ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα"

Transcript

1 ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα διαφόρων σωµάτων. Να µελετήσουµε την εξάρτηση του απλού εκκρεµούς από τη µάζα του. Να εξοικειωθούµε µε τα πειραµατικά σφάλµατα και βασικές µεθόδους ανάλυσης δεδοµένων και αξιολόγησης των αποτελεσµάτων. Θεωρητικό υπόβαθρο Πειραµατικά σφάλµατα, µέση τιµή, τυπική απόκλιση, µετάδοση σφάλµατος. Πυκνότητα υλικών. Περίοδος απλού εκκρεµούς. Για την κατανόηση και σωστή εκτέλεση του πειράµατος θα πρέπει υποχρεωτικά να γνωρίζετε πριν κάνετε το πείραµα τη θεωρία που παρουσιάζεται στο Αʹ µέρος αυτού του οδηγού. Συνοπτική Θεωρία Πυκνότητα Υλικών Η πυκνότητα ενός υλικού είναι µια από τις βασικές του φυσικές παραµέτρους, η οποία µας δίνει πόση µάζα υπάρχει ανά µονάδα όγκου του υλικού: " = m V όπου m είναι η µάζα του υλικού που υπάρχει σε όγκο V. Περίοδος Απλού εκκρεµούς Απλό ή µαθηµατικό εκκρεµές λέγεται ένα σύστηµα που αποτελείται από µία σηµειακή µάζα αναρτηµένη από ένα αβαρές, µη εκτατό νήµα, του οποίου το άλλο άκρο είναι στερεωµένο σε σταθερό σηµείο. Εάν η µάζα εκτραπεί κατά µια µικρή γωνία (~10 ) τότε θα εκτελεί αρµονική ταλάντωση µε περίοδο T = 2" l g I-1

2 Δηλαδή η γωνία της µάζας µε την κατακόρυφο θα µεταβάλεται ηµιτονοειδώς µε περίοδο Τ: $ g "( t) = " 0 sin& % l t +# ' ) = " 0 sin (*t +# ) ( όπου " = 2#v = 2# T είναι η κυκλική συχνότητα. Πειραµατική διάταξη Σε αυτό το πείραµα θα χρησιµοποιήσουµε δύο βασικά όργανα για τη µέτρηση µηκών: το διαστηµόµετρο και το µικρόµετρο. Α. Το Διαστηµόµετρο Το διαστηµόµετρο χρησιµοποιείται για τη µέτρηση µηκών από ~0.5cm εώς ~20cm µε ακρίβεια της τάξεως του 0.1mm. Αντίθετα ένας κοινός χάρακας έχει συνήθως µέγιστη ακρίβεια ~0.5mm µε βάση την κλίµακά του η οποία έχει υποδιαιρέσεις του 1.0mm (στα αναλογικά όργανα το σφάλµα του οργάνου ισούται µε το µισό της ελάχιστης υποδιαίρεσης). Για να επιτύχει αυτή τη σηµαντική βελτίωση στην ακρίβεια το διαστηµόµετρο χρησιµοποιεί το βερνιέρο (που ονοµάστηκε προς τιµήν του Pierre Verniere που τον ανακάλυψε το 1631). Στο Σχήµα 1 παρουσιάζεται ένα σχηµατικό διάγραµµα του διαστηµόµετρου. Το αντικείµενο του οποίου το µήκος θέλουµε να µετρήσουµε τοποθετείται µεταξύ των σιαγόνων. Σε πρώτη προσέγγιση το µέγεθός του δίνεται από την ένδειξη της βασικής κλίµακας. Εώς εδώ το διαστηµόµετρο λειτουργεί ως ένας απλος χάρακας. Οµως ο βερνιέρος µας δίνει τη δυνατότητα να µετρήσουµε το µήκος µε πολύ µεγαλύτερη ακρίβεια. Σχήµα 1. Σχηµατικό διάγραµµα διαστηµοµέτρου. I-2

