Εισαγωγή Ορισμός Frequency moments

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή Ορισμός Frequency moments"

Transcript

1 The space complexity of approximating the frequency moments Κωστόπουλος Δημήτριος Μπλα Advanced Data Structures June 2007

2 Εισαγωγή Ορισμός Frequency moments Έστω ακολουθία Α = {a 1,a 2,...,a m ) με κάθε a i να ανήκει στο Ν = {1,2,...,n}. Έστω m l το πλήθος των εμφανίσεων του αριθμού l στην ακολουθία Α, m l = { j : a j = l } Ορίζουμε F = Σ i=1n m i. - Frequency moments F 0 = Σ i=1n m i0. Το πλήθος των διαφορετικών στοιχείων της ακολουθίας. F 1 = Σ i=1n m i. Το μήκος της ακολουθίας. Ορίζουμε m = F 1. F 2 = Σ i=1n m i2.

3 Εισαγωγή Τα πιο σημαντικά Frequency moments F = Σ i=1n m i. F 0 = Σ i=1n m i0. Το πλήθος των διαφορετικών στοιχείων της ακολουθίας. F 1 = Σ i=1n m i. Το μήκος της ακολουθίας. Ορίζουμε m = F 1. F 2 = Σ i=1n m i2. F OO * = max {m i, 1<= i <= n} Τα frequency moments βοηθούν στη στατιστική ανάλυση των ακολουθιών.

4 Εισαγωγή Μπορούμε να υπολογίσουμε τα frequency moments εύκολα και γρήγορα απλά κρατώντας ένα μετρητή m l για κάθε αριθμό l. Όμως αυτό απαιτεί χώρο Ω(nlogm), όπου n θυμίζουμε ο μεγαλύτερος αριθμός που μπορεί να εμφανιστεί στην ακολουθία. Θέλουμε πολύ λιγότερο χώρο.

5 Εισαγωγή Πάνω φράγμα Τα F προσεγγίζονται με τυχαίο τρόπο χρησιμοποιώντας το πολύ O(n 1-1/ logn) bits, > 0. Για = 1 : O(logn) bits Για = 2 : O(n 1/2 logn) bits

6 Εισαγωγή Κάτω φράγμα Τα F προσεγγίζονται με τυχαίο τρόπο χρησιμοποιώντας τουλάχιστον Ω(n 1-5/ ) bits, > 0. Για < 5 : Ω(n -something ) bits bits Για = 5 : Ω(1) bits Για > 6 : Ω(n 1 - something ) bits. Άρα για > 6 τα πράγματα δεν είναι και τόσο καλά! Για = OO : Ω(n) bits!, για το F OO*.

7 Κάτω φράγμα - Θεώρημα Θεώρημα Έστω ακολουθία Α = (a 1,...,a m ) με πεδίο τιμών το {1,...,n}. Για κάθε >= 1 και κάθε λ > 0 και κάθε ε > 0 υπάρχει ένα πιθανοτικός αλγόριθμος που με ένα πέρασμα υπολογίζει το F. Αυτός ο αλγόριθμος αποκλίνει από το F πιο πολύ από λf με πιθανότητα το πολύ ε. Ο χώρος που χρησιμοποιεί ο αλγόριθμος είναι : O( log(1/ε) n 1-1/ (logn+logm) / λ 2 )

8 Απόδειξη (σχεδόν ίδια με του paper αλλά κάπως πιο ποιοτικά...) Θέλουμε να προσεγγίσουμε όσο πιο πολύ γίνεται το F και με όσο μεγαλύτερη πιθανότητα μπορούμε. Γενικά, σε τέτοια προβλήματα μία τακτική είναι να μαντέψουμε t τυχαίες μεταβλητές τέτοια που E(X j ) να είναι η τιμή που θέλουμε να προσεγγίσουμε, j = 1,...,t. Μετά ορίζουμε s Υ i τυχαίες μεταβλητές σαν τον μέσο όρο των X j, i = 1,...,s Ο μεσαίος των Υ i είναι η προσέγγιση της τιμής μας.

