ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ"

Transcript

1 Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Προσωπικός Αριθμός: Ημερομηνία: Βαθμολογία θεμάτων Γενικός Βαθμός η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ" ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΕΚΠΟΝΗΣΗ, ΑΞΙΟΛΟΓΗΣΗ ΚΑΙ ΔΙΑΚΙΝΗΣΗ ΤΗΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. Για να εκτελέσετε σωστά την εργασία αυτή, θα πρέπει να έχετε εμπεδώσει την ύλη των Κεφαλαίων,, 3., 4 και 7 του Τόμου Δ (Στατιστική Θερμοδυναμική).. Μη γράφετε περισσότερα από αυτά που ζητούνται στο θέμα, αφού τα επιπλέον, αν μεν είναι σωστά δεν λαμβάνονται υπ' όψιν, αν όμως είναι λάθος, επηρεάζουν αρνητικά τη βαθμολογία του θέματος. 3. Όποια δεδομένα χρειάζεστε για τη λύση των ασκήσεων (φυσικές σταθερές, συντελεστές μετατροπής, κ.λπ.), μπορείτε να τα πάρετε από το βιβλίο σας. 4. Στα αριθμητικά προβλήματα, δώστε προσοχή στα σημαντικά ψηφία, στον εκθετικό συμβολισμό, στο στρογγύλεμα των αριθμητικών αποτελεσμάτων και στη συνέπεια ως προς τις διαστάσεις τους. Εξετάζετε πάντοτε, αν οι διάφορες μονάδες απαιτούν μετατροπή στο σύστημα SI. Ελέγχετε πάντοτε στο τέλος, το πόσο λογικό είναι το αποτέλεσμα στο οποίο καταλήξατε. 5. Σε ερωτήσεις (κυρίως του τύπου Σωστό Λάθος), στις οποίες ζητείται εξήγηση, θα πρέπει αυτή να δίνεται. Διαφορετικά, η απάντηση δεν λαμβάνεται υπ' όψιν. 6. Φωτοτυπήστε την τελειωμένη εργασία σας, κρατήστε ένα αντίγραφο και στείλτε το πρωτότυπο στη διεύθυνση που σας έχει γνωστοποιήσει ο Καθηγητής σας, στην καθορισμένη ημερομηνία συμφωνα με το «Χρονοδιάγραμμα Μελέτης & Γραπτών Εργασιών» που μπορείτε να βρείτε στην ιστοσελίδα (ημερομηνία αποστολής: Δευτέρα, 3 Δεκεμβρίου 0). Παράταση δίνεται από τον Συντονιστή και μόνο για πολύ σοβαρούς λόγους, οι οποίοι αποδεικνύονται με σχετικά έγγραφα. Γνωστοποιείτε κάθε φορά στον καθηγητή σας (τηλεφωνικά ή με -mail) την παραλαβή εκ μέρους σας της διορθωμένης εργασίας. Οι λύσεις των θεμάτων της εργασίας καθώς και η διορθωμένη εργασία σας θα σας αποσταλούν στις Δεκεμβρίου Το παρόν έντυπο, το συμπληρώνετε και το αφήνετε συνδεδεμένο με τα υπόλοιπα φύλλα των θεμάτων. Να επισυνάπτετε και το Εντυπο Υποβολής Αξιολόγησης ΓΕ (που μπορείτε επίσης να βρείτε στον διακτυακό τόπο του ΕΑΠ). 8. Όσοι θέλετε διευκρινήσεις για τη βαθμολογία σας και απορίες σχετικά με τις απαντήσεις των θεμάτων, μπορείτε να τις συζητήσετε τηλεφωνικά ή στην επόμενη συνάντησή σας με τον καθηγητή σας. Καλή επιτυχία!

2 Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ (Στατιστική Θερμοδυναμική) ΘΕΜΑ Ένα μακροσκοπικό σύστημα βρίσκεται σε ισορροπία. Το σύστημα περιέχει 0 0 σωματίδια που είναι ανεξάρτητα μεταξύ τους. Κάθε σωματίδιο έχει τρεις κβαντικές ενεργειακές καταστάσεις με ενέργειες ε, 3ε και 4ε, αντίστοιχα. H ενεργειακή κατάσταση ε είναι μη εκφυλισμένη ενώ η ενεργειακή κατάσταση 3ε είναι τριπλά εκφυλισμένη και η ενεργειακή κατάσταση 4ε είναι τετραπλώς εκφυλισμένη. Ποιοί είναι οι πληθυσμοί του συστήματος σε κάθε ενεργειακή στάθμη όταν k B =ε; Υπόδειξη: Μπορείτε να εφαρμόσετε την Εξ. (.), αφού όμως πρώτα υπολογίσετε το μοριακό άθροισμα καταστάσεων q, από την Εξ. (.0). Λύση: Θα εφαρμόσουμε την Εξ. (.) για g =, g =3, g 3 =4 και για β=/(k B )=/(ε). Πρώτα όμως θα βρούμε το μοριακό άθροισμα καταστάσεων q. Σύμφωνα με την Εξ. (.0), για g =, g = 3, g 3 = 4. Το μοριακό άθροισμα καταστάσεων γίνεται: 3 i 3 4 i q g i και άρα οι πληθυσμοί στις διάφορες ενεργειακές στάθμες είναι οι ακόλουθοι: N N N

