ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση)"

Transcript

1 ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) Όταν το πρωτοείδα, κι εγώ δεν το συμπάθησα. Είναι, όμως, λάθος μας, καθώς πρόκειται για κάτι πολύ απλό και σίγουρο ως μέθοδος υπολογισμού μιας αβεβαιότητας. Το μόνο που χρειάζεται, είναι να ξέρεις να βρίσκεις μια Μερική Παράγωγο, που είναι, νομίζω, μια εύκολη δουλειά. Θεώρημα: Αν το μέτρο ενός μεγέθους q υπολογίζεται με βάση τη συνάρτηση q=f(x,y,,z), όπου τα μεγέθη x,y,,z έ- χουν μετρηθεί και τα Απόλυτα σφάλματά τους είναι δx,δy,,δz αντίστοιχα, τότε το Μέσο (απόλυτο) Σφάλμα δq δίνεται από τη σχέση: δq= q x x q... z z (ΠαρΑ.1) όπου q x είναι η μερική παράγωγος της q ως προς x κ.ο.κ. Για να ισχύει η (ΠαρΑ.1), πρέπει οι μετρήσεις των x,y,,z να περιέχουν τυχαία σφάλματα, δηλαδή τα συστηματικά να είναι αμελητέα ως προς τα δx,δy,,δz. Αυτή η υπόθεση είναι, βέβαια, δύσκολο να ελεγχθεί αν ισχύει. Επιπλέον, το ίδιο θεώρημα λέει ότι το Μέσο Σφάλμα ικανοποιεί την q q x... x q z z (ΠαρΑ.) Παράδειγμα 1 Αν q=x+y και x δx, y δy, τότε: q q =1, =1. Άρα, από την (ΠαρΑ.1) x y δq= 1 x 1 y q x y (ΠαρΑ.3) Σε αυτή την περίπτωση εμείς έχουμε ορίσει το Μέγιστο Σφάλμα: δq max =δx+δy (ΠαρΑ.4) Εύκολα βλέπεις ότι: δq max δq (Πυθαγόρας). Ερώτηση: Ποιο από τα δύο είναι καλύτερο; Απάντηση: Εξαρτάται! 1

2 Ξέρεις ότι το δq καθορίζει το εύρος της περιοχής που έχει πιθανότητα 68% να βρεθεί η επόμενη μέτρηση. Από σένα εξαρτάται αν θέλεις οι μετρήσεις με πιθανότητα 68% να είναι μέσα σε μεγάλη περιοχή την οποία καθορίζει το (δq max ) ή μέσα σε μικρότερη περιοχή την οποία καθορίζει το δqδq max. Συμπέρασμα: Το Μέσο Σφάλμα δq, που είναι μικρότερο από το Μέγιστο Σφάλμα, σου δίνει μια μικρότερη περιοχή αβεβαιότητας. Αυτό μπορεί να είναι καλύτερο ή όχι, ανάλογα με τη σιγουριά που θέλεις να έχεις. Παρατήρηση: Συνήθως, στα πρώτα εργαστήρια όλοι χρησιμοποιούμε το Μέγιστο Σφάλμα, επειδή οι μερικές παράγωγοι δεν είναι ακόμα γνωστές. Με λίγο περισσότερη εμπιστοσύνη στις γνώσεις μας και στις μερικές παραγώγους, θα μπορούσαμε να χρησιμοποιούμε το Μέσο Σφάλμα και να είμαστε, έτσι, σε ένα υψηλό επίπεδο. Παράδειγμα 4 L Από τον τύπο του εκκρεμούς g, όπου L δl=(800 1) 10-3 m, έχουμε T δτ=(1,7 0,10) s. T g Μέγιστο σφάλμα: g L T δg max =0,3 m/s. L T Μέσο σφάλμα: g g L L g T T g 4 όπου L T και g =4π L (Τ - g 8 L ), 3 T T T και δl= m, δτ=0,10 s T 4 64 L 6 T δg= L T δg=0,30 m/s. Άρα, δg max δg.

3 ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων 1. Θα λέμε ότι Ν μετρήσεις ενός μεγέθους παρουσιάζουν μεγάλη ακρίβεια (accuracy), αν η μέση τιμή των μετρήσεων είναι κοντά στην αληθινή τιμή του μεγέθους. Θα πρέπει τα τυχαία σφάλματα να είναι μικρά, και τα συστηματικά να είναι αμελητέα.. Θα λέμε ότι οι Ν μετρήσεις ενός μεγέθους παρουσιάζουν μεγάλη επαναληψιμότητα (precision), αν όλες είναι κοντά στη μέση τιμή τους, με άλλα λόγια διαφέρουν λίγο η μία από την άλλη (άσχετα ως προς την αληθινή τιμή). Μπορεί να έχουν μικρά, τυχαία σφάλματα. Υπάρχουν, όμως, σοβαρά συστηματικά σφάλματα. Παρατήρηση: Έβαλα το παράρτημα αυτό, για να κάνω μια νύξη. Στην πραγματικότητα είναι δύσκολο να ερμηνεύεις σωστά τα πειραματικά δεδομένα. Μπορεί προς στιγμήν να μοιάζουν σωστά. π.χ.: Ν=1000 μετρήσεις που όλες είναι περίπου ίδιες μεταξύ τους. Αναρωτιέσαι: Μήπως βρήκα, δηλαδή, πόσο είναι το μέγεθος που ερευνώ; Αυτές οι περίπου ίδιες μεταξύ τους μετρήσεις παρουσιάζουν μεγάλη επαναληψιμότητα. Ναι! Μπορεί, όμως, να είναι πολύ μακριά από την πραγματική τιμή του μεγέθους, δηλαδή να παρουσιάζουν μικρή ακρίβεια. Κάποια Συστηματικά Σφάλματα σε εξαπάτησαν. (Προς στιγμήν, ελπίζω!) Παράδειγμα: Στο ευγενές άθλημα της τοξοβολίας ρίχνεις 5 βέλη το ένα δίπλα στο άλλο, στον εξωτερικό κύκλο όμως! Οι μετρήσεις σου παρουσιάζουν μεγάλη επαναληψιμότητα (precision) και μικρή ακρίβεια (accuracy), ως προς το κέντρο του κύκλου. Παραδείγματα στόχων: Στόχος Α Στόχος Β. Στόχος Γ Στόχος Δ Εικόνα ΠαρΒ.1 Στόχοι τοξοβολίας. Στόχος Α: Μικρή ακρίβεια και επαναληψιμότητα. 3