3 Σχήµα 2. Παράδειγµα µέτρησης µε το βερνιέρο. (α) Με τις σιαγόνες κλειστές (δηλ. Χωρίς να γίνεται µέτρηση) (β) Κατά τη διάρκεια µέτρησης σώµατος πάχους 0.04cm. Ο βερνιέρος (που είναι προσαρµοσµένος στη µία σιαγόνα) µπορεί να µετακινηθεί κατά µήκος της βασικής κίµακας. Οταν το διαστηµόµετρο βρίσκεται στη θέση 0 (δηλαδή οι σιαγόνες είναι κλειστές) η πρώτη χαραγή του βερνιέρου αντιστοιχεί στο 0, ενώ η τελευταία χαραγή του αντιστοιχεί σε απόσταση 3.9cm στη βασική κλίµακα (Σχήµα 2α). Δηλαδή η διαφορά µεταξύ του βερνιέρου και της βασικής κλίµακας είναι -0.1 cm. Αυτή η διαφορά ισοµοιράζεται σε όλες τις χαραγές του βερνιέρου. Δηλαδή η πρώτη µεγάλη χαραγή θα απέχει από την ένδειξη 0.4cm της µεγάλης κλίµακας κατα 0.1cm/10 χαραγές = 0.01cm. Η δεύτερη χαραγή απέχει από την ένδειξη της βασικής κλίµακας κατά 0.01cm/χαραγή 2 χαραγές = 0.02cm, η τρίτη χαραγή κατά 0.03cm κ.οκ. εώς ότου φτάσουµε στη 10 η χαραγή που θα απέχει 0.1 cm όπως είδαµε. Εποµένως µε την κλίµακα του βερνιέρου έχουµε ακρίβεια 0.1mm. Στην περίπτωση που χρησιµοποιήσουµε και τις ενδιάµεσες υποδιαιρέσεις του βερνιέρου η ακρίβεια διπλασιάζεται (0.05 mm). Έχοντας υπ όψιν τα παραπάνω, όταν µετακινήσουµε τις σιαγόνες για να µετρήσουµε το µήκος κάποιου αντικειµένου, τότε το µήκος δίνεται από την ένδειξη της βασικής κλίµακας µε ακρίβεια 0.1cm συν την ένδειξη της χαραγής του βερνιέρου η οποία ευθυγραµµίζεται µε µια (οποιαδήποτε) χαραγή της βασικής κλίµακας. Στο παράδειγµα του σχήµατος 2β το µέγεθος που µετράµε έχει µήκος µεταξύ 0.0cm και 0.1cm µε βάση τη βασική κλίµακα. Η ένδειξη του βερνιέρου που ευθυγραµµίζεται µε µια χαραγή της βασικής κλίµακας είναι 4.0, η οποία σύµφωνα µε την προηγούµενη παράγραφο αντιστοιχεί σε µήκος cm = 0.04cm. Εποµένως το µήκος του αντικειµένου είναι 0.0cm cm = 0.04cm. Πρίν τη χρήση ενός διαστηµοµέτρου θα πρέπει να καταγράψουµε την ένδειξή του όταν οι σιαγόνες του είναι εντελώς κλειστές. Εάν η ένδειξη αυτή είναι µη µηδενική τότε το διαστηµόµετρο έχει συστηµατικό σφάλµα το οποίο θα πρέπει να αφαιρεθεί αλγεβρικά από όλες τις µετρήσεις µας. Β. Το Μικρόµετρο Το µικρόµετρο (Σχήµα 3) µας επιτρέπει να µετρήσουµε µήκη εώς µερικά εκατοστά µε ακρίβεια 0.01mm, δηλαδή 10 φορές µεγαλύτερη από αυτή του διαστηµοµέτρου. Αποτελείται από µία σταθερή και µία κινητή σιαγόνα η οποία µετακινείται I-3

4 περιστρέφοντας ένα τύµπανο. Το υπό µέτρηση σώµα τοποθετείται µεταξύ των σιαγόνων. Στη συνέχεια περιστέφουµε το τυµπανο µέχρι να νίωσουµε µια ελαφρά αντίσταση, και σφίγγουµε λίγο ακόµα τις σιαγόνες περιστρέφοντας λίγο τον κοχλία που βρίσκεται στο τέλος του τυµπάνου. Σχήµα 3. Σχηµατικό διάγραµµα µικρόµετρου. Η βασική αρχή λειτουργίας του τυµπάνου είναι ότι µια περιστροφή του αντιστοιχεί σε µισή υποδιαίρεση της βασικής κλίµακας του στελέχους. Το στέλεχος έχει υποδιαιρέσεις του 1.0 mm και µισές υποδιαιρέσεις του 0.5mm. Αντίστοιχα το τύµπανο έχει 50 υποδιαιρέσεις. Εποµένως, αφού µια ολόκληρη περιστροφή του τυµπάνου αντιστοιχεί σε 0.5mm, η κάθε υποδιαίρεσή του θα αντιστοιχεί σε 0.5mm / 50 = 0.01mm. Καθώς το τύµπανο µετακινείται αποκαλύπτει τη βασική κλίµακα. Εποµένως, όταν µετράµε ένα σώµα το µήκος του δίνεται από την ένδειξη της βασικής κλίµακας στην οποία προσθέτουµε την ένδειξη του τυµπάνου η οποία ευθυγραµµίζεται µε τη βασική κλίµακα. Για παράδειγµα στο Σχήµα 4, η ένδειξη του µικρόµετρου είναι 0.5mm (από τη βασική κλίµακα) συν 0.150mm (από την ένδειξη του τυµπάνου): 0.500mm mm = 0.650mm. Σχήµα 4. Παράδειγµα µέτρησης µε το τύµπανο του µικρόµετρου. Οπως και στην περίπτωση του διαστηµόµετρου θα πρέπει να καταγράψουµε την ένδειξή του µικρόµετρου όταν οι σιαγόνες του είναι εντελώς κλειστές. Εάν η ένδειξη αυτή είναι µη µηδενική τότε το µικρόµετρο έχει συστηµατικό σφάλµα το οποίο θα πρέπει να αφαιρεθεί αλγεβρικά από όλες τις µετρήσεις µας. Προκειµένου να αποφεύγονται οι µόνιµες βλάβες στο µικρόµετρο, οι σιαγόνες δεν θα πρέπει ποτέ να βιδώνονται σφιχτά. Για το σφίξιµό τους θα πρέπει να χρησιµοποιείται πάντοτε ο κοχλίας στο τέλος του στελέχους. I-4

