Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ METODE NUMERICE PROBLEME DE SEMINAR

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ METODE NUMERICE PROBLEME DE SEMINAR"

Transcript

1 Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ METODE NUMERICE PROBLEME DE SEMINAR ŞI LUCRǍRI DE LABORATOR Simina Mariş Liliana Brǎescu Timişoara 007

2 Introducere Procesul de restructurare al Învǎţǎmântului Superior din România şi trecerea acestuia pe trei cicluri, a determinat la nivelul întregii ţǎri elaborarea de noi planuri de învǎţǎmânt şi de programe analitice adecvate. Metode numerice - Probleme de seminar şi lucrǎri de laborator este un material adiţional la cursul de Metode numerice elaborat în acord cu noile cerinţe, pe baza programei analitice conceputǎ la nivelul Departamentului de Informaticǎ şi aprobatǎ în Consiliul Profesoral al Facultǎţii de Matematicǎ şi Informaticǎ de la Universitatea de Vest din Timişoara. Problemele şi lucrǎrile de laborator prezentate în aceastǎ carte se adreseazǎ în primul rând studenţilor de la Facultatea de Matematicǎ şi Informaticǎ, fiind abordate toate temele din programa analiticǎ, la nivelul studenţilor Secţiei de Informaticǎ aflaţi în semestrul al cincilea de studiu, oferind exemple şi detalii referitoare la metodele numerice prezentate în curs. Lucrarea este structuratǎ pe şapte capitole, primul dintre acestea fiind rezervat pentru prezentarea unui set de cunoştinţe minimale de programare în Maple. Capitolele - 7 corespund capitolelor din cursul de Metode numerice şi sunt organizate dupǎ cum urmeazǎ: breviar teoretic problemǎ rezolvatǎ probleme propuse implementare Prin aceastǎ lucrare, autorii pun la dispoziţia cititorilor toate cunoştinţele necesare în vederea construirii de algoritmi şi proceduri capabile sǎ ia ca argument un obiect matematic şi sǎ returneze un rezultat final. Autorii

3 Lista proiectelor 1. Metoda lui Gauss cu pivot total. Rezolvarea unui sistem. Inversa unei matrice. Rezolvarea unui sistem 3. Factorizarea LU Doolittle. Rezolvarea unui sistem 4. Factorizarea Cholesky. Rezolvarea unui sistem 5. Factorizarea Householder. Rezolvarea unui sistem 6. Metoda Gauss-Seidel. Comparaţie cu metoda lui Jacobi şi cu soluţia exactǎ 7. Metoda relaxǎrii succesive. Comparaţie cu metoda Gauss-Seidel şi cu soluţia exactǎ 8. Metoda lui Newton simplificatǎ în dimensiunea n. Comparaţie cu metoda lui Newton clasicǎ în dimensiunea n 9. Metoda lui Newton simplificatǎ în dimensiunea 1. Comparaţie cu metoda lui Newton clasicǎ. Reprezentare intuitiva. 10. Polinomul lui Newton cu diferenţe finite la dreapta. Comparaţie pentru o funcţie cunoscutǎ 11. Polinomul lui Newton cu diferenţe finite la stânga. Comparaţie pentru o funcţie cunoscutǎ 1. Functia spline liniarǎ. Comparaţie pentru o funcţie cunoscutǎ 13. Polinoame Bernstein. Comparaţi cu polinomul Lagrange pentru o funcţie cunoscutǎ. 14. Aproximarea derivatei prin diferenţe finite. Comparaţie cu valoarea exactǎ şi între diferite valori ale pasului h. 15. Formule de tip Gauss de ordinul 3, 4. Comparaţie cu rezultatul exact. 16. Metoda lui Taylor de ordinul 3. Comparaţie cu rezultatul exact. 17. Metoda Runge-Kutta de ordinul 3. Comparaţie cu rezultatul exact, pentru diverse valori ale parametrilor. 18. Metoda Runge-Kutta de ordinul 4. Comparaţie cu rezultatul exact, pentru diverse valori ale parametrilor. 19. Metoda Adams-Bashforth de ordinul 3. Comparaţie cu rezultatul exact, pentru diverse valori ale parametrilor. 0. Metoda Adams-Bashforth de ordinul 4. Comparatie cu rezultatul exact, pentru diverse valori ale parametrilor. 1. Metoda Adams-Bashforth de ordinul 5. Comparatie cu rezultatul exact, pentru diverse valori ale parametrilor. 1

4 Cuprins 1 MapleV4 - scurtǎ introducere Reguli generale de introducere a comenzilor Pachete de programe Constante, operatori şi funcţii des utilizate Structuri de date Calcule cu matrice şi vectori. Pachetul linalg Grafice Elemente de programare Rezolvarea sistemelor liniare 1.1 Metoda lui Gauss Factorizarea LU Sisteme tridiagonale Factorizarea Cholesky Factorizarea Householder Metoda Jacobi Metoda Gauss-Seidel Metoda relaxǎrii succesive Ecuaţii şi sisteme de ecuaţii neliniare Metoda punctului fix Metoda lui Newton Interpolare polinomialǎ. Funcţii spline Polinomul lui Newton cu diferenţe divizate Polinomul de interpolare Lagrange Interpolare spline Polinoame Bernstein Derivare numericǎ Aproximarea derivatei prin diferenţe finite Aproximarea derivatei Integrare numericǎ Formule de tip Newton-Cotes Formule de tip Gauss

5 7 Ecuaţii diferenţiale Metoda diferenţelor finite Metoda lui Taylor Metoda Runge-Kutta Metoda Adams-Bashforth Metoda Adams-Moulton Metoda predictor-corector Probleme la limitǎ liniare Metoda colocaţiei şi metoda celor mai mici pǎtrate

6 Capitolul 1 MapleV4 - scurtǎ introducere Maple este un sistem de calcul algebric (CAS) dezvoltat de firma Maplesoft ( care poate fi utilizat în: 1. calcule simbolice;. calcule numerice; 3. programarea unor metode numerice; 4. reprezentǎri grafice. În cele ce urmeazǎ, vom prezenta principalele elemente necesare în programarea unor metode numerice, corespunzǎtoare softului MapleV Reguli generale de introducere a comenzilor Un document MapleV4 poate avea patru tipuri de câmpuri: 1. comenzi Maple (introduse de cǎtre utilizator);. rezultate Maple (rǎspunsuri ale CAS-ului la comenzile introduse); 3. grafice (rǎspunsuri ale CAS-ului); 4. texte (introduse de cǎtre utilizator). În continuare, vom prezenta câteva reguli de introducere a comenzilor. 1. Orice comandǎ se terminǎ cu ; (dacǎ dorim sǎ afişeze rezultatul) sau : (dacǎ nu dorim ca rezultatul sǎ fie afişat). De exemplu: > sin(pi); 0 > 1+3: 4

7 . Asignarea se face cu :=, iar dezasignarea se face prin asignarea numelui variabilei. De exemplu, putem avea secvenţa: > x:= 7; x := 7 > x:=x+1: > x; 8 > x:= x ; > x; x := x x 3. Comentariile sunt precedate de caracterul #. De exemplu: > x:=3; # se atribuie lui x valoarea 3 x := 3 4. Maple face diferenţa între litere mici şi litere mari: > x:=3; X:=5; a:=x-x; x := 3 X := 5 a := 5. Secvenţele sunt scrise între paranteze rotunde, ( ), listele între paranteze pǎtrate, [ ], iar mulţimile între acolade, {}. De exemplu: > secv:=(1,,3); lista:=[,1,,3]; multime:={,1,,3}; secv := 1,, 3 lista := [, 1,, 3] multime := {1,, 3} 6. Argumentele unei funcţii se pun între paranteze rotunde, (), iar indicii între paranteze pǎtrate, []. > a:=cos(pi); b:=lista[]; a := 1 b := 1 7. Procentul, %, face referire la ultima comandǎ executatǎ anterior. De exemplu: > a:=; a := > b:=%+1; b := 3 5

8 8. Dacǎ rezultatul furnizat de Maple este identic cu comanda introdusǎ (Maple rǎspunde prin ecou la comandǎ), atunci aceasta aratǎ cǎ Maple nu poate interpreta comanda introdusǎ. Pentru a remedia situaţia, verificaţi dacǎ aţi introdus corect comanda sau dacǎ nu cumva funcţia utilizatǎ face parte dintr-un pachet care trebuie încǎrcat în prealabil. > arctg(1); # o incercare de a calcula arctangenta de 1 arctg(1) > arctan(1); # apelarea corecta a functiei arctangenta π 4 9. Pentru a nu reţine eventuale atribuiri anterioare, este util ca pentru rezolvarea unei probleme noi sǎ începem cu instrucţiunea > restart; 1. Pachete de programe Pachetele sunt colecţii de funcţii care permit efectuarea de calcule specifice. Apelarea lor se face cu ajutorul comenzii with(nume_pachet). Pentru a apela o anumitǎ funcţie dintr-un pachet, se foloseşte sintaxa: pachet[ functie ](argumente) Printre cele mai utilizate pachete sunt: plots - pentru reprezentǎri grafice; DEtools - pentru rezolvarea ecuaţiilor diferenţiale; linalg - pentru rezolvarea unor probleme de algebrǎ liniarǎ; student - pentru analizǎ matematicǎ. De exemplu, la apelarea pachetului grafic, se obţine lista tuturor funcţiilor apelabile: > with(plots); Warning, the name changecoords has been redefined [animate, animate3d, changecoords, complexplot, complexplot3d, conformal, contourplot, contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display, display3d, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, odeplot, pareto, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedraplot, replot, rootlocus, semilogplot, setoptions, setoptions3d, spacecurve, sparsematrixplot, sphereplot, surfdata, textplot, textplot3d, tubeplot] 6

