ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Κ Ι ΚΟΥΤΣΟΠΟΥΛΟΣ ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ (ΠΕΡΙΛΗΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΩΝ ΠΑΡΑ ΟΣΕΩΝ ΚΑΙ ΑΣΚΗΣΕΙΣ) ΣΕΠΤΕΜΒΡΙΟΣ

2 ΣΥΝΑΡΤΗΣΕΙΣ ΕΠΙΤΟΚΙΟΥ Οι υριότερες συναρτήσεις επιτοίου είναι ο συντελεστής προεξόφλησης προεξοφλητιό επιτόιο i + i αι η ένταση ανατοισµού δ ( + i) υ το + i Ο συντελεστής προεξόφλησης υ είναι η σηµερινή αξία (παρούσα αξία) µιας χρηµατιής µονάδας αταβλητέας στο τέλος µιας χρονιής µονάδας (συνήθως έτους) ή ισοδύναµα το ποσό που πρέπει να τοποθετηθεί σήµερα µε επιτόιο i για να γίνει στο τέλος του έτους Το προεξοφλητιό επιτόιο είναι η παρούσα αξία ποσού i αταβλητέου µετά από ένα έτος ή ισοδύναµα το ποσό που επενδυόµενο σήµερα θα γίνει i στο τέλος του έτους Τα υ αι συνδέονται µε τις χρήσιµες σχέσεις υ + αι iυ Τα i υ αι δ συνδέονται µε τις δ δ i e δ + i αι υ e δ υ εξίσου σηµαντιές σχέσεις δ Η ανατοιστιή συνάρτηση ορίζεται για άθε πραγµατιό αι είναι ( + i) e Η παρούσα αξία µιας µονάδας αταβλητέας τη µελλοντιή χρονιή στιγµή είναι το αντίστροφο άρα δ ίση µε υ + i e Η παρούσα αξία µιας άπειρης αολουθίας αταβολών ύψους στην αρχή άθε έτους (παρούσα αξία µιας "διηνεούς προαταβλητέας ράντας") είναι α& + υ + υ + ενώ η παρούσα αξία της αντίστοιχης προσωρινής ράντας είναι υ υ υ α& + υ + + υ Οι παρούσες αξίες των αντίστοιχων "ληξιπρόθεσµων υ υ ραντών" (ραντών αταβλητέων στο τέλος άθε περιόδου) είναι α υ αι iυ i α υ υ υ i Σε περίπτωση που οι αταβολές δεν γίνονται διαριτά (είτε στην αρχή είτε στο τέλος δ δ e υ των περιόδων) αλλά γίνονται συνεχώς έχουµε α e αι δ δ α e δ δ Κεντριό ρόλο στη θεωρία των ενιαίων ασφαλίστρων ζωής παίζουν η "θεµελιώδης ταυτότητα" υ + α& αι το συνεχές ανάλογό της υ + δα

3 Ι ΠΙΝΑΚΕΣ ΖΩΗΣ (Life Tabe) Ή ΠΙΝΑΚΕΣ ΘΝΗΣΙΜΟΤΗΤΑΣ (Mraiy Tabe) Α ΟΡΙΣΜΟΣ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ (πρώτη στήλη του πίναα) : ο αριθµός (το πλήθος) των (επι)ζώντων σε αριβή (σε αέραια) ηλιία ο πίναας αρχίζει µε ένα αυθαίρετο πλήθος ζώντων σε ηλιία αι µηδενίζεται σε µια "τερµατιή ηλιία" ω ( ω ) (δεύτερη στήλη του πίναα) : το πλήθος των θανάτων ανάµεσα σε (αέραια) ηλιία αι (αέραια) ηλιία + δηλαδή µέσα στο "έτος ηλιίας" ( +] προφανώς + (τρίτη στήλη του πίναα) : η πιθανότητα ότι άτοµο ηλιίας θα πεθάνει µεταξύ ηλιίας αι ηλιίας + (πιθανότητα ότι άτοµο ηλιίας δεν θα φθάσει σε ηλιία +) προφανώς + Β ΜΕΓΕΘΗ ΠΑΡΑΓΩΓΑ ΑΠΟ ΤΑ ΜΕΓΕΘΗ ΤΟΥ ΠΙΝΑΚΑ : η πιθανότητα ότι άτοµο ηλιίας θα επιβιώσει χρόνια (θα φθάσει σε ηλιία + θα πεθάνει µετά από ηλιία +) προφανώς + : η πιθανότητα ότι άτοµο ηλιίας θα πεθάνει µέσα σε χρόνια (θα πεθάνει πριν φθάσει σε + ηλιία +) προφανώς : η πιθανότητα ότι άτοµο ηλιίας θα πεθάνει µέσα στο + έτος από τώρα (θα επιβιώσει για χρόνια αι θα πεθάνει στο "έτος ηλιίας" (+ ++] θα επιβιώσει χρόνια όχι όµως + χρόνια θα πεθάνει τα επόµενα + χρόνια όχι όµως τα πρώτα ) Γ ΑΣΚΗΣΕΙΣ Να δειχθούν µαθηµατιά αι να ερµηνευθούν λετιά οι σχέσεις αι ω y ειδιότερα y Να δειχθούν µαθηµατιά αι να ερµηνευθούν λετιά οι σχέσεις y y ω y Να δειχθεί αι να ερµηνευθεί λετιά η σχέση Εφόσον αι ω y βλέπουµε ότι η αποτελεί (λιµαωτή) σ στο [ ω] µε αντίστοιχη (διαριτή) σπ ω