5 Πειραµατική διαδικασία Αʹ Μέρος. Πυκνότητα Υλικών 1. Εξοικειωνόµαστε µε τη χρήση του διαστηµοµέτρου και του µικρόµετρου µετρώντας διάφορα αντικείµενα. 2. Καταγράφουµε τυχόν συστηµατικά σφάλµατα των οργάνων. 3. Εκτιµούµε το σφάλµα του κάθε οργάνου που θα χρησιµοποιήσουµε. 4. Για το πρώτο αντικείµενο του οποίου θέλουµε να µετρήσουµε την πυκνότητα µετράµε 10 φορές την κάθε του διάσταση µε το κατάλληλο όργανο. Για διαστάσεις εώς 2cm χρησιµοποιούµε το µικρόµετρο, ενώ για µεγαλύτερες διαστάσεις χρησιµοποιούµε το διαστηµόµετρο. 5. Ακόµα και για αντικείµενα που έχουν φαινοµενικά τις ίδιες διαστάσεις (π.χ. κύβοι) µετράµε όλες τις πλευρές τους. Στην περίπτωση σφαιρών ή κυλίνδρων µετράµε τη διάµετρό τους τοποθετώντας το όργανο µέτρησης σε διαφορετικές θέσεις της περιµέτρου τους. Με αυτό τον τρόπο ελαχιστοποιούµε την επίδραση τυχόν ανωµαλιών στο σχήµα τους. 6. Καταγράφουµε τις µετρήσεις µας σε πίνακα της µορφής (έναν ξεχωριστό πίνακα για κάθε αντικείµενο) Πίνακας 1 Α/Α Διάσταση 1 x ±δx Διάσταση 2 y ±δy Διάσταση 3 z ±δz m ±δm Με τη βοήθεια ηλεκτρονικού ζυγού µετράµε 10 φορές τη µάζα κάθε αντικειµένου, και καταγράφουµε τις µετρήσεις µας στον παραπάνω πίνακα. 8. Υπολογίζουµε τη µέση τιµή και την τυπική απόκλιση για κάθε σειρά µετρήσεων χρησιµοποιώντας τις σχέσεις (1) και (2) του Αʹ µέρους του οδηγού και x = 1 n n " i=1 x i " x = 1 n #1 n $ i=1 ( x i # x ) 2 I-5

6 9. Καταγράφουµε τα αποτελέσµατά µας σε πίνακα της µορφής: Πίνακας 2 Μέση Τιµή Τυπική Απόκλιση Διάσταση 1 x Διάσταση 2 y Διάσταση 3 z m 10. Υπολογίζουµε τον όγκο και την πυκνότητα του κάθε αντικειµένου προσέχοντας ιδαίτερα τις µετατροπές µονάδων. Καταγράφουµε τα αποτελέσµατά µας σε Πίνακα της µορφής Πίνακας 3 Αντικείµενο Α Αντικείµενο Β Τιµή Σφάλµα Τιµή Σφάλµα Ογκος V m Πυκνότητα ρ 11. Υπολογίζουµε το σφάλµα στον όγκο του κάθε αντικειµένου χρησιµοποιώντας τη σχέση του πιθανού σφάλµατος (µετάδοση σφάλµατος) και συµπληρώνουµε τον παραπάνω Πίνακα. 12. Υπολογίζουµε το σφάλµα στην πυκνότητα του κάθε αντικειµένου χρησιµοποιώντας τη σχέση του πιθανού σφάλµατος (µετάδοση σφάλµατος) και συµπληρώνουµε τον παραπάνω Πίνακα. I-6

7 13. Να γράψετε τις σχέσεις που δίνουν το πιθανό σφάλµα σε κάθε περίπτωση. 14. Συµφωνούν οι τιµές που υπολογίσατε µε αυτές που θα περιµένατε µε βάση τη σύσταση του κάθε αντικειµένου; 15. Σχολιάστε τα αποτελέσµατά σας και ιδιαίτερα τυχόν αποκλίσεις από τα αποτελέσµατα που θα αναµένατε. Βʹ Μέρος. Εξάρτηση της Περίοδου Απλού εκκρεµούς από τη µάζα 1. Αναρτούµε µία µάζα από το απλό εκκρεµές. 2. Αποµακρύνουµε το εκκρεµές από τη θέση ισορροπίας και µετράµε το χρόνο που απαιτείται για την πραγµατοποίηση Επαναλαµβάνουµε τις µετρήσεις άλλες 4 φορές, και τις καταγράφουµε στον ακόλουθο Πίνακα. 4. m ±δm Πίνακας A/A Χρόνος 10 Χρόνος 10 Χρόνος Επαναλαµβάνουµε τις µετρήσεις για άλλες 2 διαφορετικές µάζες. Καταγράφουµε τις µετρήσεις στον παραπάνω Πίνακα. 6. Ζυγίζουµε τις µάζες στον ηλεκτρονικό ζυγό. Καταγράφουµε τις µετρήσεις στον παραπάνω Πίνακα. 7. Υπολογίζουµε για κάθε µάζα τη µέση τιµή και την τυπική απόκλιση του χρόνου που απαιτείται για την εκτέλεση 10. Καταγράφουµε τις µετρήσεις µας στον ακόλουθο Πίνακα. I-7

8 Πίνακας m ±δm Μέση τιµή Χρόνου 10 Τυπική Απόκλιση Χρόνου 10 Περίοδος Τ Σφάλµα δτ 8. Υπολογίζουµε την περίοδο σε κάθε περίπτωση, καθώς και το σφάλµα της χρησιµοποιώντας τη µέθοδο του πιθανού σφάλµατος. 9. Διαφέρουν οι περίοδοι µεταξύ τους; 10. Να υπολογίσετε πόσες τυπικές αποκλίσεις απέχουν οι τιµές της περιόδου που µετρήσατε για τις µάζες 2 και 3 από την περίοδο για τη µάζα Ποιά είναι η πιθανότητα να πάρουµε µια διαφορά τόσο µεγάλη ή µεγαλύτερη κατά τύχη; 12. Συµφωνούν τα αποτελέσµατά σας µε αυτά που θα περιµένατε µε βάση τη θεωρία του απλού εκκρεµούς; Ερωτήσεις 1) Γιατί µετράµε το χρόνο 10 και όχι 10 φορές το χρόνο µιας ταλάντωσης; 2) Η περίοδος του εκκρεµούς εξαρτάται απο τη µάζα του; Βιβλιογραφία Χαλδούπης Χ. Εργαστηριακές Ασκήσεις Φυσικής, Μηχανική-Θερµότητα, Using a caliper gauge with vernier, LD Didactic (Physics leaflets P ) Using a micrometer screw, LD Didactic (Physics leaflets P1.1 I-8