3 Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική 3 ΘΕΜΑ Ένα σύστημα σε θερμοδυναμική ισορροπία αποτελείται από 50 ανεξάρτητα, μη διακριτά σωματίδια. Το σύστημα έχει τρία ενεργειακά επίπεδα Ε =0, Ε =ε και Ε 3 =ε, με πολλαπλότητα εκφυλισμένων ενεργειακών σταθμών 300, 600 και 00 αντίστοιχα. Το σύστημα ευρίσκεται σε σταθερή θερμοκρασία Τ=ε/k, όπου k είναι η σταθερά του Boltzmann. (a) Να υπολογιστεί το (κανονικό) άθροισμα καταστάσεων για αυτό το θερμοδυναμικό σύστημα. (b) Πόσα σωματίδια ευρίσκονται σε κάθε ενεργειακό επίπεδο; Λύση (a) Οι ενεργειακές στάθμες χαρακτηρίζονται από την δεδομένη πολλαπλότητα. Το (κανονικό) άθροισμα καταστάσεων δίνεται από τον τύπο (.6) στη σελ. 48, οπότε μπορούμε να γράψουμε: Q g Q g / / , και αφού =ε/k N (c) Ο αριθμός των σωματιδίων σε κάθε ενεργειακό επίπεδο δίνεται από την εξίσωση (.7). N g g E E, όπου Ν=50. Έτσι ο αριθμός των σωματιδίων σε κάθε ενεργειακό επίπεδο είναι: Ν 0 =(300/683)Ν Ν =(/683)Ν 6 Ν =(6/683)Ν

4 Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική 4 ΘΕΜΑ 3 Ένα σύστημα χαρακτηρίζεται από 3 ενεργειακές στάθμες με πολλαπλότητες g i = i, i =,...3 και ενέργειες ίσες με Ε i = i x 0-0 J, i =, 3. Να υπολογίσετε τη στατιστική εντροπία του συστήματος στους 98 Κ. Υπόδειξη: Πρέπει να βρείτε πρώτα τις πιθανότητες p i Λύση: α) Υπολογίζουμε κατ αρχάς το κανονικό άθροισμα καταστάσεων Q με βάση την εξίσωση: Q 3 3 i gi J J o όπου Ε ο = 0-0 J. Για =98 Κ ισχύει: Ε i /k B = i x.43, i =,,3. Συνεπώς: Q Ακολούθως, οι πιθανότητες υπολογίζονται από τη σχέση: p g Q E E o Q και τελικά: p = , p = 0.493, p 3 = Η στατιστική εντροπία δίνεται από την εξ. (3.7): S k p ln p B i i i Οπότε, για 98 Κ προκύπτει: S k B (0.8483ln ln ln k 3 J / K B

5 Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική 5 ΘΕΜΑ 4. Να υπολογισθεί η μεταφορική συνεισφορά στο μοριακό άθροισμα καταστάσεων σε θερμοκρασία 373 Κ και όγκο 0 cm 3 για τα παρακάτω μόρια (α) υδρογόνο (H ), (β) μεθάνιο (CH 4 ), και (γ) κ-εξάνιο (C 6 H 4 ). Ατομικά βάρη: C =, H =. Λύση: O υπολογισμός βασίζεται στην εξίσωση (4.6) του βιβλίου: q V, h 3 mk όπου m = x.6605 x 0-7 kg (για το Η ), = 6 x.6605 x 0-7 kg (για το CΗ 4 ), = 86 x.6605 x 0-7 kg (για το C 6 Η 4 ). B Αντικαθιστώντας τις τιμές αυτές στη σχέση για το Λ προκύπτει: Λ = x 0 - m (για το Η ), =.60 x 0 - m (για το CΗ 4 ), = x 0 - m (για το C 6 Η 4 ). Οπότε προκύπτει τελικά για το q ότι (με V = 0 cm 3 = 0-5 m 3 ) : q = 3.86 x 0 5 (για το Η ), = x 0 6 (για το CΗ 4 ), =.079 x 0 8 (για το C 6 Η 4 ).

6 Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική 6 ΘΕΜΑ 5 Να υπολογισθεί η περιστροφική συνεισφορά στο μοριακό άθροισμα καταστάσεων, q R, για το αέριο ΗD στους 64 Κ. Δίνεται ότι: θ R = 64 K. Λύση: Το αέριο HD είναι γραμμικό μη συμμετρικό μόριο. Συνεπώς για τον υπολογισμό του q R μπορούμε να χρησιμοποιήσουμε είτε την εξίσωση (4.0) είτε την εξίσωση (4.5). Με R βάση τα δεδομένα:. Εχουμε: εξ.(4.0) R J J R q J J J0 J J J ή εξ. (4.5) q....4 R 3 5 R R R

7 C V /R Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική 7 ΘΕΜΑ 6 Κατασκευάστε τη γραφική παράσταση της γραμμομοριακής θερμοχωρητικότητας υπό σταθερό όγκο ενός συνόλου αρμονικών ταλαντωτών (δονητική συνεισφορά στη θερμοχωρητικότητα) σαν συνάρτηση της ποσότητας V V για 0 0. Στη συνέχεια προβλέψτε τη δονητική συνεισφορά στη γραμμομοριακή θερμοχωρητικότητα υπό σταθερό όγκο του ακετυλενίου στους (α) 400 Κ και (β) 700 Κ. Οι κανονικές μορφές δόνησης του ακετυλενίου (καθώς και οι βαθμοί εκφυλισμού τους μέσα σε παρένθεση) είναι 6(), 79(), 974, 387 και 3374 cm -. Υπόδειξη: Ουσιαστικά δεν μπορούμε να έχουμε Τ ) V = 0, αλλά V 0 (όταν Λύση Από την εξ. (4.45), έχουμε για ένα γραμμομόριο (Ν = Ν Av ): CV R V V V Η συνάρτηση αυτή έχει παρασταθεί γραφικά στο παρακάτω σχήμα, το οποίο ποιοτικά δεν διαφέρει από το Σχήμα 4.3 του βιβλίου σας και δείχνει ότι σε υψηλές θερμοκρασίες (θ V / 0) η συνεισφορά κάθε δονητικής μορφής στη θερμοχωρητικότητα C V είναι ίση με R. Ωστόσο, επειδή συνήθως θ V >>, η συνεισφορά κάθε κανονικής μορφής δόνησης είναι αρκετά μικρή V /