4 4 Να δειχθεί ότι m+ m + m m + 5 Με τι είναι ίσα τα σύµβολα αι ; 6 Τι νόηµα πρέπει να δοθεί στο σύµβολο ; Να δειχθεί ότι + + Όταν ειδιότερα προύπτει η πιθανότητα + 7 Με ποια πιθανότητα είναι ίση η διαφορά ; u u > (Άσηση ) 8 Η πιθανότητα ότι ο () θα επιβιώσει χρόνια είναι ίση µε την πιθανότητα ότι θα πεθάνει µετά την πάροδο ετών Πώς εξηγείται αυτό το γεγονός; Να δειχθεί µαθηµατιά η σχέση που εφράζει το ίδιο γεγονός µε τα ατάλληλα σύµβολα ω 47 9 Αν αι 5 47 αι 3 3 να δειχθεί ότι Αν για + 9 να δειχθεί ότι + Έστω πίναας Να δειχθεί ότι το αι ( ) είναι ίση µε την τιµή του αθροίσµατος Να δειχθεί ότι η τιµή του που προύπτει από Για 99 + Να δειχθεί ότι αι Έστω Να δειχθεί ότι + να γραφεί η αναδροµιή σχέση 99 + y ( + y) 99 (Υπόδειξη : Από το + αι να χρησιµοποιηθεί επανειληµµένα) 4 Αν α 3 β αι 5 γ να δειχθεί ότι ( α) β ( γ ( α)( βγ) 3 αι 3 ) 99 5 Έστω + αι ( y) y Να δειχθεί ότι y αι y

5 6 Αν να δειχθεί ότι < αι 7 Να γραφεί το συναρτήσει των (Απάντηση : + + ( ) ) 8 Αν 99 να δειχθεί ότι ο συνολιός πληθυσµός είναι αι ότι γενιά αι 9 Αν να δειχθεί ότι ότι ( e ) e e e (συνάρτηση µόνον του ) e + αι εποµένως + e Να δειχθεί αόµα e Αν c να δειχθεί ότι c (ισχύει δηλαδή ο νόµος De Mivre) ω ΙΙ (ΘΕΩΡΗΤΙΚΕΣ) ΣΥΝΑΡΤΗΣΕΙΣ ΕΠΙΒΙΩΣΗΣ (Surviva Fuci) Α ΑΝΑΛΥΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΠΙΒΙΩΣΗΣ Στην Άσηση ΙΓ3 διαπιστώσαµε ότι για άθε ηλιία η συνάρτηση που προύπτει από έναν πίναα + αποτελεί συνάρτηση ατανοµής (εφόσον im ω έχουµε im αι im ) Η µόνη διαφορά ανάµεσα στο αι στο ω ω + είναι ότι το + είναι το πλήθος των θανάτων που παρατηρούνται σε ηλιίες µεταξύ αι + (µε αρχιό πληθυσµό ) ενώ το εφράζει τους ίδιους θανάτους ως ποσοστό + του αρχιού πληθυσµού (Εξάλλου τα δύο µεγέθη ταυτισθούν πλήρως αρεί να πάρουµε για τον αρχιό πληθυσµό + + αι µπορούν να!) Το που προύπτει αριθµητιά από έναν πίναα είναι µια "εµπειριή" σ Παράλληλα όµως µπορούµε να εργασθούµε µε αναλυτιές σ µε "θεωρητιούς νόµους θνησιµότητας" Να θεωρήσουµε δηλαδή ότι η αποµένουσα ζωή (η µελλοντιή ζωή) ατόµου ηλιίας (αλλιώς ο χρόνος που αποµένει µέχρι το θάνατο του ()) είναι (συνεχής) τµ T µε σππ f () αι σ Η αντίστοιχη συνάρτηση επιβίωσης ορίζεται ως F F ()

6 Από τον ορισµό () F () Β ΣΥΝΑΡΤΗΣΗ ΕΠΙΒΙΩΣΗΣ βλέπουµε ότι µια συνάρτηση επιβίωσης δίνει την πιθανότητα που περιλαµβάνεται στο δεξιό άρο ("δεξιά ουρά") µιας ατανοµής πιθανοτήτων Πιο συγεριµένα αν η σππ της είναι η αντίστοιχη συνάρτηση επιβίωσης είναι T f () Pr( T > ) f f F () Επιπλέον είναι σαφές ότι τα F () αι ταυτίζονται αντίστοιχα µε τα ήδη γνωστά µας αι Για ένα πληθυσµό που υπαούει σε συνάρτηση επιβίωσης F η γνώση της () είναι αρετή για την εύρεση των συναρτήσεων επιβίωσης () που αντιστοιχούν σε άθε ηλιία > Έστω T η "ηλιία ατά το θάνατο" ατόµου ηλιίας αι T η αποµένουσα ζωή ατόµου ηλιίας > Έχουµε () Pr( T > ) Pr ( T > + ) ( + ) Pr T > + T > (Η Pr( T > ) εφόσον αι ( ω) ω ) είναι πράγµατι συνάρτηση επιβίωσης Εφόσον µια συνάρτηση επιβίωσης διαφέρει από έναν πίναα θνησιµότητας µόνον ως προς την λίµαα µέτρησης που χρησιµοποιείται (αυθαίρετο σε ένα πίναα σε συνάρτηση επιβίωσης) όλοι οι ορισµοί πιθανοτήτων όπως λπ εξαολουθούν να ισχύουν αν άθε τιµή ( ) αντιατασταθεί µε ( ) Έτσι πχ ο ( + ) ( + ) ( + + ) Συναρτήσεις όπως Γ ΕΝΤΑΣΗ ΘΝΗΣΙΜΟΤΗΤΑΣ είναι πιθανότητες επιβίωσης/θανάτου σε διάφορα διαστήµατα ηλιίας Όταν ασχολούµαστε µε συνεχείς συναρτήσεις επιβίωσης χρειαζόµαστε αι ένα "σηµειαό" µέτρο θνησιµότητας δηλαδή µέτρο της θνησιµότητας σε άθε ηλιιαή στιγµή Το µέτρο αυτό αλείται ένταση θνησιµότητας (frce f mraiy) σε ηλιία ( f πραγµατιός) αι ορίζεται ως µ F Ο ορισµός της έντασης θνησιµότητας ίσως φαίνεται αυθαίρετος Γι αυτό αξίζει να σηµειωθεί ότι ο ορισµός προύπτει αν "πιο διαισθητιά" θεωρήσουµε την ένταση θνησιµότητας ως µ im (Άσηση) Αν ολοληρώσουµε τη διαφοριή εξίσωση () () µ () µεταξύ αι παίρνουµε ()] µ ή µ ή εφόσον () µ αι άρα