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα - &. ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κυκλική κίνηση µίας σηµειακής µάζας και ιδιαίτερα την εξάρτηση της κεντροµόλου δύναµης από τη µάζα,

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ II-α Aπλό εκκρεµές

ΠΕΙΡΑΜΑ II-α Aπλό εκκρεµές ΠΕΙΡΑΜΑ II-α Aπλό εκκρεµές Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε το απλό ή µαθηµατικό εκκρεµές και θα µετρήσουµε την επιτάχυνση της βαρύτητας. Θα εξετάσουµε λοιπόν πειραµατικά τα εξής: Την

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης

ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κίνηση ενός σώµατος καθώς πέφτει ελεύθερα υπό την επίδραση του βάρους του. Πιο συγκεκριµένα θα επαληθεύσουµε τις

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας

Διαβάστε περισσότερα

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ V Ροπή Αδράνειας Στερεού Σώµατος

ΠΕΙΡΑΜΑ V Ροπή Αδράνειας Στερεού Σώµατος ΠΕΙΡΑΜΑ V Ροπή Αδράνειας Στερεού Σώµατος Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την περιστροφική κίνηση που εκτελεί ένα υλικό σηµείο ή ένα στερεό σώµα, σταθερού µεγέθους και σχήµατος, υπό την

Διαβάστε περισσότερα

gr/ Μιχαήλ Μιχαήλ, Φυσικός

gr/ Μιχαήλ Μιχαήλ, Φυσικός 1. ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ Όργανα µέτρησης µήκους Όταν πρόκειται να µετρήσουµε ένα µήκος, πρέπει να επιλέξουµε εκείνο το όργανο µέτρησης το οποίο είναι κατάλληλο για να µετρήσει το µήκος αυτό και να δώσει την απαιτούµενη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ (A) ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ (B) ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (Γ) ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ Ι-α Aπλό εκκρεµές

ΠΕΙΡΑΜΑ Ι-α Aπλό εκκρεµές - &. ΠΕΙΡΑΜΑ Ι-α Aπλό εκκρεµές Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε το απλό ή µαθηµατικό εκκρεµές και θα µετρήσουµε την επιτάχυνση της βαρύτητας. Θα εξετάσουµε λοιπόν πειραµατικά τα εξής:

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ V Ταχύτητα και Επιτάχυνση

ΠΕΙΡΑΜΑ V Ταχύτητα και Επιτάχυνση ΠΕΙΡΑΜΑ V Ταχύτητα και Επιτάχυνση Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κίνηση ενός σώµατος και θα διερευνήσουµε τους δυο πρώτους νόµους του Newton. Επιπλέον θα µετρήσουµε την επιτάχυνση

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε το φυσικό εκκρεµές και θα µετρήσουµε την επιτάχυνση της βαρύτητας. Θα εξετάσουµε λοιπόν πειραµατικά τα εξής: Την ταλάντωση

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ Α. ΣΤΟΧΟΙ Η συνειδητή χρήση των κανόνων ασφαλείας στο εργαστήριο. Η εξοικείωση στη χρήση του υποδεκάμετρου και του διαστημόμετρου

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ

ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ ΑΣΚΗΣΗ 3 ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ Η κλίµακα των διαστάσεων της ύλης από τα στοιχειώδη σωµάτια έως τα όρια του Σύµπαντος. Το παραπάνω σχήµα προέρχεται απο το βιβλίο του E. Hecht Physics Brooks 3.1

Διαβάστε περισσότερα

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος Χρήση διαστημόμετρου για εύρεση πυκνότητας στερεών σωμάτων γεωμετρικού σχήματος Προκειμένου να υπολογιστεί η πυκνότητα σε στερεά σώματα γεωμετρικού σχήματος πραγματοποιούνται μετρήσεις α) της μάζας τους

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση)

ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) Όταν το πρωτοείδα, κι εγώ δεν το συμπάθησα. Είναι, όμως, λάθος μας, καθώς πρόκειται για κάτι πολύ απλό και σίγουρο ως μέθοδος υπολογισμού

Διαβάστε περισσότερα

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου Μ7 Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου A. Προσδιορισµός της πυκνότητας στερεού σώµατος B. Εύρεση της εστιακής απόστασης συγκλίνοντα φακού. Σκοπός Σκοπός

Διαβάστε περισσότερα

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος)

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος) Άσκηση Μ1 Θεωρητικό μέρος Μήκος και μάζα (βάρος) Όργανα μέτρησης μήκους Διαστημόμετρο Με το διαστημόμετρο μετράμε μήκη μέχρι και μερικά μέτρα, σε χαμηλές απαιτήσεις ως προς την ακρίβεια. Το κύριο μέρος

Διαβάστε περισσότερα

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Συγγραφείς:. Τμήμα, Σχολή Εφαρμοσμένων Επιστημών, ΤΕΙ Κρήτης Περίληψη Στην παρούσα εργαστηριακή άσκηση μετρήσαμε τη διάμετρο