9 Ξέρουμε, F = Σ i=1n m i. Επίσης από πιθανότητες, για μια τυχαία διακριτή μεταβλητή : Ε(Χ) = Σ x x Pr{X=x}. Οπότε μπορούμε να πάρουμε για Χ = n m i και να πάρουμε το επιθυμητό αποτέλεσμα. Ε(Χ) = Σ x x Pr{X=x} = Σ i=1n n m i (1/n). Αυτό όμως δε δουλεύει γιατί έχουμε το i να εξαρτάται από το i!!!

10 Για να διώξουμε το n, πρέπει να πάρουμε κάτι παρόμοιο αλλά με διαφορετικό πλήθος μεταβλητών. Αναλύοντας το F έχουμε : F = Σ i=1n m i = m 1 + m m n., n προσθετέοι. Ας δοκιμάσουμε να τους κάνουμε m (υπενθύμιση m = το μήκος της ακολουθίας).

11 Αλλά, m 1 + m m n = m. To m είναι και αυτό μεταβλητό, :-(. Αλλά μπορούμε να το θεωρήσουμε σταθερό, ότι και καλά το ξέρουμε από πριν. Θα δείξουμε παρακάτω ότι και σταθερό να μην είναι κλάιν μάιν. F = Σ i=1n m i = m m m n

12 F = Σ i=1n m i = m m m n F = (m 1-1) - (m 1-1) + m (m 2-1) - (m 2-1) + m (m n - 1) - (m n - 1) + m n +

13 F = (m 1-1) - (m 1-1) + m (m 2-1) - (m 2-1) + m (m n - 1) - (m n - 1) + m n F = (1 0 ) + (2 1 ) + (3-2 )... + (m 1 - (m 1-1) ) + (1 0 ) + (2 1 ) + (3-2 )... + (m 2 - (m 2-1) ) (1 0 ) + (2 1 ) + (3-2 )... + (m n - (m n - 1) )

14 Τώρα, αρκεί να ορίσουμε σαν Χ = m (r (r 1) ). Τι μπορεί όμως να συμβολίζει αυτή η νέα μεταβλητή r; Θέλουμε το r να έχει m διαφορετικές τιμές. Τι έχει m διαφορετικές τιμές; Το μήκος της ακολουθίας καθώς την εξετάζουμε. Εάν ορίσουμε σαν r να είναι το r-οστό στοιχείο της ακολουθίας τότε το r θα παίρνει τιμές από το 1 έως το m και Ε(Χ) = Σ x x Pr{X=x} = m. ΛΑΘΟΣ Θέλουμε να μπορούμε να διαχωρίσουμε ποιοτικά το κάθε στοιχείο της ακολουθίας, καθώς δεν ενδιαφερόμαστε πραγματικά για τη θέση του στην ακολουθία αλλά για τον αριθμό επανεμφάνισής του.

15 Οπότε θέλουμε το r να συμβολίζει ακριβώς το εάν συναντήσουμε έναν αριθμό l, να ξέρουμε ποια r-οστή φορά μπορεί να είναι αυτή που τον συναντάμε. Ορίζουμε, r = { q : q >= p, a q = l = a p } Το r συμβολίζει τον αριθμό των εμφανίσεων του a p = l μετά τις πρώτες p πρώτες θέσεις της ακολουθίας. (Αυτό το μετά τις πρώτες p πρώτες θέσεις της ακολουθίας θα χρησιμοποιήσουμε αργότερα για να δείξουμε ότι δε μας πειράζει εάν δε γνωρίζουμε από πριν το μήκος της ακολουθίας).

16 Τι έχουμε καταφέρει μέχρι στιγμής; Τίποτα! Το καλό είναι ότι έως τώρα χρησιμοποιούμε χώρο το πολύ logn + logm. Logn για να κρατάμε το a p =l και logm για να κρατάμε τον αριθμό των εμφανίσεων του l.

17 Ανισότητα Chebyshev Δοθείσης μίας τυχαίας μεταβλητής Χ τότε για a > 0, Pr { X-E(X) >= a } <= σ 2 /α 2,σ = Ε( X-E(X) 2 ),όπου σ 2 είναι η διασπορά της τυχαίας μεταβλητής Χ (Var(X) variance of X).