9 1.3 Constante, operatori şi funcţii des utilizate Constantele folosite de Maple sunt: Constantǎ Semnificaţie false fals true adevǎrat gamma constanta lui Euler infinity + Catalan constanta lui Catalan Fail valoare de adevǎr necunoscutǎ Pi π I unitatea imaginarǎ NULL secvenţa vidǎ Operatorii folosiţi frecvent sunt: Operator Sintaxǎ Semnificaţie +, - a+b, a-b suma a + b (diferenţa a b) * a*b, *a produsul a b, sau a / a/b câtul a b ^, ** a^b, a**b puterea a b! n! factorialul 1... n max, min max(a,b,c), maximul (minimul) dintre a, b, c min(a,b,c) <,<=,>,>=,=,<> operatori booleeni := f:=expr operatorul de asignare f = expr = a=b ecuaţia a = b.. x=a..b a x b and, or, xor, operatori logici implies, not Funcţii folosite frecvent în Maple: Funcţie Sintaxǎ Semnificaţie sin, cos, tan, cot sin(x),... funcţii trigonometrice arcsin, arctan, arccos arctan(x),... ln, log10 ln(x), log10(x) logaritmi exp exp(x), exp(1) funcţia exponenţialǎ sqrt sqrt(x) radical abs abs(x) modul 7

10 1.4 Structuri de date: secvenţe, liste, mulţimi, şiruri de caractere Secvenţe O secvenţǎ este o înşiruire de expresii, separate prin virgule. Existǎ mai multe moduri de a defini o secvenţǎ: a. direct: > s:=1,,3,4; t:=(a,b,c); s := 1,, 3, 4 t := a, b, c b. cu ajutorul funcţiei seq: > seq(3*x, x=..7); 6, 9, 1, 15, 18, 1 c. cu ajutorul unui ciclu for (vezi secţiunea 1.7.1) Cu ajutorul funcţiilor min şi max se poate calcula minimul, respectiv maximul unei secvenţe. > min(s); max(s,,15); Liste O listǎ este o secvenţǎ de expresii, scrisǎ între paranteze pǎtrate, [ ]. De exemplu, putem avea lista: > ll:=[1,,5,,4,,7,,a,,c]; ll := [1,, 5,, 4,, 7,, a,, c] Putem afla numǎrul de operanzi din listǎ cu ajutorul funcţiei nops: > nops(ll); 11 Al n-lea element din listǎ poate fi afişat cu una din comenzile op(n,ll) sau ll[n]: > aa:=ll[3]; bb:=op(9,ll); aa := 5 bb := a Funcţia member(elem, ll) returneazǎ true dacǎ elementul respectiv se aflǎ în listǎ ll, şi false în caz contrar: > member(d, ll); false Lista vidǎ este desemnatǎ prin []: > lista:=[]; lista := [ ] Se poate adǎuga un element nou la lista ll astfel: [op(ll),elem]. De exemplu: > lista:=[op(lista), d,e,f]; lista := [d, e, f] Se poate şterge al n-lea element din listǎ ll astfel: subsop(n=null,ll). De exemplu: > lista:=subsop(=null, lista); 8

11 lista := [d, f] Mulţimi O mulţime este o secvenţǎ de expresii, scrisǎ între acolade, {}, în care fiecare element figureazǎ o singurǎ datǎ. De exemplu: > ll:={1,,5,,4,,7,,a,,c}; ll := {1,, 4, 5, 7, a, c} Adǎugarea unui nou element la mulţime, sau ştergerea elementului de pe poziţia n se face la fel ca la liste. Mulţimea vidǎ este desemnatǎ prin {}. Reuniunea a douǎ mulţimi se face utilizând operatorul union: > s:={1,,3} : t:={,3,4} : > s union t; {1,, 3, 4} Intersecţia a douǎ mulţimi se realizeazǎ cu ajutorul operatorului intersect: > s intersect t; {, 3} Diferenţa a douǎ mulţimi se realizeazǎ utilizând operatorul minus: > s minus t; {1} > s minus s; {} Şiruri de caractere Şirurile de caractere sunt delimitate de apostrof invers,, dupǎ cum urmeazǎ: > acesta este un sir ; acesta este un sir Şirurile de caractere se pot concatena cu ajutorul comenzii cat. De exemplu, putem avea: > i:=4; i := 4 > cat( Valoarea lui i este, i); V aloarea lui i este 4 Atenţie! La concatenarea unui şir de cifre, se obtine un şir de caractere, nu un numǎr: > a:=cat(5,7,9); b:=5; a :=579 b := 5 > whattype(a); # afla tipul expresiei a symbol > whattype(b); # afla tipul expresiei b integer > a+b; a :=579+5 > whattype(a+b); # afla tipul expresiei a+b symbol 9

12 1.5 Calcule cu matrice şi vectori. Pachetul linalg Cu ajutorul cuvântului-cheie array se pot defini vectori şi matrice. Un vector se defineşte în urmǎtorul mod: > v:=array(1..dim_vect); Elementele unui vector se pot defini unul câte unul, sau printr-un ciclu for (vezi secţiunea 1.7.1): > v:=array(1..4); v := array(1..4, [ ]) > v[1]:=a; v[]:=b; v[3]:={a,b}; v[4]:=3; v 1 := a v := b v 3 := {a, b} v 4 := 3 > evalm(v); # evalueaza valoarea lui v [a, b, {a, b}, 3] O matrice se defineşte astfel: > M:=array(1..nr_rand, 1..nr_col); Elementele unei matrice se pot defini unul câte unul, sau printr-un ciclu for (vezi secţiunea 1.7.1): > M:=array(1..,1..); M := array(1.., 1.., [ ]) > M[1,1]:=1: M[1,]:=a: M[,1]:=3: M[,]:={}: > evalm(m); [ # evalueaza ] valoarea lui M 1 a 3 { } Un alt mod de a defini matrice şi vectori, precum şi de a efectua operaţii specifice cu aceste obiecte, este folosirea pachetului linalg. Pachetul linalg se încarcǎ astfel: >with(linalg); Warning, the protected names norm and trace have been redefined and unprotected [BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly,cholesky, col, coldim, colspace, colspan, companion, concat, cond, copyinto, crossprod, curl, definite, delcols, delrows, det, diag, diverge, dotprod, eigenvals, eigenvalues, eigenvectors, eigenvects, entermatrix, equal, exponential, extend, ffgausselim, fibonacci, forwardsub, frobenius, gausselim, gaussjord, geneqns, genmatrix, grad, hadamard, hermite, hessian, hilbert, htranspose, ihermite, indexfunc, innerprod, intbasis, inverse, ismith, issimilar, iszero, jacobian, 10

13 jordan, kernel, laplacian, leastsqrs, linsolve, matadd, matrix, minor, minpoly, mulcol, mulrow, multiply, norm, normalize, nullspace, orthog, permanent, pivot, potential, randmatrix, randvector, rank, ratform, row, rowdim, rowspace, rowspan, rref, scalarmul, singularvals, smith, stack, submatrix, subvector, sumbasis, swapcol, swaprow, sylvester, toeplitz, trace, transpose, vandermonde, vecpotent, vectdim, vector, wronskian] O matrice se defineşte cu comanda matrix: matrix(nr_randuri, nr_coloane, lista_elem sau fc_generatoare) Astfel, putem avea: > a:=matrix(3,,[1,,3,4,5,6]); a := dar şi > f:=(i,j)->i+j; # functia generatoare a elem matricei f := (i, j) i + j > b:=matrix(,3,f); # adica b[i,j]=f(i,j) [ ] 3 4 b := Elementul a ij se scrie a[i,j]. Astfel, pentru matricea a din exemplul anterior, putem avea: > a[3,1]; 5 Un vector se defineşte cu ajutorul comenzii vector: vector(nr_elem, lista_elem sau fc_generatoare) Astfel, putem avea: v:=vector([,4,8,]); v := [, 4, 8, ] sau f:=x-> *x+1; f := x x + 1 w:=vector(5,f); # adica w[i]=f(i) w := [3, 5, 7, 9, 11] Elementul i al vectorului v, v i, se scrie v[i]. Astfel, pentru vectorul v din exemplul anterior, putem avea: > v[3]; 8 Redǎm mai jos cele mai utilizate funcţii din pachetul linalg, împreunǎ cu descrierea lor. Pentru mai multe detalii referitoare la aceste funcţii, precum şi la celelalte funcţii din pachetul linalg, se poate consulta pagina de help referitoare la pachetul linalg. 11