7 e µ Η σχέση αυτή µας επιτρέπει να βρούµε τη συνάρτηση επιβίωσης που αντιστοιχεί σε δεδοµένη ένταση θνησιµότητας Επιπλέον εφόσον e e + µ µ e + µ + µ e ( ) βλέπουµε ότι + Όπως είδαµε η πιθανότητα είναι ίση µε Η ΣΠΠ ΤΗΣ ΤΜ Τ F όπου F η σ της αποµένουσας ζωής του () Έπεται αµέσως ότι η σππ της T είναι f () Προειµένου να εφράσουµε τη σππ () ( + ) f συναρτήσει αναλογιστιών συµβόλων ανααλούµε ότι άρα είναι f () () f µ + ( + ) ( + ) ( + ) + Όµως ( + ) αι ( + ) µ + + T άρα Συνοψίζοντας βλέπουµε ότι η T έχει σ αι σππ Από την παράγωγο µπορούµε να βρούµε αι την παράγωγο µ + Πράγµατι η + + άρα µ + Οι παραστάσεις για τις + οδηγούν άµεσα στις σχέσεις µ αι µ + αι Ε Η ΠΡΟΣ ΟΚΩΜΕΝΗ ΖΩΗ e E( T ) Η µαθηµατιή ελπίδα της αποµένουσας ζωής του () (ο µέσος χρόνος µέχρι το θάνατο του ()) e ( ) δηλώνεται µε αι είναι e E T f µ Ολολήρωση ατά παράγοντες δείχνει ότι είναι επίσης e ( + ) + () (Αν η σππ της δεν ετείνεται σε όλο τον άξονα ( f για > τ ) τότε τα παραπάνω ολοληρώµατα T τ γράφονται αντί ) ΣΤ ΙΑΣΠΟΡΑ ΤΗΣ Τ

8 Η διασπορά της αποµένουσας ζωής T είναι Var( T ) µ + e ή Var ( T ) ω µ + e σε περίπτωση που ] f για > ω Με ολολήρωση ατά παράγοντες παίρνουµε αι τη µορφή Var T + e e Ζ ΑΚΕΡΑΙΑ (Ή ΚΕΚΟΜΜΕΝΗ) ΑΠΟΜΕΝΟΥΣΑ ΖΩΗ Κ Για ορισµένες ασφαλιστιές εφαρµογές αντί της συνολιής αποµένουσας ζωής Τ ενδιαφέρον παρουσιάζει ο αέραιος αριθµός ετών που θα ζήσει ο () Τα αέραια χρόνια αποµένουσας ζωής είναι διαριτή τµ K που διαφέρει από την T ατά το ότι η K αγνοεί οποιοδήποτε λάσµα έτους (µιρό ή µεγάλο αλλά µιρότερο βέβαια από συµπληρωµένο έτος) ζήσει πριν από το θάνατό του ο () Είναι προφανές ότι [ ] T K αι ότι T K + S όπου η τµ K παίρνει αέραιες τιµές αι η τµ S S < είναι το λάσµα έτους (πραγµατιός αριθµός) που ζει ο () ατά τη χρονιά του θανάτου του Είδαµε ότι η σππ της συνεχούς τµ T είναι + Στην περίπτωση της διαριτής τµ K αι η σ της K είναι µ είναι προφανές ότι η σπ της K είναι Pr( K ) Pr( K ) + Η µαθηµατιή ελπίδα της K σηµειώνεται µε e είναι ίση µε ισοδύναµα ως ( + ) ( ) πίναα + µπορεί να γραφεί αι αι Var K e e αι µπορεί να γραφεί (αι σε περίπτωση ) Η διασπορά της K είναι Var( K ) e ( + ) ( ) ( ) Το άθροισµα άρα έχουµε Εφόσον T K + S έχουµε e e + E S Σε περίπτωση αναλυτιής συνάρτησης επιβίωσης είναι δυνατός ο υπολογισµός αι των δύο µαθηµατιών ελπίδων e αι e εποµένως αι της E( S ) Σε περίπτωση όµως της εµπειριής ατανοµής που επάγεται ένας πίναας είναι δυνατός µόνον ο υπολογισµός της E ( K ) αι προειµένου να βρεθεί η E ( T ) απαιτείται ο υπολογισµός της E ( S ) Για να επιτευχθεί αυτό χρειάζεται άποια υπόθεση για την ατανοµή της S Όπως θα δούµε η συνεθέστερη υπόθεση είναι ότι S ~ U( ) οπότε E( S ) αι Var( S ) Η ΑΣΚΗΣΕΙΣ