18 Έστω Y i o μέσος όρος των μεταβλητών Χ, με i = 1... s. Pr { Y i F > λf } = Pr { Y i E(X) > λf }, F = E(X) = Pr { Y i E(Y i ) > λf }, E(X) = E(Y i ) <= Var(Y i ) / (λ 2 F 2 ), ανισότητα του Chebyshev = Var(X) / (t λ 2 F 2 ), Var(Y i ) = Var(X) / t <= E(X 2 ) / (t λ 2 F 2 ), Var(X) = E(X 2 ) - E(X) 2 <= F 1 F 2-1 / (t λ 2 F 2 ), θέλει απόδειξη στον πίνακα. <= n 1-1/ F 2 / (t λ 2 F 2 ), θέλει απόδειξη στον πίνακα. <= n 1-1/ / (t λ 2 )

19 Οπότε, Pr { Y i F > λf } <= n 1-1/ / (t λ 2 ) Chernoff Bound : 'Εστω, X 1,...,X m ανεξάρτητες δοκιμές Bernoulli έτσι ώστε : Pr[X i =1] = p, Pr[X i =0] = 1 - p. Έστω Χ = ΣiXi και E(X) = mp. Τότε για κάθε ε > 0 : Pr( X-E(X) >=E(X)ε) <= 2 e -E(X)ε ε / 2 Αποδεικνύεται, ότι εάν πάρουμε, για s = 2 log(1/ε) και t = 8 n 1-1/ / λ 2, τότε από το Chernoff η πιθανότητα περισσότερες από s/2 μεταβλητές Y i να αποκλίνουν περισσότερο από λf από το F είναι το πολύ ε.

20 Τι κάνουμε εάν δεν ξέρουμε το μήκος της ακολουθίας m από πριν; (σχεδόν πάντα συμβαίνει αυτό...) Τότε ξεκινάμε με m = 1 καθώς διαβάζουμε την ακολουθία και διαλέγουμε σαν l = a p το a 1. Κάνουμε το r = 1, καθώς το a 1 είναι το μοναδικό στοιχείο στην ακολουθία. Μετά με m = 2 βάζουμε για a p το a 2 με πιθανότητα ½ και κάνουμε τους υπολογισμούς. Γενικότερα σε κάθε βήμα m αντικαθιστάμε το a p με το a m με πιθανότητα 1/m. Αν γίνει η αντικατάσταση κάνουμε το r = 1. Εάν δε γίνει, κοιτάμε εάν το a m =a p και αυξάνουμε το r κατά 1, αλλιώς αφήνουμε το r έως έχει.

21 Στην εισαγωγή όμως είπαμε ότι τα F προσεγγίζονται με τυχαίο τρόπο χρησιμοποιώντας το πολύ O(n 1-1/ logn) bits, > 0. Εάν m >= Ο(n), τότε έχει αποδειχθεί ότι ο χώρος που χρειάζεται είναι : Ο( log(1/ε) n 1-1/ (logn+loglogm+log(1/λ)) / λ 2 )

22 Κάτω φράγμα - F 2 O( log(1/ε) (logn+logm) / λ 2 ) Έστω ακολουθία Α = (a 1,...,a m ) με πεδίο τιμών το {1,...,n}. Για κάθε λ > 0 και κάθε ε > 0 υπάρχει ένα πιθανοτικός αλγόριθμος που με ένα πέρασμα υπολογίζει το F 2. Αυτός ο αλγόριθμος αποκλίνει από το F 2 το πολύ από λf 2 με πιθανότητα το πολύ ε. Ο χώρος που χρησιμοποιεί ο αλγόριθμος είναι : O( log(1/ε) (logn+logm) / λ 2 )

23 Κάτω φράγμα - F 0 O( logn) Έστω ακολουθία Α = (a 1,...,a m ) με πεδίο τιμών το {1,...,n}. Για κάθε c>2 υπάρχει ένα πιθανοτικός αλγόριθμος που με ένα πέρασμα υπολογίζει το F 0. Η πιθανότητα ο λόγος μεταξύ Y (Υ=ο υπολογισμός του αλγορίθμου) και F να μην είναι μεταξύ 1/c και c είναι το πολύ 2/c. Ο χώρος που χρησιμοποιεί ο αλγόριθμος είναι : O( logn)

24 Άνω φράγμα - F ΟΟ * Ω(n) Έστω ακολουθία Α = (a 1,...,a m ) με πεδίο τιμών το {1,...,n} και το μήκος m να είναι το πολύ 2n. Για κάθε ε < ½ και κάθε πιθανοτικό αλγόριθμο που με ένα * * πέρασμα υπολογίζει το F ΟΟ και αποκλίνει από το F ΟΟ πιο πολύ από F ΟΟ* /3 με πιθανότητα το πολύ ε : ο χώρος που χρησιμοποιεί ο αλγόριθμος είναι : Ω(n).