14 Funcţie Descriere addcol(a,c1,c,m) înlocuieşte coloana c a matricei A cu m*c1+c addrow(a,r1,r,m) înlocuieşte linia r a matricei A cu m*r1+r adj(a), adjoint(a) calculeazǎ matricea adjunctǎ a matricei A angle(u,v) calculeazǎ unghiul vectorilor u şi v augment(a,b) concateneazǎ (alǎturǎ) matricile A şi B pe orizontalǎ backsub(u,b) rezolvǎ sistemul Ux=b, prin substituţie inversa, unde U este o matrice superior triunghiularǎ band(b,n) construieşte o matrice n x n care are pe diagonala principalǎ elementele vectorului b, iar celelalte elemente sunt nule cholesky(a) efectueazǎ descompunerea Cholesky a matricei A col(a,i), col(a,i..k) extrage coloana i, respectiv coloanele i pânǎ la k, din matricea A coldim(a) returneazǎ numǎrul de coloane ale matricei A crossprod(u,v) returneazǎ produsul vectorial al vectorilor u şi v delcols(a,r..s) şterge coloanele de la r la s din matricea A delrows(a,r..s) şterge liniile de la r la s din matricea A det(a) calculeazǎ determinantul matricei A diverge(f) calculeazǎ divergenţa vectorului f dotprod(u,v) calculeazǎ produsul scalar al vectorilor u şi v exponential(a) calculeazǎ e A extend(a,m,n,x) adaugǎ m linii şi n coloane matricei A, iniţializate cu x forwardsub(l,b) rezolvǎ sistemul Lx=b prin substituţie înainte, unde L este o matrice inferior triunghiularǎ gausselim(a) efectueazǎ eliminarea gaussianǎ cu semipivot asupra matricei A continuare pe pagina urmǎtoare 1

15 Pachetul linalg - continuare Funcţie Descriere geneqns(a,x) genereazǎ un sistem de ecuaţii pornind de la matricea A şi vectorul necunoscutelor x genmatrix(sist, var) genereazǎ matricea coeficienţilor sistemului sist, in raport cu multimea variabilelor var grad(expr, vect) calculeazǎ gradientul expresiei expr, in funcţie de variabilele vect inverse(a) calculeazǎ inversa matricei A matadd(a,b,c1,c) calculeazǎ c1*a+c*b minor(r,c) calculeazǎ minorul de ordin (r,c) (eliminǎ linia r şi coloana c) din matricea A mulcol(a,c,expr) multiplicǎ coloana c a matricei A cu expresia expr mulrow(a,r,expr) multiplicǎ linia r a matricei A cu expresia expr multiply(a,b) efectueazǎ înmulţirea matricelor A şi B norm(a) calculeazǎ norma matricei A normalize(v) calculeazǎ versorul vectorului v rank(a) calculeazǎ rangul matricei A row(a,i), row(a,i..j) extrage linia i, respectiv liniile de la i la j, ale matricei A rowdim(a) returneazǎ numǎrul de linii din matricea A scalarmult(a,s) înmulţeşte toate elementele matricei A cu scalarul s stack(a,b) concateneazǎ matricele A şi B pe verticalǎ submatrix(a,r1..r,c1..c) extrage o submatrice a matricei A, între liniile r1, r, şi coloanele c1, c subvector(a,r1..r) extrage un subvector al vectorului A, de la rangul r1 la rangul r swapcol(a,c1,c) interschimbǎ coloanele c1 şi c ale matricei A swaprow(a,r1,r) interschimbǎ liniile r1 şi r ale matricei A trace(a) calculeazǎ urma matricei A vectdim(v) returneazǎ dimensiunea vectorului v 1.6 Grafice Graficul unei funcţii se realizeazǎ folosind comanda plot, a cǎrei sintaxǎ este plot(functie, x=x_min..x_max, y_min..y_max) 13

16 unde argumentul y_min..y_max este opţional. De exemplu, putem avea: > plot(sin(x), x=-5..5); x > plot(cos(x)^, x=-5..5); x > plot([sin(x),cos(x)^], x=-5..5); 14

17 x Mai multe detalii despre grafice se pot gǎsi accesând pagina de help referitoare la instrucţiunea plot, sau la pachetul plots. 1.7 Elemente de programare Condiţionarea şi ciclarea A. Condiţionarea Sintaxa unei instrucţiuni condiţionale este if CONDITIE then EXPRESIE [ elif CONDITIE then EXPRESIE ] [ else EXPRESIE ] fi Instrucţiunile puse între paranteze pǎtrate, [ ], sunt opţionale. De exemplu, putem avea secvenţa: > if a<0 then -a else a fi; # pentru calculul modulului pentru a returna modulul numǎrului a. Un alt exemplu este dat de secvenţa: > if x<0 then -1 elif x=0 then 0 else 1 fi; # functia signum pentru a returna semnul unui numǎr (funcţia sgn). B. Ciclarea O instrucţiune repetitivǎ poate avea una din urmǎtoarele douǎ sintaxe: [ for CONTOR ] [ from EXPR ] [ by EXPR ] [ to EXPR ] [ while EXPR ] do INSTRUCTIUNI od; 15

18 sau [ for CONTOR ] [ in EXPR ] [ while EXPR ] do INSTRUCTIUNI od; unde: - from indicǎ punctul de plecare în iteraţie (dacǎ este omis, valoarea sa implicitǎ este 1); - by indicǎ pasul contorului (dacǎ este omis, se considerǎ implicit cǎ are valoarea 1); - to indicǎ punctul de oprire a iteraţiei (dacǎ este omis, se considerǎ implicit cǎ are valoarea + şi se obţine o buclǎ infinitǎ); - while indicǎ o expresie booleanǎ, care trebuie sǎ poatǎ fi evaluatǎ ca adevǎratǎ sau falsǎ; - in indicǎ elementele succesive ale expresiei EXPR. De exemplu, pentru a scrie toate numerele pare de la 6 la 100 putem folosi: > for i from 6 by to 100 do print(i) od; Cu ajutorul buclei for se pot defini secvenţe, liste, mulţimi, vectori sau matrice. > s:=null; for i from 1 to 3 do s:=s,*i+1 od; # definirea unei secvente s := s := 3 s := 3, 5 s := 3, 5, 7 > l:=[]; for i from 1 to 4 do l:=[op(l),i^] od; # definirea unei liste l := [ ] l := [1] l := [1, 4] l := [1, 4, 9] l := [1, 4, 9, 16] > v:=vector(3); # definirea vectorului for i from 1 to 3 do v[i]:=i^3-i^+1 od; # definirea elem vect evalm(v); # vizualizarea vectorului v := array(1..3, [ ]) v 1 := 1 v := 5 v 3 := 19 [1, 5, 19] M:=array(1..3,1..4); # definirea matricei M := array(1..3, 1..4, [ ]) > for i from 1 to 3 do # definirea elem matricei for j from 1 to 4 do M[i,j]:=i^j od; od; > evalm(m); 16

19 Putem afişa elemetele unei liste (secvenţe, mulţimi, matrice, vector) astfel: > lista:=[3,,4,5,1]: > for i in lista do print(i) od; Mai multe detalii despre instrucţiunile de condiţionare şi de ciclare se pot gasi accesând pagina de help referitoare la acestea Funcţii şi proceduri O funcţie poate fi definitǎ cu ajutorul operatorului ->. Putem defini funcţii de o variabilǎ sau funcţii de mai multe variabile. > f:=x->x^+1; f := x x + 1 > g:=(x,y)->x^+y; g := (x, y) x + y > f(3); 10 > g(3,4); 13 > g(4,3); 19 O procedurǎ este un grup de instrucţiuni, variabile şi constante. Sintaxa este: proc (ARGUMENTE) local VARIABILE_LOCALE; global VARIABILE_GLOBALE; options OPTIUNI; description SIR_DE_CARACTERE; INSTRUCTIUNI; end; O procedurǎ returneazǎ ultimul rezultat obţinut. Pentru a forţa returnarea unui alt rezultat, se foloseşte RETURN. De asemenea, pentru a returna un mesaj de eroare, se foloseşte ERROR. De exemplu, putem defini procedura: > modul:=proc(a) if a<0 then -a else a fi; end; modul := proc(a) if a < 0 then a else a end if end proc pe care o putem apela astfel: > modul(-3); 3 Un alt exemplu de procedurǎ este urmǎtorul: 17

20 > ec:=proc(a,b,c) local delta,x1,x; description Rezolvarea ecuatiei de gradul ; delta:=b^-4*a*c; if delta>0 then x1:=(-b+sqrt(delta))/(*a); x:=(-b-sqrt(delta))/(*a); RETURN(x1,x); elif delta=0 then RETURN(-b/(*a)); else RETURN( ecuatia nu ere solutii reale ); fi; end: care produce urmǎtoarele rezultate: > ec(1,6,9); # ecuatia x^+6*x+9=0 3 > ec(1,,9); # ecuatia x^+*x+9=0 ecuatia nu are solutii reale > ec(1,,-3); # ecuatia x^+*x-3=0 1, 3 Pentru a defini tipul unui argument, se foloseşte sintaxa argument::tip. De exemplu, sǎ luǎm urmǎtoarea procedurǎ şi situaţiile care pot apǎrea: > # procedura care returneaza determinantul unei matrice > determinant:=proc(a) RETURN(det(A)) end: > determinant(); Error, (in linalg:-det) expecting a matrix Procedura determinant se poate imbunǎtǎţi astfel: > determinant1:=proc(a) if not type(a, matrix) then ERROR( argumentul trebuie sa fie matrice!!! ) fi; RETURN(det(A)) end: care produce urmǎtorul rezultat: > determinant1(); Error, (in determinant1) argumentul trebuie sa fie matrice!!! Se mai poate defini argumentul A ca fiind de tipul matrice: > determinant3:=proc(a::matrix) RETURN(det(A)) end: şi se obţine urmǎtorul rezultat: > determinant3(); Error, invalid input: determinant3 expects its 1st argument, A, to be of type matrix, but received 18