9 - Για αθεµιά από τις αόλουθες συναρτήσεις επιβίωσης να βρεθούν τα F () f () µ () 3 ω ω 3 3 ω ω ω ω ω F () f () µ + : () () () + () () () + ( + ) 3 µ () () e () e - Για αθεµιά από τις αόλουθες εντάσεις θνησιµότητας να βρεθεί η αντίστοιχη συνάρτηση επιβίωσης : µ ω µ 3( ω ) µ 3 + µ + µ µ µ µ + µ µ τέτοιο ώστε µ + + µ Για τις εντάσεις θνησιµότητας µ αι µ ισχύει µ µ Να δειχθεί ότι + Αν σε άθε ηλιία ισχύει µ όπου σταθερά να δειχθεί ότι e µ + 8 e 3 Αν µ + αι να δειχθεί ότι 4 4 Αν µ α + β e αι να δειχθεί ότι 4 e e ( ) 3 e 3 + µ + 5 Εφόσον e είναι µ Παραγωγίζοντας ως προς παίρνουµε + δηλαδή το γνωστό µ + µ 6 Η µ + δείχνει τη µεταβολή της πιθανότητας επιβίωσης για συγεριµένη ηλιία αθώς το χρονιό διάστηµα αυξάνει Η δείχνει πώς µεταβάλλεται η πιθανότητα επιβίωσης επί συγεριµένο χρονιό διάστηµα όταν µεταβάλλεται η αρχιή ηλιία Να δειχθεί ότι ( ( + ) µ µ + ) (Υπόδειξη : ) Βλέπουµε ότι όπως είναι φυσιό για άθε η είναι φθίνουσα συνάρτηση του αι για άθε η είναι φθίνουσα συνάρτηση του Να δειχθεί ότι είναι ανεξάρτητο του αι ίσο µε µ h 7 Να δειχθεί ότι im µ (Υπόδειξη : h h ( h) + h ) 8 ίδεται + Να βρεθεί µ + αι να επαληθευθεί (από τα αι µ + ) η + + ισχύς των σχέσεων µ αι µ + +

10 9 Η ένταση θνησιµότητας είναι σταθερή σε άθε έτος ηλιίας δηλαδή για άθε αέραιο έχουµε µ µ για όλα τα µε < + Έστω µε m < m + µ + ( m) µ + m (m αέραιος) Να δειχθεί ότι e + m 3 Μια πολύ συνηθισµένη υπόθεση είναι ότι οι θάνατοι είναι οµοιόµορφα ατανεµηµένοι σε άθε έτος ηλιίας Η υπόθεση αυτή ισοδυναµεί µε την υπόθεση ότι η σππ µ + είναι "λιµαωτή συνάρτηση" που έχει σταθερή τιµή c + σε άθε διάστηµα [ ) Να δειχθεί ότι αν µ + c για < τότε το c είναι αναγαία ίσο µε 3-35 Για αθεµιά από τις αόλουθες συναρτήσεις επιβίωσης να βρεθούν τα E(T ) αι Var(T ) όπου T η αποµένουσα ζωή του () : () () (α ) () (α > ) () ( + ) 4 µ () e ω ω α > ω 36 Να βρεθούν τα E(K ) αι Var(K ) για τη συνάρτηση επιβίωσης () Να συγριθεί η ω E(K ) µε την E(Τ ) αι έτσι να δειχθεί ότι στην παρούσα περίπτωση E( S ) µ 37 Να βρεθούν τα E(K ) αι Var(K ) για e Να δειχθεί αόµα ότι E( S ) α µ µ e 38 ίδεται πίναας Να δειχθεί ότι e 45 e 63 αι e Η προσδοώµενη ζωή e µπορεί να αναλυθεί σε Το πρώτο ολολήρωµα συµβολίζεται µε : e (αι είναι η προσδοώµενη ζωή του () µέσα στα επόµενα χρόνια) ενώ το δεύτερο ολολήρωµα είναι εξ ορισµού η προσδοώµενη ζωή του (+) Έτσι e e : + e + 4 Ανάλογη σχέση ισχύει αι για την εοµµένη προσδοώµενη ζωή e : e e + e + : e e + : e+ Να επαληθευθεί από τον πίναα της Άσησης 38 ότι η ισχύει για αι 3

A 20 =. (ii) Αν δ = 0,04, P( A 20. =. (Απάντηση : & e, βλέπουµε µια ακόµα φορά κ 0 για εκθετικές συναρτήσεις επιβίωσης. (iii) Να δειχθεί ότι γενικά 1

A 20 =. (ii) Αν δ = 0,04, P( A 20. =. (Απάντηση : & e, βλέπουµε µια ακόµα φορά κ 0 για εκθετικές συναρτήσεις επιβίωσης. (iii) Να δειχθεί ότι γενικά 1 Αν A, 3 αι A, A 5 4 αι A 4, 5, να ειχθεί ότι, να ειχθεί ότι A A, 5 3 7 A Αν,4, A, 5 : 5 A 4 : ίονται 5,445, A,7, α 8,5, 4 αι 3, 375 Να 5 : 5 4 : 4 : A ειχθεί ότι 5, 9 αι 5 5 :, 336 5 : 5 5 5 : 5 ίονται

Διαβάστε περισσότερα

VIΙΙ. ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΘΕΜΑΤΑ. Α. Η Τ.Μ. L t. Όπως είδαµε, κατά τη σύναψη µιας ασφάλισης, το ετήσιο ασφάλιστρο P ( A x

VIΙΙ. ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΘΕΜΑΤΑ. Α. Η Τ.Μ. L t. Όπως είδαµε, κατά τη σύναψη µιας ασφάλισης, το ετήσιο ασφάλιστρο P ( A x IΙΙ ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΘΕΜΑΤΑ Α Η ΤΜ L Όπως είαµε, ατά τη σύναψη µιας ασφάλισης, το ετήσιο ασφάλιστρο υπολογίζεται T L υ α [Σηµειώνουµε ότι η είναι µηενίζοντας τη µαθηµατιή ελπία της τµ 0 στην πραγµατιότητα

Διαβάστε περισσότερα

1. Αν 1. x (Β) (Α) (Γ) (Ε) 2 (Δ)

1. Αν 1. x (Β) (Α) (Γ) (Ε) 2 (Δ) . Αν 4 x, 4 4 d d (Α) x x (Β) x x (Γ) x x x (Δ) x (Ε) x x . Δάνειο ύψους εξοφλείται με τρεις ληξιπρόθεσμες δόσεις, α αι α. Το ποσό τόου σε άθε δόση είναι σταθερό αι ίσο με β. Να βρεθούν τα α αι β αι το