4 Στόχος Β: Μικρή ακρίβεια και υψηλή επαναληψιμότητα. Στόχος Γ: Καλή ακρίβεια, μικρή επαναληψιμότητα. Στόχος Δ: Μεγάλη ακρίβεια, μεγάλη επαναληψιμότητα. Οι Μετρήσεις του στόχου Β θα μπορούσαν να σε εξαπατήσουν και να νομίζεις ότι πέτυχες το ζητούμενο! 4

5 ΠΑΡΑΡΤΗΜΑ Γ Όργανα άσκησης ΠαρΓ.1 Παχύμετρο ή διαστημόμετρο ΠαρΓ.1.1 Περιγραφή Το παχύμετρο του εργαστηρίου έχει μικρότερη υποδιαίρεση (ακρίβεια) 0,05 mm και μπορεί να μετρήσει διάστημα μέχρι 150 mm. Αποτελείται από δύο τμήματα: στο ένα υπάρχει η κύρια κλίμακα, ενώ στο άλλο η κλίμακα του βερνιέρου. Ο βερνιέρος γλιστρώντας μπορεί να μετακινηθεί πάνω στην κύρια κλίμακα. Αν βιδώσεις την ασφάλεια, μπορείς να εμποδίσεις αυτή τη μετακίνηση. Στην Εικόνα ΠαρΓ.1 φαίνονται τα διάφορα μέρη του. Εικόνα ΠαρΓ.1 Μέρη παχύμετρου. ΠαρΓ.1. Μετρήσεις Με το παχύμετρο μπορείς να μετρήσεις μήκος, εσωτερική διάμετρο σπειρώματος, εσωτερική διάμετρο σωλήνα και βάθος. ΠαρΓ.1..1 Μέτρηση μήκους Τοποθετείς το αντικείμενο μεταξύ των σιαγώνων για μήκος (Εικόνα ΠαρΓ.). Βιδώνεις την ασφάλεια, για να μην έχεις μετακίνηση των σιαγώνων. Διαβάζεις τη μέτρηση στην κύρια κλίμακα με τη βοήθεια του βερνιέρου. Εικόνα ΠαρΓ. Μέτρηση μήκους με παχύμετρο. 5

6 ΠαρΓ.1.. Μέτρηση εσωτερικής διαμέτρου σπειρώματος Τοποθετείς το σπείρωμα μεταξύ των σιαγώνων για σπείρωμα (Εικόνα ΠαρΓ.3). Βιδώνεις την ασφάλεια, για να μην έχεις μετακίνηση των σιαγώνων. Διαβάζεις τη μέτρηση στην κύρια κλίμακα με τη βοήθεια του βερνιέρου. Εικόνα ΠαρΓ.3 Μέτρηση σπειρώματος με παχύμετρο. ΠαρΓ.1..3 Μέτρηση εσωτερικής διαμέτρου σωλήνα Τοποθετείς τις σιαγώνες για εσωτερική διάμετρο στο εσωτερικό του σωλήνα (Εικόνα ΠαρΓ.4). Βιδώνεις την ασφάλεια, για να μην έχεις μετακίνηση των σιαγώνων. Διαβάζεις τη μέτρηση στην κύρια κλίμακα με τη βοήθεια του βερνιέρου. Εικόνα ΠαρΓ.4 Μέτρηση εσωτερικής διαμέτρου με παχύμετρο. ΠαρΓ.1..4 Μέτρηση βάθους τρύπας Τοποθετείς το στέλεχος του παχύμετρου έτσι, ώστε η άκρη του να ακουμπά στον πάτο της τρύπας και το άκρο του παχύμετρου να ακουμπά στην κορυφή της τρύπας (Εικόνα ΠαρΓ.5). Βιδώνεις την ασφάλεια, για να μην έχεις μετακίνηση των σιαγώνων. Διαβάζεις τη μέτρηση στην κύρια κλίμακα με τη βοήθεια του βερνιέρου. 6

7 Εικόνα ΠαρΓ.5 Μέτρηση βάθους με παχύμετρο. ΠαρΓ.1.3 Πώς μετρώ με το παχύμετρο Κάθε υποδιαίρεση της κύριας κλίμακας είναι 1 mm, ενώ κάθε υποδιαίρεση του βερνιέρου είναι 0,05 mm. 1. Το μηδέν του βερνιέρου μού δείχνει πάνω στην κύρια κλίμακα το ακέραιο κομμάτι της μέτρησης σε mm.. Η υποδιαίρεση του βερνιέρου που βρίσκεται στην ίδια ευθεία με κάποια υποδιαίρεση της κύριας κλίμακας, μού δίνει το δεκαδικό κομμάτι της μέτρησης. (Πολλαπλασιάζω τις υποδιαιρέσεις του βερνιέρου με 0,05 mm, που είναι η κάθε υποδιαίρεση.) 3. Προσθέτω τα δύο κομμάτια, ακέραιο και δεκαδικό. Παράδειγμα: Στην Εικόνα ΠαρΓ.6 το μηδέν του βερνιέρου δείχνει 69 mm (και κάτι ακόμα). Η 3 η υποδιαίρεση του βερνιέρου βρίσκεται στην ίδια ευθεία με υποδιαίρεση της κύριας κλίμακας. Άρα, το δεκαδικό κομμάτι είναι 3x0,05 mm=0,15 mm. Προσθέτοντας, έχω 69,15 mm. Εικόνα ΠαρΓ.6 Παράδειγμα μέτρησης με παχύμετρο. ΠαρΓ.1.4 Γραφή αποτελέσματος Όπως ξέρουμε, όταν μετράω ένα μέγεθος μία φορά, γράφω το αποτέλεσμα με σφάλμα ως εξής: η μία μέτρηση ± η μικρότερη υποδιαίρεση του οργάνου. Στο παραπάνω παράδειγμα η μέτρηση είναι 69,15 mm. Η μικρότερη υποδιαίρεση του παχύμετρου είναι 0,05 mm. Άρα, θα γράψω το αποτέλεσμα ως εξής: (69,15±0,05) mm Παχύμετρο ή διαστημόμετρο Βίντεο 7