21 Mai multe detalii despre tipurile existente se pot gǎsi accesând pagina de help (cuvântul cheie este type). Un alt exemplu este procedura rdc, procedurǎ pentru calculul lui 1 x : > rdc:=proc(x) if x<0 then ERROR( numar negativ! ) elif x=0 then RETURN(infinity) else simplify(x^(-1/)); fi; end; rdc := proc(x) if x < 0 then ERROR( numar negativ! ) > rdc(-1); Error, (in rdc) numar negativ! > rdc(0); > rdc(4); 1 elif x = 0 then RETURN( ) else simplify(1/(xˆ (1/))) end if end proc Pentru a putea urmǎri execuţia unei proceduri, se foloseşte debug, iar pentru a stopa urmǎrirea, se foloseşte undebug. De exemplu, putem avea: > f:=proc(a,b) local y,z; y:=a+b/; z:=1/y; RETURN(y+z) end; > debug(f); f > f(,4); f := proc(a, b) local y, z; y := a + 1/ b; z := 1/y RETURN(y + z) end proc 19

22 {--> enter f, args =, 4 y := 4 z := 1 4 <-- exit f (now at top level) = 17/4} 17 4 > f(0,1); {--> enter f, args = 0, 1 y := 1 z := <-- exit f (now at top level) = 5/} 5 undebug(f) f > f(10,0); Alte detalii despre funcţii şi proceduri, precum şi despre opţiunile debug şi undebug, puteţi gǎsi pe paginile de help referitoare la acestea. 0

23 Capitolul Rezolvarea sistemelor liniare În acest capitol vom prezenta metode de rezolvare a sistemelor liniare de tip Cramer (numǎrul de ecuaţii este egal cu numǎrul de necunoscute, şi determinantul matricei sistemului este nenul): a 11 x 1 + a 1 x a 1n x n = b 1 a 1 x 1 + a x a n x n = b (.1)... a n1 x 1 + a n x a nn x n = b n în care a ij şi b i sunt numere reale date, i = 1...n, j = 1...n, iar x 1, x,...,x n sunt numere reale necunoscute. Sistemul (.1) se poate scrie matriceal sub forma: Ax = b unde: A = (a ij ) i,j=1,n, b = (b 1, b,...,b n ) T, x = (x 1, x,..., x n ) T. Dacǎ matricea A este nesingularǎ, sistemul Ax = b are soluţie unicǎ: x = A 1 b. Deoarece în cele mai multe cazuri matricea A are numǎr mare de linii şi coloane, iar calculul matricei A 1 este dificil şi acumuleazǎ erori, se impun metode directe şi metode iterative pentru rezolvarea acestor sisteme..1 Metoda lui Gauss.1.1 Breviar teoretic Metoda lui Gauss presupune transformarea sistemului Ax = b într-un sistem superior triunghiular, şi apoi rezolvarea acestuia prin substituţie inversǎ. Construcţia sistemului superior triunghiular se face astfel: la pasul k se eliminǎ x k din ecuaţiile k + 1,..., n, prin înmulţirea ecuaţiei k cu m ik = a ik a kk (elementul a kk se numeşte pivot) şi adunarea acestora la ecuaţia i (i > k). În funcţie de alegerea pivotului, existǎ urmǎtoarele variante ale metodei lui Gauss: 1

24 1. metoda lui Gauss clasicǎ - în care la fiecare pas, pivotul este elementul a kk, k = 1, n;. metoda lui Gauss cu semipivot - în care la fiecare pas, se alege ca pivot elementul a ik maxim în valoare absolutǎ pe coloanǎ, pentru i > k, permutându-se linia k cu linia i; 3. metoda lui Gauss cu pivot total - în care la fiecare pas, se alege ca pivot elementul maxim atât pe linie, cât şi pe coloanǎ, pentru i > k, j > k, permutânduse linia k cu linia i şi coloana k cu coloana j; În acest fel, sistemul (.1) se reduce la forma superior triunghiularǎ ã 11 ã 1... ã 1,n ã 1,n 1 ã 1,n 0 ã... ã,n ã,n 1 ã,n ã n 1,n 1 ã n 1,n ã nn x 1 x... x n 1 x n iar rezolvarea sistemului (.) se face prin substituţie inversǎ: = b1 b... bn 1 bn (.) x n = b n ã nn (.3) x k = ( bk n j=k+1 ã kj x j ) 1 ã kk, k = n 1, n,...,1 Observaţia.1.1. Cu ajutorul eliminǎrii gaussiene se poate determina şi inversa unei matrice. Redǎm în continuare algoritmul de aflare a inversei unei matrice A. 1. generarea matricei B prin concatenarea matricelor A (de dimensiune n) cu matricea I n. pentru i = 1, n m = B ii pentru j = 1, n B ij = B ij m pentru j = 1, n, j i m 1 = B ji pentru k = 1, n B jk = B jk m 1 B ik 3. prin ştergerea primelor n coloane ale matricei B astfel transformate, se obţine inversa matricei A

25 .1. Probleme rezolvate Exerciţiul.1.1. Sǎ se rezolve urmǎtorul sistem folosind cele trei variante ale eliminǎrii Gauss: x + y + z = 6 x y + 3z = 9 x + 4y + z = 1. Matricea sistemului este iar Ā este matricea sa extinsǎ: A = Ā = (A, b) =, Deoarece numǎrul ecuaţiilor este egal cu cel al necunoscutelor şi det A = 3 0, sistemul este compatibil determinat (de tip Cramer), şi deci metoda eliminǎrii a lui Gauss este aplicabilǎ. În continuare, pentru a efectua operaţiile asupra matricei extinse a sistemului vom nota linia i cu L i, iar coloana j cu C j. Rezolvare utilizând metoda lui Gauss clasicǎ A. Construcţia sistemului superior triunghiular Pasul 1 pivot: a 11 = 1 m 1 = 1 = m 31 = 1 1 = 1 Pasul pivot: a = 3 m 3 = 3 3 = L L +m 1 L 1 L 3 L 3 +m 31 L 1 L 3 L 3 +m 3 L

26 În acest moment am ajuns la un sistem de forma Ãx = b, echivalent cu sistemul iniţial, în care matricea à este superior triunghiularǎ, unde: à = , x = B. Rezolvarea sistemului superior triunghiular Prin metoda substituţiei inverse, avem: x y z, b = z = 3 1 y = 1 ( 3 1 z) 3 x = 1 (6 1 y 1 z), 1 de unde obţinem soluţia sistemului: x = 1, y =, z = 3. Rezolvare cu metoda lui Gauss cu semipivot A. Construcţia sistemului superior triunghiular Pasul 1 Ca pivot se ia elementul a i1 de modul maxim de pe coloana 1. În cazul nostru, pivotul este a 1, deci se permutǎ linia 1 cu linia, şi se fac zerouri pe coloana 1 pentru i > 1: L L Pasul L L 1 L 1 L 3 L 3 1 L Ca pivot se ia elementul a i de modul maxim de pe coloana, pentru i. În cazul nostru, pivotul este a 3, deci se permutǎ linia cu linia 3 şi se fac zerouri pe coloana, pentru i > : L 3 L L 3 L L

27 În acest moment am ajuns la un sistem de forma Ãx = b, echivalent cu sistemul iniţial, unde matricea à este superior triunghiularǎ, iar: 1 3 à = 9 0 1, x = x y z, b = B. Rezolvarea sistemului superior triunghiular se face ca şi în cazul metodei lui Gauss clasice, şi conduce la soluţia x = 1, y =, z = 3. Rezolvare cu metoda lui Gauss cu pivot total A. Construcţia sistemului superior triunghiular Pasul 1 ca pivot se alege elementul a ij de modul maxim pentru i, j 1. În cazul nostru pivotul este a 3, deci se permutǎ linia 3 cu linia 1, şi coloana cu coloana 1: L 3 L C C pentru corectitudinea rezultatului final este necesar ca, ori de câte ori se permutǎ coloanele matricei extinse, sǎ se permute şi elementele corespunzǎtoare ale vectorului x. Astfel, avem: x = x y z x x 1 y x z în final, obţinem: L L L 1 L 3 L L Pasul ca pivot se alege elementul a ij de modul maxim pentru i, j. Deoarece pivotul este a 3, se permutǎ coloana 3 cu coloana : C 3 C