Διαβάστε περισσότερα

ΣΤ. ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM

ΣΤ. ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM ΣΤ ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM Όπως σηειώσαε παραπάνω, οι πιθανότητες που εξαρτώνται από τη σειρά των θανάτων πορούν να εφρασθούν συναρτήσει "πιθανοτήτων πρώτου θανάτου" Κατά συνέπεια,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Οδηγός Επιβίωσης 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ : Διαφοριός Λογισμός ΚΕΦΑΛΑΙΟ : Στατιστιή Οδηγός Επιβίωσης Περιλαμβάνει: Ερωτήσεις Θεωρίας Όλες τις Αποδείξεις Χρήσιμο Τυπολόγιο ΑΜΕΡΙΚΑΝΙΚΗ

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΜΒΑΝΤΑ ΖΩΗΣ & ΘΑΝΑΤΟΥ ΙΟΥΛΙΟΣ 0 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΟΥΛΙΟΥ 0 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 4 ΙΟΥΛΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. μ.)

Διαβάστε περισσότερα

ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ. x Ο πρώτος νόµος θνησιµότητας οφείλεται στον De Moivre, είναι γραµµικός, s(x)

ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ. x Ο πρώτος νόµος θνησιµότητας οφείλεται στον De Moivre, είναι γραµµικός, s(x) ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ Ο πρώτος νόµος θνησιµότητας οφείλεται στον D Moivr, είναι γραµµικός, s(), ω ω, ή ισοδύναµα κ( ω ), ω και κ θετική σταθερά, και φυσικά δεν έχει καµιά εφαρµογή

Διαβάστε περισσότερα

35 = (7+ 109) =

35 = (7+ 109) = Άλγεβρα Α Λυείου Στεφανής Παναγιώτης Συνδυαστιές Ασήσεις Ασήσεις δηµοσιευµένες στο περιοδιό τεύχος 8 Άσηση α) Να δείξετε ότι: 7 + + + +... + 9 = β) Να λυθεί η ανίσωση: 7 7x + x + x +... +

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e =

ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e = ΑΣΚΗΣΕΙΣ Να συµπληρωθεί ο παρακάτω πίνακας 47 48 49 50 5 l 348480 299692 d 43306 q 0.0 0.2 0.5 2 3 4 5 Η ένταση θνησιµότητας µ +t, 0 t, αλλάζει σε µ +t - c, όπου το c είναι θετικός σταθερός αριθµός. Να

Διαβάστε περισσότερα

Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011

Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 14 ΙΟΥΛΙΟΥ 2011 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ. 12 µ.) Σελίδα 1 από

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 0 ΙΟΥΝΙΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΕ ΕΡΩΤΗΣΕΙΣ -ΑΠΑΝΤΗΣΕΙΣ Tι ονομάζουμε συνάρτηση ; Tι ονομάζουμε πραγματιή συνάρτηση πραγματιής μεταβλητής; Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β είναι

Διαβάστε περισσότερα

Πληθυσμός μιας έρευνας λέγεται το σύνολο των αντικειμένων που εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά.

Πληθυσμός μιας έρευνας λέγεται το σύνολο των αντικειμένων που εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά. ΣΤΑΤΙΣΤΙΚΗ Στατιστιή λέγεται ο λάδος τω Μαθηματιώ ο οποίος συγετρώει στοιχεία που ααφέροται σε έα σύολο ατιειμέω, τα ταξιομεί, αι τα παρουσιάζει σε ατάλληλη μορφή ώστε α μπορού α ααλυθού αι α ερμηευθού.

Διαβάστε περισσότερα

και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115

και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115 . Η πιθανότητα ο () να ζήσει για τουλάχιστον χρόνια είναι κατά 0% μεγαλύτερη από την πιθανότητα ο (+) να ζήσει για τουλάχιστον χρόνια. Αν / 0, 4, 9 / 0, και 0, 48 να βρεθεί η τιμή του Α) 0,048 Β) 0,88

Διαβάστε περισσότερα

IV.12 OΜΟΓΕΝΕΙΑ. 1. Μερικές ελαστικότητες. 2. Σχετικά ή ποσοστιαία διαφορικά.

IV.12 OΜΟΓΕΝΕΙΑ. 1. Μερικές ελαστικότητες. 2. Σχετικά ή ποσοστιαία διαφορικά. IV.1 OΜΟΓΕΝΕΙΑ 1.Μεριές ελαστιότητες.σχετιά ή ποσοστιαία διαφοριά 3.Ελαστιότητα λίμαας 4.Ομογενής μηδενιού βαθμού 5.Ομογενής βαθμού 6.Ιδιότητες ομογενών ΠΑΡΑΡΤΗΜΑ 7.Ισοσταθμιές ομογενών 8.Ελαστιότητα υποατάστασης

Διαβάστε περισσότερα

3. Ανάπτυγμα Taylor (για συναρτήσεις δυό μεταβλητών)

3. Ανάπτυγμα Taylor (για συναρτήσεις δυό μεταβλητών) Ανάπτυγμα Taylor (για συναρτήσεις δυό μεταβλητών) Μια «πολύπλοη» συνάρτηση f, δυό μεταβλητών, μπορεί να προσεγγιστεί (στην γειτονιά ενός σημείου (,y)) από μια πολυωνιμιή συνάρτηση με την βοήθεια του αναπτύγματος

Διαβάστε περισσότερα

ÏÅÖÅ [ ) ) ) ) Οπότε το σηµείο τοµής της γραφικής παράστασης µε τον x x είναι το Μ(-2,0).