8 Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική 8 Προκειμένου τώρα να κάνουμε τον υπολογισμό για το ακετυλένιο θα χρησιμοποιήσουμε την ανωτέρω έκφραση για κάθε δονητική μορφή και θα αθροίσουμε τις συνεισφορές, λαμβάνοντας υπόψη και τους βαθμούς εκφυλισμού. Οι υπολογισμοί, για τις δύο θερμοκρασίες συνοψίζονται στον παρακάτω πίνακα. h hc ~ Σύμφωνα με την (4.6):.4388 cm K ~ V k k ~ V / cm 400 Κ 700 Κ 400 Κ 700 Κ B B C V R Άρα, η δονητική συνεισφορά στη θερμοχωρητικότητα είναι.56r στους 400 Κ και 3.88R στους 700 Κ.

9 Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική 9 ΘΕΜΑ 7 Το μήκος του δεσμού του Ο είναι 0.75pm. Χρησιμοποιείστε την προσέγγιση των υψηλών θερμοκρασιών, ώστε να υπολογίσετε την περιστροφική συνιστώσα του μοριακού αθροίσματος καταστάσεων γι αυτό το μόριο στους 300Κ. Υπόδειξη: Μπορείτε να χρησιμοποιήσετε ότι το Ο είναι συμμετρικό γραμμικό μόριο της μορφής Α, επομένως η εξίσωση που πρέπει να χρησιμοποιήσουμε για να υπολογίσετε την περιστροφική συνιστώσα του μοριακού αθροίσματος καταστάσεων στο όριο των υψηλών θερμοκρασιών είναι η (4.6). Θα πρέπει προηγουμένως όμως να υπολογίσετε τη σταθερά περιστροφής Β του Ο. Αυτή δίνεται από την Εξ. (4.9), στην οποία η ροπή αδράνειας Ι θα υπολογισθεί από τα δεδομένα για τη μάζα κάθε ατόμου οξυγόνου και το μήκος του δεσμού Ο-Ο. Λύση : Το Ο είναι συμμετρικό γραμμικό μόριο της μορφής Α, επομένως η εξίσωση που πρέπει να χρησιμοποιήσουμε για να υπολογίσουμε την περιστροφική συνιστώσα του μοριακού αθροίσματος καταστάσεων στο όριο των υψηλών θερμοκρασιών είναι η (4.6). Θα πρέπει προηγουμένως όμως να υπολογίσουμε τη σταθερά περιστροφής Β του Ο. Αυτή δίνεται από την Εξ. (4.9), όπου η ροπή αδράνειας Ι θα υπολογισθεί από το γινόμενο της μάζας κάθε ατόμου οξυγόνου επί το τετράγωνο του μήκους του δεσμού Ο-Ο: I ml Επομένως, από την Εξ. (4.9): B 8 30 ms kg Js 44.5m kgm m.9360 kgm Χρησιμοποιώντας τελικά την Εξ. (4.6) με k B = J, hc= J m και Β=44.5 m -, προκύπτει ότι: q R Jm44. 5m J

10 Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική 0 ΘΕΜΑ 8 Αέριο οξυγόνο ευρίσκεται σε θερμοκρασία 300K. Υπολογίσατε την πιο πιθανή, την μέση και την τετραγωνική ρίζα του μέσου τετραγώνου της ταχύτητας του αερίου. Ποιά είναι η φυσική σημασία της τελευταίας; Εάν στη θέση του οξυγόνου βάλουμε υδρογόνο, πόσο θα μεταβληθούν τα αντίστοιχα μεγέθη και πως εξηγείται ποιοτικά η διαφορά; Λύση Η πιο πιθανή ταχύτητα είναι αυτή η οποία μεγιστοποιεί την τιμή της συνάρτησης της ταχύτητας f(u). Εφαρμόζοντας τις εξισώσεις 7., 7.3 (σελ. 65) και 7.6 (σελ. 66), βρίσκουμε τις ζητούμενες ταχύτητες του αερίου. Έτσι η πιό πιθανή ταχύτητα u max υπολογίζεται από: u max k B m 3 ( kgm. / s. K)(300K) 7 (3)( kg) 395m / s η μέση τιμή της ταχύτητας <u> υπολογίζεται από: 8 k B u. m 445m / s και τετραγωνική ρίζα του μέσου τετραγώνου της ταχύτητας <u > /, υπολογίζεται από: u 3 k B m 484m / s Η τετραγωνική ρίζα του μέσου τετραγώνου της ταχύτητας <u > /, εκφράζει το εύρος της κατανομής των μοριακών ταχυτήτων. Στη περίπτωση του υδρογόνου, θα αλλάξει η μάζα αλλά ισχύουν ανάλογες εξισώσεις για τα μεγέθη, οπότε αν πάρουμε τους αντίστοιχους λόγους, θα έχουμε: π.χ. umax, H umax, O uh uo u H u O m O 3 4 mh «ευκίνητο», αφού έχει πολύ μικρότερη μάζα ( 6 φορές).. Είναι δηλαδή το υδρογόνο τέσσερις φορές πιο