25 Άνω φράγμα - F κ Ω(n 1-5/ ) Έστω ακολουθία Α = (a 1,...,a m ) με πεδίο τιμών το {1,...,n}. Για κάθε > 5 και γ < ½ και κάθε πιθανοτικό αλγόριθμο με Pr { Ζ -F > 0.1 F } < γ (Z η έξοδος του αλγορίθμου): ο χώρος που χρησιμοποιεί ο αλγόριθμος είναι : Ω(n 1-5/ ).

Περιεχόμενα 5ης Διάλεξης 1 Ανισότητα Markov 2 Διασπορά 3 Συνδιασπορά 4 Ανισότητα Chebyshev 5 Παραδείγματα Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5

Περιεχόμενα 5ης Διάλεξης 1 Ανισότητα Markov 2 Διασπορά 3 Συνδιασπορά 4 Ανισότητα Chebyshev 5 Παραδείγματα Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5 5ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Θεώρημα για σφαίρες Θα δείξουμε ότι το γράφημα G(n, 2 ln n n 1 ) έχει μικρή διάμετρο Θα ξεκινήσουμε με ένα θεώρημα για το μέγεθος μιας σφαίρας

Διαβάστε περισσότερα

x P (x) c P (x) = c P (x), x S : x c

x P (x) c P (x) = c P (x), x S : x c Κεφάλαιο 9 Ανισότητες, από κοινού κατανομή, Νόμος των Μεγάλων Αριθμών 9.1 Ανισότητες Markov και Chebychev Ξεκινάμε αυτό το κεφάλαιο με δύο σημαντικά αποτελέσματα τα οποία, πέραν της μεγάλης χρησιμότητάς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Y = X 1 + X X N = X i. i=1

Y = X 1 + X X N = X i. i=1 Κεφάλαιο 7 Διακριτές κατανομές Στο προηγούμενο κεφάλαιο είδαμε πως η έννοια της τυχαίας μεταβλητής Τ.Μ., δηλαδή μιας τυχαίας ποσότητας X που προσδιορίζεται από το σύνολο τιμών της S και την πυκνότητά της

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q 7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

P (M = 9) = e 9! =

P (M = 9) = e 9! = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης 5ο Φροντιστήριο Ασκηση 1. ύο ποµποί ο Α και ο Β στέλνουν ανεξάρτητα

Διαβάστε περισσότερα

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T 0 1 2 3 4 5 6 7 U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους

Διαβάστε περισσότερα

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την Η ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Ενδιαφερόμαστε για την απλούστερη μορφή πειραματικής διαδικασίας, όπου η έκβαση των αποτελεσμάτων χαρακτηρίζεται μόνο ως "επιτυχής" ή "ανεπιτυχής" (δοκιμές Beroulli). Ορίζουμε λοιπόν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@fme.aegean.gr Τηλ: 7035468 σ-άλγεβρα

Διαβάστε περισσότερα

Fast broadcasting and gossiping in radio networks. Chrobak, Gasieniec, Rytter 2002.

Fast broadcasting and gossiping in radio networks. Chrobak, Gasieniec, Rytter 2002. Fast broadcasting and gossiping in radio networks. Chrobak, Gasieniec, Rytter 2002. ιδάσκων: Άρης Παγουρτζής Παρουσίαση: Νίκος Λεονάρδος nleon@cs.ntua.gr 1 Το μοντέλο 2 6 5 9 1 3 4 7 8 Broadcasting: Ένας

Διαβάστε περισσότερα

Τυχαιοκρατικοί Αλγόριθμοι

Τυχαιοκρατικοί Αλγόριθμοι Πιθανότητες και Αλγόριθμοι Ανάλυση μέσης περίπτωσης Μελέτα τη συμπεριφορά ενός αλγορίθμου σε μια «μέση» είσοδο (ως προς κάποια κατανομή) Τυχαιοκρατικός αλγόριθμος Λαμβάνει τυχαίες αποφάσεις καθώς επεξεργάζεται

