ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση)"

Transcript

1 ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) Όταν το πρωτοείδα, κι εγώ δεν το συμπάθησα. Είναι, όμως, λάθος μας, καθώς πρόκειται για κάτι πολύ απλό και σίγουρο ως μέθοδος υπολογισμού μιας αβεβαιότητας. Το μόνο που χρειάζεται, είναι να ξέρεις να βρίσκεις μια Μερική Παράγωγο, που είναι, νομίζω, μια εύκολη δουλειά. Θεώρημα: Αν το μέτρο ενός μεγέθους q υπολογίζεται με βάση τη συνάρτηση q=f(x,y,,z), όπου τα μεγέθη x,y,,z έ- χουν μετρηθεί και τα Απόλυτα σφάλματά τους είναι δx,δy,,δz αντίστοιχα, τότε το Μέσο (απόλυτο) Σφάλμα δq δίνεται από τη σχέση: δq= q x x q... z z (ΠαρΑ.1) όπου q x είναι η μερική παράγωγος της q ως προς x κ.ο.κ. Για να ισχύει η (ΠαρΑ.1), πρέπει οι μετρήσεις των x,y,,z να περιέχουν τυχαία σφάλματα, δηλαδή τα συστηματικά να είναι αμελητέα ως προς τα δx,δy,,δz. Αυτή η υπόθεση είναι, βέβαια, δύσκολο να ελεγχθεί αν ισχύει. Επιπλέον, το ίδιο θεώρημα λέει ότι το Μέσο Σφάλμα ικανοποιεί την q q x... x q z z (ΠαρΑ.) Παράδειγμα 1 Αν q=x+y και x δx, y δy, τότε: q q =1, =1. Άρα, από την (ΠαρΑ.1) x y δq= 1 x 1 y q x y (ΠαρΑ.3) Σε αυτή την περίπτωση εμείς έχουμε ορίσει το Μέγιστο Σφάλμα: δq max =δx+δy (ΠαρΑ.4) Εύκολα βλέπεις ότι: δq max δq (Πυθαγόρας). Ερώτηση: Ποιο από τα δύο είναι καλύτερο; Απάντηση: Εξαρτάται! 1

2 Ξέρεις ότι το δq καθορίζει το εύρος της περιοχής που έχει πιθανότητα 68% να βρεθεί η επόμενη μέτρηση. Από σένα εξαρτάται αν θέλεις οι μετρήσεις με πιθανότητα 68% να είναι μέσα σε μεγάλη περιοχή την οποία καθορίζει το (δq max ) ή μέσα σε μικρότερη περιοχή την οποία καθορίζει το δqδq max. Συμπέρασμα: Το Μέσο Σφάλμα δq, που είναι μικρότερο από το Μέγιστο Σφάλμα, σου δίνει μια μικρότερη περιοχή αβεβαιότητας. Αυτό μπορεί να είναι καλύτερο ή όχι, ανάλογα με τη σιγουριά που θέλεις να έχεις. Παρατήρηση: Συνήθως, στα πρώτα εργαστήρια όλοι χρησιμοποιούμε το Μέγιστο Σφάλμα, επειδή οι μερικές παράγωγοι δεν είναι ακόμα γνωστές. Με λίγο περισσότερη εμπιστοσύνη στις γνώσεις μας και στις μερικές παραγώγους, θα μπορούσαμε να χρησιμοποιούμε το Μέσο Σφάλμα και να είμαστε, έτσι, σε ένα υψηλό επίπεδο. Παράδειγμα 4 L Από τον τύπο του εκκρεμούς g, όπου L δl=(800 1) 10-3 m, έχουμε T δτ=(1,7 0,10) s. T g Μέγιστο σφάλμα: g L T δg max =0,3 m/s. L T Μέσο σφάλμα: g g L L g T T g 4 όπου L T και g =4π L (Τ - g 8 L ), 3 T T T και δl= m, δτ=0,10 s T 4 64 L 6 T δg= L T δg=0,30 m/s. Άρα, δg max δg.

3 ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων 1. Θα λέμε ότι Ν μετρήσεις ενός μεγέθους παρουσιάζουν μεγάλη ακρίβεια (accuracy), αν η μέση τιμή των μετρήσεων είναι κοντά στην αληθινή τιμή του μεγέθους. Θα πρέπει τα τυχαία σφάλματα να είναι μικρά, και τα συστηματικά να είναι αμελητέα.. Θα λέμε ότι οι Ν μετρήσεις ενός μεγέθους παρουσιάζουν μεγάλη επαναληψιμότητα (precision), αν όλες είναι κοντά στη μέση τιμή τους, με άλλα λόγια διαφέρουν λίγο η μία από την άλλη (άσχετα ως προς την αληθινή τιμή). Μπορεί να έχουν μικρά, τυχαία σφάλματα. Υπάρχουν, όμως, σοβαρά συστηματικά σφάλματα. Παρατήρηση: Έβαλα το παράρτημα αυτό, για να κάνω μια νύξη. Στην πραγματικότητα είναι δύσκολο να ερμηνεύεις σωστά τα πειραματικά δεδομένα. Μπορεί προς στιγμήν να μοιάζουν σωστά. π.χ.: Ν=1000 μετρήσεις που όλες είναι περίπου ίδιες μεταξύ τους. Αναρωτιέσαι: Μήπως βρήκα, δηλαδή, πόσο είναι το μέγεθος που ερευνώ; Αυτές οι περίπου ίδιες μεταξύ τους μετρήσεις παρουσιάζουν μεγάλη επαναληψιμότητα. Ναι! Μπορεί, όμως, να είναι πολύ μακριά από την πραγματική τιμή του μεγέθους, δηλαδή να παρουσιάζουν μικρή ακρίβεια. Κάποια Συστηματικά Σφάλματα σε εξαπάτησαν. (Προς στιγμήν, ελπίζω!) Παράδειγμα: Στο ευγενές άθλημα της τοξοβολίας ρίχνεις 5 βέλη το ένα δίπλα στο άλλο, στον εξωτερικό κύκλο όμως! Οι μετρήσεις σου παρουσιάζουν μεγάλη επαναληψιμότητα (precision) και μικρή ακρίβεια (accuracy), ως προς το κέντρο του κύκλου. Παραδείγματα στόχων: Στόχος Α Στόχος Β. Στόχος Γ Στόχος Δ Εικόνα ΠαρΒ.1 Στόχοι τοξοβολίας. Στόχος Α: Μικρή ακρίβεια και επαναληψιμότητα. 3