11 Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική ΘΕΜΑ 9 Διαστημόπλοιο εσωτερικού όγκου 30 m 3 συγκρούεται με σωματίδιο μετεωρίτη με αποτέλεσμα στην επιφάνεια του διαστημοπλοίου να ανοίξει κυκλική οπή ακτίνας 0.0mm. Εάν η πίεση του Ο μέσα στο διαστημόπλοιο είναι αρχικά 80kPa και η θερμοκρασία 98Κ, να υπολογίσετε το χρονικό διάστημα που θα περάσει έως ότου η πίεση μειωθεί κατά το ήμισυ. Δίνεται: το ΜΒ του Ο : 3 Λύση Η μεταβολή της πίεσης με τον χρόνο δίνεται από τήν εξίσωση (7.35) : P P o t xp, όπου m kb Λύνοντας ως προς το χρόνο t, έχουμε: V A 0 P0 m t P ln k B V A 0 P0 ln P. Αντικαθιστώντας στην παραπάνω εξίσωση, P 0 =80kPa, P=40kPa, =98K, V=30m 3, k B = J/K, A 0 =πr = m και m = (30-3 kg/mol) / ( mol - ) = kg, βρίσκουμε ότι 6 ( ) (5.330 ) t ln s 654hr

12 Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική ΘΕΜΑ 0 Η τάση ατμών ενός αερίου στους 00 Κ είναι 0.6 bar ενώ στους 60 Κ είναι 8 bar. Σε ποιά από τις δύο θερμοκρασίες το κορεσμένο αέριο έχει τη μεγαλύτερη τιμή συντελεστή διάχυσης D, και σε ποιά τη μεγαλύτερη τιμή συντελεστή ιξώδους η; Θεωρήστε ότι πρόκειται περί ιδανικού αερίου. Λύση Ο συντελεστής διάχυσης ενός ιδανικού αερίου εξαρτάται τόσο από τη θερμοκρασία όσο και από την πίεση, σύμφωνα με την εξίσωση (7.47): k B B d m P D 3 k Εφαρμόζοντας την εξίσωση αυτή για τις δύο συνθήκες και διαιρώντας κατά μέλη προκύπτει: D D 3 / P 00 P 60 3 / Συνεπώς, ο συντελεστής διάχυσης του κορεσμένου αερίου στους 00 Κ είναι κατά 4.8 φορές μεγαλύτερος αυτού στους 60 Κ. Ο συντελεστής ιξώδους είναι ανεξάρτητος της πίεσης και εξαρτάται μόνο από τη θερμοκρασία (εξ. 7.6): k B 3 d m m / Συνεπώς: Αρα, το ιξώδες είναι μεγαλύτερο για το κορεσμένο αέριο στη μεγαλύτερη θερμοκρασία των 60 Κ.

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ22

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ22 Λυμένες ασκήσεις Στατιστική Θερμοδυναμική Οκτώβριος ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ Άσκηση.: Το άθροισμα καταστάσεων της δονητικής κίνησης των μορίων του Ι αποτελείται από

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 3-4 (Α. Χημική Θερμοδυναμική) η Άσκηση mol ιδανικού αερίου με c.88 J mol - K - και c p 9. J mol - K - βρίσκονται σε αρχική πίεση p =.3 kpa και θερμοκρασία Τ =

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 004-05 (Α. Χημική Θερμοδυναμική) η Άσκηση Στερεό CO, βάρους 6 g, εισάγεται μέσα σε κενό δοχείο όγκου 00 cm 3 που βρίσκεται συνεχώς σε θερμοκρασία δωματίου (300

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2017 8/3/2017 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 17/3/2017 Οι λύσεις των προβλημάτων 26 και 27 * να παραδοθούν μέχρι τις 24/3/2017 1. Θεωρείστε

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2013 5/3/2013 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 3, 4, 5 * να παραδοθούν μέχρι τις 22/3/2013 Οι λύσεις των προβλημάτων 8 * και 20 να παραδοθούν μέχρι τις 28/3/2013 1. Για να κερδίσουμε

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ α.ε Διάρκεια: 3 ώρες και 30 λεπτά ( ) Α. Χημική Θερμοδυναμική

ΛΥΣΕΙΣ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ α.ε Διάρκεια: 3 ώρες και 30 λεπτά ( ) Α. Χημική Θερμοδυναμική ΛΥΣΕΙΣ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ α.ε. 2012-13 Διάρκεια: 3 ώρες και 30 λεπτά (15.15 18.45) ΘΕΜΑ 1 Α. Χημική Θερμοδυναμική Μια πλάκα από χαλκό μάζας 2 kg και θερμοκρασίας 0 ο C

Διαβάστε περισσότερα

Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής. Γεώργιος Φανουργάκης

Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής. Γεώργιος Φανουργάκης Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής 1 Γεώργιος Φανουργάκης 2 Κεφάλαιο 1 Εισαγωγή στη Στατιστική Θερμοδυναμική H Στατιστική θερμοδυναμική ή Στατιστική μηχανική είναι η εφαρμογή της θεωρίας πιθανοτήτων,

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

Τ, Κ Η 2 Ο(g) CΟ(g) CO 2 (g) Λύση Για τη συγκεκριμένη αντίδραση στους 1300 Κ έχουμε:

Τ, Κ Η 2 Ο(g) CΟ(g) CO 2 (g) Λύση Για τη συγκεκριμένη αντίδραση στους 1300 Κ έχουμε: ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ 5-6 (Α. Χημική Θερμοδυναμική) η Άσκηση Η αντίδραση CO(g) + H O(g) CO (g) + H (g) γίνεται σε θερμοκρασία 3 Κ. Να υπολογιστεί το κλάσμα των ατμών του

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Ακαδημαϊκό έτος 34 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Προσωπικός Αριθμός: Ημερομηνία: Βαθμολογία θεμάτων 3 4 5 6 7 8 9 Γενικός Βαθμός η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ" ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΕΚΠΟΝΗΣΗ,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α.