Διαβάστε περισσότερα

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός: ΕΤΥ: Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Χειμερινό Εξάμηνο 2014-15 Τελική Εξέταση 28/02/15 Διάρκεια Εξέτασης: 3 Ώρες Ονοματεπώνυμο: Αριθμός Μητρώου: Υπογραφή: Ερώτημα: 1 2 3 4 5 6 Σύνολο Μονάδες:

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα

Πιθανότητες και Αλγόριθμοι

Πιθανότητες και Αλγόριθμοι Πιθανότητες και Αλγόριθμοι ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός αλγόριθμος κάνει τυχαίες επιλογές και εξαρτά

Διαβάστε περισσότερα

Fast broadcasting and gossiping in radio networks. Chrobak, Gasieniec, Rytter 2002.

Fast broadcasting and gossiping in radio networks. Chrobak, Gasieniec, Rytter 2002. Fast broadcasting and gossiping in radio networks. Chrobak, Gasieniec, Rytter 2002. ιδάσκων: Άρης Παγουρτζής Παρουσίαση: Νίκος Λεονάρδος nleon@cs.ntua.gr 1 Το μοντέλο 2 6 5 9 1 3 4 7 8 Broadcasting: Ένας

Διαβάστε περισσότερα

Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις και σημειακή εκτίμηση παραμέτρων Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή συμπερασμάτων για το σ

Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις και σημειακή εκτίμηση παραμέτρων Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή συμπερασμάτων για το σ 10ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 10ο Μάθημα

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Κατανομές Πιθανότητας Ως τυχαία μεταβλητή ορίζεται το σύνολο των τιμών ενός χαρακτηριστικού

Διαβάστε περισσότερα

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε: Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve

Διαβάστε περισσότερα

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων. Ένα μέτρο πιθανότητας πάνω στο δειγματικός χώρο Ω, είναι μία συνάρτηση P ( ) που αντιστοιχεί σε υποσύνολα του Ω, έναν αριθμό στο [ 0, ], με τις εξής ιδιότητες: P ( Ω ) 2 Η πιθανότητα της αριθμήσιμης ένωσης

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Πιθανότητες και Αλγόριθμοι

Πιθανότητες και Αλγόριθμοι Πιθανότητες και Αλγόριθμοι ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός αλγόριθμος κάνει τυχαίες επιλογές και εξαρτά

Διαβάστε περισσότερα

Πιθανοτικοί Αλγόριθμοι

Πιθανοτικοί Αλγόριθμοι Πιθανοτικοί Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός

Διαβάστε περισσότερα

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη

Διαβάστε περισσότερα

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2) Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #06 Πιθανοτικό Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

X i = Y = X 1 + X X N.

X i = Y = X 1 + X X N. Κεφάλαιο 6 Διακριτές τυχαίες μεταβλητές Σε σύνθετα προβλήματα των πιθανοτήτων, όπως π.χ. σε προβλήματα ανάλυσης πολύπλοκων δικτύων ή στη στατιστική ανάλυση μεγάλων δεδομένων, η λεπτομερής, στοιχείο-προς-στοιχείο

Διαβάστε περισσότερα

Ταξινόμηση. 1. Ταξινόμηση του Shell. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Ταξινόμηση του Shell. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση. Ταξινόμηση του Shell Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση του Shell Η μέθοδος που προτάθηκε από τον Shell έχει βασικό χαρακτηριστικό ότι χρησιμοποιεί µία ακολουθία ακεραίων

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 4

Αλγόριθμοι Ταξινόμησης Μέρος 4 Αλγόριθμοι Ταξινόμησης Μέρος 4 Μανόλης Κουμπαράκης Δομές Δεδομένων και Τεχνικές 1 Μέθοδοι Ταξινόμησης Βασισμένοι σε Συγκρίσεις Κλειδιών Οι αλγόριθμοι ταξινόμησης που είδαμε μέχρι τώρα αποφασίζουν πώς να

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο

Εθνικό Μετσόβιο Πολυτεχνείο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία PROJECT Συνοπτική Παρουσίαση του Κβαντικού Αλγόριθμου Παραγοντοποίησης