28 0 3 4 x = y x z x 3 x L 3 L L y z x În acest moment am ajuns la un sistem de forma Ãx = b, echivalent cu sistemul iniţial, unde matricea à este superior triunghiularǎ, iar: y 1 à = , x = z, b = x B. Rezolvarea sistemului superior triunghiular se face ca şi în cazul metodei lui Gauss clasice, şi conduce la soluţia x = 1, z = 3, y =. Exerciţiul.1.. Sǎ se gǎseascǎ inversa matricei 3 A = Rezolvare Considerǎm matricea B obţinutǎ prin concatenarea matricei A cu matricea unitate I 3 : B = Folosind metoda eliminǎrii a lui Gauss, transformǎm matricea B dupǎ cum urmeazǎ: L1 1 L B L L B 1 L1 L3 L3 B 31 L1 L 1 B L L1 L1 B 1 L L3 L3 B 3 L

29 L3 1 B 33 L3 L1 L1 B 13L3 L L B 3 L Inversa matricei A va fi matricea C, obţinutǎ prin ştergerea primelor 3 coloane ale matricei B: Într-adevǎr, se verificǎ uşor cǎ.1.3 Probleme propuse C = A C = C A = I 3. Exerciţiul.1.3. Sǎ se rezolve urmǎtoarele sisteme, folosind cele trei variante ale metodei lui Gauss: x + y + z = 1 a) 3x y + 5z = 14 x + y z = x + y + z + t = 0 3x y z + t = 8 b) x y z + 4t = 1 x + y z + t = 1 Exerciţiul.1.4. Sǎ se gǎseascǎ soluţia sistemelor anterioare, calculând inversa matricei A a sistemului, şi efectuând înmulţirea A 1 b..1.4 Implementare A. Algoritm Algoritmii pentru cele 3 metode sunt asemǎnǎtori, diferenţa dintre ei apǎrând (aşa cum se poate vedea şi din exemplul rezolvat) în modul de rezolvare a eliminǎrii Gauss. Date de intrare: un sistem de ecuaţii (scris ca mulţime de ecuaţii) Date de ieşire: soluţia sistemului Algoritmul constǎ din urmǎtoarele etape: 1. generarea matricei extinse a sistemului, A = (a ij ) i=1,n,j=1,n+1 n= numǎrul de ecuaţii (numǎrul de linii ale matricei A);. a) eliminarea Gauss pentru metoda lui Gauss clasicǎ - pentru k = 1, n 1 7

30 - dacǎ a kk = 0, atunci se cautǎ r pentru care a kr 0, r = k + 1, n şi se schimbǎ linia k cu linia r; - dacǎ toţi a kr = 0, r = k + 1, n atunci se returneazǎ eroare; - pentru i = k + 1, n m = a ik a kk, unde a kk 0; - pentru j = k, n a ij = a ij + m a kj ; b) eliminarea Gauss pentru metoda lui Gauss cu semipivot - pentru k = 1, n 1 se cautǎ elementul de modul maxim pe linie, i.e. dacǎ a kr > a kk, r = k + 1, n, se schimbǎ linia k cu linia r - pentru i = k + 1, n m = a ik a kk, unde a kk 0; - pentru j = k, n a ij = a ij + m a kj ; c) eliminarea Gauss pentru metoda lui Gauss cu pivot total - pentru k = 1, n 1 se cautǎ elementul de modul maxim pe linie şi coloanǎ, i.e. dacǎ a pr > a kk, p, r = k + 1, n, se schimbǎ coloana p cu coloana k şi linia r cu linia k - pentru i = k + 1, n m = a ik a kk, unde a kk 0; - pentru j = k, n a ij = a ij + m a kj ; 3. rezolvarea sistemului superior triunghiular prin substituţie inversǎ x n = a n,n+1 a nn, - pentru i = n 1, 1 ( x i = 1 a i,n+1 a ii n j=i+1 a ij x j ). B. Programe MAPLE şi rezultate Deoarece diferitele variante ale metodei lui Gauss se deosebesc doar prin modul în care se realizeazǎ eliminarea Gauss, în cele ce urmeazǎ am implementat separat cele trei variante de eliminare, folosind procedurile cgauss, spgauss, tpgauss. Aceste proceduri vor fi folosite apoi ca opţiuni în procedura finalǎ gauss. 8

31 restart: with(linalg): cgauss:=proc(a::matrix) local A1, A, n, k, r, i, m, j; n:=rowdim(a); A1:=A; A:=delcols(A1,n+1..n+1); if(det(a)=0) then ERROR( sistemul nu are solutie unica! ) fi; for k from 1 to n-1 do if A1[k,k]=0 then for r from k+1 to n while A1[k,r]=0 do r=r+1 od; if r>n then ERROR( sistemul nu are solutie unica! ) else A1:=swaprow(A1,k,r); fi; fi; for i from k+1 to n do m:=a1[i,k]/a1[k,k]; for j from k to n+1 do A1[i,j]:=A1[i,j]-m*A1[k,j]; od; od; od; RETURN(evalm(A1)); end: spgauss:=proc(a::matrix) local A1, A, n, k, r, i, m, j, mx; n:=rowdim(a); A1:=A; A:=delcols(A1,n+1..n+1); if(det(a)=0) then ERROR( sistemul nu are solutie unica! ) fi; for k from 1 to n-1 do mx:=k; for r from k to n do if (abs(a1[r,k])>abs(a1[k,k])) then mx:=r fi; od; if mx<>k then A1:=swaprow(A1,k,mx); fi; for i from k+1 to n do m:=a1[i,k]/a1[k,k]; for j from k to n+1 do A1[i,j]:=A1[i,j]-m*A1[k,j]; od; od; od; 9

32 RETURN(evalm(A1)); end: gauss:=proc(eqn::set(equation), opt::symbol) local A,A1,l,n,r,k,i,m,j,s,x,rez; l:=[op(indets(eqn))]; n:=nops(l); A:=genmatrix(eqn, l, flag); if opt=clasic then A1:=cgauss(A); elif opt=semipivot then A1:=spgauss(A); elif opt=totalpivot then rez:=tpgauss(a); A1:=rez[1]; l:=[seq(l[rez[][i]],i=1..n)]; else ERROR( optiunile sunt: clasic, semipivot sau totalpivot ); fi; x[n]:=a1[n,n+1]/a1[n,n]; for i from n-1 by -1 to 1 do s:=0; for j from i+1 to n do s:=s+a1[i,j]*x[j]; od; x[i]:=1/a1[i,i]*(a1[i,n+1]-s); od; RETURN(seq(l[i]=x[i],i=1..n)); end: Observaţia.1.. Instrucţiunea indets(set_eq) returneazǎ mulţimea nedeterminatelor sistemului set_eq. Deoarece ordinea elementelor acestei mulţimi nu este neapǎrat aceeaşi cu ordinea nedeterminatelor din prima ecuaţie a sistemului, pot apǎrea diferenţe între rezultatele furnizate cu ajutorul codului MAPLE şi rezultatele calculate pe hârtie. Deşi matricea sistemului generatǎ cu ajutorul instrucţiunii indets nu este întotdeauna aceeaşi cu matricea sistemului scrisǎ pe hârtie, rezultatele furnizate de program vor fi aceleaşi (eventual ordinea soluţiilor va fi schimbatǎ). Observaţia.1.3. Pentru a urmǎri execuţia unei proceduri, se foloseşte instrucţiunea debug. În cazul programelor din exemplele de mai sus, se poate folosi urmǎtorul set de instrucţiuni: debug(cgauss): debug(spgauss): debug(gauss): Redǎm mai jos, cu titlu de exemplu, rezultatul urmǎririi procedurilor gauss, cgauss, spgauss şi tpgauss pentru acelaşi sistem de ecuaţii. > gauss({x+y+z=6,*x-y+3*z=9,x+4*y+z=1},clasic); {--> enter gauss, args = {x+y+z = 6, *x-y+3*z = 9, x+4*y+z = 1}, clasic 30

33 l := [x, y, z] n := A := {--> enter cgauss, args = A n := 3 A1 := A A := m := A1, 1 := 0 A1, := 3 A1, 3 := 1 A1, 4 := 3 m := 1 A1 3, 1 := 0 A1 3, := 3 A1 3, 3 := 0 A1 3, 4 := 6 m := 1 A1 3, := 0 A1 3, 3 := 1 A1 3, 4 := 3 <-- exit cgauss (now in gauss) = array(1.. 3, 1.. 4,[(3, 3)=1,(, 1)=0,(3, )=0,(1, 3)=1,(3, 1)=0,(1, 4)=6,(, )=-3,(, 3)=1,(3, 4)=3,(1, )=1,(1, 1)=1,(, 4)=-3])} A1 := x 3 := 3 s := 0 s := 3 x := s := 0 s := s := 5 x 1 := 1 <-- exit gauss (now at top level) = x = 1, y =, z = 3} x = 1, y =, z = 3 > gauss({x+y+z=6,*x-y+3*z=9,x+4*y+z=1},semipivot); 31

34 {--> enter gauss, args = {x+y+z = 6, *x-y+3*z = 9, x+4*y+z = 1}, semipivot l := [x, y, z] n := A := {--> enter spgauss, args = A n := 3 A1 := A A := mx := 1 mx := A1 := m := 1 A1, 1 := 0 A1, := 3 A1, 3 := 1 A1, 4 := 3 m := 1 A1 3, 1 := 0 A1 3, := 9 A1 3, 3 := 1 A1 := 0 A1 3,4 := 15 mx := mx := m := 1 3 A1 3, := 0 3