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 003-04 (Α. Χημική Θερμοδυναμική) η Άσκηση Θεωρείστε ως σύστημα ένα δοχείο με αδιαβατικά τοιχώματα, μέσα στο οποίο αναμιγνύουμε λίτρο νερού θερμοκρασίας Τ

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις

Επαναληπτικές ασκήσεις Επαναληπτικές ασκήσεις a a a Τ Τ x Τ Έστω απομονωμένο μακροσκοπικό σύστημα το οποίο αποτελείται από 3 mol όμοιων και διακριτών μονοατομικών μορίων τα οποία δεν αλληλεπιδρούν μεταξύ τους. Τα μόρια αυτά

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 4-5 (Α. Χημική Θερμοδυναμική) η Άσκηση Από τα δεδομένα του πίνακα που ακολουθεί και δεχόμενοι ότι όλα τα αέρια είναι ιδανικά, να υπολογίσετε: α)

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

κλασσική περιγραφή Κλασσική στατιστική

κλασσική περιγραφή Κλασσική στατιστική Η κανονική κατανομή στη κλασσική περιγραφή Κλασσική στατιστική φυσική Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια o o Μια πολύ απλή περίπτωση για να ξεκινήσουμε είναι: Na θεωρήσουμε

Διαβάστε περισσότερα

Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο

Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο Κεφάλαιο : Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Ασχοληθήκαμε με συστήματα με μεταβλητό αριθμό σωματιδίων. Τον τρίτο

Διαβάστε περισσότερα

Ασκήσεις Κεφαλαίου 2

Ασκήσεις Κεφαλαίου 2 Άνοιξη 2010 4/3/2010 Ασκήσεις Κεφαλαίου 2 1. Για να κερδίσουμε το ΛΟΤΤΟ πρέπει να διαλέξουμε 6 διαφορετικούς αριθμούς από τους 49 διαθέσιμους. Η σειρά επιλογής των αριθμών δεν παίζει κανέναν ρόλο. Αν θέλουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VII ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΙ (ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. ΑΣΚΗΣΗ Β8 - Θερµοχωρητικοτήτες µετάλλων

ΜΑΘΗΜΑ - VII ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΙ (ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. ΑΣΚΗΣΗ Β8 - Θερµοχωρητικοτήτες µετάλλων ΜΑΘΗΜΑ - VII ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΙ (ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Β8 - Θερµοχωρητικοτήτες µετάλλων Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΦΥΕ22 (ΦΥΣΙΚΟΧΗΜΕΙΑ) 2 ο Μέρος: ΑΣΚΗΣΕΙΣ (75 %) Διάρκεια: 3 ώρες και 45 λεπτά ( ) Α. Χημική Θερμοδυναμική

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΦΥΕ22 (ΦΥΣΙΚΟΧΗΜΕΙΑ) 2 ο Μέρος: ΑΣΚΗΣΕΙΣ (75 %) Διάρκεια: 3 ώρες και 45 λεπτά ( ) Α. Χημική Θερμοδυναμική ΘΕΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΦΥΕ22 (ΦΥΣΙΚΟΧΗΜΕΙΑ) 2 ο Μέρος: ΑΣΚΗΣΕΙΣ (75 %) Διάρκεια: 3 ώρες και 45 λεπτά (15.15 19.00) Α. Χημική Θερμοδυναμική Υπολογίστε την πρότυπη ελεύθερη ενέργεια Gibbs και τη σταθερά

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο ΑΝΤΙΚΕΙΜΕΝΟ 1 ο κεφάλαιο: «Κινητική Θεωρία των Αερίων» ο κεφάλαιο: «O 1 ος θερµοδυναµικός νόµος» ΘΕΜΑ 1 Ο 1Α Ερωτήσεις πολλαπλής επιλογής. Σηµειώστε τη σωστή από τις προτάσεις που ακολουθούν. 1) Κατά την

Διαβάστε περισσότερα

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Μικροκανονική- Kανονική κατανομή (Boltzmann) Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) ώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού

Διαβάστε περισσότερα

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΗ 1 Μία θερμική μηχανή λειτουργεί μεταξύ των θερμοκρασιών T h 400 Κ και T c με T c < T h Η μηχανή έχει απόδοση e 0,2 και αποβάλλει στη δεξαμενή χαμηλής θερμοκρασίας θερμότητα

Διαβάστε περισσότερα

Φυσική Κατεύθυνσης Β Λυκείου.

Φυσική Κατεύθυνσης Β Λυκείου. Φυσική Κατεύθυνσης Λυκείου. Διαγώνισμα στην Θερμοδυναμική. Ζήτημα 1 o. ) Να επιλέξτε την σωστή απάντηση. 1) Ορισμένη ποσότητα ιδανικού αερίου μεταβάλλεται από κατάσταση σε κατάσταση. Τότε: α) Η μεταβολή

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς Ορισμοί. Ενεργός διατομή 3. Ενεργός διατομή στο μοντέλο των σκληρών σφαιρών

Διαβάστε περισσότερα

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο. ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ 15949 Ποσότητα ιδανικού αέριου ίση με /R mol, βρίσκεται αρχικά σε κατάσταση ισορροπίας στην οποία έχει

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ος θερμοδυναμικός νόμος 1. α. Αέριο απορροφά θερμότητα 2500 και παράγει έργο 1500. Να υπολογισθεί η μεταβολή της εσωτερικής του ενέργειας. β. Αέριο συμπιέζεται ισόθερμα και αποβάλλει

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k!