Διαβάστε περισσότερα

Α. 1. Μετρήσεις και Σφάλµατα

Α. 1. Μετρήσεις και Σφάλµατα Α. 1. Μετρήσεις και Σφάλµατα Κάθε πειραµατική µέτρηση υπόκειται σε πειραµατικά σφάλµατα. Με τον όρο αυτό δεν εννοούµε λάθη τα οποία γίνονται κατά την εκτέλεση του πειράµατος ή τη λήψη των µετρήσεων, τα

Διαβάστε περισσότερα

Εργαστηριακά Κέντρα Φυσικών Επιστηµών Ανατολικής (ΕΚΦΕ) Αττικής 2010 ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΙΚΟΥ ΣΩΜΑΤΟΣ, ΜΕ ΤΗ ΧΡΗΣΗ ΦΩΤΟΠΥΛΗΣ

Εργαστηριακά Κέντρα Φυσικών Επιστηµών Ανατολικής (ΕΚΦΕ) Αττικής 2010 ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΙΚΟΥ ΣΩΜΑΤΟΣ, ΜΕ ΤΗ ΧΡΗΣΗ ΦΩΤΟΠΥΛΗΣ Εργαστηριακά Κέντρα Φυσικών Επιστηµών Ανατολικής (ΕΚΦΕ) Αττικής 010 ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΙΚΟΥ ΣΩΜΑΤΟΣ, ΜΕ ΤΗ ΧΡΗΣΗ ΦΩΤΟΠΥΛΗΣ Στόχοι. Σχεδιασµός, συναρµολόγηση και λειτουργία απλών πειραµατικών

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος

ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την περιστροφική κίνηση που εκτελεί ένα υλικό σηµείο ή ένα στερεό σώµα, σταθερού µεγέθους και σχήµατος, µε την

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος

ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος - &. ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την περιστροφική κίνηση που εκτελεί ένα υλικό σηµείο ή ένα στερεό σώµα, σταθερού µεγέθους και σχήµατος,

Διαβάστε περισσότερα

Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού

Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός της πυκνότητας του υλικού ενός ομογενούς σώματος. Είναι μια έμμεση μέτρηση και θα γίνει με

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VII-β Μέτρηση Θερµικής Αγωγιµότητας Μετάλλων

ΠΕΙΡΑΜΑ VII-β Μέτρηση Θερµικής Αγωγιµότητας Μετάλλων ΠΕΙΡΑΜΑ VII-β Μέτρηση Θερµικής Αγωγιµότητας Μετάλλων Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε τη διάδοση θερµότητας κατά µήκος µιας µεταλλλικής ράβδου και θα µετρήσουµε το συντελεστή θερµικής

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ IX Μέτρηση Ιξώδους Ρευστών

ΠΕΙΡΑΜΑ IX Μέτρηση Ιξώδους Ρευστών ΠΕΙΡΑΜΑ IX Μέτρηση Ιξώδους Ρευστών Σκοπός πειράµατος Στο πείραµα αυτό θα µετρήσουµε το ιξώδες (εσωτερική τριβή) διαφόρων ρευστών χρησιµοποιώντας τη µέθοδο της πτώσης σφαιριδίων. Θα εξετάσουµε λοιπόν πειραµατικά

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΥΣΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 11 η Ευρωπαϊκή Ολυµπιάδα Επιστηµών EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συµµετέχουν: (1) (2) (3) Σέρρες 08/12/2012

Διαβάστε περισσότερα

Το διαστημόμετρο. Εισαγωγικές Έννοιες

Το διαστημόμετρο. Εισαγωγικές Έννοιες Το διαστημόμετρο Εισαγωγικές Έννοιες Το διαστημόμετρο είναι μια συσκευή που χρησιμοποιείται για τη μέτρηση αποστάσεων μεταξύ δύο αντικριστών πλευρών ενός αντικειμένου. Τα άκρα του διαστημόμετρου προσαρμόζονται

Διαβάστε περισσότερα

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1: Α. Στις ερωτήσεις 1-3 να σημειώσετε το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα μάζας m

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩ ΟΥΣ

ΑΣΚΗΣΗ 8 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩ ΟΥΣ ΑΣΚΗΣΗ 8 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩ ΟΥΣ Η αντίσταση που δέχεται ένα σώµα όταν κινείται µέσα σ ένα ρευστό εξαρτάται απο το σχήµα του σώµατος. Παρατηρούµε οτι η µικρότερη αντίσταση εµφανίζεται στο ατρακτοειδές

Διαβάστε περισσότερα

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης.

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. 1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. Το φύλλο εργασίας στηρίζεται στο αντίστοιχο του Παιδαγωγικού Ινστιτούτου που

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VI Περιοδική Κίνηση

ΠΕΙΡΑΜΑ VI Περιοδική Κίνηση ΠΕΙΡΑΜΑ VI Περιοδική Κίνηση Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε τον απλό αρµονικό ταλαντωτή και τη συµπεριφορά του στην περίπτωση παρουσίας δυνάµεων απόσβεσης. Πιο συγκεκριµένα θα εξετάσουµε:

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Εργαστηριακές Ασκήσεις Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

m (gr) 100 200 300 400 500 600 700 l (cm) 59.1 62.4 65.2 69.3 71.2 74.1 77.2

m (gr) 100 200 300 400 500 600 700 l (cm) 59.1 62.4 65.2 69.3 71.2 74.1 77.2 ΣΧΟΛΙΑ ΓΙΑ ΤΗΝ ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Η εργασία αυτή απευθύνεται σε όλους όσους επιθυµούν να ϐελτιώσουν την ϐαθµολογία τους. Βασικό στοιχείο της εργασίας είναι οι γραφικές παραστάσεις των