8 Το βίντεο περιγράφει το διαστημόμετρο και πώς κάνω μετρήσεις με αυτό. Βίντεο ΠαρΓ.1 Διαστημόμετρο. ΠαρΓ. Μικρόμετρο ΠαρΓ..1 Περιγραφή Το μικρόμετρο του εργαστηρίου έχει μικρότερη υποδιαίρεση (ακρίβεια) 0,01 mm και μπορεί να μετρήσει διάστημα μέχρι 5 mm. Αποτελείται από δύο τμήματα: στο ένα υπάρχει η κύρια κλίμακα, ενώ στο άλλο η κλίμακα του τυμπάνου. Το τύμπανο περιστρεφόμενο μπορεί να μετακινηθεί πάνω στην κύρια κλίμακα. Αν στρέψεις την ασφάλεια, μπορείς να εμποδίσεις αυτή τη μετακίνηση. Για να κάνεις σωστή μέτρηση, θα πρέπει να περιστρέφεις το τύμπανο από την καστάνια. Στην εικόνα ΠαρΓ.7 φαίνονται τα διάφορα μέρη του. Εικόνα ΠαρΓ.7 Μέρη μικρόμετρου. ΠαρΓ.. Πώς μετρώ με το μικρόμετρο Κάθε υποδιαίρεση της κύριας κλίμακας είναι 0,5 mm, ενώ κάθε υποδιαίρεση του τυμπάνου είναι 0,01 mm. 1. Τοποθετώ το αντικείμενο μεταξύ των σιαγώνων και κλίνω τις σιαγόνες περιστρέφοντας την καστάνια. Όταν οι σιαγώνες ακουμπήσουν στο αντικείμενο, θα ακουστεί χαρακτηριστικός ήχος. Τότε παίρνω τη μέτρηση.. Διαβάζω την ένδειξη που φαίνεται στην κύρια κλίμακα.( Μπορεί να είναι ολόκληρα ή μισά χιλιοστά, π.χ. 1 mm ή 1,5 mm.) 3. Διαβάζω την ένδειξη στο τύμπανο, την οποία μου δείχνει η οριζόντια γραμμή της κύριας κλίμακας. (Είναι εκατοστά του mm.) 4. Προσθέτω τις δύο ενδείξεις. Παράδειγμα: Στην Εικόνα ΠαρΓ.8 η ένδειξη στη κύρια κλίμακα είναι 10, άρα, 10 mm. Η ένδειξη στο τύμπανο είναι 46, άρα, 0,46 mm. Προσθέτοντας, έχω 10,46 mm. 8

9 ΕικόναΠαρΓ.8 Παράδειγμα μέτρησης με μικρόμετρο. ΠαρΓ..3 Γραφή αποτελέσματος Όπως ξέρουμε, όταν μετράω ένα μέγεθος μία φορά, γράφω το αποτέλεσμα με σφάλμα ως εξής: η μία μέτρηση ± η μικρότερη υποδιαίρεση του οργάνου. Στο παραπάνω παράδειγμα η μέτρηση είναι 10,46 mm. Η μικρότερη υποδιαίρεση του μικρομέτρου είναι 0,01 mm. Άρα, θα γράψω το αποτέλεσμα ως εξής: (10,46±0,01) mm. Μικρόμετρο Το βίντεο περιγράφει το μικρόμετρο και πώς κάνω μετρήσεις με αυτό. Βίντεο ΠαρΓ. Μικρόμετρο. Βίντεο ΠαρΓ.3 Ζυγαριά ΠαρΓ.3.1 Περιγραφή Έχει μικρότερη υποδιαίρεση 0,01 g και μπορεί να μετρήσει μέχρι 000 g. Στην Εικόνα ΠαρΓ.9 φαίνονται τα βασικά μέρη της. 9

10 ΕικόναΠαρΓ.9 Μέρη της ζυγαριάς. ΠαρΓ.3. Πώς ζυγίζω 1. Ελέγχω αν η φυσαλίδα της αεροστάθμης είναι μέσα στον κύκλο, που σημαίνει ότι η ζυγαριά είναι οριζόντια. Διαφορετικά, τη ρυθμίζω βιδώνοντας ή ξεβιδώνοντας τα ποδαράκια της..ανοίγω τη ζυγαριά πατώντας το διακόπτη ON-OFF. 3. Μηδενίζω τη ζυγαριά, πατώντας το κουμπί TARE. 4. Τοποθετώ το αντικείμενο στην πλάκα της ζυγαριάς. 5. Διαβάζω την τιμή και τη μονάδα μέτρησης στην οθόνη. Ζυγαριά Το βίντεο περιγράφει τη ζυγαριά και πώς κάνω μετρήσεις με αυτήν. Βίντεο ΠαρΓ.3 Ζυγαριά. Βίντεο 10

ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων

ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων 1. Θα λέμε ότι Ν μετρήσεις ενός μεγέθους παρουσιάζουν μεγάλη ακρίβεια (accuracy), αν η μέση τιμή των μετρήσεων είναι κοντά στην αληθινή τιμή του μεγέθους.

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ

ΣΤΟΙΧΕΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΣΥΝΟΠΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΠΡΟΤΑΣΗΣ ΣΤΟΙΧΕΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΓΓΕΛΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ ΕΙΔΙΚΟΤΗΤΑ ΠΕ1204 1. ΠΕΡΙΓΡΑΦΗ 1.1 ΤΙΤΛΟΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Μέτρηση μήκους,

Διαβάστε περισσότερα

Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού

Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός της πυκνότητας του υλικού ενός ομογενούς σώματος. Είναι μια έμμεση μέτρηση και θα γίνει με

Διαβάστε περισσότερα

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ Α. ΣΤΟΧΟΙ Η συνειδητή χρήση των κανόνων ασφαλείας στο εργαστήριο. Η εξοικείωση στη χρήση του υποδεκάμετρου και του διαστημόμετρου

Διαβάστε περισσότερα

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι:

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: Μετρήσεις-Αβεβαιότητα-Σφάλματα. Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Στην άμεση μέτρηση το μέγεθος μετράται με κάποιο όργανο. Στην έμμεση μέτρηση το μέγεθος υπολογίζεται