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k! Ασκήσεις Πιθανοτήτων - Στατιστικής Πρόβλημα 1 (Η Πολυωνυμική Κατανομή). Στο πρόβλημα αυτό θα μελετήσουμε μία γενίκευση της διωνυμικής κατανομής που συναντήσαμε στο μάθημα. Συγκεκριμένα, θα δούμε τί συμβαίνει

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα Αδυναμίες της Κλασικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Ο Σείριος, ένα από τα θερμότερα γνωστά άστρα

Διαβάστε περισσότερα

ΑΝΑΓΝΩΣΤΟΥ ΝΑΝΣΥ ΠΡΙΦΤΗΣ ΘΑΝΑΣΗΣ. «Η Ύλη Συγκροτείται Από Αόρατα Κινούμενα Σωματίδια»

ΑΝΑΓΝΩΣΤΟΥ ΝΑΝΣΥ ΠΡΙΦΤΗΣ ΘΑΝΑΣΗΣ. «Η Ύλη Συγκροτείται Από Αόρατα Κινούμενα Σωματίδια» «Η Ύλη Συγκροτείται Από Αόρατα Κινούμενα Σωματίδια» ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ υδρογόνου; ΕΡΩΤΗΣΗ: Μπορούμε άραγε να μετρήσουμε τη μάζα ενός ατόμου ΑΠΑΝΤΗΣΗ: Δύσκολο, επειδή τα άτομα είναι πολύ μικρά σωματίδια, έχουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Ακαδημαϊκό έτος 01-13 5 η Γραπτή Εργασία (Ηλεκτροχημεία) 1 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Ημερομηνία: Προσωπικός Αριθμός: Βαθμολογία θεμάτων 1 3 4 5 6 7 8 9 10 5η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ"

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

Διάλεξη 9: Στατιστική Φυσική

Διάλεξη 9: Στατιστική Φυσική Στατιστική Φυσική: Η μελέτη της θερμοδυναμικής συμπεριφοράς ενός συστήματος σωματίων σε σχέση με τις ιδιότητες των επί μέρους σωματίων. Αν και δεν μπορεί να προβλέψει με απόλυτη ακρίβεια την θερμοδυναμική

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1: Α. Στις ερωτήσεις 1-3 να σημειώσετε το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα μάζας m

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 11 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 11 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 11 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1 ΘΕΜΑ Α Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Για τη μεταβολή που παθαίνει ένα ιδανικό αέριο

Διαβάστε περισσότερα

Τμήμα Χημείας Πανεπιστήμιο Κρήτης. Εαρινό εξάμηνο 2009

Τμήμα Χημείας Πανεπιστήμιο Κρήτης. Εαρινό εξάμηνο 2009 Τμήμα Χημείας Πανεπιστήμιο Κρήτης Εργαστήριο Φυσικοχημείας Ι Στοιχεία Στατιστικής Θερμοδυναμικής Εαρινό εξάμηνο 9 Διδάσκων : Δ. Άγγλος Υπευθ. Εργαστηρίου : Ν. Στρατηγάκης Μεταπτυχιακοί : Ν. Διαμαντοπούλου,

Διαβάστε περισσότερα

ΚΕΦ. 13.3: ΜΕΓΙΣΤΟ ΚΑΙ ΕΛΑΧΙΣΤΟ ΜΕΓΕΘΟΣ ΜΑΖΑΣ ΕΝΕΡΓΩΝ ΑΣΤΡΩΝ

ΚΕΦ. 13.3: ΜΕΓΙΣΤΟ ΚΑΙ ΕΛΑΧΙΣΤΟ ΜΕΓΕΘΟΣ ΜΑΖΑΣ ΕΝΕΡΓΩΝ ΑΣΤΡΩΝ ΚΕΦ. 13.3: ΜΕΓΙΣΤΟ ΚΑΙ ΕΛΑΧΙΣΤΟ ΜΕΓΕΘΟΣ ΜΑΖΑΣ ΕΝΕΡΓΩΝ ΑΣΤΡΩΝ ΣΕΛ. 6 έως 3 ΤΟΥ ΒΙΒΛΙΟΥ ΚΣ. 3 Ο VIDEO, 0/1/013 Ο ελάχιστος και ο μέγιστος αριθμός νουκλεονίων που εμφανίζεται σε ενεργά άστρα είναι 59 και,510.