35 A1 3, 3 := 1 3 A1 3, 4 := 1 <-- exit spgauss (now in gauss) = array(1.. 3, 1.. 4,[(3, 4)=-1,(, 3)=-1/,(1, 4)=9,(1, 1)=,(3, 1)=0,(, 1)=0,(1, 3)=3,(, 4)=15/,(3, )=0,(1, )=-1,(3, 3)=-1/3,(, )=9/])} A1 := x 3 := 3 s := 0 s := 3 x := s := 0 s := s := 7 x 1 := 1 <-- exit gauss (now at top level) = x = 1, y =, z = 3} x = 1, y =, z = 3 Observaţia.1.4. Pachetul linalg furnizeazǎ procedurile gausselim şi backsub. Astfel, procedura gausselim efectueazǎ eliminarea gaussianǎ cu pivot parţial asupra unei matrice n m. Procedura backsub ia ca argument rezultatul procedurii gausselim si furnizeazǎ soluţia sistemului. Astfel, pentru matricea din exemplul precedent, avem: > A := matrix([[1, 1, 1, 6], [, -1, 3, 9], [1, 4, 1, 1]]); A := > gausselim(a); > backsub(%); [1,, 3]. Factorizarea LU..1 Breviar teoretic Fie sistemul compatibil determinat Ax = b. (.4) 33

36 Factorizarea LU presupune descompunerea matricei A într-un produs de matrice L U, unde λ µ 11 µ 1... µ 1n L = λ 1 λ U = 0 µ... µ n (.5) λ n1 λ n... λ nn µ nn Aceastǎ descompunere este posibilǎ dacǎ toţi determinanţii de colţ ai matricei A sunt nenuli. Pentru a asigura unicitatea descompunerii, trebuie precizate n elemente ale matricei L sau U. În mod tradiţional, se specificǎ λ ii sau µ ii ; dacǎ λ ii = 1 atunci factorizarea LU se numeşte factorizare Doolittle, iar dacǎ µ ii = 1 se numeşte factorizare Crout. Astfel, rezolvarea sistemului (.4) se reduce la rezolvarea sistemelor triunghiulare Ly = b (.6) şi cu soluţia cu soluţia y 1 = b 1 y i = λ 11 ( b i x n = y n ( µ nn x i = y i i 1 ) λ ij y j j=1 n j=i+1 1 λ ii, i =, 3,..., n (.7) Ux = y (.8) ) 1 µ ij x j, i =, 3,..., n. µ ii (.9).. Problemǎ rezolvatǎ Exerciţiul..1. Sǎ se determine soluţia sistemului urmǎtor, folosind factorizarea LU: x + y z = x y + z = 1 x + 3y z = 5. Sistemul se scrie în forma matricealǎ: Ax = b, unde Deoarece A = , x = 1 0, = 3 0, x y z, b = = 3 0, 34

37 rezultǎ cǎ matricea A este nesingularǎ şi are toţi determinanţii de colţ nenuli, deci se poate folosi factorizarea LU pentru rezolvarea acestui sistem. Rezolvare folosind factorizarea Crout A. Factorizarea Crout Presupunem cǎ A = = λ λ 1 λ 0 λ 31 λ 3 λ 33 1 µ 1 µ µ şi ne propunem sǎ determinǎm coeficienţii l ij, u jk. Pentru aceasta, folosim definiţia înmulţirii matricelor. Astfel, avem: sau a 11 = λ 11 1 λ 11 = 1 a 1 = λ 11 µ 1 µ 1 = 1 a 13 = λ 11 µ 13 µ 13 = 1 a 1 = λ 1 1 λ 1 = a = λ 1 µ 1 + λ 1 λ = 3 a 3 = λ 1 µ 13 + λ µ 3 µ 3 = 1 a 31 = λ 31 1 λ 31 = 1 a 3 = λ 31 µ 1 + λ 3 1 λ 3 = a 33 = λ 31 µ 13 + λ 3 µ 3 + λ 33 1 λ 33 = 1 L = , U = B. Rezolvarea sistemelor triunghiulare Pentru rezolvarea sistemului iniţial, avem de rezolvat douǎ sisteme triungiulare: y y = 1, 1 1 y 3 5., a cǎrui soluţie este şi respectiv: a cǎrui soluţie este y = x = y 1 y y 3 = x y z x y z 1 1, = = , 35

38 Rezolvare folosind factorizarea Doolittle A. Factorizarea Doolittle Presupunem cǎ A = = λ λ 31 λ 3 1 µ 11 µ 1 µ 13 0 µ µ µ 33 şi ne propunem sǎ determinǎm coeficienţii l ij, µ jk, la fel ca şi în exemplul precedent. Astfel avem: sau a 11 = 1 µ 11 µ 11 = 1 a 1 = 1 µ 1 µ 1 = 1 a 13 = 1 µ 13 µ 13 = 1 a 1 = λ 1 µ 11 λ 1 = a = λ 1 µ µ µ = 3 a 3 = λ 1 µ µ 3 µ 3 = 3 a 31 = λ 31 µ 11 λ 31 = 1 a 3 = λ 31 µ 1 + λ 3 µ λ 3 = 3 a 33 = λ 31 µ 13 + λ 3 µ µ 33 µ 33 = 1 L = , U = B. Rezolvarea sistemelor triunghiulare Pentru rezolvarea sistemului iniţial, avem de rezolvat douǎ sisteme triungiulare: y y = 1, 1 1 y a cǎrui soluţie este şi respectiv: a cǎrui soluţie este y = x = y 1 y y 3 = x y z x y z 3 1, = = , 36

39 ..3 Probleme propuse Exerciţiul... Sǎ se gǎseascǎ soluţiile urmǎtoarelor sisteme, folosind cele douǎ variante ale factorizǎrii LU: x + y + z = 1 a) 3x y + 5z = 14 x + y z = 3x + y z = 1 b) x + y + z = 6 x y + 4z = 7..4 Implementare A. Algoritm Date de intrare: un sistem de ecuaţii Date de ieşire: soluţia sistemului Algoritmul constǎ din urmǎtoarele etape: 1. generarea matricei A a sistemului, şi a vectorului coloanǎ b n = numǎrul de linii ale matricei A (numǎrul de ecuaţii ale sistemului). a) factorizarea Crout pentru i = 1, n µ ii = 1 pentru i = 1, n pentru j = 1, i j 1 λ ij = a ij λ ik µ kj k=1 pentru j = i + 1, n ( ) µ ij = 1 i 1 a ij λ ik µ kj λ ii b) factorizarea Doolittle pentru i = 1, n λ ii = 1 pentru i = 1, n pentru j = 1, i 1 ( λ ij = 1 a ij µ jj pentru j = i, n k=1 ) i λ ik µ kj k=1 37

40 i 1 µ ij = a ij λ ik µ kj k=1 3. Rezolvarea celor douǎ sisteme triunghiulare y 1 = b 1 λ 11 pentru i =, n ( i 1 ) y i = b i λ ij y j x n = y n µ nn pentru i =, n ( x i = y i j=1 n j=i+1 1 λ ii ) µ ij x j 1 µ ii B. Programe MAPLE şi rezultate Deoarece cele douǎ variante ale descompunerii LU diferǎ doar prin modul de factorizare a matricei sistemului, am implementat separat cele douǎ variante de factorizare: LUcrout şi LUdoolittle, dupǎ care le-am folosit ca opţiuni în procedura finalǎ LUsist. restart: with(linalg): LUcrout:=proc(A::matrix) local a1,n,l,u,i,s,j,k; n:=rowdim(a); a1:=a; if a1[1,1]=0 then ERROR( factorizarea LU nu este aplicabila! ); fi; for i from n by -1 to do if det(a1)<>0 then a1:=delrows(delcols(a1,i..i),i..i); else ERROR( factorizarea LU nu este aplicabila! ); fi; od; l:=matrix(n,n,0); u:=matrix(n,n,0); for i from 1 to n do u[i,i]:=1; od; for i from 1 to n do for j from 1 to i do s:=0; for k from 1 to j-1 do s:=s+l[i,k]*u[k,j]; od; l[i,j]:=a[i,j]-s; od; 38

41 for j from i+1 to n do s:=0; for k from 1 to i-1 do s:=s+l[i,k]*u[k,j]; od; u[i,j]:=1/l[i,i]*(a[i,j]-s); od; od; RETURN(evalm(l), evalm(u)); end: LUsist:=proc(l::set(equation), opt::symbol) local lst, eqm, A, b, n, lu, L, U,i,s,j,aux, rez, rfin; eqm:=genmatrix(l, [op(indets(l))], flag); lst:=indets(l); n:=nops(lst); A:=delcols(eqm,n+1..n+1); b:=col(eqm,n+1); if opt=crout then lu:=lucrout(a); elif opt=doolittle then lu:=ludoolittle(a); else ERROR( optiunile sunt: Crout sau Doolittle ) fi; L:=lu[1]; U:=lu[]; for i from 1 to n do s:=0; for j from 1 to i-1 do s:=s+l[i,j]*aux[j] od; aux[i]:=1/l[i,i]*(b[i]-s) od; for i from n by -1 to 1 do s:=0; for j from i+1 to n do s:=s+u[i,j]*rez[j] od; rez[i]:=1/u[i,i]*(aux[i]-s) od; RETURN(seq(lst[i]=rez[i], i=1..n)); end: debug(lusist); LUsist({x+y-z=,*x-y+z=1,x+3*y-*z=5}, Crout); {--> enter LUsist, args = {x+y-z =, *x-y+z = 1, x+3*y-*z = 5}, Crout eqm := lst := {z, x, y} n := A :=