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

Learning k-modal distributions via testing

Learning k-modal distributions via testing Μάθηση k-τροπικών κατανομών μέσω δοκιμών Learning k-modal distributions via testing Ιωσήφ Μουλίνος Εθνικό Μετσόβιο Πολυτεχνείο 8 Ιουνίου 2017 ΕΜΠ Μάθηση k-τροπικών κατανομών 8 Ιουνίου 2017 1 / 20 Επιβλεπόμενη

Διαβάστε περισσότερα

Κεφάλαιο 5 Ανάλυση Αλγορίθμων

Κεφάλαιο 5 Ανάλυση Αλγορίθμων Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά

Διαβάστε περισσότερα

EukleÐdeiec emfuteôseic: ˆnw frˆgmata

EukleÐdeiec emfuteôseic: ˆnw frˆgmata EukleÐdeiec emfuteôseic: ˆnw frˆgmata Εστω f : X Y μια εμφύτευση του μετρικού χώρου (X, ρ) στο χώρο με νόρμα (Y, ). Η παραμόρφωση της f ορίζεται ως εξής: f(x) f(y) ρ(x, y) dist(f) = sup sup x y ρ(x, y)

Διαβάστε περισσότερα

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 17 Υπενθύµιση: Ακολουθίες Ακολουθία είναι συνάρτηση από

Διαβάστε περισσότερα

ILP-Feasibility conp

ILP-Feasibility conp Διάλεξη 19: 23.12.2014 Θεωρία Γραμμικού Προγραμματισμού Γραφέας: Χαρίλαος Τζόβας Διδάσκων: Σταύρος Κολλιόπουλος 19.1 Θεωρία Πολυπλοκότητας και προβλήματα απόφασης Για να μιλήσουμε για προβλήματα και τον

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros

Διαβάστε περισσότερα

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων. Ένα μέτρο πιθανότητας πάνω στο δειγματικός χώρο Ω, είναι μία συνάρτηση P ( ), που αντιστοιχεί σε υποσύνολα του Ω έναν αριθμό στο [ 0, ], με τις εξής ιδιότητες:. P ( Ω ). 2. Η πιθανότητα της αριθμήσιμης

Διαβάστε περισσότερα

Κεφαλαιο 2.2 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΛΓΟΡΙΘΜΟΙ

Κεφαλαιο 2.2 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΛΓΟΡΙΘΜΟΙ Κεφαλαιο 2.2 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΛΓΟΡΙΘΜΟΙ 1.Σ, 2.Σ, 3. Λ, 4.Σ, 5.Σ Στο α) ανήκουν: 1,2,5,6,7 Στο β) ανήκουν: 3,4,8,9,10 1.-Λ, 2.-Λ, 3.-Σ, 4.-Σ, 5.-Σ 1. -Πραγματικός, 2. -Αρφαριθμητικός, 3.-Αλφαριθμητικός,

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1. Περιεχόμενα της Ενότητας Στατιστική ΙI Ενότητα 1: Δειγματοληψία και Κατανομές Δειγματοληψίας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 1. ειγµατοληψία Πιθανοτικές

Διαβάστε περισσότερα

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την Μαθηματικά Πληροφορικής 8ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Δοκιμές Bernoulli Ας θεωρήσουμε μία ακολουθία (σειρά) πειραμάτων στην οποία ισχύουν τα επόμενα

Διαβάστε περισσότερα

Έξι βαθμοί διαχωρισμού

Έξι βαθμοί διαχωρισμού Έξι βαθμοί διαχωρισμού Βασισμένα στα 1. http://snap.stanford.edu/class/cs224w-readings/kleinberg99smallworld.pdf 2. http://snap.stanford.edu/class/cs224w-readings/kleinberg01smallworld.pdf Το πείραμα του

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, --3 Μ. Παπαδημητράκης. Τώρα θα δούμε μια ακόμη εφαρμογή του Κριτηρίου του Ολοκληρώματος. Παράδειγμα. Γνωρίζουμε ότι η αρμονική σειρά αποκλίνει στο +, το οποίο φυσικά σημαίνει

Διαβάστε περισσότερα

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 6-7: ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ Τυχαία Μεταβλητή (Τ.Μ.): Συνάρτηση πραγματικών τιμών

Διαβάστε περισσότερα

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας Ροπογεννήτριες (mome geerig fucios), πιθανογεννήτριες (robbiliy geerig fucios) και χαρακτηριστικές συναρτήσεις (chrcerisic fucios) Η ροπογεννήτρια συνάρτηση της τμ είναι η πραγματική συνάρτηση πραγματικής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 2016-2017 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegean.gr Τηλ: 2271035468

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 2: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Είδη τυχαίων διανυσµάτων 1. ιακριτού τύπου X = (X 1, X 2,...,X k ) ονοµάζεται διακριτό τυχαίο διάνυσµα αν το πεδίο τιµών του είναι της µορφής, S = {x 1 x 2 n,,...,x,...}.