Διαβάστε περισσότερα

α. Ηλεκτρικού πεδίου του πυκνωτή σε ενέργεια μαγνητικού πεδίου

α. Ηλεκτρικού πεδίου του πυκνωτή σε ενέργεια μαγνητικού πεδίου ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ ((Α ΟΜΑ Α)) 77 1111 -- 22001100 Θέμα 1 ο (Μονάδες 25) 1. Η εξίσωση που δίνει την ένταση του ρεύματος σε ιδανικό κύκλωμα ηλεκτρικών ταλαντώσεων LC

Διαβάστε περισσότερα

Φάσεις μιας καθαρής ουσίας

Φάσεις μιας καθαρής ουσίας Αντικείμενο μαθήματος: ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΚΑΘΑΡΕΣ ΟΥΣΙΕΣ. Διαδικασίες αλλαγής φάσης. P-v, T-v, και P-T διαγράμματα ιδιοτήτων και επιφάνειες P-v-T Καθαρών ουσιών. Υπολογισμός θερμοδυναμικών ιδιοτήτων από πίνακες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ. Διδάσκων : Καθηγητής Γ. Φλούδας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ. Διδάσκων : Καθηγητής Γ. Φλούδας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΣΤΟ ΠΡΟΗΓΟΥΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΦΕΡΘΗΚΑΜΕ ΣΤΙΣ ΚΑΤΑΣΤΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΜΟΡΦΗΣ f(p,v,t)=0 ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝΤΑΙ ΓΙΑ ΝΑ ΣΥΝΔΕΟΥΝ ΤΗΝ ΠΙΕΣΗ,

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 30 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ (αφιερωμένη στη μνήμη του Ανδρέα Παναγή) Γ ΛΥΚΕΙΟΥ (Α Φάση) Κυριακή, 20 Δεκεμβρίου 2015 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από έξι (6) σελίδες και πέντε

Διαβάστε περισσότερα

Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις.

Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις. ΘΕΜΑ 1 Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις. 1. Αέριο συμπιέζεται ισόθερμα στο μισό του αρχικού όγκου.η ενεργός ταχύτητα των μορίων του: α) διπλασιάζεται. β) παραμένει

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ

ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΚΑΙ ο : 1. ΝΟΜΟΣ ΤΟΥ oyle:.=σταθ. για Τ =σταθ. για δύο καταστάσεις Α και Β : Α. Α = Β. Β (α)ισόθερμη εκτόνωση:αύξηση όγκου > και μείωση της πίεσης

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. ΘΕΜΑ A Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. ΘΕΜΑ A Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 04/11/1 ΛΥΣΕΙΣ ΘΕΜΑ A Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 12 Μοριακά Φάσματα Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Προσδιορισμός μήκους δεσμού Η φασματοσκοπία μικροκυμάτων μπορεί να

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΛΥΥΚΚΕΕΙΙΟΥΥ (ΑΠΟΦΦΟΙΙΤΤΟΙΙ) ( ) εευυττέέρραα 1144 ΙΙααννοουυααρρί ίοουυ 22001133 Θέμα 1 ο (Μονάδες 25) 1. Κατά τη συμβολή δύο αρμονικών κυμάτων που δημιουργούνται

Διαβάστε περισσότερα

2 mol ιδανικού αερίου, η οποία

2 mol ιδανικού αερίου, η οποία ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΡΓΑΣΙΑ 7 ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ 1. Μια μηχανή Carnot λειτουργεί μεταξύ των θερμοκρασιών Τ h =400Κ και Τ c =300Κ. Αν στη διάρκεια ενός κύκλου, η μηχανή αυτή απορροφά

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΘΕΜΑ 1 ο ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Ισχυρότερες

Διαβάστε περισσότερα

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α 3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 014 Ταλαντώσεις - Πρόχειρες Λύσεις Θέµα Α Α.1. Ηλεκτρικό κύκλωµα LC, αµελητέας ωµικής αντίστασης, εκτελεί η- λεκτρική ταλάντωση µε περίοδο T. Αν

Διαβάστε περισσότερα

Ακαδημαϊκό έτος ΜΕΡΟΣ Α : ΘΕΩΡΙΑ/ΕΡΩΤΗΜΑΤΑ Τελική Εξέταση ΦΥΕ22 ΒΑΡΥΤΗΤΑ: 30%

Ακαδημαϊκό έτος ΜΕΡΟΣ Α : ΘΕΩΡΙΑ/ΕΡΩΤΗΜΑΤΑ Τελική Εξέταση ΦΥΕ22 ΒΑΡΥΤΗΤΑ: 30% Ακαδημαϊκό έτος 03-04 7.06.04 ΜΕΡΟΣ Α : ΘΕΩΡΙΑ/ΕΡΩΤΗΜΑΤΑ Τελική Εξέταση ΦΥΕ ΒΑΡΥΤΗΤΑ: 30% ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΘΕΩΡΙΑ ΔΙΑΡΚΕΙΑ: ώρα (4:00-5:00) Α. Χημική Θερμοδυναμική

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

Κινητική θεωρία ιδανικών αερίων

Κινητική θεωρία ιδανικών αερίων Κινητική θεωρία ιδανικών αερίων (γέφυρα μακροσκοπικών και μικροσκοπικών ποσοτήτων) Εμπειρικές σχέσεις Boyle, Gay-Lussac, Charles, υπόθεση Avogadro «όταν δυο ή περισσότερα αέρια έχουν τα ίδια V, P και Τ

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 2002

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 2002 ΘΕΜΑ 1ο ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Ισχυρότερες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ 82 ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Α. ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ 1. Η πίεση του αέρα στα λάστιχα ενός ακίνητου αυτοκινήτου με θερμοκρασία θ 1 =7 ο C είναι P 1 =3 atm. Κατά την

Διαβάστε περισσότερα

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons.