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

Το διαστημόμετρο. Εισαγωγικές Έννοιες

Το διαστημόμετρο. Εισαγωγικές Έννοιες Το διαστημόμετρο Εισαγωγικές Έννοιες Το διαστημόμετρο είναι μια συσκευή που χρησιμοποιείται για τη μέτρηση αποστάσεων μεταξύ δύο αντικριστών πλευρών ενός αντικειμένου. Τα άκρα του διαστημόμετρου προσαρμόζονται

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας

Διαβάστε περισσότερα

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι:

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: Μετρήσεις-Αβεβαιότητα-Σφάλματα. Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Στην άμεση μέτρηση το μέγεθος μετράται με κάποιο όργανο. Στην έμμεση μέτρηση το μέγεθος υπολογίζεται

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ (A) ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ (B) ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (Γ) ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα - &. ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

Τι μάθαμε μέχρι τώρα:

Τι μάθαμε μέχρι τώρα: Τι μάθαμε μέχρι τώρα: Η μέτρηση μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Κάθε μέτρηση έχει ΑΒΕΒΑΙΟΤΗΤΑ. Παρουσιάζοντας τη μέτρηση σύμφωνα με τη θεωρία σφαλμάτων γράφω δυο αριθμούς: x ± δx ή x ± Σσχ ή x ± %Σσχ όπου

Διαβάστε περισσότερα

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος)

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος) Άσκηση Μ1 Θεωρητικό μέρος Μήκος και μάζα (βάρος) Όργανα μέτρησης μήκους Διαστημόμετρο Με το διαστημόμετρο μετράμε μήκη μέχρι και μερικά μέτρα, σε χαμηλές απαιτήσεις ως προς την ακρίβεια. Το κύριο μέρος

Διαβάστε περισσότερα

4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ

4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ 4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ Μετρούμε με το μέτρο και με άλλα όργανα «ÔÏÏ ÊÔÚ Ï ˆ fiùè fiù Ó ÌappleÔÚÂ Ó ÌÂÙÚ ÛÂÈ ÂΠÓÔ ÁÈ ÙÔ ÔappleÔ Ô ÌÈÏ Î È Ó ÙÔ ÂÎÊÚ ÛÂÈ Ì ÚÈıÌÔ, Í ÚÂÈ Î ÙÈ ÁÈ' Ùfi. ŸÙ Ó fiìˆ ÂÓ ÌappleÔÚÂ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός

ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να παρουσιάζει τα αποτελέσματα πειραματικών μετρήσεων σε μορφή. Τις περισσότερες φορές στις ασκήσεις του εργαστηρίου,

Διαβάστε περισσότερα

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία 2. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΧΑΡΑΞΗΣ 2.1 Μετρητικές ταινίες Οι μετρητικές ταινίες, πτυσσόμενες (αρθρωτές) ή περιελισσόμενες σε θήκη, είναι κατασκευασμένες από χάλυβα ή άλλο ελαφρύ κράμα και έχουν χαραγμένες υποδιαιρέσεις

Διαβάστε περισσότερα

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος Χρήση διαστημόμετρου για εύρεση πυκνότητας στερεών σωμάτων γεωμετρικού σχήματος Προκειμένου να υπολογιστεί η πυκνότητα σε στερεά σώματα γεωμετρικού σχήματος πραγματοποιούνται μετρήσεις α) της μάζας τους

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Εισαγωγή... 2 Έννοια του σφάλματος...3 Συστηματικά και τυχαία σφάλματα...4 Εκτίμηση του σφάλματος κατά την ανάγνωση κλίμακας...8 Πολλαπλές μετρήσεις... 10 Περί του αριθμού των σημαντικών

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής

Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής Σύνοψη Η άσκηση αυτή διαφέρει από όλες τις άλλες. Σκοπός της είναι η πειραματική επαλήθευση του θεμελιώδους νόμου της Μηχανικής. Αυτό θα γίνει με τη γραφική ανάλυση

Διαβάστε περισσότερα

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2 ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ Περιεχόμενα 1. Στρογγυλοποίηση.... 2 1.1 Γενικά.... 2 1.2 Κανόνες Στρογγυλοποίησης.... 2 2. Σημαντικά ψηφία.... 2 2.1 Γενικά.... 2 2.2 Κανόνες για την

Διαβάστε περισσότερα

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου Μ7 Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου A. Προσδιορισµός της πυκνότητας στερεού σώµατος B. Εύρεση της εστιακής απόστασης συγκλίνοντα φακού. Σκοπός Σκοπός

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Συγγραφείς:. Τμήμα, Σχολή Εφαρμοσμένων Επιστημών, ΤΕΙ Κρήτης Περίληψη Στην παρούσα εργαστηριακή άσκηση μετρήσαμε τη διάμετρο

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου

Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου Σύνοψη Αυτή είναι μια από τις πρώτες ασκήσεις που κάνεις στο εργαστήριο Φυσικής Ι, γι αυτό καλό είναι να μάθεις ότι

Διαβάστε περισσότερα

Έτος: Εξάμηνο: Ημερομηνία εκτέλεσης: Ημερομηνία παράδοσης:

Έτος: Εξάμηνο: Ημερομηνία εκτέλεσης: Ημερομηνία παράδοσης: ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (ΑΣΠΑΙΤΕ) - ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ Υπεύθυνος καθηγητής: Ζκέρης Βασίλειος ΕΚΘΕΣΗ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ 1: ΜΗΧΑΝΙΚΕΣ ΣΥΣΚΕΥΕΣ

Διαβάστε περισσότερα

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα.

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα. Σημαντικά ψηφία Η ταχύτητα διάδοσης του φωτός είναι 2.99792458 x 10 8 m/s. Η τιμή αυτή είναι δοσμένη σε 9 σημαντικά ψηφία. Τα 9 σημαντικά ψηφία είναι 299792458. Η τιμή αυτή μπορεί να δοθεί και με 5 σημαντικά

Διαβάστε περισσότερα

Άσκηση 8 Ελαστικές και μη ελαστικές κρούσεις Αρχή διατήρησης της ορμής

Άσκηση 8 Ελαστικές και μη ελαστικές κρούσεις Αρχή διατήρησης της ορμής Άσκηση 8 Ελαστικές και μη ελαστικές κρούσεις Αρχή διατήρησης της ορμής Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι η πειραματική επαλήθευση της Αρχής διατήρησης της ορμής σε ελαστική και μη ελαστική

Διαβάστε περισσότερα

Σχ. 6.1α. Είδη κατσαβιδιών.