4 Στόχος Β: Μικρή ακρίβεια και υψηλή επαναληψιμότητα. Στόχος Γ: Καλή ακρίβεια, μικρή επαναληψιμότητα. Στόχος Δ: Μεγάλη ακρίβεια, μεγάλη επαναληψιμότητα. Οι Μετρήσεις του στόχου Β θα μπορούσαν να σε εξαπατήσουν και να νομίζεις ότι πέτυχες το ζητούμενο! 4

5 ΠΑΡΑΡΤΗΜΑ Γ Όργανα άσκησης ΠαρΓ.1 Παχύμετρο ή διαστημόμετρο ΠαρΓ.1.1 Περιγραφή Το παχύμετρο του εργαστηρίου έχει μικρότερη υποδιαίρεση (ακρίβεια) 0,05 mm και μπορεί να μετρήσει διάστημα μέχρι 150 mm. Αποτελείται από δύο τμήματα: στο ένα υπάρχει η κύρια κλίμακα, ενώ στο άλλο η κλίμακα του βερνιέρου. Ο βερνιέρος γλιστρώντας μπορεί να μετακινηθεί πάνω στην κύρια κλίμακα. Αν βιδώσεις την ασφάλεια, μπορείς να εμποδίσεις αυτή τη μετακίνηση. Στην Εικόνα ΠαρΓ.1 φαίνονται τα διάφορα μέρη του. Εικόνα ΠαρΓ.1 Μέρη παχύμετρου. ΠαρΓ.1. Μετρήσεις Με το παχύμετρο μπορείς να μετρήσεις μήκος, εσωτερική διάμετρο σπειρώματος, εσωτερική διάμετρο σωλήνα και βάθος. ΠαρΓ.1..1 Μέτρηση μήκους Τοποθετείς το αντικείμενο μεταξύ των σιαγώνων για μήκος (Εικόνα ΠαρΓ.). Βιδώνεις την ασφάλεια, για να μην έχεις μετακίνηση των σιαγώνων. Διαβάζεις τη μέτρηση στην κύρια κλίμακα με τη βοήθεια του βερνιέρου. Εικόνα ΠαρΓ. Μέτρηση μήκους με παχύμετρο. 5

6 ΠαρΓ.1.. Μέτρηση εσωτερικής διαμέτρου σπειρώματος Τοποθετείς το σπείρωμα μεταξύ των σιαγώνων για σπείρωμα (Εικόνα ΠαρΓ.3). Βιδώνεις την ασφάλεια, για να μην έχεις μετακίνηση των σιαγώνων. Διαβάζεις τη μέτρηση στην κύρια κλίμακα με τη βοήθεια του βερνιέρου. Εικόνα ΠαρΓ.3 Μέτρηση σπειρώματος με παχύμετρο. ΠαρΓ.1..3 Μέτρηση εσωτερικής διαμέτρου σωλήνα Τοποθετείς τις σιαγώνες για εσωτερική διάμετρο στο εσωτερικό του σωλήνα (Εικόνα ΠαρΓ.4). Βιδώνεις την ασφάλεια, για να μην έχεις μετακίνηση των σιαγώνων. Διαβάζεις τη μέτρηση στην κύρια κλίμακα με τη βοήθεια του βερνιέρου. Εικόνα ΠαρΓ.4 Μέτρηση εσωτερικής διαμέτρου με παχύμετρο. ΠαρΓ.1..4 Μέτρηση βάθους τρύπας Τοποθετείς το στέλεχος του παχύμετρου έτσι, ώστε η άκρη του να ακουμπά στον πάτο της τρύπας και το άκρο του παχύμετρου να ακουμπά στην κορυφή της τρύπας (Εικόνα ΠαρΓ.5). Βιδώνεις την ασφάλεια, για να μην έχεις μετακίνηση των σιαγώνων. Διαβάζεις τη μέτρηση στην κύρια κλίμακα με τη βοήθεια του βερνιέρου. 6

7 Εικόνα ΠαρΓ.5 Μέτρηση βάθους με παχύμετρο. ΠαρΓ.1.3 Πώς μετρώ με το παχύμετρο Κάθε υποδιαίρεση της κύριας κλίμακας είναι 1 mm, ενώ κάθε υποδιαίρεση του βερνιέρου είναι 0,05 mm. 1. Το μηδέν του βερνιέρου μού δείχνει πάνω στην κύρια κλίμακα το ακέραιο κομμάτι της μέτρησης σε mm.. Η υποδιαίρεση του βερνιέρου που βρίσκεται στην ίδια ευθεία με κάποια υποδιαίρεση της κύριας κλίμακας, μού δίνει το δεκαδικό κομμάτι της μέτρησης. (Πολλαπλασιάζω τις υποδιαιρέσεις του βερνιέρου με 0,05 mm, που είναι η κάθε υποδιαίρεση.) 3. Προσθέτω τα δύο κομμάτια, ακέραιο και δεκαδικό. Παράδειγμα: Στην Εικόνα ΠαρΓ.6 το μηδέν του βερνιέρου δείχνει 69 mm (και κάτι ακόμα). Η 3 η υποδιαίρεση του βερνιέρου βρίσκεται στην ίδια ευθεία με υποδιαίρεση της κύριας κλίμακας. Άρα, το δεκαδικό κομμάτι είναι 3x0,05 mm=0,15 mm. Προσθέτοντας, έχω 69,15 mm. Εικόνα ΠαρΓ.6 Παράδειγμα μέτρησης με παχύμετρο. ΠαρΓ.1.4 Γραφή αποτελέσματος Όπως ξέρουμε, όταν μετράω ένα μέγεθος μία φορά, γράφω το αποτέλεσμα με σφάλμα ως εξής: η μία μέτρηση ± η μικρότερη υποδιαίρεση του οργάνου. Στο παραπάνω παράδειγμα η μέτρηση είναι 69,15 mm. Η μικρότερη υποδιαίρεση του παχύμετρου είναι 0,05 mm. Άρα, θα γράψω το αποτέλεσμα ως εξής: (69,15±0,05) mm Παχύμετρο ή διαστημόμετρο Βίντεο 7

8 Το βίντεο περιγράφει το διαστημόμετρο και πώς κάνω μετρήσεις με αυτό. Βίντεο ΠαρΓ.1 Διαστημόμετρο. ΠαρΓ. Μικρόμετρο ΠαρΓ..1 Περιγραφή Το μικρόμετρο του εργαστηρίου έχει μικρότερη υποδιαίρεση (ακρίβεια) 0,01 mm και μπορεί να μετρήσει διάστημα μέχρι 5 mm. Αποτελείται από δύο τμήματα: στο ένα υπάρχει η κύρια κλίμακα, ενώ στο άλλο η κλίμακα του τυμπάνου. Το τύμπανο περιστρεφόμενο μπορεί να μετακινηθεί πάνω στην κύρια κλίμακα. Αν στρέψεις την ασφάλεια, μπορείς να εμποδίσεις αυτή τη μετακίνηση. Για να κάνεις σωστή μέτρηση, θα πρέπει να περιστρέφεις το τύμπανο από την καστάνια. Στην εικόνα ΠαρΓ.7 φαίνονται τα διάφορα μέρη του. Εικόνα ΠαρΓ.7 Μέρη μικρόμετρου. ΠαρΓ.. Πώς μετρώ με το μικρόμετρο Κάθε υποδιαίρεση της κύριας κλίμακας είναι 0,5 mm, ενώ κάθε υποδιαίρεση του τυμπάνου είναι 0,01 mm. 1. Τοποθετώ το αντικείμενο μεταξύ των σιαγώνων και κλίνω τις σιαγόνες περιστρέφοντας την καστάνια. Όταν οι σιαγώνες ακουμπήσουν στο αντικείμενο, θα ακουστεί χαρακτηριστικός ήχος. Τότε παίρνω τη μέτρηση.. Διαβάζω την ένδειξη που φαίνεται στην κύρια κλίμακα.( Μπορεί να είναι ολόκληρα ή μισά χιλιοστά, π.χ. 1 mm ή 1,5 mm.) 3. Διαβάζω την ένδειξη στο τύμπανο, την οποία μου δείχνει η οριζόντια γραμμή της κύριας κλίμακας. (Είναι εκατοστά του mm.) 4. Προσθέτω τις δύο ενδείξεις. Παράδειγμα: Στην Εικόνα ΠαρΓ.8 η ένδειξη στη κύρια κλίμακα είναι 10, άρα, 10 mm. Η ένδειξη στο τύμπανο είναι 46, άρα, 0,46 mm. Προσθέτοντας, έχω 10,46 mm. 8

9 ΕικόναΠαρΓ.8 Παράδειγμα μέτρησης με μικρόμετρο. ΠαρΓ..3 Γραφή αποτελέσματος Όπως ξέρουμε, όταν μετράω ένα μέγεθος μία φορά, γράφω το αποτέλεσμα με σφάλμα ως εξής: η μία μέτρηση ± η μικρότερη υποδιαίρεση του οργάνου. Στο παραπάνω παράδειγμα η μέτρηση είναι 10,46 mm. Η μικρότερη υποδιαίρεση του μικρομέτρου είναι 0,01 mm. Άρα, θα γράψω το αποτέλεσμα ως εξής: (10,46±0,01) mm. Μικρόμετρο Το βίντεο περιγράφει το μικρόμετρο και πώς κάνω μετρήσεις με αυτό. Βίντεο ΠαρΓ. Μικρόμετρο. Βίντεο ΠαρΓ.3 Ζυγαριά ΠαρΓ.3.1 Περιγραφή Έχει μικρότερη υποδιαίρεση 0,01 g και μπορεί να μετρήσει μέχρι 000 g. Στην Εικόνα ΠαρΓ.9 φαίνονται τα βασικά μέρη της. 9

10 ΕικόναΠαρΓ.9 Μέρη της ζυγαριάς. ΠαρΓ.3. Πώς ζυγίζω 1. Ελέγχω αν η φυσαλίδα της αεροστάθμης είναι μέσα στον κύκλο, που σημαίνει ότι η ζυγαριά είναι οριζόντια. Διαφορετικά, τη ρυθμίζω βιδώνοντας ή ξεβιδώνοντας τα ποδαράκια της..ανοίγω τη ζυγαριά πατώντας το διακόπτη ON-OFF. 3. Μηδενίζω τη ζυγαριά, πατώντας το κουμπί TARE. 4. Τοποθετώ το αντικείμενο στην πλάκα της ζυγαριάς. 5. Διαβάζω την τιμή και τη μονάδα μέτρησης στην οθόνη. Ζυγαριά Το βίντεο περιγράφει τη ζυγαριά και πώς κάνω μετρήσεις με αυτήν. Βίντεο ΠαρΓ.3 Ζυγαριά. Βίντεο 10

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ Α. ΣΤΟΧΟΙ Η συνειδητή χρήση των κανόνων ασφαλείας στο εργαστήριο. Η εξοικείωση στη χρήση του υποδεκάμετρου και του διαστημόμετρου

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας

Διαβάστε περισσότερα

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος Χρήση διαστημόμετρου για εύρεση πυκνότητας στερεών σωμάτων γεωμετρικού σχήματος Προκειμένου να υπολογιστεί η πυκνότητα σε στερεά σώματα γεωμετρικού σχήματος πραγματοποιούνται μετρήσεις α) της μάζας τους

Διαβάστε περισσότερα

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου Μ7 Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου A. Προσδιορισµός της πυκνότητας στερεού σώµατος B. Εύρεση της εστιακής απόστασης συγκλίνοντα φακού. Σκοπός Σκοπός

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα.