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 09/2014

ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 09/2014 ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 09/2014 ΘΕΜΑ 1 Ι. α) Κύκλος λειτουργίας στο επίπεδο P-V. P 1 2 1-2 και 3-4: ισοβαρείς (υπό σταθερές P 2 και P 1, αντίστοιχα, P 1

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΜΑΘΗΤΡΙΑΣ: ΘΕΜΑ Α Εξεταστέα ύλη: ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΟΡΜΗ ΑΕΡΙΑ Στις ερωτήσεις Α1 Α4 να επιλέξετε τη σωστή απάντηση. Α1. Όταν η πίεση ορισμένης ποσότητας

Διαβάστε περισσότερα

KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Στατιστικές Συλλογές. Κατανομή Gibbs 3. Από την Κατανομή Gibbs στις Κατανομές Maxwell

Διαβάστε περισσότερα

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ ΟΙ ΕΛΕΥΘΕΡΕΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΕΝ ΓΕΝΕΙ, ΟΛΕΣ ΟΙ ΠΑΡΑΜΕΤΡΟΙ ΕΝΟΣ ΑΠΛΟΥ, ΔΟΜΙΚΑ ΟΜΟΙΟΜΟΡΦΟΥ ΥΛΙΚΟΥ (ΔΗΛΑΔΗ ΟΤΑΝ ΟΛΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

Ασκήσεις Φασµατοσκοπίας

Ασκήσεις Φασµατοσκοπίας Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 29 ΜΑΪOY 2015 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 29 ΜΑΪOY 2015 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪOY 01 ΕΚΦΩΝΗΣΕΙΣ Θέµα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης Μοριακή Φασματοσκοπία I Παραδόσεις μαθήματος Θ. Λαζαρίδης 2 Τι μελετά η μοριακή φασματοσκοπία; Η μοριακή φασματοσκοπία μελετά την αλληλεπίδραση των μορίων με την ηλεκτρομαγνητική ακτινοβολία Από τη μελέτη

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5 ΙΑΝΟΥΑΡΙΟΥ 2005

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5 ΙΑΝΟΥΑΡΙΟΥ 2005 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5 ΙΑΝΟΥΑΡΙΟΥ 5 Επίθετο: Όνομα: Τμήμα: ΘΕΜΑ Ο Στις ερωτήσεις που ακολουθούν να βάλετε σε κύκλο το γράμμα της απάντησης που θεωρείτε σωστή..ένα σώμα εκτελεί απλή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Σχολικό Έτος 016-017 67 ΚΕΦΑΛΑΙΟ Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Α. ΕΙΣΑΓΩΓΗ ΣΤΑ ΑΕΡΙΑ 1. Σχετικές Ατομικές και Μοριακές Μάζες Σχετική Ατομική Μάζα (Α r) του ατόμου ενός στοιχείου, ονομάζεται ο αριθμός

Διαβάστε περισσότερα

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Μικροκανονική- Kανονική κατανομή (Boltzmann) Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Δώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Τα δύο

Διαβάστε περισσότερα

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων

Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ 1.1. Νόμος του Boyle (ισόθερμη μεταβολή) Η πίεση ορισμένης ποσότητας αερίου, του

Διαβάστε περισσότερα

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Μικροκανονική- Kανονική κατανομή (Boltzmann) Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Δώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 13/11/2011

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 13/11/2011 ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 91911 949422 ΖΗΤΗΜΑ 1 ο ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 1/11/2011

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΜΑ 4

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΜΑ 4 ΘΕΜΑ 4 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ 15984 Ποσότητα μονατομικού ιδανικού αερίου βρίσκεται στην κατάσταση θερμοδυναμικής ισορροπίας Α (ρ0, V0, To). Το αέριο εκτελεί αρχικά ισόθερμη αντιστρεπτή μεταβολή

Διαβάστε περισσότερα

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται: Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής διατομής με σταθερή ταχύτητα. Η πίεση κατά μήκος του σωλήνα στην κατεύθυνση της ροής μπορεί

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Προτεινόμενες Λύσεις Πρόβλημα - ( μονάδες) Ένα όχημα, μαζί με ένα κανόνι που είναι ακλόνητο πάνω σε αυτό,

Διαβάστε περισσότερα

( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19)

( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19) Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1)

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1) 1)Συνήθως οι πτήσεις των αεροσκαφών γίνονται στο ύψος των 15000 m, όπου η θερμοκρασία του αέρα είναι 210 Κ και η ατμοσφαιρική πίεση 10000 N / m 2. Σε αεροδρόμιο που βρίσκεται στο ίδιο ύψος με την επιφάνεια

Διαβάστε περισσότερα

=5L θερμαίνεται υπό σταθερή πίεση

=5L θερμαίνεται υπό σταθερή πίεση 1) Ένας μαθητής γεμίζει τους πνεύμονες του που έχουν όγκο 5,8L, με αέρα σε πίεση 1atm. O μαθητής πιέζει το στέρνο κρατώντας το στόμα του κλειστό και μειώνει την χωρητικότητα των πνευμόνων του κατά 0,8L.

Διαβάστε περισσότερα

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας.

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Κεφάλαιο 1 ο :ΝΟΜΟΙ ΑΕΡΙΩΝ ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Επιμέλεια ύλης: Γ.Φ.ΣΙΩΡΗΣ- Φυσικός - 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. 1. Να διατυπώσετε το νόμο του Robert Boyle και να κάνετε το αντίστοιχο

Διαβάστε περισσότερα

Ερωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος

Ερωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος Ερωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος 1. Ένα σώµα εκτελεί εξαναγκασµένη ταλάντωση. Ποιες από τις επόµενες προτάσεις είναι σωστές; Να αιτιολογήσετε την απάντησή σας. ί) Η συχνότητα της ταλάντωσης είναι

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ 1 ΑΣΚΗΣΗ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 Ιδανικό αέριο περιέχεται σε όγκο 1 δοχείου συνολικού όγκου με θερμομονωτικά τοιχώματα. Στο υπόλοιπο κομμάτι

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Σε

Διαβάστε περισσότερα