ÏÅÖÅ [ ) ) ) ) Οπότε το σηµείο τοµής της γραφικής παράστασης µε τον x x είναι το Μ(-2,0). Θέµα ο Α.. Θεωρία από Σχ. Βιβλίο σελ. 9 Α.. Θεωρία από Σχ. Βιβλίο σελ. 9 Α.3. Απόδειξη από Σχ. Βιβλίο σελ. 8-9 Β. α Λάθος β Σωστό γ Σωστό δ Λάθος ε Λάθος Θέµα ο α) Πρέπει + 0 x αι x + 0 x αι έστω x + 0

Διαβάστε περισσότερα

Θρασύβουλος Κων. Μαχαίρας. Μικρές προσωπικές συνεντεύξεις

Θρασύβουλος Κων. Μαχαίρας. Μικρές προσωπικές συνεντεύξεις Κύµατα: Μιρές προσπιές συνεντεύξεις (β µέρος) 12η ερώτηση Θα θέλατε να γίνετε λίγο πιο σαφής σχετιά µε τη µαθηµατιή άρα αι διδατιή αξία τν αρµονιών (µονοχρµατιών) υµάτν ; Για να χειριστούµε µε µεγαλύτερη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 9 Νοεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Μία τυχαία µεταβλητή X καλείται διακριτή ή απαριθµητή αν παίρνει

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ ΣΧΟΛΙΑ ΜΕΘΟ ΟΙ

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ ΣΧΟΛΙΑ ΜΕΘΟ ΟΙ .1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ 1. Αρχή της Μαθηµατιής Επαγωγής Έστω ισχυρισµός Ρ(ν), όπου ν θετιός αέραιος. Αν i) Ρ αληθής αι ii) Ρ(ν) Ρ(ν + 1) για άθε ν, τότε Ρ(ν) αληθής για άθε ν.. Ανισότητα Bernoulli

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

= 2. iii) Αν το Q(χ) είναι περιττού βαθµού, βρείτε το άθροισµα των συντελεστών των άρτιων δυνάµεων του χ.

= 2. iii) Αν το Q(χ) είναι περιττού βαθµού, βρείτε το άθροισµα των συντελεστών των άρτιων δυνάµεων του χ. Σύλλογος Θετιών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του αθηγητή: Βασίλη Ξανθόπουλου Μαθηµατιά : Τάξη: Β ράµα 3 Απριλίου 11 Θέµα 1 ο ίνονται τα πολυώνυµα P(x) αι Q(x) ώστε η εξίσωση P (x) + Q (x) = (1)

Διαβάστε περισσότερα

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία ΚΕΦΑΛΑΙΟ 4 ΠΙΝΑΚΕΣ ΠΟΛΛΑΠΛΩΝ ΚΙΝ ΥΝΩΝ (MULTIPLE DECREMENT TABLES) Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία αρχίζοντας από µια οµάδα γεννήσεων ζώντων που αποτελεί την ρίζα του πίνακα

Διαβάστε περισσότερα

28/2/2010 ; ; καθορίζεται από...

28/2/2010 ; ; καθορίζεται από... 8//00, Εστεριή Γεµετρία της τογραιής µηχανής Μηχανή σηµειαής οπής (pinhle amea Ο Κεντριή Προβολή Θέση Ο σε σχέση µε το επίπεδο προβολής (,, Ευθύγραµµες ατίνες ( ; Φτογραιή Μηχανή ; ; ; Η µορή της δέσµης

Διαβάστε περισσότερα

xdx και κ xdx x. Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 1 9 8 3 8 9 ) 1 Να αποδειχθει οτι : α) Η συναρτηση f με f(x)= x ειναι γνησιως αυξουσα.

xdx και κ xdx x. Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 1 9 8 3 8 9 ) 1 Να αποδειχθει οτι : α) Η συναρτηση f με f(x)= x ειναι γνησιως αυξουσα. Π α ν ε λ λ α δ ι ε ς Ε ξ ε τ α σ ε ι ς ( 9 8 3 8 9 ) Να αποδειχθει οτι : Η συναρτηση f με f() ειναι γνησιως αυξουσα. Για ισχυουν : d αι d. Η f εχει πεδιο ορισμου το Α[, ) αι ειναι συνεχης σε αυτο. Αομη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z

Διαβάστε περισσότερα

Θέματα. Α1. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (9 μονάδες)

Θέματα. Α1. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (9 μονάδες) Θέματα Θέμα Α Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α αι Β ενός δειγματιού χώρου Ω, ισχύει P(A-B)P(A)-P( A B) (9 μονάδες) Α. Να διατυπώσετε το νόμο των μεγάλων αριθμών. (6 μονάδες) Α. Να χαρατηρίσετε

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 4 o Γενιό Λύειο Χανίων Γ τάξη Μαθηματιά Γενιής Παιδείας γ Ασήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράης http://users.sch.gr/mipapagr 4 ο Γενιό Λύειο Χανίων 00 0 ΣΥΝΔΙΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ

Διαβάστε περισσότερα

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Να χαρακτηρίσετε µε Σ (Σωστό) ή Λ (Λάθος) τους παρακάτω ισχυρισµούς:. Για κάθε α R ισχύει ότι : α =α.. Για κάθε α R ισχύει ότι : α = α.. Για κάθε α R ισχύει ότι

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΤΗΣ ΕΛΛΑΔΟΣ ΕΤΟΥΣ 007 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ ΚΑΤΗΓΟΡΙΑ: ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Απογευματιή εξέταση στα μαθήματα: «. Άλγεβρα» «.5

Διαβάστε περισσότερα

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2 1994 ΘΕΜΑΤΑ 1. ίνεται η συνάρτηση f()=,. Α) Αν ε είναι η εφαπτοµένη της γραφικής παράστασης C της συνάρτησης f στο σηµείο Μ(α, α ), α >, να βρείτε το εµβαδόν του χωρίου που περικλείεται από τη C, την ευθεία

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2008

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 8 ΙΑΝΟΥΑΡΙΟΥ 008 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ.