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα. Σημαντικά ψηφία Η ταχύτητα διάδοσης του φωτός είναι 2.99792458 x 10 8 m/s. Η τιμή αυτή είναι δοσμένη σε 9 σημαντικά ψηφία. Τα 9 σημαντικά ψηφία είναι 299792458. Η τιμή αυτή μπορεί να δοθεί και με 5 σημαντικά

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ ΦΥΣ 114 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ Φθινόπωρο 2014 Διδάσκων/Υπεύθυνος: Φώτης Πτωχός e-mail: fotis@ucy.ac.cy Τηλ: 22.89.2837 Γραφείο: B235 web-page: http://www2.ucy.ac.cy/~fotis/phy114/phy114.htm ΦΥΣ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ

ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ ΑΣΚΗΣΗ 3 ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ Η κλίµακα των διαστάσεων της ύλης από τα στοιχειώδη σωµάτια έως τα όρια του Σύµπαντος. Το παραπάνω σχήµα προέρχεται απο το βιβλίο του E. Hecht Physics Brooks 3.1

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ

ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β Γυμνασίου ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Βασικές έννοιες: Θέση - μετατόπιση - χρόνος - χρονικό διάστημα - ταχύτητα

Διαβάστε περισσότερα

Άσκηση 10 Παίζω Μαθαίνω Αποφασίζω

Άσκηση 10 Παίζω Μαθαίνω Αποφασίζω Άσκηση 10 Παίζω Μαθαίνω Αποφασίζω Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο έλεγχος ύπαρξης συντηρητικών και μη συντηρητικών δυνάμεων σε μια δεδομένη διαδρομή σώματος. Το θεωρητικό μέρος έχει να

Διαβάστε περισσότερα

Άσκηση 11 Υπολογισμός συντελεστών κινητικής και στατικής τριβής

Άσκηση 11 Υπολογισμός συντελεστών κινητικής και στατικής τριβής Άσκηση 11 Υπολογισμός συντελεστών κινητικής και στατικής τριβής Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι: Να υπολογιστεί ο συντελεστής κινητικής τριβής μ κ. Να υπολογιστεί ο συντελεστής στατικής τριβής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Αθήνα 2014 1 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1. Η ΕΝΝΟΙΑ ΤΟΥ ΣΦΑΛΜΑΤΟΣ... 2. ΤΥΠΟΙ ΣΦΑΛΜΑΤΩΝ. ΣΥΣΤΗΜΑΤΙΚΑ ΚΑΙ ΤΥΧΑΙΑ ΣΦΑΛΜΑΤΑ... 3. ΕΚΤΙΜΗΣΗ ΣΦΑΛΜΑΤΟΣ ΚΑΤΑ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ

ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ Οι ρίζες των δέντρων αποτελούνται απο τρία είδη ιστών ένα εκ των οποίων, (ο επιφανειακός ιστός) περιλαµβάνει ειδικά τροποποιηµένα

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

Η αβεβαιότητα στη μέτρηση.

Η αβεβαιότητα στη μέτρηση. Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη

Διαβάστε περισσότερα

Να κόψει κανείς ή να μην κόψει;

Να κόψει κανείς ή να μην κόψει; Να κόψει κανείς ή να μην κόψει; Του Νίκου Παναγιωτίδη, Φυσικού και Ραδιοερασιτέχνη (SV6 DBK) Συντονίζω στους 145,510 MHz με στάσιμα 1,5:1. Να κοντύνω μερικά εκατοστά το καλώδιο μήπως καλυτερέψει; κι αν

Διαβάστε περισσότερα

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Σάββατο 8 ΕΚΕΜΒΡΙΟΥ 2012 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ) (Διάρκεια εξέτασης 60 min) Μαθητές: Σχολική Μονάδα

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΦΑΣΗ 1 η )

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΦΑΣΗ 1 η ) ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΦΑΣΗ 1 η ) 1 ΣΥΝΕΝΤΕΥΞΗ ΤΟΥ JACKSON POLLOCK ΣΤΟΝ ΔΗΜΟΣΙΟΓΡΑΦΟ WILLIAM WRIGHT ΤΟ ΚΑΛΟΚΑΙΡΙ ΤΟΥ 1950. Το καλοκαίρι του 1950 o δημοσιογράφος William Wright πήρε μια πολύ ενδιαφέρουσα ηχογραφημένη

Διαβάστε περισσότερα

gr/ Μιχαήλ Μιχαήλ, Φυσικός

gr/ Μιχαήλ Μιχαήλ, Φυσικός 1. ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ Όργανα µέτρησης µήκους Όταν πρόκειται να µετρήσουµε ένα µήκος, πρέπει να επιλέξουµε εκείνο το όργανο µέτρησης το οποίο είναι κατάλληλο για να µετρήσει το µήκος αυτό και να δώσει την απαιτούµενη

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ )

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η σύγκριση των πειραματικών

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς του ελατηρίου

Υπολογισμός της σταθεράς του ελατηρίου Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Με τη λέξη σφάλμα στις θετικές επιστήμες αναφερόμαστε στην αβεβαιότητα που υπάρχει στην εύρεση του αποτελέσματος που προκύπτει από μια μέτρηση. Το να εκτιμήσουμε και να βρούμε τα σφάλμα

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα.

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Ακολουθίες ΔΙΑΝΥΣΜΑΤΑ Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Να ορίζουμε τις σχέσεις μεταξύ διανυσμάτων (παράλληλα, ομόρροπα, αντίρροπα, ίσα και αντίθετα διανύσματα). Να προσθέτουμε και

Διαβάστε περισσότερα

Τετράδια Κιθάρας. Χρήση του PowerTab

Τετράδια Κιθάρας. Χρήση του PowerTab Τετράδια Κιθάρας Extra ενότητα Χρήση του PowerTab Ευγένιος Αστέρις 1 Περιεχόμενα Πρόλογος... 3 Εγκατάσταση του Power Tab... 4 Εισαγωγή ενός αρχείου midi στο Power Tab... 5 Μελέτη με το Power Tab... 9 Εξήγηση

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

της ΓΕΩΛΟΓΙΚΗΣ ΠΥΞΙΔΑΣ

της ΓΕΩΛΟΓΙΚΗΣ ΠΥΞΙΔΑΣ Οδηγίες Χρήσης της ΓΕΩΛΟΓΙΚΗΣ ΠΥΞΙΔΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΚΤΟΝΙΚΗΣ και ΓΕΩΛΟΓΙΚΩΝ ΧΑΡΤΟΓΡΑΦΗΣΕΩΝ Αθήνα 2010-1- Με τη γεωλογική πυξίδα μπορούμε να μετρήσουμε τα στοιχεία των επιπέδων των γεωλογικών επιφανειών

Διαβάστε περισσότερα

ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm

ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm ΑΓΓΕΛΙΚΗ ΛΕΒΑΝΤΗ ΖΑΝΝΕΙΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΤΜΗΜΑ Α 2 10 ΙΑΝΟΥΑΡΙΟΥ 2010 ΣΕΝΑΡΙΟ : Πρόκειται να μετατρέψουμε τα εμπρός ελατήρια μιας μοτοσυκλέτας

Διαβάστε περισσότερα

http://ekfe.chi.sch.gr ΦΕΒΡΟΥΑΡΙΟΣ 2010 Πειράματα Φυσικής Υπολογισμός του g με χρήση φωτοπυλών

http://ekfe.chi.sch.gr ΦΕΒΡΟΥΑΡΙΟΣ 2010 Πειράματα Φυσικής Υπολογισμός του g με χρήση φωτοπυλών http://ekfe.chi.sch.gr 7 η - 8 η Συνάντηση ΦΕΒΡΟΥΑΡΙΟΣ 010 Πειράματα Φυσικής Υδροστατική Πίεση Οριζόντια Βολή Κεντρομόλος Δύναμη Υπολογισμός του g με χρήση φωτοπυλών Κίvηση φoρτισμέvoυ σωματιδίoυ εvτός

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

Οδηγίες χειρισμού παλμογράφου

Οδηγίες χειρισμού παλμογράφου Οδηγίες χειρισμού παλμογράφου Οι σημειώσεις αυτές στόχο έχουν την εξοικείωση του φοιτητή με το χειρισμό του παλμογράφου. Για εκπαιδευτικούς λόγους θα δοθούν οδηγίες σχετικά με τον παλμογράφο Hameg HM 203-6

Διαβάστε περισσότερα

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1 4 η Εργασία 1) ύο δυνάµεις F 1 και F 2 ασκούνται σε σώµα µάζας 5kg. Εάν F 1 =20N και F 2 =15N βρείτε την επιτάχυνση του σώµατος στα σχήµατα (α) και (β). [ 2 µονάδες] F 2 F 2 90 o 60 o (α) F 1 (β) F 1 2)

Διαβάστε περισσότερα

Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της γης

Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της γης Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της Α. Το Μαγνητικό πεδίο σαν διάνυσμα Σο μαγνητικό πεδίο περιγράφεται με το μέγεθος που αποκαλούμε ένταση μαγνητικού

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y)

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y) 11.7. Aκρότατα και σαγματικά σημεία 903 39. Εκτίμηση μέγιστου σφάλματος Έστω ότι u e sin και ότι τα,, και μπορούν να μετρηθούν με μέγιστα δυνατά σφάλματα 0,, 0,6, και / 180, αντίστοιχα. Εκτιμήστε το μέγιστο

Διαβάστε περισσότερα

Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια

Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Ένας σημαντικός χρόνος περιορισμένης

Διαβάστε περισσότερα

Β22. Μέτρηση Ροπής Αδράνειας

Β22. Μέτρηση Ροπής Αδράνειας Β22. Μέτρηση Ροπής Αδράνειας Α. Σκοπός της άσκησης Στο εργαστήριο αυτό θα μελετήσουμε την περιστροφική κίνηση που εκτελεί ένα υλικό σημείο ή ένα στερεό σώμα, σταθερού μεγέθους και σχήματος, υπό την παρουσία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8.1 ΜΗΧΑΝΟΥΡΓΙΚΕΣ ΜΕΤΡΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 8.1 ΜΗΧΑΝΟΥΡΓΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΤΕΧΝΟΛΟΓΙΑ ΠΑΡΑΓΩΓΗΣ Ι 203 ΚΕΦΑΛΑΙΟ 8.1 ΜΗΧΑΝΟΥΡΓΙΚΕΣ ΜΕΤΡΗΣΕΙΣ Οι βασικοί στόχοι της Τεχνολογίας Παραγωγής είναι σε πρώτο στάδιο η μελέτη, σχεδίαση και ανάπτυξη υφισταμένων ή νέων τεχνολογιών-διαδικασιών