42 lu := b := [, 1, 5] L := U :=, s := 0 aux 1 := s := 0 s := aux := 1 s := 0 s := 4 s := 3 aux 3 := s := 0 rez 3 := s := 0 s := 0 rez := 1 s := 0 s := 1 s := 3 rez 1 := <-- exit LUsist (now at top level) = z = 1, x = 1, y = } z = 1, x = 1, y =.3 Sisteme tridiagonale.3.1 Breviar teoretic O clasǎ specialǎ de sisteme liniare este aceea în care matricea A a sistemului este tridiagonalǎ, adicǎ: b 1 c a b c A = 0 a 3 b 3 c (.10) a n 1 b n 1 c n a n b n 40

43 Pentru aceste sisteme se aplicǎ factorizarea LU. Astfel, matricea A se descompune, folosind un caz particular al factorizǎrii Crout, într-un produs L U unde: β a β L = β n a n β n (.11) şi 1 ν ν U = ν n. (.1) Coeficienţii a,..., a n sunt cunoscuţi din matricea A, iar coeficienţii β i, µ j se obţin din definiţia înmulţirii matricelor: β 1 = b 1 β i ν i+1 = c i+1, i =, n 1 (.13) a i ν i + β i = b i, i =, n.3. Problemǎ rezolvatǎ Exerciţiul.3.1. Sǎ se rezolve sistemul tridiagonal: x +y = 3 x y +z = 3y +z t = 4 z +t = 1. Rezolvare Matricea sistemului este A = Descompunem aceastǎ matrice astfel: = β β β β ν ν ν

44 Din definiţia produsului a douǎ matrice, obţinem: b 1 = β 1 1 β 1 = 1 c = β 1 ν ν = b = a ν + β β = 5 c 3 = β ν 3 ν 3 = 1 5 b 3 = a 3 ν 3 + β 3 β 3 = 13 5 c 4 = β 3 ν 4 ν 4 = 5 13 b 4 = a 4 ν 4 + β 4 β 4 = B. Rezolvarea sistemelor triunghiulare Pentru a rezolva sistemul iniţial, avem de rezolvat douǎ sisteme triunghiulare: a cǎrui soluţie este şi respectiv: a cǎriu soluţie este y 1 y y 3 y Probleme propuse x y z t = = y 1 y y 3 y x y z t =, =. Exerciţiul.3.. Sǎ se rezolve sistemele tridiagonale: x + y = 3 a) x y + z = 1 3y z = 5 x + y = 0 x y + z = 1 b) y z + t = 5 z + t = ,, 4

45 .3.4 Implementare A. Algoritm Date de intrare: un sistem de ecuaţii tridiagonal Date de ieşire: soluţia sistemului Algoritmul constǎ în: 1. generarea matricei A a sistemului (matrice tridiagonalǎ) şi a vectorului coloanǎ b n = numǎrul de linii ale matricei A. descompunerea LU aplicatǎ matricei tridiagonale A L = (λ ij ) i,j=1,n, U = (µ ij ) i,j=1,n pentru i = 1, n µ ii = 1 pentru i =, n λ i,i 1 = a i,i 1 λ 11 = a 11 pentru i = 1, n 1 µ i,i+1 = a i,i+1 λ ii λ i+1,i+1 = a i+1,i+1 a i+1,i µ i,i+1 3. rezolvarea sistemelor triunghiulare y 1 = b 1 λ 11 pentru i =, n ) y i = (b i λ i,i 1 y i 1 x n = y n pentru i = n 1, 1 ) x i = (y i µ i,i+1 x i+1 1 λ ii B. Programe MAPLE şi rezultate Observaţia.3.1. Spre deosebire de metodele anterioare, unde ordinea necunoscutelor în sistem nu era esenţialǎ, în cazul sistemelor tridiagonale, dacǎ se schimbǎ ordinea necunoscutelor, atunci matricea sistemului nu va mai fi tridiagonalǎ. De aceea, este necesarǎ construirea unei proceduri, nedeterminate, care sǎ returneze necunoscutele sistemului în ordinea în care apar ele în ecuaţii. 43

46 restart: with(linalg): tridiagonal:=proc(a::matrix) local i,j,n,a1,l,u; n:=rowdim(a); for i from 1 to n do for j from 1 to i- do if A[i,j]<>0 then ERROR( matricea nu este tridiagonala! ); fi; od; for j from i+ to n do if A[i,j]<>0 then ERROR( matricea nu este tridiagonala! ); fi; od; od; a1:=a; if a1[1,1]=0 then ERROR( factorizarea LU nu este aplicabila! ); fi; for i from n by -1 to do if det(a1)<>0 then a1:=delrows(delcols(a1,i..i),i..i); else ERROR( factorizarea LU nu este aplicabila! ); fi; od; l:=matrix(n,n,0); u:=matrix(n,n,0); for i from 1 to n do u[i,i]:=1; od; for i from to n do l[i,i-1]:=a[i,i-1]; od; l[1,1]:=a[1,1]; for i from 1 to n-1 do u[i,i+1]:=a[i,i+1]/l[i,i]; l[i+1,i+1]:=a[i+1,i+1]-a[i+1,i]*u[i,i+1]; od; RETURN(evalm(l), evalm(u)); end: # procedura care returneaza necunoscutele sistemului # in ordinea in care apar in ecuatii nedeterminate:=proc(l::set(equation)) local n,i,j,ops,opst; 44

47 n:=nops(l); for i from 1 to n do ops[i]:=[seq(op(op(l[i])[1])[j] / coeff(op(l[i])[1],op(indets(op(op(l[i] )[1])[j]))), j=1..nops(op(l[i])[1]))]; od; opst:=ops[1]; for i from 1 to n do for j from 1 to nops(ops[i]) do if not(ops[i][j] in opst) then opst:=[op(opst),ops[i][j]] fi; od; od; RETURN(opst); end: tridiagonalsist:=proc(l::set(equation)) local eqm, opst, A, b, n, lu, L, U, i, s, j, aux, rez; n:=nops(l); opst:=nedeterminate(l); eqm:=genmatrix(l, opst, flag); A:=delcols(eqm,n+1..n+1); b:=col(eqm,n+1); lu:=tridiagonal(a); L:=lu[1]; U:=lu[]; aux[1]:=b[1]/l[1,1]; for i from to n do aux[i]:=1/l[i,i]*(b[i]-l[i,i-1]*aux[i-1]) od; rez[n]:=aux[n]; for i from n-1 by -1 to 1 do rez[i]:=aux[i]-u[i,i+1]*rez[i+1]; od; RETURN(seq(opst[i]=rez[i], i=1..n)); end: debug(tridiagonalsist): tridiagonalsist({x+*y=3,*x-y+z=, 3*y+*z-t=4, -*z+t=-1}); {--> enter tridiagonalsist, args = {x+*y = 3, *x-y+z =, 3*y+*z-t = 4, -*z+t = -1} n := 4 opst := [x, y, z, t] 45

48 eqm := A := b := [3,, 4, 1] lu := 0 3 0, L := U := aux 1 := 3 aux := 4 5 aux 3 := 8 13 aux 4 := 1 rez 4 := 1 rez 3 := 1 rez := 1 rez 1 := 1 <-- exit tridiagonalsist (now at top level) = x = 1, y = 1, z = 1, t = 1} x = 1, y = 1, z = 1, t = 1 46

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Taylor Polynomials. 2 x2 6 x3 24 x4

Taylor Polynomials. 2 x2 6 x3 24 x4 > Taylor Polynomials > Taylor Polynomials about x = 0. A primary use of Taylor polynomials is to find good polynomial approximations to a function near a specified value. As a first example, we use a fourth

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a)

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a) Universitatea "Dunărea de Jos" din Galaţi MODELE DE TESTE GRILĂ PENTRU ADMITEREA 01 DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a Testele sunt recomandate pentru următoarele domenii de licenţă şi facultăţi:

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

PROBLEME DE VALORI ŞI VECTORI PROPRII

PROBLEME DE VALORI ŞI VECTORI PROPRII 9 PROBLEME DE VALORI ŞI VECTORI PROPRII 81 Introducere Problema de valori proprii a unui operator liniar A: Ax = λx x vector propriu, λ valoare proprie În reprezentarea unei baze din < n problemă matricială

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

3. Vectori şi valori proprii

3. Vectori şi valori proprii Valori şi vectori proprii 7 Vectori şi valori proprii n Reamintim că dacă A este o matrice pătratică atunci un vector x R se numeşte vector propriu în raport cu A dacă x şi există un număr λ (real sau

Διαβάστε περισσότερα

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1 2. Circuite logice 2.2. Diagrame Karnaugh Copyright Paul GASNER Diagrame Karnaugh Tehnică de simplificare a unei expresii în sumă minimă de produse (minimal sum of products MSP): Există un număr minim

Διαβάστε περισσότερα

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A =

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A = Matrice, determinanti Un punct de vedere liniar independent "A judeca matematic nu înseamn a gândi losoc, a judeca losoc nu înseamn a liber, a gândi liber nu înseamn a losof " Blaise Pascal Liniar independenta:

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

7 Distribuţia normală

7 Distribuţia normală 7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

APLICAŢII ALE CALCULULUI DIFERENŢIAL. Material pentru uzul studenţilor de la FACULTATEA DE

APLICAŢII ALE CALCULULUI DIFERENŢIAL. Material pentru uzul studenţilor de la FACULTATEA DE 1 APLICAŢII ALE CALCULULUI DIFERENŢIAL Material pentru uzul studenţilor de la FACULTATEA DE MECANICĂ 2 Contents 1 Aplicaţii ale calculului diferenţial 5 1.1 Extreme ale funcţiilor reale de mai multe variabile

Διαβάστε περισσότερα

Programarea Calculatoarelor

Programarea Calculatoarelor Programarea Calculatoarelor Modul 1: Rezolvarea algoritmică a problemelor Introducere în programare Algoritm Obiectele unui algoritm Date Constante Variabile Expresii Operaţii specifice unui algoritm şi

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

Calculul funcţiilor de matrice Exponenţiala matriceală

Calculul funcţiilor de matrice Exponenţiala matriceală Laborator 3 Calculul funcţiilor de matrice Exponenţiala matriceală 3.1 Tema Înţelegerea conceptului de funcţie de matrice şi însuşirea principalelor metode şi algoritmi de calcul al funcţilor de matrice.

Διαβάστε περισσότερα

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y).

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y). Ecuaţii diferenţiale Ecuaţii diferenţiale ordinare Ecuaţii cu derivate parţiale Ordinul unei ecuaţii Soluţia unei ecuaţii diferenţiale ordinare Fie I R un interval deschis, G R n, n 1, un domeniu şi f

Διαβάστε περισσότερα

Calculul valorilor proprii

Calculul valorilor proprii Laborator 5 Calculul valorilor proprii 5.1 Valori şi vectori proprii Definiţia 5.1 Fie A C n n. Un vector x C n n este un vector propriu al matricei A, asociat valorii proprii λ C, dacă sunt satisfăcute

Διαβάστε περισσότερα

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =. Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

LUCRAREA 1 INTRODUCERE ÎN MATLAB

LUCRAREA 1 INTRODUCERE ÎN MATLAB LUCRAREA 1 INTRODUCERE ÎN MATLAB 1.1. Introducere MATLAB este un pachet de programe dedicat calcului numeric şi reprezentărilor grafice. Elementul de bază cu care operează este matricea, de aici provenind

Διαβάστε περισσότερα

2.3 Geometria analitică liniarăînspaţiu

2.3 Geometria analitică liniarăînspaţiu 2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

Fişier template preliminar

Fişier template preliminar logo.png Contract POSDRU/86/1.2/S/62485 Fişier template preliminar Universitatea Tehnica din Iaşi (front-hyperlinks-colors * 29 iulie 212) UTC.png UTI.png Universitatea Tehnică Gheorghe Asachi din Iaşi

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate

Διαβάστε περισσότερα

Curs 9: METODE NUMERICE UTILIZATE ÎN SIMULAREA SISTEMELOR DINAMICE

Curs 9: METODE NUMERICE UTILIZATE ÎN SIMULAREA SISTEMELOR DINAMICE Curs 9: METODE NUMERICE UTILIZATE ÎN SIMULAREA SISTEMELOR DINAMICE Noțiunea de sistem dinamic Clasificări Noțiunea de simulare Un sistem dinamic este o entitate care se caracterizează printr-un mod specific

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Metode de sortare. Se dau n numere întregi, elemente ale unui vector a. Se cere să se aranjeze elementele vectorului a în ordine crescătoare.

Metode de sortare. Se dau n numere întregi, elemente ale unui vector a. Se cere să se aranjeze elementele vectorului a în ordine crescătoare. Metode de sortare Se dau n numere întregi, elemente ale unui vector a. Se cere să se aranjeze elementele vectorului a în ordine crescătoare. 1. Sortare prin selecţie directă Sortarea prin selecţia minimului

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva

Διαβάστε περισσότερα

Profil informatică Teste pentru licenţă

Profil informatică Teste pentru licenţă Profil informatică Teste pentru licenţă 14-MAR-003 1 Programare în Pascal 1. Un comentariu între acolade: a) ajută calculatorul săînţeleagă funcţia pe care o realizează programul b) ajută cititorul săînţeleagă

Διαβάστε περισσότερα

Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare

Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare Capitolul 1 Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare Definiţia 1.0.1 O ecuaţie diferenţialǎ de ordinul întâi este o relaţie de dependenţǎ funcţionalǎ de forma g(t, x, ẋ)

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2)

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2) Lucrarea 6 Zgomotul în imagini BREVIAR TEORETIC Zgomotul este un semnal aleator, care afectează informaţia utilă conţinută într-o imagine. El poate apare de-alungul unui lanţ de transmisiune, sau prin

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

TEMA 7: INTEGRALE NEDEFINITE. Obiective:

TEMA 7: INTEGRALE NEDEFINITE. Obiective: TEMA 7: INTEGRALE NEDEFINITE 61 TEMA 7: INTEGRALE NEDEFINITE Obiective: Definirea principalelor proprietăţi matematice ale integralelor nedefinite Analiza principalelor proprietăţi matematice ale ecuaţiilor

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice... Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Capitolul 2. Integrala stochastică

Capitolul 2. Integrala stochastică Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Probleme pentru clasa a XI-a

Probleme pentru clasa a XI-a Probleme pentru clasa a XI-a 1 ( ) 01. Fie A si B doua matrici de ordin n cu elemente numere reale, care satisfac relatia AB = A + B. a) Sa se arate ca det(a 2 + B 2 ) 0. b) Sa se arate ca rang A + B =

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

Algoritmi genetici. 1.1 Generalităţi

Algoritmi genetici. 1.1 Generalităţi 1.1 Generalităţi Algoritmii genetici fac parte din categoria algoritmilor de calcul evoluţionist şi sunt inspiraţi de teoria lui Darwin asupra evoluţiei. Idea calculului evoluţionist a fost introdusă în

Διαβάστε περισσότερα

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare

Διαβάστε περισσότερα

TAD Stiva (STACK) Observaţii: 1. sunt aşezate ordonat unele peste altele. Un element nou se adaugă în stivă deasupra elementului cel mai recent

TAD Stiva (STACK) Observaţii: 1. sunt aşezate ordonat unele peste altele. Un element nou se adaugă în stivă deasupra elementului cel mai recent TAD Stiva (STACK) Observaţii: 1. În limbajul uzual cuvântul stivă referă o grămadă în care elementele constitutive sunt aşezate ordonat unele peste altele. Un element nou se adaugă în stivă deasupra elementului

Διαβάστε περισσότερα

Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M2 CLASA A XI-A

Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M2 CLASA A XI-A Marius Burtea Georgeta Burtea REZOLVAREA PROBLEMELOR DIN MANUALUL DE MATEMATIC~ M CLASA A XI-A Filiera teoretic`, profilul real, specializarea ]tiin\ele naturii (TC + CD) Filiera tehnologic`, toate calific`rile

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Prelegerea 11. Securitatea sistemului RSA Informaţii despre p şi q

Prelegerea 11. Securitatea sistemului RSA Informaţii despre p şi q Prelegerea 11 Securitatea sistemului RSA Vom trece în revistă câteva modalităţi de atac ale sistemelor de criptare RSA. Ca o primă observaţie, RSA nu rezistă la un atac de tipul meet-in-the middle, strategia

Διαβάστε περισσότερα

Lucrarea de laborator nr. 14

Lucrarea de laborator nr. 14 Metode Numerice Lucrarea de laborator nr. 14 I. Scopul lucrării Integrarea numerică a ecuaţiilor diferenţiale şi a sistemelor de ecuaţii diferenţiale ordinare II. Conţinutul lucrării 1. Generalităţi. 2.

Διαβάστε περισσότερα

4. Ecuatia asimptotei orizontale la + a graficului functiei f : R R, 7 9x + 8x2 f(x) = 3x 2 + 2x + 5 este.

4. Ecuatia asimptotei orizontale la + a graficului functiei f : R R, 7 9x + 8x2 f(x) = 3x 2 + 2x + 5 este. Copyright c 007 ONG TCV Scoala Virtuala a Tanarului atematician 1 inisterul Educatiei si Tineretului Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 14 iunie 007 Profilul real Timp

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate.

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate. Copyright c 009 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 15 iunie

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X

Demonstraţie: Să considerăm polinomul {f(x)} asociat cuvântului - cod: f(x) = h(1) + h(α)x h(α n 1 )X n 1 = a 0 (1 + X + X Prelegerea 13 Coduri Reed - Solomon 13.1 Definirea codurilor RS O clasă foarte interesantă de coduri ciclice a fost definită în 1960 de Reed şi Solomon. Numite în articolul iniţial coduri polinomiale,

Διαβάστε περισσότερα