Διαβάστε περισσότερα

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn) MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ g( Έστω τυχαίες µεταβλητές οι οποίες έχουν κάποια από κοινού κατανοµή Ας υποθέσουµε ότι επιθυµούµε να προσδιορίσουµε την κατανοµή της τυχαίας µεταβλητής g( Η θεωρία των ένα-προς-ένα

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ ΘΝΗΣΙΜΟΤΗΤΑΣ ΙΩΑΝΝΗΣ Σ. ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ, ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Καταρχήν θα µελετήσουµε την συνάρτηση f Η f γράφεται f ( ) = ( x + )( x ) ( x ) ή ακόµα f ( ) = u( x,

Διαβάστε περισσότερα

5 Παράγωγος συνάρτησης

5 Παράγωγος συνάρτησης 5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ Γενικές έννοιες

ΣΤΑΤΙΣΤΙΚΗ Γενικές έννοιες ΣΤΑΤΙΣΤΙΚΗ Γειές έοιες Στατιστιή είαι ο λάδος τω μαθηματιώ, ο οποίος ως έργο έχει τη συγέτρωση στοιχείω, τη ταξιόμησή τους αι τη παρουσίασή τους σε ατάλληλη μορφή, ώστε α μπορού α ααλυθού αι α ερμηευθού

Διαβάστε περισσότερα

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Η. ΑΣΚΗΣΕΙΣ ( T) ( 1) ( 2) 3 x =

Η. ΑΣΚΗΣΕΙΣ ( T) ( 1) ( 2) 3 x = Αν είναι "εκ προοιίου φανερό" ότι η παραπάνω διαδικασία είναι συνεπής προς τον υπολογισό της Παραγράφου ΣΤ το προηγούενο παράδειγα επελέγη ε στόχο την επίδειξη αυτής της συνέπειας Η ΑΣΚΗΣΕΙΣ Σε ένα πίνακα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ MSc PROGRAM ΑΝΑΣΚΟΠΗΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Ι Ι ΚΟΥΓΙΑΣ ΚΑΘΗΓΗΤΗΣ ΑΝΤΙΡΡΙΟ 0-0 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΚΕΦΑΛΑΙΟ ο ΣΥΝΑΡΤΗΣΕΙΣ Το

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/aeligia/linearalgerai/lai07/lai07html Παρασκευή Νοεµβρίου 07 Ασκηση Αν

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το

Διαβάστε περισσότερα

Μάθηµα 14. Κεφάλαιο: Στατιστική

Μάθηµα 14. Κεφάλαιο: Στατιστική Μάθηµα 4 Κεφάλαιο: Στατιστική Θεµατικές Ενότητες:. Μέτρα θέσης. Εισαγωγή. Για πιο σύντοµη, αποδοτική και συγκρίσιµη θεώρηση της κατανοµής συχνοτήτων µιας µεταβλητής, έχουµε ορίσει και χρησιµοποιούµε κάποια

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2004

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2004 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 8 ΙΑΝΟΥΑΡΙΟΥ 004 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9 π.μ.) . Αν δ t,

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Ζ. ΠΡΟΣΕΓΓΙΣΕΙΣ ΓΙΑ ΣΥΝΕΧΕΙΣ ΡΑΝΤΕΣ. d A. A δ. α βασίζεται στην απλούστερη σχέση. + και 1 & : ( )

Ζ. ΠΡΟΣΕΓΓΙΣΕΙΣ ΓΙΑ ΣΥΝΕΧΕΙΣ ΡΑΝΤΕΣ. d A. A δ. α βασίζεται στην απλούστερη σχέση. + και 1 & : ( ) Ζ. ΠΡΟΣΕΓΓΙΣΕΙΣ ΓΙΑ ΣΥΝΕΧΕΙΣ ΡΑΝΤΕΣ Υποθέτοντς UDD γράφοµε s s I. Όπως είµε η σχέση είνι οριή περίπτωση ( της. Ένς εολότερος τρόπος ν τλήξοµε στην UDD προσέγγιση γι βσίζετι στην πλούστερη σχέση ι εµετλλεύετι

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Φωτογραµµετρική Οπισθοτοµία

Φωτογραµµετρική Οπισθοτοµία Φτογραµµετριή Οπισθοτοµία είναι εείνη η διαδιασία µε την οποία προσδιορίζονται τα στοιχεία του εξτεριού προσανατολισµού µιας λήψης (Χο, Υο, Ζο,, αι µε τη βοήθεια τν εξισώσεν της Συνθήης Συγγραµµιότητας

Διαβάστε περισσότερα

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0 5 Όριο συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση (δηλαδή όταν το βρίσκεται πολύ κοντά στο ) ή στο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Συνοπτικές Ενδεικτικές Λύσεις

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Συνοπτικές Ενδεικτικές Λύσεις ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 6 ΙΟΥΝΙΟΥ 00 Συνοπτικές Ενδεικτικές Λύσεις Άσκηση. ( µον.) ίνεται το σύστηµα y +

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Απαντήσεις. Θέμα 1 ο. Α. α) v1. Άρα v1

Απαντήσεις. Θέμα 1 ο. Α. α) v1. Άρα v1 Απαντήσεις Θέμα 1 ο 3 ( 3)( 1 ) ( 3)( 1 ) Α. α) v1 lm lm lm 3 1 3 ( 1 )( 1 ) 3 1 ( 3)( 1 ) ( 3)( 1 ) lm lm lm( 1 ) 3 1 3 3 3 3 3 Άρα v1 β) Η είναι παραγωγίσιμη για 0 ως πράξεις παραγωγίσιμων με 1 1 10

Διαβάστε περισσότερα

αρχικό κεφάλαιο τελικό κεφάλαιο επιτόκιο χρόνος

αρχικό κεφάλαιο τελικό κεφάλαιο επιτόκιο χρόνος Στην περίπτωση του ανατοκισμού συναντάμε τέσσερα ποσά: Το αρχικό κεφάλαιο (ή αρχική αξία), που καταθέτουμε αρχικά, το οποίο συμβολίζουμε με, Το τελικό κεφάλαιο (ή τελική αξία) που είναι το ποσό που αποσύρουμε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 -6 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 8.doc ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α i = βi () β αi α) Να αποδείξετε ότι ο δεν είναι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής 6 Ιανουαρίου 013 1 Ασκήσεις 1.1 Ασκήσεις Επανάληψης 1. είξτε ότι : ηµ x + 3συν y 5.. Να αποδείξτε ότι

Διαβάστε περισσότερα

3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ

3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ . Η ΕΝΝΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ. Εξίσωση πρώτου βαθµού µε αγνώστους και νοµάζεται κάθε εξίσωση της µορφής α + β = γ. Άγνωστοι είναι το και το. Τα α, β και γ λέγοντα συντελεστές. Ειδικότερα το γ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 15 Μαΐου 2013 Ασκηση 1. Εστω n 3 ακέραιος.