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΕΙΙΣΑΓΩΓΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. ) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει ιςς (σελ. 4) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012 1 Τοπικός Μαθητικός Διαγωνισμός 11η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2013 11Η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΕΚΦΕ Τρικάλων Πειραματική Δοκιμασία στη Φυσική Τοπικός Μαθητικός Διαγωνισμός Τρίκαλα,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΑΝΑΛΥΣΗ ΕΠΙ ΜΕΡΟΥΣ ΕΡΩΤΗΣΕΩΝ ΤΩΝ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΚΑΤΑ ΤΙΣ ΔΥΟ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4 Ο ΑΝΑΛΥΣΗ ΕΠΙ ΜΕΡΟΥΣ ΕΡΩΤΗΣΕΩΝ ΤΩΝ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΚΑΤΑ ΤΙΣ ΔΥΟ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΑΝΑΛΥΣΗ ΕΠΙ ΜΕΡΟΥΣ ΕΡΩΤΗΣΕΩΝ ΤΩΝ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΚΑΤΑ ΤΙΣ ΔΥΟ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΠΕΡΙΛΗΨΗ Στο μέρος αυτό της εργασίας παρουσιάζονται ο συχνότητες και τα ποσοστά στις απαντήσεις των μαθητών

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Εκτελώντας το πρόγραμμα παίρνουμε ένα παράθυρο εργασίας Γεωμετρικών εφαρμογών. Τα βασικά κουμπιά και τα μενού έχουν την παρακάτω

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] είναι όριο? β) Για να βρούμε το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] πρέπει

Διαβάστε περισσότερα

Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις Η Φύση της Επιστήµης Ενότητες Κεφαλαίου 1 Μοντέλα Θεωρίες και Νόµοι Μετρήσεις και αβεβαιότητα (σφάλµατα); Σηµαντικά ψηφία Μονάδες, Πρότυπα, και το Διεθνές Σύστηµα

Διαβάστε περισσότερα

Ν. Αντωνίου, καθηγητής ΕΚΠΑ - Π. Δημητριάδης, Δρ. Φυσικής - Κ. Καμπούρης, Msc. Φυσικής - Κ. Παπαμιχάλης, Δρ. Φυσικής - Λ. Παπατσίμπα, Δρ.

Ν. Αντωνίου, καθηγητής ΕΚΠΑ - Π. Δημητριάδης, Δρ. Φυσικής - Κ. Καμπούρης, Msc. Φυσικής - Κ. Παπαμιχάλης, Δρ. Φυσικής - Λ. Παπατσίμπα, Δρ. 1 Συγγραφική ομάδα Ν. Αντωνίου, καθηγητής ΕΚΠΑ - Π. Δημητριάδης, Δρ. Φυσικής - Κ. Καμπούρης, Msc. Φυσικής - Κ. Παπαμιχάλης, Δρ. Φυσικής - Λ. Παπατσίμπα, Δρ. Φυσικής Επεξεργασία εικόνων Θεόφιλος Χατζητσοπάνης

Διαβάστε περισσότερα

Κεφάλαιο 4 Δυναµική: Νόµοι Κίνησης του Νεύτωνα

Κεφάλαιο 4 Δυναµική: Νόµοι Κίνησης του Νεύτωνα Κεφάλαιο 4 Δυναµική: Νόµοι Κίνησης του Νεύτωνα Δύναµη Περιεχόµενα Κεφαλαίου 4 1 ος Νόµος Κίνησης του Νεύτωνα Μάζα 2 ος Νόµος Κίνησης του Νεύτωνα 3 ος Νόµος Κίνησης του Νεύτωνα Βάρος: Η Δύναµη της Βαρύτητας

Διαβάστε περισσότερα

Διαχειρίζομαι αριθμούς έως το 10.000

Διαχειρίζομαι αριθμούς έως το 10.000 Α Περίοδος Διαχειρίζομαι αριθμούς έως το 10.000 Στο μάθημα αυτό θα ασχοληθούμε με την εκτίμηση υπολογισμών, δηλαδή με την εύρεση ενός αποτελέσματος στο «περίπου» ή «κατ εκτίμηση» ή «πάνω-κάτω» ή «χοντρά-χοντρά»,

Διαβάστε περισσότερα

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ Παρουσίαση οργάνωσης των Εργαστηρίων Φυσικής Ι Ακαδ. Έτους 2013-14 http://www.physicslab.tuc.gr physicslab@isc.tuc.gr

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Κατασκευάστε ένα απλό antenna tuner (Μέρος Α )

Κατασκευάστε ένα απλό antenna tuner (Μέρος Α ) Κατασκευάστε ένα απλό antenna tuner (Μέρος Α ) Του Νίκου Παναγιωτίδη (SV6 DBK) φυσικού και ραδιοερασιτέχνη. Ο σκοπός του άρθρου αυτού είναι να κατευθύνει τον αναγνώστη ραδιοερασιτέχνη να κατασκευάσει το

Διαβάστε περισσότερα

Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7. Ασκήσεις στο IP Fragmentation

Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7. Ασκήσεις στο IP Fragmentation Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7 Οι σημειώσεις που ακολουθούν περιγράφουν τις ασκήσεις που θα συναντήσετε στο κεφάλαιο 7. Η πιο συνηθισμένη και βασική άσκηση αναφέρεται στο IP Fragmentation,

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

Το μέτρο σύγκρισης για ακρίβεια: Τεχνολογία μέτρησης Bosch.

Το μέτρο σύγκρισης για ακρίβεια: Τεχνολογία μέτρησης Bosch. Το μέτρο σύγκρισης για ακρίβεια: Τεχνολογία μέτρησης Bosch. Μέτρηση PLR 25, PLR 50 και PMB 300 L. Χωροστάθμηση PCL 10, PCL 20, PLT 2 και PLL 5. Ανίχνευση PDO Multi και PDO 6. 1619GU1016 GR Τυπωμένο στην

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Φύλλο Εργασίας 2. Μετρήσεις Χρόνου Η Ακρίβεια. α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι

Φύλλο Εργασίας 2. Μετρήσεις Χρόνου Η Ακρίβεια. α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι Φύλλο Εργασίας 2 Μετρήσεις Χρόνου Η Ακρίβεια α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι Συζήτησε με τους συμμαθητές σου, με τη βοήθεια του/της καθηγητή/τριάς σου, τι εννοούμε όταν ζητάμε τη μέτρηση χρόνου.

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

Οδηγίες εγκατάστασης Flow Box Solar 8010

Οδηγίες εγκατάστασης Flow Box Solar 8010 Οδηγίες εγκατάστασης Flow Box Solar 8010 ΣΗΜΑΝΤΙΚΟ! -Πριν την εγκατάσταση, ο εγκαταστάτης θα πρέπει να μελετήσει και κατανοήσει καλά τις οδηγίες σε αυτό το εγχειρίδιο. -Το flow box solar 8010 θα πρέπει

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

IV. Συνέχεια Συνάρτησης. math-gr

IV. Συνέχεια Συνάρτησης. math-gr IV Συνέχεια Συνάρτησης mth-gr mth-gr Παντελής Μπουμπούλης, MSc, PhD σελ mth-grblogspotcom, bouboulismyschgr ΜΕΡΟΣ Συνέχεια Συνάρτησης Α Ορισμός Συνέχεια σε σημείο: Θα λέμε ότι μια συνάρτηση είναι συνεχής

Διαβάστε περισσότερα

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ

Διαβάστε περισσότερα

Φύλλο Εργασίας 3 Μετρήσεις Μάζας Τα Διαγράμματα Α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι

Φύλλο Εργασίας 3 Μετρήσεις Μάζας Τα Διαγράμματα Α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι Φύλλο Εργασίας 3 Μετρήσεις Μάζας Τα Διαγράμματα Α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι Ο άνθρωπος πάντοτε αισθανόταν εγκλωβισμένος στη γη από μια δύναμη που τον κρατά κοντά της, ακόμη και τώρα που κάποιοι

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 0. Κύκλωμα - Όργανα

ΑΣΚΗΣΗ 0. Κύκλωμα - Όργανα ΑΣΚΗΣΗ 0 Κύκλωμα Όργανα ΤΙ ΧΡΕΙΑΖΟΜΑΣΤΕ: Ένα τροφοδοτικό GP 4303D, δύο πολύμετρα FLUKE 179 ένα λαμπάκι πυρακτώσεως, ένα πυκνωτή και καλώδια. ΣΚΟΠΟΣ: α) Να μάθουμε να φτιάχνουμε ένα κύκλωμα στον πάγκο β)

Διαβάστε περισσότερα

Παλμογράφος. ω Ν. Άσκηση 15:

Παλμογράφος. ω Ν. Άσκηση 15: Άσκηση 15: Παλμογράφος Σκοπός: Σε αυτή την άσκηση θα μάθουμε τις βασικές λειτουργίες του παλμογράφου και το πώς χρησιμοποιείται αυτός για τη μέτρηση συνεχούς και εναλλασσόμενης τάσης, συχνότητας και διαφοράς

Διαβάστε περισσότερα

1. Δύο σύγχρονες πηγές αρμονικών κυμάτων βρίσκονται σε δύο σημεία της επιφάνειας ενός υγρού δημιουργώντας

1. Δύο σύγχρονες πηγές αρμονικών κυμάτων βρίσκονται σε δύο σημεία της επιφάνειας ενός υγρού δημιουργώντας ΣΥΜΒΟΛΗ ΚΥΜΑΤΩΝ. Δύο σύγχρονες πηγές αρμονικών κυμάτων βρίσκονται σε δύο σημεία της επιφάνειας ενός υγρού δημιουργώντας εγκάρσια κύματα τα οποία διαδίδονται στην επιφάνεια του υγρού με ταχύτητα 0,5 m/s.

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά)

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά) ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 31/05/2010 ΤΑΞΗ: Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΧΡΟΝΟΣ: 07:30 10:00 π.μ. ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:...

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών

Διαβάστε περισσότερα

ΕΥΡΩΠΑΪΚΗ ΚΟΙΝΩΝΙΚΗ ΕΡΕΥΝΑ

ΕΥΡΩΠΑΪΚΗ ΚΟΙΝΩΝΙΚΗ ΕΡΕΥΝΑ Συμπληρωματικό ερωτηματολόγιο Β Πράσινο ΕΥΡΩΠΑΪΚΗ ΚΟΙΝΩΝΙΚΗ ΕΡΕΥΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ F-2-F Β (4 ος Γύρος 2008) Οδηγ. Προς ΣΥΝΕΝΤΕΥΚΤΗ: AN ΤO ΕΡΩΤΩΜΕΝΟ ΑΤΟΜΟ ΕΙΝΑΙ ΑΝΤΡΑΣ, ΡΩΤΗΣΤΕ ΤΗΝ GF1. ΑΝ

Διαβάστε περισσότερα

Καραμπαρμπούνης ιευθυντής Εργαστηρίου Φυσικής Συντονιστής Εργαστηρίου Φ1. Εργαστηρίου Φυσικής 2014-20

Καραμπαρμπούνης ιευθυντής Εργαστηρίου Φυσικής Συντονιστής Εργαστηρίου Φ1. Εργαστηρίου Φυσικής 2014-20 Εισαγωγικές ιαλέξεις Εργαστηρίου Φυσικής 014-0 015 αν.καθηγητής Ανδρέας Καραμπαρμπούνης ιευθυντής Εργαστηρίου Φυσικής Συντονιστής Εργαστηρίου Φ1 ιαλέξεις: Κ.Ν. Παπανικόλας, Α. Καραμπαρμπούνης Ε. Στυλιάρης

Διαβάστε περισσότερα

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Ιδιοκατασκευή μονοσωλήνιου ιστού 2'' και όχι μόνο.