Διαβάστε περισσότερα

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 8: Πρόβλημα Βυζαντινών Στρατηγών ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκες Συμφωνίας κάτω από Βυζαντινό Στρατηγό Πιθανοτικοί αλγόριθμοι επίλυσης Βυζαντινής

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές) 07/11/2016 Στατιστική Ι 6 η Διάλεξη (Βασικές διακριτές κατανομές) 1 2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Μέγιστη Ροή Ελάχιστη Τομή

Μέγιστη Ροή Ελάχιστη Τομή Μέγιστη Ροή Ελάχιστη Τομή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή, προορισμός, χωρητικότητα ακμής b e. ροή μεγέθους

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Στατιστική Ι-Θεωρητικές Κατανομές Ι Στατιστική Ι-Θεωρητικές Κατανομές Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές Η Χρήση των Θεωρητικών

Διαβάστε περισσότερα

17/10/2016. Στατιστική Ι. 3 η Διάλεξη

17/10/2016. Στατιστική Ι. 3 η Διάλεξη Στατιστική Ι 3 η Διάλεξη 1 2 Τυχαία μεταβλητή X στο δειγματικό χώρο Ω Μια πραγματική συνάρτηση που αντιστοιχίζει τα στοιχεία του δειγματικού χώρου Ω στο σύνολο των πραγματικών αριθμών τέτοια ώστε για κάθε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

Λύσεις 2ης Ομάδας Ασκήσεων

Λύσεις 2ης Ομάδας Ασκήσεων ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ. (Μπάλες Λύσεις ης Ομάδας Ασκήσεων Τμήμα Α Λ (αʹ Έστω A το ενδεχόμενο να επιλέξουμε τουλάχιστον μια άσπρη μπάλα. Θα υπολογίσουμε

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ 4.. Εισαγωγή Στην προσομοίωση σε πολλές περιπτώσεις είναι απαραίτητη η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν κάποια καθορισμένη

Διαβάστε περισσότερα

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1 Θέμα 1 (α) Υποθέτουμε (προς απαγωγή σε άτοπο) ότι το σύνολο A έχει μέγιστο στοιχείο, έστω a = max A Τότε, εϕόσον a A, έχουμε a R Q και a M Ομως ο αριθμός μητρώου M είναι ρητός αριθμός, άρα (εϕόσον ο a

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Βιομαθηματικά BIO-156. Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017 Βιομαθηματικά BIO-156 Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 17 lika@biology.uoc.gr Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε απλό ενδεχόμενο

Διαβάστε περισσότερα

PSEUDORANDOM GENERATORS- PREDICATES & ZK PROOFS

PSEUDORANDOM GENERATORS- PREDICATES & ZK PROOFS PSEUDORANDOM GENERATORS- PREDICATES & ZK PROOFS ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 Επιμέλεια: Νικόλαος Λάμπρου μπλ 2014 Γεννήτρια ψευδοτυχαίων αριθμών Άτυπος ορισμός: Έστω μια συνάρτηση G από strings σε strings.λέμε

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου 11η Διάλεξη 12 Ιανουαρίου 2017 1 Ανεξάρτητο σύνολο Δοθέντος ενός μη κατευθυνόμενου γραφήματος G = (V, E), ένα ανεξάρτητο σύνολο (independent set) είναι ένα

Διαβάστε περισσότερα

Χρησιμότητα ανισοτήτων - οριακών θεωρημάτων

Χρησιμότητα ανισοτήτων - οριακών θεωρημάτων Πιθανότητες και Στατιστική Ενότητα 6: Οριακά θεωρήματα στη Θεωρία Πιθανοτήτων Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Χρησιμότητα ανισοτήτων - οριακών θεωρημάτων Χρησιμότητα