Σχ. 6.1α. Είδη κατσαβιδιών. 6. ΚΑΤΣΑΒΙΔΙΑ ΚΛΕΙΔΙΑ Η βίδα μαζί με το περικόχλιο (παξιμάδι) ή χωρίς αυτό, αποτελεί ένα μέσο που μας επιτρέπει να συνδέουμε δυο ή περισσότερα κομμάτια. Για να πραγματοποιήσουμε όμως τη σύνδεση με τη βίδα

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων Σκοπός Σκοπός είναι να κατανοηθεί η έννοια των σφαλμάτων, η σπουδαιότητά τους και η αναγκαιότητα υπολογισμού τους. Δίνονται επίσης οι βασικοί μαθηματικοί τύποι που επιτρέπουν

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή οι φοιτητές

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας

Πανεπιστήμιο Θεσσαλίας Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Εργαστηριακές Ασκήσεις Εργαστήριο 4 Ορθότητα, Ακρίβεια και Θόρυβος (Accuracy, Precision and Noise) Φ. Πλέσσας

Διαβάστε περισσότερα

Φύλλο εργασίας 1 σχετικό με τις μετρήσεις μήκους. Εκτιμήσεις- μετρήσεις μαθητών

Φύλλο εργασίας 1 σχετικό με τις μετρήσεις μήκους. Εκτιμήσεις- μετρήσεις μαθητών Φύλλο εργασίας 1 σχετικό με τις μετρήσεις μήκους 1 Εκτιμήσεις- μετρήσεις μαθητών 1) Να γράψετε στις παρακάτω προτάσεις εάν κατά τη γνώμη σας, η υπογραμμισμένη λέξη είναι ΜΕΓΕΘΟΣ: Η πυρκαγιά που έκαψε το

Διαβάστε περισσότερα

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών Φυσική Α Γενικού Λυκείου Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών (Μετρήσεις, αβεβαιότητα, επεξεργασία δεδομένων) Υποστηρικτικό υλικό 20 Οκτωβρίου 2016 Μαρίνα Στέλλα, Υπεύθυνη ΕΚΦΕ Σχολικό Εργαστήριο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ ΦΥΣ 114 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ Φθινόπωρο 2014 Διδάσκων/Υπεύθυνος: Φώτης Πτωχός e-mail: fotis@ucy.ac.cy Τηλ: 22.89.2837 Γραφείο: B235 web-page: http://www2.ucy.ac.cy/~fotis/phy114/phy114.htm ΦΥΣ

Διαβάστε περισσότερα

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ

ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ ΑΣΚΗΣΗ 3 ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ Η κλίµακα των διαστάσεων της ύλης από τα στοιχειώδη σωµάτια έως τα όρια του Σύµπαντος. Το παραπάνω σχήµα προέρχεται απο το βιβλίο του E. Hecht Physics Brooks 3.1

Διαβάστε περισσότερα

Συμπληρωματικό Φύλλο Εργασίας 1+ ( * ) Μετρήσεις Μήκους Η Μέση Τιμή

Συμπληρωματικό Φύλλο Εργασίας 1+ ( * ) Μετρήσεις Μήκους Η Μέση Τιμή Συμπληρωματικό Φύλλο Εργασίας 1+ ( * ) Μετρήσεις Μήκους Η Μέση Τιμή ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Πώς νομίζεις ότι ξέρουμε το

Διαβάστε περισσότερα

Εισαγωγή Μια απλοποιημένη θεωρία σφαλμάτων Γραφικές παραστάσεις

Εισαγωγή Μια απλοποιημένη θεωρία σφαλμάτων Γραφικές παραστάσεις Εισαγωγή Μια απλοποιημένη θεωρία σφαλμάτων Γραφικές παραστάσεις Ο άνθρωπος αρχίζει να αποκτά γνώση για τον φυσικό κόσμο γύρω του, από τη στιγμή που αρχίζει να καταγράφει τα φυσικά φαινόμενα και να τα επεξεργάζεται

Διαβάστε περισσότερα

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ 5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ Μετρούμε αλλά και υπολογίζουμε Στο προηγούμενο μάθημα χρησιμοποιήσαμε το μέτρο, αλλά και άλλα όργανα με τα οποία μετρούμε το μήκος. Το σχήμα που μετρούμε με το μέτρο

Διαβάστε περισσότερα

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος Περιεχόμενα ΦΕ1 ΤΑ ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΚΑΙ Η ΜΕΤΡΗΣΗ ΤΟΥΣ ΤΟ ΜΗΚΟΣ 2015-16 6 ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Τα φυσικά μεγέθη Η Μέτρηση των φυσικών μεγεθών Μια μονάδα μέτρησης για όλους Το φυσικό μέγεθος Μήκος Όργανα μέτρησης

Διαβάστε περισσότερα

Άσκηση 6 Ώθηση δύναμης Μεταβολή ορμής

Άσκηση 6 Ώθηση δύναμης Μεταβολή ορμής Άσκηση 6 Ώθηση δύναμης Μεταβολή ορμής Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι η κατανόηση του φυσικού διανυσματικού μεγέθους ώθηση δύναμης και η σχέση του με: τη μεταβολή της ορμής υλικού σημείου

Διαβάστε περισσότερα

6ο Μάθημα ΜΑΖΑ ΤΩΝ ΣΩΜΑΤΩΝ

6ο Μάθημα ΜΑΖΑ ΤΩΝ ΣΩΜΑΤΩΝ 6ο Μάθημα ΜΑΖΑ ΤΩΝ ΣΩΜΑΤΩΝ Μετράει την ποσότητα της ύλης Μια μεγάλη σοκολάτα έχει περισσότερη σοκολάτα από μια μικρή σοκολάτα. Διαφέρουν στην ποσότητα της σοκολάτας. Στις φυσικές επιστήμες αυτό το εκφράζουμε

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ Συνοπτική περιγραφή Μελετάμε την κίνηση μιας ράβδου που μπορεί να περιστρέφεται γύρω από σταθερό οριζόντιο άξονα,

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ ΕΚΦΕ Αν. Αττικής Υπεύθυνος: Κ. Παπαμιχάλης ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ Κεντρική επιδίωξη των εργαστηριακών ασκήσεων φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