Ιδιοκατασκευή μονοσωλήνιου ιστού 2'' και όχι μόνο. Ιδιοκατασκευή μονοσωλήνιου ιστού 2'' και όχι μόνο. Κατασκευή από τους : senius (#10636), nasos765 (#9664), djbill (#10787). Για την κάτωθι κατασκευή ιστού χρειάστηκαν τα παρακάτω υλικά : Τούμπο νεροσωλήνας

Διαβάστε περισσότερα

Πραγματικά ρευστά: Επιβεβαίωση του θεωρήματος του Torricelli

Πραγματικά ρευστά: Επιβεβαίωση του θεωρήματος του Torricelli Ιωάννης Α. Σιανούδης Πραγματικά ρευστά: Επιβεβαίωση του θεωρήματος του Torricelli Σκοπός Σκοπός της άσκησης αυτής είναι η επιβεβαίωση μέσα από μια σειρά μετρήσεων και υπολογισμών του θεωρήματος του Torricelli,

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2013 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2013 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Γ Γυμνασίου 20 Απριλίου 2013 Θέμα 1 ο Στις ερωτήσεις A, B, Γ, Δ μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

ΣΕΡΒΙΣ ΒΑΤΣΑΚΛΗΣ ΧΡΗΣΤΟΣ

ΣΕΡΒΙΣ ΒΑΤΣΑΚΛΗΣ ΧΡΗΣΤΟΣ ΣΧΟΛΗ ΠΡΟΠΟΝΗΤΩΝ Γ ΚΑΤΗΓΟΡΙΑΣ ΣΕΡΒΙΣ ΕΙΣΑΓΩΓΗ Ένα καλό σέρβις είναι ένα από τα πιο σημαντικά χτυπήματα επειδή μπορεί να δώσει ένα μεγάλο πλεονέκτημα στην αρχή του πόντου. Το σέρβις είναι το πιο σημαντικό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 2: Όργανα Μετρήσεων Ηλεκτρικών Κυκλωμάτων Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

2 ο Σχολικό Εργα στήριο Φυσικών Επιστημών

2 ο Σχολικό Εργα στήριο Φυσικών Επιστημών 5ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΖΩΓΡΑΦΟΥ ΣΧ. ΕΤΟΣ 009 10 ο Σχολικό Εργα στήριο Φυσικών Επιστημών Υπεύθυνος. καθηγητής: Κρεμιώτης Θωμάς, Φυσικός Τάξη Β' Θετικής και Τεχνολογικής κατεύθυνσης ΜΕΤΡΗΣΗ ΤΟΥ ΕΙΔΙΚΟΥ ΦΟΡΤΙΟΥ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

ΔΙΑΘΛΑΣΗ ΚΥΜΑΤΩΝ ΣΤΗ ΛΕΚΑΝΗ ΚΥΜΑΤΙΣΜΩΝ

ΔΙΑΘΛΑΣΗ ΚΥΜΑΤΩΝ ΣΤΗ ΛΕΚΑΝΗ ΚΥΜΑΤΙΣΜΩΝ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΔΙΑΘΛΑΣΗ ΚΥΜΑΤΩΝ ΣΤΗ ΛΕΚΑΝΗ ΚΥΜΑΤΙΣΜΩΝ ΕΠΑΛΗΘΕΥΣΗ ΤΟΥ ΝΟΜΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ( ΝΟΜΟΣ SNELL ) Α. ΣΤΟΧΟΙ Η εξοικείωση με μετρήσεις μήκους. Η εξοικείωση με τη χρήση

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΑΒΒΑΤΟ 4 MAΪΟΥ 0 Λύσεις των θεμάτων Έκδοση

Διαβάστε περισσότερα

ΥΠΕΠΘ ΣΥΜΒΑΣΗ 19/2005 ΣΕΙΡΑ ΓΕΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΟΡΓΑΝΩΝ

ΥΠΕΠΘ ΣΥΜΒΑΣΗ 19/2005 ΣΕΙΡΑ ΓΕΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΟΡΓΑΝΩΝ ΥΠΕΠΘ ΣΥΜΒΑΣΗ 19/2005 ΣΕΙΡΑ ΓΕΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΟΡΓΑΝΩΝ ΧΥΤΟΣΙΔΗΡΑ ΒΑΣΗ ΤΥΠΟΥ Β (ΓΕ.010.0) Η βάση είναι χυτοσιδηρά και διαστάσεων 20 cm περίπου x 12 cm περίπου x 1 cm περίπου, και εδράζεται σε τέσσερα

Διαβάστε περισσότερα

ΑΠΟΔΡΑΣΗ ΑΠΟ ΤΗ ΒΙΒΛΙΟΘΗΚΗ ΤΟΥ ΤΡΟΜΟΥ

ΑΠΟΔΡΑΣΗ ΑΠΟ ΤΗ ΒΙΒΛΙΟΘΗΚΗ ΤΟΥ ΤΡΟΜΟΥ ΑΠΟΔΡΑΣΗ ΑΠΟ ΤΗ ΒΙΒΛΙΟΘΗΚΗ ΤΟΥ ΤΡΟΜΟΥ - Α,α,α,α,α,α,α! ούρλιαξε η Νεφέλη - Τρομερό! συμπλήρωσε η Καλλιόπη - Ω, Θεέ μου! αναφώνησα εγώ - Απίστευτα τέλειο! είπε η Ειρήνη και όλες την κοιτάξαμε λες και είπε

Διαβάστε περισσότερα

Μετασχηματισμοί Laplace

Μετασχηματισμοί Laplace Μετασχηματισμοί Laplace Ιδιότητες μετασχηματισμών Laplace Βασικά ζεύγη μετασχηματισμών Laplace f(t) F(s) δ(t) 1 u(t) 1 / s t 1 / s 2 t n n! / s n1 e αt, α>0 1 / (s α) te αt, α>0 1 / (s α) 2 ημωt ω / (s

Διαβάστε περισσότερα

Κεφάλαιο Πέµπτο: Η Εξάσκηση

Κεφάλαιο Πέµπτο: Η Εξάσκηση Κεφάλαιο Πέµπτο: Η Εξάσκηση 1. Γενικά Η εξάσκηση στο Εργαστήριο προϋποθέτει τη γνώση των εντολών (τουλάχιστον) τις οποίες καλείται ο σπουδαστής κάθε φορά να εφαρµόσει. Αυτές παρέχονται µέσω της Θεωρίας

Διαβάστε περισσότερα