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ /0/0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:ΕΝΝΕΑ (9) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ

Διαβάστε περισσότερα

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.) 3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!!

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΘΕΩΡΙΑ ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info τηλ. 6977-85-58 1 ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info

Διαβάστε περισσότερα

V. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α. ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ

V. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α. ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ V ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ Όπως γνωρίζοε, η παρούσα αξία ενός ποσού C πο θα αταβληθεί τη ελλοντιή χρονιή C στιγή είναι ίση ε ( ) i, όπο i το "επιτόιο αποτίησης"

Διαβάστε περισσότερα

VI. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΡΑΝΤΩΝ ΖΩΗΣ

VI. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΡΑΝΤΩΝ ΖΩΗΣ VI ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΡΑΝΤΩΝ ΖΩΗΣ Α ΕΙ Η ΡΑΝΤΩΝ ΚΑΙ ΣΥΝΑΦΕΙΣ ΤΜ Οι ράντες ζωής ιφέρον πό τις "βέβιες" ράντες (πο εξετάζοντι στ οιονοµιά µθηµτιά ιότι οι τβολές µις ράντς ζωής εξρτώντι πό την επιβίωση

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28

c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων : Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. (α) Εχουµε ότι : 6 5 x= y= 6 x= 6 x= c(x + y)dxdy = ) c

Διαβάστε περισσότερα

( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31.

( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31. 1 4 η δεκάδα θεµάτων επανάληψης 31. ίνονται οι συναρτήσεις f() = ln(e e + 3) και g() = ln3 + ln(e 1) i. Να βρείτε το πεδίο ορισµού τους. ii. Να βρείτε τα σηµεία τοµής των γραφικών παραστάσεων των f, g

Διαβάστε περισσότερα

Εσωτερικός Προσανατολισμός 15/4/2014. Η μορφή της δέσμης των ακτίνων. Εσωτερική Γεωμετρία της φωτογραφικής μηχανής

Εσωτερικός Προσανατολισμός 15/4/2014. Η μορφή της δέσμης των ακτίνων. Εσωτερική Γεωμετρία της φωτογραφικής μηχανής 5/4/04, Εστεριή Γεμετρία της τογραιής μηχανής Μηχανή σημειαής οπής (pinhle amera Ο Κεντριή Προβολή Θέση Ο σε σχέση με το επίπεδο προβολής (,, Ευθύγραμμες ατίνες (Δr ; Φτογραιή Μηχανή ; ; ; Η μορή της δέσμης

Διαβάστε περισσότερα

Θεωρία Γράφων - Εισαγωγή

Θεωρία Γράφων - Εισαγωγή Θεωρία Γράφων - Εισαγωγή Τοπολογιές απειονίσεις Τοπολογία Κλάδος των μαθηματιών που μελετά ανάμεσα σε άλλα τις ιδιότητες εείνες των γεωμετριών σχημάτων οι οποίες παραμένουν αναλλοίωτες ατά τις τοπολογιές

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

( ) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σηµείωση. 2. Παραδοχή α = Ιδιότητες x. αβ = α = α ( ) x. α β. α : α = α = α

( ) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σηµείωση. 2. Παραδοχή α = Ιδιότητες x. αβ = α = α ( ) x. α β. α : α = α = α . ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Σηµείωση Οι δυνάµεις α του κεφαλαίου έχουν βάση α > 0 και εκθέτη οποιονδήποτε πραγµατικό αριθµό.. Παραδοχή 0 α. Ιδιότητες α + α ( ) α α : α ( ) α α α αβ α β α β α β. Εκθετική

Διαβάστε περισσότερα

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ.

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ. http://elearn.maths.gr/, maths@maths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ 007-008: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε

Διαβάστε περισσότερα

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ 7/10/010 ΑΡΧΗ ΤΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΝ ένα αντιείμενο A1 μπορεί να επιλεγεί με k1 αι ένα αντιείμενο A μπορεί να επιλεγεί με k αι η ελογή του ενός απολείει την ταυτόχρονη ελογή του άλλου, ΤΟΤΕ ένα οποιοδήποτε

Διαβάστε περισσότερα

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt204/nt204.html htts://sites.google.com/site/maths4eu/home/4

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε

Διαβάστε περισσότερα

( x) (( ) ( )) ( ) ( ) ψ = 0 (1)

( x) (( ) ( )) ( ) ( ) ψ = 0 (1) ΚΑΤΑΣΤΑΣΕΙΣ ΕΛΑΧΙΣΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΘΕΣΗΣ ΟΡΜΗΣ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ Στην προηγούµενη ανάρτηση, δείξαµε ότι η κατάσταση είναι κατάσταση ελάχιστης αβεβαιότητας των µη µετατιθέµενων ερµιτιανών τελεστών

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση µιας αντιστρέψιµης συνάρτησης είναι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x

Διαβάστε περισσότερα

Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου

Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου Τελευταία ενηµέρωση: 4 Ιανουαρίου 8 Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο 6-7 -- Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου Οδηγίες για την 6 η άσκηση της 6 ης εργασίας

Διαβάστε περισσότερα