Φύλλο Εργασίας 1 Μετρήσεις Μήκους Η Μέση Τιμή

Φύλλο Εργασίας 1 Μετρήσεις Μήκους Η Μέση Τιμή Φύλλο Εργασίας 1 Μετρήσεις Μήκους Η Μέση Τιμή α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι Όπως θα μάθεις αναλυτικότερα στη Β και Γ γυμνασίου: Η μέτρηση είναι πρωταρχική και σημαντική διαδικασία για τη φυσική

Διαβάστε περισσότερα

Σφάλματα Είδη σφαλμάτων

Σφάλματα Είδη σφαλμάτων Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την

Διαβάστε περισσότερα

Άσκηση 9 Μελέτη στροφικής κίνησης στερεού σώματος

Άσκηση 9 Μελέτη στροφικής κίνησης στερεού σώματος Άσκηση 9 Μελέτη στροφικής κίνησης στερεού σώματος Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι: ο πειραματικός υπολογισμός της ροπής αδράνειας ενός στερεού και η σύγκριση της πειραματικής τιμής με τη

Διαβάστε περισσότερα

Αλλαγή κλίμακας σχεδίου με το COREL

Αλλαγή κλίμακας σχεδίου με το COREL Αλλαγή κλίμακας σχεδίου με το COREL Πολλές φορές στο χόμπι μας χρειάζεται να αλλάξουμε τις διαστάσεις ενός σχεδίου για να το κάνουμε μικρότερο η μεγαλύτερο και πάρα πολλές φορές έχω ακούσει από φίλους

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΕΙΣ ΣΧΕΔΙΟΥ. Αναγκαιότητα τοποθέτησης διαστάσεων. 29/10/2015 Πολύζος Θωμάς

ΔΙΑΣΤΑΣΕΙΣ ΣΧΕΔΙΟΥ. Αναγκαιότητα τοποθέτησης διαστάσεων. 29/10/2015 Πολύζος Θωμάς Αναγκαιότητα τοποθέτησης διαστάσεων 29/10/2015 Πολύζος Θωμάς 1 Αναγκαιότητα τοποθέτησης διαστάσεων Σφάλμα μέτρησης που οφείλεται: Σε υποκειμενικό λάθος εκείνου που κάνει την μέτρηση. Σε σφάλμα του οργάνου

Διαβάστε περισσότερα

Φυσική Α Τάξης Φ.Ε. 1: Μετρήσεις μήκους - Η μέση τιμή

Φυσική Α Τάξης Φ.Ε. 1: Μετρήσεις μήκους - Η μέση τιμή Φυσική Α Τάξης Φ.Ε. 1: Μετρήσεις μήκους - Η μέση τιμή Α. Ερωτήσεις θεωρίας με απαντήσεις 1. Τι είναι τα φυσικά μεγέθη; Τα φυσικά μεγέθη είναι μετρήσιμες ποσότητες που υπεισέρχονται στα διάφορα φυσικά φαινόμενα

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ

ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης

Διαβάστε περισσότερα

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΚΑΙ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ )

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΚΑΙ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ ) 1 ο ΕΚΦΕ (. ΣΜΥΡΗΣ) Δ Δ/ΣΗΣ Δ. Ε. ΑΘΗΑΣ 1 ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΟ ΚΑΙ ΟΡΙΖΟΤΙΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ ) Α. ΣΤΟΧΟΙ Η εφαρμογή των νόμων της Μηχανικής στη μελέτη της κίνησης σώματος, που ολισθαίνει

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

Περί σφαλμάτων και γραφικών παραστάσεων

Περί σφαλμάτων και γραφικών παραστάσεων Περί σφαλμάτων και γραφικών παραστάσεων Σφάλμα ανάγνωσης οργάνου Το σφάλμα αυτό αναφέρεται σε αβεβαιότητες στη μέτρηση που προκαλούνται από τις πεπερασμένες ιδιότητες του οργάνου μέτρησης και/ή από τις

Διαβάστε περισσότερα

παραδειγματα επεισοδίων

παραδειγματα επεισοδίων παραδειγματα επεισοδίων ΜΑΘΗΜΑΤΙΚΟ ΝΟΗΜΑ Οι μαθητές ερμηνεύουν τα δρώμενα στην τάξη: ως προς το νόημα εννοιών και διαδικασιών ως προς τη φύση και την αξία αυτών στο μάθημα των μαθηματικών Καλδρυμίδου,

Διαβάστε περισσότερα

1. Εγκάρσιο αρμονικό κύμα μήκους κύματος 0,2 m διαδίδεται σε γραμμικό ελαστικό μέσο το οποίο ταυτίζεται

1. Εγκάρσιο αρμονικό κύμα μήκους κύματος 0,2 m διαδίδεται σε γραμμικό ελαστικό μέσο το οποίο ταυτίζεται Με αρχική φάση. 1. Εγκάρσιο αρμονικό κύμα μήκους κύματος 0,2 m διαδίδεται σε γραμμικό ελαστικό μέσο το οποίο ταυτίζεται με τον άξονα x Ox προς τη θετική κατεύθυνση του άξονα, εξαναγκάζοντας το υλικό σημείο

Διαβάστε περισσότερα

11ο Μάθημα ΒΑΡΟΣ - ΒΑΡΥΤΗΤΑ - ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ

11ο Μάθημα ΒΑΡΟΣ - ΒΑΡΥΤΗΤΑ - ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ 11ο Μάθημα ΒΑΡΟΣ - ΒΑΡΥΤΗΤΑ - ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ Το βάρος ενός σώματος: Μια εξ αποστάσεως ή εξ επαφής δύναμη που ασκεί η γη στο σώμα Το βάρος ενός σώματος είναι δύναμη και μετρείται κι αυτό σε νιούτον. Είναι

Διαβάστε περισσότερα

Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 3: Τοπογραφικά όργανα Α ρ. Γρηγόριος Βάρρας

Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 3: Τοπογραφικά όργανα Α ρ. Γρηγόριος Βάρρας Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 3: Τοπογραφικά όργανα Α ρ. Γρηγόριος Βάρρας 1. ΤΟΠΟΓΡΑΦΙΚΑ ΟΡΓΑΝΑ Ο σκοπός της Τοπογραφίας επιτυγχάνεται με τη χρήση των Τοπογραφικών οργάνων. Για τη διεκπεραίωση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο. Στο εργαστήρι πληροφορικής. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:

ΚΕΦΑΛΑΙΟ 7 ο. Στο εργαστήρι πληροφορικής. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: ΚΕΦΑΛΑΙΟ 7 ο εκαδικά κλάσµατα δεκαδικοί αριθµοί Στο εργαστήρι πληροφορικής Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: Να διαβάζουµε, να γράφουµε και να συγκρίνουµε δεκαδικούς

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 5 Μαίου 2012

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 5 Μαίου 2012 ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 5 Μαίου 2012 Συµπληρώστε τα στοιχεία σας στο παρακάτω πίνακα τώρα Ονοµατεπώνυµο Αρ. Ταυτότητας Username Password Δηµιουργήστε ένα φάκελο στο home directory σας µε

Διαβάστε περισσότερα

Ιωάννης Μπερταχάς Γεώργιος Τζανάκης Παρασκευή Μιχελάκη Κωνσταντίνος Παυλάκης. Ηλεκτρονικό Βιβλίο Εργαστηριακών Ασκήσεων Φυσικής I

Ιωάννης Μπερταχάς Γεώργιος Τζανάκης Παρασκευή Μιχελάκη Κωνσταντίνος Παυλάκης. Ηλεκτρονικό Βιβλίο Εργαστηριακών Ασκήσεων Φυσικής I Ιωάννης Μπερταχάς Γεώργιος Τζανάκης Παρασκευή Μιχελάκη Κωνσταντίνος Παυλάκης Ηλεκτρονικό Βιβλίο Εργαστηριακών Ασκήσεων Φυσικής I ΙΩΑΝΝΗΣ ΜΠΕΡΤΑΧΑΣ Φυσικός Πυρηνικός Μηχανικός ΓΕΩΡΓΙΟΣ ΤΖΑΝΑΚΗΣ Φυσικός

Διαβάστε περισσότερα

Θερμοδυναμική - Εργαστήριο

Θερμοδυναμική - Εργαστήριο Θερμοδυναμική - Εργαστήριο Ενότητα 3: Σφάλμα - Προσέγγιση - Στρογγυλοποίηση Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Αθήνα 2014 1 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1. Η ΕΝΝΟΙΑ ΤΟΥ ΣΦΑΛΜΑΤΟΣ... 2. ΤΥΠΟΙ ΣΦΑΛΜΑΤΩΝ. ΣΥΣΤΗΜΑΤΙΚΑ ΚΑΙ ΤΥΧΑΙΑ ΣΦΑΛΜΑΤΑ... 3. ΕΚΤΙΜΗΣΗ ΣΦΑΛΜΑΤΟΣ ΚΑΤΑ

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Εργαστηριακές Ασκήσεις Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)

Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 16-17 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα

Διαβάστε περισσότερα

Μετρήσεις και Σφάλματα/Measurements and Uncertainties

Μετρήσεις και Σφάλματα/Measurements and Uncertainties Μετρήσεις και Σφάλματα/Measurements and Uncertainties Κατά την καταγραφή δεδοµένων, σε κάθε εγγραφή δεδοµένου θα πρέπει να δίδεται µαζί και το αντίστοιχο εκτιµώµενο σφάλµα ή αβεβαιότητα. Ο όρος σφάλµα

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 Α. ΣΤΟΧΟΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG Η πραγματοποίηση αρμονικής ταλάντωσης μικρού πλάτους με τη χρήση μάζας δεμένης σε ελατήριο. Η εφαρμογή

Διαβάστε περισσότερα

Άσκηση 11 Υπολογισμός συντελεστών κινητικής και στατικής τριβής

Άσκηση 11 Υπολογισμός συντελεστών κινητικής και στατικής τριβής Άσκηση 11 Υπολογισμός συντελεστών κινητικής και στατικής τριβής Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι: Να υπολογιστεί ο συντελεστής κινητικής τριβής μ κ. Να υπολογιστεί ο συντελεστής στατικής τριβής

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για την συνόρθωση ενός τοπογραφικού

Διαβάστε περισσότερα

Αλλαγή κλίμακας σχεδίου με το COREL

Αλλαγή κλίμακας σχεδίου με το COREL Αλλαγή κλίμακας σχεδίου με το COREL Πολλές φορές στο χόμπι μας χρειάζεται να αλλάξουμε τις διαστάσεις ενός σχεδίου για να το κάνουμε μικρότερο η μεγαλύτερο και πάρα πολλές φορές έχω ακούσει από φίλους

Διαβάστε περισσότερα

Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές

Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές Σύνοψη Προσδιορισμός της έντασης του γήινου βαρυτικού πεδίου μέσω μέτρησης της περιόδου απλών αρμονικών ταλαντώσεων ενός απλού

Διαβάστε περισσότερα

Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Εισαγωγικό μάθημα Συστήματα μέτρησης, μετατροπές δυνάμεων, μονάδων και σφάλματα μέτρησης Εισαγωγή Η Φυσική είναι μια επιστήμη

Διαβάστε περισσότερα

Άσκηση 10 Παίζω Μαθαίνω Αποφασίζω

Άσκηση 10 Παίζω Μαθαίνω Αποφασίζω Άσκηση 10 Παίζω Μαθαίνω Αποφασίζω Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο έλεγχος ύπαρξης συντηρητικών και μη συντηρητικών δυνάμεων σε μια δεδομένη διαδρομή σώματος. Το θεωρητικό μέρος έχει να

Διαβάστε περισσότερα

Τετράδια Κιθάρας. Χρήση του PowerTab

Τετράδια Κιθάρας. Χρήση του PowerTab Τετράδια Κιθάρας Extra ενότητα Χρήση του PowerTab Ευγένιος Αστέρις 1 Περιεχόμενα Πρόλογος... 3 Εγκατάσταση του Power Tab... 4 Εισαγωγή ενός αρχείου midi στο Power Tab... 5 Μελέτη με το Power Tab... 9 Εξήγηση

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΑΥΤΟΜΑΤΟ ΣΥΣΤΗΜΑ ΣΥΛΛΟΓΗΣ ΜΠΑΧΑΡΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΑ

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΑΥΤΟΜΑΤΟ ΣΥΣΤΗΜΑ ΣΥΛΛΟΓΗΣ ΜΠΑΧΑΡΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΑ ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΑΥΤΟΜΑΤΟ ΣΥΣΤΗΜΑ ΣΥΛΛΟΓΗΣ ΜΠΑΧΑΡΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΑ 1 Γενική περιγραφή - HARDWARE 2 1.1 Εισαγωγή 2 1.2 Δοχεία αποθήκευσης μπαχαρικών 2 1.3 Κινούμενη ζυγαριά 2 1.4 Εγκέφαλος συστήματος 2 1.5

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ:

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΗΧΗΤΙΚΑ ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ ΣΕ ΚΛΕΙΣΤΟ ΣΤΗ ΜΙΑ ΑΚΡΗ ΣΩΛΗΝΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΑΧΥΤΗΤΑΣ ΤΟΥ

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β Γυμνασίου ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Βασικές έννοιες: Θέση - μετατόπιση - χρόνος - χρονικό διάστημα - ταχύτητα

Διαβάστε περισσότερα

Άσκηση 1 η. Τοµέας Βιοµηχανικής ιοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών. Αρίστος Γεωργίου Νοέµβριος 2011 Γεώργιος Χατζηστέλιος

Άσκηση 1 η. Τοµέας Βιοµηχανικής ιοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών. Αρίστος Γεωργίου Νοέµβριος 2011 Γεώργιος Χατζηστέλιος Τοµέας Βιοµηχανικής ιοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών Έλεγχος Μ Άσκηση 1 η http://goo.gl/feqvq Αρίστος Γεωργίου Νοέµβριος 2011 Γεώργιος Χατζηστέλιος Ενότητες Παρουσίασης 1.

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Α Λυκείου Σελ. 1 από 13 ΟΔΗΓΙΕΣ: ΕΚΦΩΝΗΣΕΙΣ: ΘΕΜΑ 1 Ο

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Α Λυκείου Σελ. 1 από 13 ΟΔΗΓΙΕΣ: ΕΚΦΩΝΗΣΕΙΣ: ΘΕΜΑ 1 Ο ΟΔΗΓΙΕΣ: 1. Οι απαντήσεις σε όλα τα ερωτήματα θα πρέπει να αναγραφούν στο Φύλλο Απαντήσεων που θα σας δοθεί χωριστά από τις εκφωνήσεις.. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε φύλλα Α4 ή σε τετράδιο

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Αν κάναμε ένα τεστ νοημοσύνης στους μαθητές και θέταμε την ερώτηση: Πως μπορεί να μετρηθεί το

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική. Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3)

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική. Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Σχήμα 1 Εργαστηριακή Άσκηση: Μέτρηση της μάζας κινούμενου

Διαβάστε περισσότερα

Κεφάλαιο 1. Δx: απόλυτο σφάλμα του μεγέθους x. (Το Δx έχει τις ίδιες μονάδες με το x). Δx x Δx x

Κεφάλαιο 1. Δx: απόλυτο σφάλμα του μεγέθους x. (Το Δx έχει τις ίδιες μονάδες με το x). Δx x Δx x Κεφάλαιο 1 Σύνοψη Θεωρία Σφαλμάτων: Βασικές γνώσεις περί σφαλμάτων με στόχο την κατανόηση των διαφόρων πηγών σφάλματος πειραματικών μετρήσεων, του τρόπου ποσοτικής εκτίμησης της επίδρασής τους στην (αν-)ακρίβεια

Διαβάστε περισσότερα

Η άσκηση μιας ιστορίας

Η άσκηση μιας ιστορίας Η άσκηση μιας ιστορίας Η άσκηση (Σχολικό βιβλίο Φυσικής Α Λυκείου Άσκηση 14 / Σελίδα 158) «Ένα όχημα έχει λάστιχα διαμέτρου 0,8 m. Βρείτε την ταχύτητα και την κεντρομόλο επιτάχυνση ενός σημείου στο πέλμα

Διαβάστε περισσότερα

Τι θα απαντούσατε αλήθεια στην ίδια ερώτηση για την περίπτωση της επόμενης εικόνας;

Τι θα απαντούσατε αλήθεια στην ίδια ερώτηση για την περίπτωση της επόμενης εικόνας; Κίνηση με συντεταγμένες Στην προηγούμενη υποενότητα είδαμε πως μπορούμε να κάνουμε το χαρακτήρα σας να κινηθεί με την εντολή κινήσου...βήματα που αποτελεί και την απλούστερη εντολή της αντίστοιχης παλέτας

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΦΑΣΗ 1 η )

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΦΑΣΗ 1 η ) ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΦΑΣΗ 1 η ) 1 ΣΥΝΕΝΤΕΥΞΗ ΤΟΥ JACKSON POLLOCK ΣΤΟΝ ΔΗΜΟΣΙΟΓΡΑΦΟ WILLIAM WRIGHT ΤΟ ΚΑΛΟΚΑΙΡΙ ΤΟΥ 1950. Το καλοκαίρι του 1950 o δημοσιογράφος William Wright πήρε μια πολύ ενδιαφέρουσα ηχογραφημένη

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY)

ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY) ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY) 1) Ανάλυση 1 δείγματος (Πιστοποιημένο Υλικό Αναφοράς (CRM), εμπορικό δείγμα ελέγχου (control sample), υπόλειμμα διεργαστηριακού) με γνωστή τιμή αναφοράς (μ). Αναλύεται

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. A Γυμνασίου 29 Μαρτίου 2014 Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:... Σχολείο:... Τάξη/Τμήμα:. Εξεταστικό Κέντρο:. Πειραματικό Μέρος Θέμα 1 ο H μέτρηση του μήκους γίνεται, συνήθως, με μετροταινία

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 7. Μελέτη της Κυκλικής Κίνησης

ΠΕΙΡΑΜΑ 7. Μελέτη της Κυκλικής Κίνησης ΠΕΙΡΑΜΑ 7 Μελέτη της Κυκλικής Κίνησης Σκοπός του πειράµατος Σκοπός του πειράµατος είναι η µελέτη της κυκλικής κίνησης και µερικών από τα µεγέθη που την περιγράφουν, όπως η γωνιακή ταχύτητα και επιτάχυνση,

Διαβάστε περισσότερα