Διαβάστε περισσότερα

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 ) Κατανομή συνάρτησης τυχαίας μεταβλητής =() Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ3 ( ) Κατανομή συνάρτησης τυχαίας μεταβλητής Έστω τ.μ. Χ με γνωστή κατανομή. Δηλαδή

Διαβάστε περισσότερα

Σημειώσεις : Πιθανότητες και Στοχαστικές Διαδικασίες

Σημειώσεις : Πιθανότητες και Στοχαστικές Διαδικασίες Γιάννης Γαροϕαλάκης, Καθηγητής Αθανάσιος Ν.Νικολακόπουλος, Υποψ.Διδάκτωρ Σημειώσεις : Πιθανότητες και Στοχαστικές Διαδικασίες Συνοπτική Παρουσίαση Χρήσιμων Εννοιών 18 Οκτωβρίου 2011 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

6ο Μάθημα Πιθανότητες

6ο Μάθημα Πιθανότητες 6ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαι κο Έτος 2014-2015 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

= 14 = 34 = Συνδυαστική Ανάλυση

= 14 = 34 = Συνδυαστική Ανάλυση 1. Συνδυαστική Ανάλυση 1.1 Ένα κουτί περιέχει 8 κόκκινες, 3 άσπρες και 9 μπλε σφαίρες. Εάν βγάλουμε 3 σφαίρες στην τύχη χωρίς επανατοποθέτηση, ποια είναι η πιθανότητα (α) να είναι και οι 3 κόκκινες, (β)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

4.4 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ

4.4 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ 158 44 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ Μέγιστος Κοινός Διαιρέτης Έστω α, β δύο ακέραιοι Ένας ακέραιος δ λέγεται κοινός διαιρέτης των α και β, όταν είναι διαιρέτης και του α και του

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Ορισμός κανονικής τ.μ.

Ορισμός κανονικής τ.μ. Πιθανότητες και Στατιστική Ενότητα 4: Τυχαίες τυχαίες μεταβλητές Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Ορισμός κανονικής τ.μ. Ορισμός κανονικής τ.μ. Μια συνεχής τ.μ.

Διαβάστε περισσότερα

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Διάλεξη 6: Εισαγωγή στην Ουρά M/G/1 Δρ Αθανάσιος Ν Νικολακόπουλος ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής 18 Νοεμβρίου 2016

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ζωή Παρασκευοπούλου Νίκος

Διαβάστε περισσότερα

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ).

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ). ΕΜ0 - Διακριτά Μαθηματικά Ιανουαρίου 006 Άσκηση - Λύσεις Πρόβλημα [0 μονάδες] Εστω L και L δύο κυκλώματα σε ένα γράφημα G. Εστω a μία ακμή που ανήκει και στο L και στο L και έστω b μία ακμή που ανήκει

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων ΑΓΡΙΝΙΟ ΣΤΑΤΙΣΤΙΚΗ Φραγκίσκος Κουτελιέρης Αναπληρωτής

Διαβάστε περισσότερα

Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Επιλογή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[ ] με n στοιχεία (όχι ταξινομημένος). Αριθμός k,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση

Διαβάστε περισσότερα

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε

Διαβάστε περισσότερα

Διαλογικά Συσ τήματα Αποδείξεων Διαλογικά Συστήματα Αποδείξεων Αντώνης Αντωνόπουλος Κρυπτογραφία & Πολυπλοκότητα 17/2/2012

Διαλογικά Συσ τήματα Αποδείξεων Διαλογικά Συστήματα Αποδείξεων Αντώνης Αντωνόπουλος Κρυπτογραφία & Πολυπλοκότητα 17/2/2012 Αντώνης Αντωνόπουλος Κρυπτογραφία & Πολυπλοκότητα 17/2/2012 Εισαγωγή Ορισμός Επέκταση του NP συστήματος αποδείξεων εισάγωντας αλληλεπίδραση! Ενα άτομο προσπαθεί να πείσει ένα άλλο για το ότι μία συμβολοσειρά

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με 5. ΑΚΟΛΟΥΘΙΕΣ Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών,,,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο καλείται πρώτος όρος της ακολουθίας

Διαβάστε περισσότερα

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m

Διαβάστε περισσότερα