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VII Περιοδική Κίνηση

ΠΕΙΡΑΜΑ VII Περιοδική Κίνηση ΠΕΙΡΑΜΑ VII Περιοδική Κίνηση Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε τον απλό αρµονικό ταλαντωτή και τη συµπεριφορά του στην περίπτωση παρουσίας δυνάµεων απόσβεσης. Πιο συγκεκριµένα θα εξετάσουµε:

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 1: ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ, ΧΡΟΝΟΥ, ΜΑΖΑΣ ΚΑΙ ΥΝΑΜΗΣ

Εργαστηριακή άσκηση 1: ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ, ΧΡΟΝΟΥ, ΜΑΖΑΣ ΚΑΙ ΥΝΑΜΗΣ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΤΟΧΟΙ Εργαστηριακή άσκηση 1: ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ, ΧΡΟΝΟΥ, ΜΑΖΑΣ ΚΑΙ ΥΝΑΜΗΣ Τροποποίηση του εργαστηριακού οδηγού (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) Στόχοι αυτής της εργαστηριακής άσκησης

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2017

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2017 1ο και 2ο ΕΚΦΕ Ηρακλείου ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2017 Σάββατο 3 Δεκεμβρίου 2016 Διαγωνισμός στη Φυσική (Διάρκεια 1 ώρα) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΩΝ 1)... 2)...

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς Εργαστηριακή Άσκηση 5 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του απλού εκκρεμούς Βαρσάμης Χρήστος Στόχος: Μέτρηση της επιτάχυνσης της βαρύτητας, g. Πειραματική διάταξη: Χρήση απλού εκκρεμούς.

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10 1. Τρια αντικείµενα Α, Β και C µε µάζα m, 2m και 8m αντίστοιχα βρίσκονται στο ίδιο επίπεδο και στις θέσεις που φαίνονται στο σχήµα. Σε ποια θέση (x,y) πρέπει να τοποθετεί ένα τέταρτο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές

Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές Σύνοψη Προσδιορισμός της έντασης του γήινου βαρυτικού πεδίου μέσω μέτρησης της περιόδου απλών αρμονικών ταλαντώσεων ενός απλού

Διαβάστε περισσότερα

Θέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: Ε.Κ.Φ.Ε Κέρκυρας -1-

Θέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: Ε.Κ.Φ.Ε Κέρκυρας -1- Θέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: 1) 2) 3) 4) Ε.Κ.Φ.Ε Κέρκυρας -1- ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ Α. Θεωρητική εισαγωγή Το απλό εκκρεμές είναι μια διάταξη που

Διαβάστε περισσότερα

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ Α. ΣΤΟΧΟΙ Η εξοικείωση με τη χρήση απλών πειραματικών διατάξεων. Η εξοικείωση με

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας µε απάντηση Φυσικής Γ Γυµνασίου (ταλαντώσεις)

Ερωτήσεις θεωρίας µε απάντηση Φυσικής Γ Γυµνασίου (ταλαντώσεις) Ερωτήσεις θεωρίας µε απάντηση Φυσικής Γ Γυµνασίου (ταλαντώσεις) Πότε µια κίνηση λέγεται περιοδική; Να γράψετε τρία παραδείγµατα. Μια κίνηση λέγεται περιοδική όταν επαναλαµβάνεται σε ίσα χρονικά διαστήµατα.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΙΚΡΟΣΚΟΠΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ «ΒΙΟΛΟΓΙΑΣ ΚΥΤΤΑΡΟΥ» Ονοµατεπώνυµο...ΑΜ...

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΙΚΡΟΣΚΟΠΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ «ΒΙΟΛΟΓΙΑΣ ΚΥΤΤΑΡΟΥ» Ονοµατεπώνυµο...ΑΜ... ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΙΚΡΟΣΚΟΠΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ «ΒΙΟΛΟΓΙΑΣ ΚΥΤΤΑΡΟΥ» ΑΣΚΗΣΗ 2 η Μετρήσεις µε το µικροσκόπιο Κ. Φασσέας. Ονοµατεπώνυµο...ΑΜ... Σκοπός της άσκησης είναι: Να µάθουµε πώς γίνεται η

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 8. Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων

ΠΕΙΡΑΜΑ 8. Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων ΠΕΙΡΑΜΑ 8 Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων Σκοπός του πειράµατος Σκοπός του πειράµατος είναι η µελέτη της ροπής αδρανείας διαφόρων στερεών σωµάτων και των στροφικών ταλαντώσεων που εκτελούν γύρω

Διαβάστε περισσότερα

Δραστηριότητα A3 - Φυσική Ιξώδες και δείκτης διάθλασης ελαιόλαδου

Δραστηριότητα A3 - Φυσική Ιξώδες και δείκτης διάθλασης ελαιόλαδου Δραστηριότητα A3 - Φυσική Ιξώδες και δείκτης διάθλασης ελαιόλαδου Πολλές από τις φυσικές ιδιότητες του ελαιόλαδου ήταν γνωστές στους αρχαίους Έλληνες και τις χρησιμοποιούσαν για να ελέγχουν την ποιότητά

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VIII - α Ηλεκτρικό Ισοδύναµο της Θερµότητας

ΠΕΙΡΑΜΑ VIII - α Ηλεκτρικό Ισοδύναµο της Θερµότητας ΠΕΙΡΑΜΑ VIII - α Ηλεκτρικό Ισοδύναµο της Θερµότητας Σκοπός πειράµατος Στο πείραµα αυτό θα µετρήσουµε το ηλεκτρικό ισοδύναµο της ενέργειας δηλαδή τη σχέση µεταξύ ηλεκτρικής και θερµικής ενέργειας. Θα εξετάσουµε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ

ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ Οι ρίζες των δέντρων αποτελούνται απο τρία είδη ιστών ένα εκ των οποίων, (ο επιφανειακός ιστός) περιλαµβάνει ειδικά τροποποιηµένα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός

ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να παρουσιάζει τα αποτελέσματα πειραματικών μετρήσεων σε μορφή. Τις περισσότερες φορές στις ασκήσεις του εργαστηρίου,

Διαβάστε περισσότερα

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/09/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία 2. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΧΑΡΑΞΗΣ 2.1 Μετρητικές ταινίες Οι μετρητικές ταινίες, πτυσσόμενες (αρθρωτές) ή περιελισσόμενες σε θήκη, είναι κατασκευασμένες από χάλυβα ή άλλο ελαφρύ κράμα και έχουν χαραγμένες υποδιαιρέσεις

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

Γενικό Εργαστήριο Φυσικής

Γενικό Εργαστήριο Φυσικής http://users.auth.gr/agelaker Γενικό Εργαστήριο Φυσικής Γενικό Εργαστήριο Φυσικής Σφάλματα Μελέτη φυσικού φαινομένου Ποσοτική σχέση παραμέτρων Πείραμα Επαλήθευση Καθιέρωση ποσοτικής σχέσης Εύρεση τιμής

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 7: ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου)

Εργαστηριακή άσκηση 7: ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΤΟΧΟΙ Εργαστηριακή άσκηση 7: ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) Η εφαρµογή των νόµων της Μηχανικής στη µελέτη της κίνησης σώµατος, που ολισθαίνει

Διαβάστε περισσότερα

α. µόνο µεταφορική. β. µόνο στροφική. γ. σύνθετη. δ. ακινησία.

α. µόνο µεταφορική. β. µόνο στροφική. γ. σύνθετη. δ. ακινησία. ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 24 ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΜΑ Α ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΘΕΜΑ Α (Μονάδες 25) A1. Σε

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς του ελατηρίου

Υπολογισμός της σταθεράς του ελατηρίου Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου

Διαβάστε περισσότερα

, g 10 m / s, / 2, / 2, Απάντηση

, g 10 m / s, / 2, / 2, Απάντηση Φυσική κατεύθυνσης Στη διάταξη του διπλανού σχήματος η ράβδος Σ 1 είναι ομογενής, έχει μάζα 1 =0,3kg, μήκος (ΑΓ) = l = 0,8 και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα κάθετο

Διαβάστε περισσότερα

Μελέτη στερεού σώµατος

Μελέτη στερεού σώµατος Μ5 Μελέτη στερεού σώµατος. Σκοπός Στην άσκηση αυτή θα µετρήσουµε την κατευθύνουσα ροπή ενός ελατηρίου και θα προσδιορίσουµε τη ροπή αδρανείας του.. Θεωρία. Ροπή αδράνειας Ροπή αδράνειας Ι ενός στερεού

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17-10-11 ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ Α Θέµα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ:

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΗΧΗΤΙΚΑ ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ ΣΕ ΚΛΕΙΣΤΟ ΣΤΗ ΜΙΑ ΑΚΡΗ ΣΩΛΗΝΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΑΧΥΤΗΤΑΣ ΤΟΥ

Διαβάστε περισσότερα

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών Φυσική Α Γενικού Λυκείου Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών (Μετρήσεις, αβεβαιότητα, επεξεργασία δεδομένων) Υποστηρικτικό υλικό 20 Οκτωβρίου 2016 Μαρίνα Στέλλα, Υπεύθυνη ΕΚΦΕ Σχολικό Εργαστήριο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ ΘΕΜΑ 1 ο (βαθµοί 2) Σώµα µε µάζα m=5,00 kg είναι προσαρµοσµένο στο ελεύθερο άκρο ενός κατακόρυφου ελατηρίου και ταλαντώνεται εκτελώντας πέντε (5) πλήρης ταλαντώσεις σε χρονικό

Διαβάστε περισσότερα

1 η Εργαστηριακή Άσκηση: Απλή Αρµονική Ταλάντωση

1 η Εργαστηριακή Άσκηση: Απλή Αρµονική Ταλάντωση Ονοµατεπώνυµο: µήµα: Επιµέλεια: Παναγιώτης Παζούλης Φυσική Γ Λυκείου θετικής εχνολογικής Κατεύθυνσης 1 η Εργαστηριακή Άσκηση: Απλή Αρµονική αλάντωση Α) Εισαγωγικές έννοιες. Περιοδική κίνηση ονοµάζεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ÈÅÌÅËÉÏ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ÈÅÌÅËÉÏ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα ο: (Ιούνιος 009 Ηµερήσιο) Ο δίσκος του σχήµατος κυλίεται χωρίς

Διαβάστε περισσότερα

ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις ακόλουθες ηµιτελείς προτάσεις, Α 1 -Α 4

ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις ακόλουθες ηµιτελείς προτάσεις, Α 1 -Α 4 ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις ακόλουθες ηµιτελείς προτάσεις, Α 1 -Α 4, και δίπλα της το γράµµα που αντιστοιχεί στο σωστό συµπλήρωµά της. Α 1.

