση Διπλά Συνδεδεμένης Λίστας με

Διαβάστε περισσότερα

ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 4-1

ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 4-1 Εφαρμογές στοιβών Στην ενότητα αυτή θα μελετηθεί η χρήση στοιβών στις εξής εφαρμογές: Αναδρομικές συναρτήσεις Ισοζυγισμός Παρενθέσεων Αντίστροφος Πολωνικός Συμβολισμός ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι

Διαβάστε περισσότερα

ΗΥ-150. Ταξινόµηση και Αναζήτηση

ΗΥ-150. Ταξινόµηση και Αναζήτηση ΗΥ-150 Ταξινόµηση και Αναζήτηση To πρόβληµα της Αναζήτησης οθέντος δεδοµένων, λ.χ. σε Πίνακα (P) Ψάχνω να βρω κάποιο συγκεκριµένο στοιχείο (key) Αν ο πίνακας δεν είναι ταξινοµηµένος Γραµµική Αναζήτηση

Διαβάστε περισσότερα

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση

Διαβάστε περισσότερα

Ταξινόμηση με συγχώνευση Merge Sort

Ταξινόμηση με συγχώνευση Merge Sort Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων

Διαβάστε περισσότερα

ΜΥΥ105: Εισαγωγή στον Προγραµµατισµό. Αναζήτηση και Ταξινόµηση Χειµερινό Εξάµηνο 2014

ΜΥΥ105: Εισαγωγή στον Προγραµµατισµό. Αναζήτηση και Ταξινόµηση Χειµερινό Εξάµηνο 2014 ΜΥΥ105: Εισαγωγή στον Προγραµµατισµό Αναζήτηση και Ταξινόµηση Χειµερινό Εξάµηνο 2014 Αναζήτηση και Ταξινόµηση Βασικές λειτουργίες σε προγράµµατα Αναζήτηση (searching): Βρες ένα ζητούµενο στοιχείο σε µια

Διαβάστε περισσότερα

AVL-trees C++ implementation

AVL-trees C++ implementation Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η / Υ Κ Α Ι Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ AVL-trees C++ implementation Δομές Δεδομένων Μάριος Κενδέα 31 Μαρτίου 2015 kendea@ceid.upatras.gr Εισαγωγή (1/3) Δυαδικά Δένδρα Αναζήτησης:

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 3

Αλγόριθμοι Ταξινόμησης Μέρος 3 Αλγόριθμοι Ταξινόμησης Μέρος 3 Μανόλης Κουμπαράκης 1 Ταξινόμηση με Ουρά Προτεραιότητας Θα παρουσιάσουμε τώρα δύο αλγόριθμους ταξινόμησης που χρησιμοποιούν μια ουρά προτεραιότητας για την υλοποίηση τους.

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 9 ο Ταξινόµηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ταξινόµηση Εισαγωγή Selection sort Insertion sort Bubble sort

Διαβάστε περισσότερα

Προγραµµατιστικές Τεχνικές

Προγραµµατιστικές Τεχνικές Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Προγραµµατιστικές Τεχνικές Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωµύλος Κορακίτης

Διαβάστε περισσότερα

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 Χρησιµοποιούµε τη δοµή Κατ οίκον Εργασία 3 Σκελετοί Λύσεων typedef struct Node int data; struct node *lchild; struct node *rbro; node; και υποθέτουµε πως ένα τυχαίο δένδρο είναι υλοποιηµένο ως

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 21: Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Εισαγωγή σε δενδρικές δομές δεδομένων, -Ορισμοί και πράξεις - Αναπαράσταση δενδρικών δομών δεδομένων

Διαβάστε περισσότερα

ιαχείριση Πληροφοριών στο ιαδίκτυο

ιαχείριση Πληροφοριών στο ιαδίκτυο ιαχείριση Πληροφοριών στο ιαδίκτυο Εργαστήριο (Φυλλάδιο 8) ΤΕΙ Καβάλας - Σχολή ιοίκησης & Οικονοµίας Τµήµα ιαχείρισης Πληροφοριών ιδάσκων: Μαρδύρης Βασίλειος, ιπλ. Ηλ. Μηχανικός & Μηχ. Υπολογιστών, MSc

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά

Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά EPL231: Δομές Δεδομένων και Αλγόριθμοι Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά Αναδρομή Η αναδρομή εμφανίζεται όταν μία διεργασία καλεί τον εαυτό της Υπάρχουν

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 10: Στοίβες:Υλοποίηση& Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση Στοιβών με Δυναμική Δέσμευση Μνήμης - Εφαρμογή Στοιβών 1: Αναδρομικές συναρτήσεις - Εφαρμογή

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Αριθμητική του Υπολογιστή, Αριθμητικά Συστήματα Μετατροπές, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης

Διαβάστε περισσότερα

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 7 η Βασίλης Στεφανής Αλγόριθμοι ταξινόμησης Στην προηγούμενη διάλεξη είδαμε: Binary search Λειτουργεί μόνο σε ταξινομημένους πίνακες Πώς τους ταξινομούμε? Πολλοί τρόποι. Ενδεικτικά:

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 2

Αλγόριθμοι Ταξινόμησης Μέρος 2 Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python

ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στη Python Νικόλαος Ζ. Ζάχαρης Αναπληρωτής

Διαβάστε περισσότερα

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, Εφαρµογές στοιβών Στην ενότητα αυτή θα µελετηθεί η χρήση στοιβών στις εξής εφαρµογές: Αναδροµικές συναρτήσεις Ισοζυγισµός Παρενθέσεων Αντίστροφος Πολωνικός Συµβολισµός ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι - Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται

Διαβάστε περισσότερα

Διάλεξη 2: Επανάληψη Προγραμματισμού Συμβολοσειρές (strings) Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 2: Επανάληψη Προγραμματισμού Συμβολοσειρές (strings) Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 2: Επανάληψη Προγραμματισμού Συμβολοσειρές (strings) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Εισαγωγικές Έννοιες σε Strings - Πίνακες από Strings - Συναρτήσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

FORTRAN και Αντικειμενοστραφής Προγραμματισμός

FORTRAN και Αντικειμενοστραφής Προγραμματισμός FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση

Διαβάστε περισσότερα

Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση

Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση 1 Ταξινόµηση! Δεδοµένα: Δίνεται ένας πίνακας data από N ακεραίους! Ζητούµενο: Να ταξινοµηθούν τα περιεχόµενα σε αύξουσα αριθµητική σειρά:!i : 0 data[i]

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 7: Διαχείριση Μνήμης,Δυναμικές Δομές Δεδομένων, Αναδρομή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Δυναμικές Δομές Δεδομένων Γενικά - Δυναμική Δέσμευση/Αποδέσμευση

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του

Διαβάστε περισσότερα

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Στοιχείο διαχωρισµού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:

Διαβάστε περισσότερα

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πίνακες Κλάσεις και Αντικείμενα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πίνακες Κλάσεις και Αντικείμενα ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Πίνακες Κλάσεις και Αντικείμενα Μαθήματα από το πρώτο εργαστήριο Δημιουργία αντικειμένου Scanner Scanner input = new Scanner(System.in); Το αντικείμενο input

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012

Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012 Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012 Ενδεικτικές απαντήσεις 1 ου σετ ασκήσεων. Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του χρόνου εκτέλεσης τριών

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης

Διάλεξη 04: Παραδείγματα Ανάλυσης Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

Ανάπτυξη Μεγάλων Εφαρµογών στη Γλώσσα C (2)

Ανάπτυξη Μεγάλων Εφαρµογών στη Γλώσσα C (2) Ανάπτυξη Μεγάλων Εφαρµογών στη Γλώσσα C (2) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Οργάνωση Προγράµµατος Header Files Μετάφραση και σύνδεση αρχείων προγράµµατος ΕΠΛ 132 Αρχές Προγραµµατισµού

Διαβάστε περισσότερα

Mεταγλωττιστές. 4 ο εργαστηριακό μάθημα Λεξική ανάλυση και flex. Θεωρία

Mεταγλωττιστές. 4 ο εργαστηριακό μάθημα Λεξική ανάλυση και flex. Θεωρία Mεταγλωττιστές 4 ο εργαστηριακό μάθημα Λεξική ανάλυση και flex Σκοπός: Το μάθημα αυτό αναφέρεται: στις κανονικές εκφράσεις στην δομή και το περιεχόμενο του αρχείου-εισόδου του flex Γενικά Θεωρία Κατά την

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου) μέγεθος

Διαβάστε περισσότερα

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών Εισαγωγή στην επιστήμη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών 1 Αριθμητικό Σύστημα Ορίζει τον τρόπο αναπαράστασης ενός αριθμού με διακεκριμένα σύμβολα Ένας αριθμός αναπαρίσταται διαφορετικά

Διαβάστε περισσότερα

Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Υλοποίηση Λιστών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμές Απλά και Διπλά Συνδεδεμένες Λίστες Κυκλικές Απλά και Διπλά Συνδεδεμένες Λίστες Τεχνικές Μείωσης Μνήμης ΕΠΛ 231 Δομές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55 ΑΝΑ ΡΟΜΗ- ΑΣΚΗΣΕΙΣ Μια µέθοδος είναι αναδροµική όταν καλεί τον εαυτό της και έχει µια συνθήκη τερµατισµού π.χ. το παραγοντικό ενός αριθµού Ν, µπορεί να καλεί το παραγοντικό του αριθµού Ν-1 το παραγοντικό

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013

Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013 Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013 Λυμένες Ασκήσεις Σετ Α: Ανάλυση Αλγορίθμων Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του

Διαβάστε περισσότερα

Φύλλο Εργασίας 3. Μια γρήγορη επανάληψη από τα προηγούμενα

Φύλλο Εργασίας 3. Μια γρήγορη επανάληψη από τα προηγούμενα 3 Φύλλο Εργασίας 3 Στο φύλλο εργασιών 3 θα ασχοληθούμε με τις λίστες μια δομή της γλώσσας python που έχει την δομή ενός πίνακα. Θα χρησιμοποιήσουμε τις βασικές εντολές από τις λίστες και θα κατασκευάσουμε

Διαβάστε περισσότερα

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε

Διαβάστε περισσότερα

Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες)

Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 15-1 Περιεχόμενο

Διαβάστε περισσότερα

Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου

Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου Συμπίεση Η συμπίεση δεδομένων ελαττώνει το μέγεθος ενός αρχείου : Εξοικονόμηση αποθηκευτικού χώρου Εξοικονόμηση χρόνου μετάδοσης Τα περισσότερα αρχεία έχουν πλεονασμό στα δεδομένα τους Είναι σημαντική

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 8 Quick Sort 1 / 11 Ο αλγόριθμος QuickSort 1 Προτάθηκε από τον CAR (Tony) Hoare το 1961 2 Ο αλγόριθμος

Διαβάστε περισσότερα

Συµβολοσειρές - Strings

Συµβολοσειρές - Strings Συµβολοσειρές - Strings 1 Συµβολοσειρέςστην C/C++ 2 Χαρακτήρες 'a', 'z', '0', Χαρακτήρες σαν int 'z' επίσης αναπαριστά την ακεραία τιµή του χαρακτήρα z Strings-Συµβολοσειρές Σειρές από χαρακτήρες σαν µια

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Ταχυταξινόμηση (Quick-Sort)

Αλγόριθμοι και πολυπλοκότητα Ταχυταξινόμηση (Quick-Sort) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Ταχυταξινόμηση (Quick-Sort) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Ταχυταξινόμηση (Quick-Sort) 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS)

ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS) ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS) Ταχεία Αναζήτηση Σε πίνακα: δυαδική αναζήτηση (binary search) σε ταξινοµηµένο πίνακα O(log n) Σε δένδρο: αναζήτηση σε ισοζυγισµένο δένδρο O(log n) Σε λίστα: Μπορούµε

Διαβάστε περισσότερα

Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Quicksort ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 62] Στοιχείο διαχωρισμού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Ο 1 : ΤΑΞΙΝΟΜΗΣΗ Δ Ρ Ι Τ Σ Α Σ Η Λ Ι Α Σ Υ Π Ο Ψ Η Φ Ι Ο Σ Δ Ι Δ Α Κ Τ Ο Ρ Α Σ

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Ο 1 : ΤΑΞΙΝΟΜΗΣΗ Δ Ρ Ι Τ Σ Α Σ Η Λ Ι Α Σ Υ Π Ο Ψ Η Φ Ι Ο Σ Δ Ι Δ Α Κ Τ Ο Ρ Α Σ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Ο 1 : ΤΑΞΙΝΟΜΗΣΗ Δ Ρ Ι Τ Σ Α Σ Η Λ Ι Α Σ Υ Π Ο Ψ Η Φ Ι Ο Σ Δ Ι Δ Α Κ Τ Ο Ρ Α Σ ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΑΞΙΝΟΜΗΣΗΣ Ορισμός ταξινόμησης 2 Κατηγορίες αλγορίθμων ταξινόμησης

Διαβάστε περισσότερα