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Μετρήσεις και Σφάλματα/Measurements and Uncertainties

Μετρήσεις και Σφάλματα/Measurements and Uncertainties Μετρήσεις και Σφάλματα/Measurements and Uncertainties Κατά την καταγραφή δεδοµένων, σε κάθε εγγραφή δεδοµένου θα πρέπει να δίδεται µαζί και το αντίστοιχο εκτιµώµενο σφάλµα ή αβεβαιότητα. Ο όρος σφάλµα

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009-2015 Σελίδα 1 από 13 Μηχανική Στερεού Σώματος 1. Στο πιο κάτω σχήμα φαίνονται δύο όμοιες πλατφόρμες οι οποίες μπορούν να περιστρέφονται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού

Διαβάστε περισσότερα

ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ

ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ ΜΕΛΕΤΗ ΣΤΑΣΙΜΩΝ ΚΥΜΑΤΩΝ ΣΕ ΣΩΛΗΝΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΤΑΧΥΤΗΤΑΣ ΤΟΥ ΗΧΟΥ ΣΤΟΝ ΑΕΡΑ ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ

Διαβάστε περισσότερα

Α. 1. Μετρήσεις και Σφάλµατα

Α. 1. Μετρήσεις και Σφάλµατα Α. 1. Μετρήσεις και Σφάλµατα Κάθε πειραµατική µέτρηση υπόκειται σε πειραµατικά σφάλµατα. Με τον όρο αυτό δεν εννοούµε λάθη τα οποία γίνονται κατά την εκτέλεση του πειράµατος ή τη λήψη των µετρήσεων, τα

Διαβάστε περισσότερα

mu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός

mu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Μαθηματικό εκκρεμές ονομάζεται μια σημειακή μάζα, η οποία είναι αναρτημένη σε νήμα. Το ίδιο το νήμα δεν έχει δική του μάζα και το οποίο εξάλλου δεν μπορεί να επιμηκυνθεί.

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VII-α Ηλεκτρικό Ισοδύναµο της Θερµότητας

ΠΕΙΡΑΜΑ VII-α Ηλεκτρικό Ισοδύναµο της Θερµότητας ΠΕΙΡΑΜΑ VII-α Ηλεκτρικό Ισοδύναµο της Θερµότητας Σκοπός πειράµατος Στο πείραµα αυτό θα µετρήσουµε το ηλεκτρικό ισοδύναµο της ενέργειας δηλαδή τη σχέση µεταξύ ηλεκτρικής και θερµικής ενέργειας. Θα εξετάσουµε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 9: ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου)

Εργαστηριακή άσκηση 9: ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΤΟΧΟΙ Εργαστηριακή άσκηση 9: ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) Η εξοικείωση µε τη χρήση χρονοµέτρων

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέµα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα

Διαβάστε περισσότερα

Τοπικός Μαθητικός Διαγωνισμός EUSO

Τοπικός Μαθητικός Διαγωνισμός EUSO Τοπικός Μαθητικός Διαγωνισμός EUSO 2014-2015 ΟΜΑΔΑ : 1] 2] 3] Γενικό Λύκειο Άργους Ορεστικού. 6 - Δεκ. - 1014 Φυσική Θέμα: Μέτρηση επιτάχυνσης. 1] Θεωρητική εισαγωγή Κίνηση είναι η αλλαγή της θέσης ενός

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εργαστηριακή Άσκηση 35 Ροπή αδράνειας στερεών σωμάτων.

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εργαστηριακή Άσκηση 35 Ροπή αδράνειας στερεών σωμάτων. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 35 Ροπή αδράνειας στερεών σωμάτων. Συνεργάτες: Καλαμαρά Αντιγόνη

Διαβάστε περισσότερα

Β22. Μέτρηση Ροπής Αδράνειας

Β22. Μέτρηση Ροπής Αδράνειας Β22. Μέτρηση Ροπής Αδράνειας Α. Σκοπός της άσκησης Στο εργαστήριο αυτό θα μελετήσουμε την περιστροφική κίνηση που εκτελεί ένα υλικό σημείο ή ένα στερεό σώμα, σταθερού μεγέθους και σχήματος, υπό την παρουσία

Διαβάστε περισσότερα

Κεφάλαιο 7 Μέτρηση θεμελιωδών φυσικών μεγεθών

Κεφάλαιο 7 Μέτρηση θεμελιωδών φυσικών μεγεθών Κεφάλαιο 7 Μέτρηση θεμελιωδών φυσικών μεγεθών Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται όργανα μέτρησης θεμελιωδών φυσικών μεγεθών, όπως το μήκος, η μάζα, ο χρόνος και η θερμοκρασία. Αναφέρονται συνοπτικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΝΟΜΑ ΤΜΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων

ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων 1. Θα λέμε ότι Ν μετρήσεις ενός μεγέθους παρουσιάζουν μεγάλη ακρίβεια (accuracy), αν η μέση τιμή των μετρήσεων είναι κοντά στην αληθινή τιμή του μεγέθους.

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΙΜΟΥ

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΙΜΟΥ ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΙΜΟΥ ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 015 ΦΥΣΙΚΗ 6 -Δεκεμβρίου - 014 Στογιάννος Χριστόφορος Φυσικός 1 6 Αυγούστου 014 Μετά από ένα μακρύ δεκαετές ταξίδι κυνηγώντας το στόχο

Διαβάστε περισσότερα

1. Πειραματική διάταξη

1. Πειραματική διάταξη 1. Πειραματική διάταξη 1.1 Περιγραφή της διάταξης Η διάταξη του πειράματος αποτελείται από έναν αερόδρομο και ένα ή δύο κινητά τα οποία είναι συζευγμένα μέσω ελατήριου. Η κίνηση των ταλαντωτών καταγράφεται

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα