!"#$%&'()*+%,)-$%.')*+)-+/0&"-%.')+.'"-$%.')+

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "!"#$%&'()*+%,)-$%.')*+)-+/0&"-%.')+.'"-$%.')+"

Transcript

1 &7'*IJ?; '67'8'%9-%&7'*/&-%''-%' %&'*%-%'*-/&-%''-%' 3%45 *7-R-%R-&*/%-37'&3%ST R'*9U%*7'MWK-%X'& 7-A*&**-*9 39YY[-W%_D37F&-%'D[Y*7-RD33`%L5?5 G3%-&%3'H*'*/&-%''-%' 4;<%9K7&'/-*'7%**L%<*&7'*37M/*8O -7*3*7--*7&'/-*8/3% P337'-&&'%&QQQ 7R//%*' 39YYZZZDWMD-*D[Y\%MY ]-*%R-/-^ d7%7-*'&7'* d7&**-lefy4gh-7'&7-a4ge44y4gh-7'&7-a; d7/7'l-7&**-g-7 <*-TS'%*<7%*/%*7-D 3F*%'*%*%'<&*37%*fY4g44Y4gD 37*%%7-'*'%*PK*9 %&'*%-%'*7'3%&'*%-%*&-M*` %&'*%-%'*97'*'*373%*3F*%'**7-*//* 'H&7-*'H377-*DDD 7-&3<M'**%M%-&**%'/-''-%'/- -/&-%'&**%''H3%&'*]//%-%'*^*7-7'67'* %*&-M*97-3'*'%<6&7%&&'-D 4l 4 ; 4l 4 ; P9-7/7'L45 9-7/7'L4? 9-7/7'L K9-7/7'Lc ;l &7/3' ;l &7/3'

2 %&'*%-%*&-M*-/&-%''-%' X%'%7-3F*%'7m**3%&'*%-%'**&7'<-9 %-%% <-'-&7%*%7-9 H/39'H3%&'*-*'-3%R/7-%' %&'**-*%-&%7--'/7* *%'%7-3F*%'l-R%7` 3* &7%*%7-9 P/M%R'*3%-&%3* <'*6'*'l%&% &7/3' *3& %/-*%7-; *3*-%7-*'//3F*%'*7-*'%<-*` ddq %&%'* &-%/ <& P/M%R'*3%-&%3*<'*6'*'8%&%QQQ 3%-&%3'% 4D *'H&****'%<-*9 37*'*F/%*%7-7'l-%*F/%*%7- %-&%3'% p*m7*7-*37'*'*<&'l 3%&'*%-%'* **F/%'3&-R'H&*3%&'* 7''H3%&'*9 p*[/%7-*37'*'*<&'l3%&'*%-%'* *-%*F/%'3&-R'H&*3%&'* 7''H3%&'*9

3 [ δ ] 58 I fod 496 I fod *'H3%&'**3%->L;M7*7-* 3 [ δ ] fod 4I 4 I 8 I --'/7*3%&'*94; fod 496 I fod 58 I 4 o7'**3%&'**3%--%*7-*m7*7-* { } { } 3%&'49ee I 9 ee fod 9I 9I ee 5 I *3&** /*7-*377-* 4 3%&';9 ee ee { { { } ee ee { } } } fod 4 { ±} 5 I 4I 8 I '%&%'%34'56*'%* %&%''8%-'&-/;&*<&-%/' %&'*%*&-M*9R-%' I 9 ee spi }I 6 & fod 9Iee 9I{ & }{ 5 4 7'*3%&'*%-%*&-M*M7*7-%'*7-<'9 fod fod o7'**3%&'**3%-/%-%*7-*[/%7-* ee { } { } ee fod fod 37'7'9 &7-*-'%-7*'W*377-*-'7-* 7 fod spi fod spi '%&%'%7-859-&/ %&%'&*%'8%-'&-/;&*<&-%/' fod fod spi { spi } 8 R-%' m fod m t%_]4?^'%]4j>^ud'*dv'/%-7]4cg^ ± ± ± ± M*8*3&I%M;M7*7-*%-%'**3%-> 3 m { } { }3 9 ee ee m fod spi m m H/3*37''HM7*7-*%-3--**3%-> ee { 4 } } *'H[/%7-*%-3--**3%-w fod ee fod { ± m ± ± ± m { ee { } } { ±} ee δ δ { { ee { { }3%&';98 3%&'49ee } } } ee ee m spi fod 5 c [7-/-37''H3%&'*` c / 3/ 5/ c { } { δ &7-[%R'%7- ee spi *&7/3%M<&` fod ee } c / 3/ 5/ 6 / 3/ 5/ m c fod spi fod ee δee δ{ } { / 3/ } 5/ 5/ c fod / 3/ / 3/ 5/ fod δ fod { fod { ±} 3 c } / 3/ 5/ 3/ 5/ & & & & 3 fod / 7 spi fod fod c 3 δ m / 5/ 3 /%-%<'H&%9 c 3 3/ 3 fod fod fod spi spi { ee 5/ c δ 3 fod { / 3/ 3 δ ee 3 δ δ } } 4 spi { } 3 & 3 %&'*%*&-M*9*7'**3&%/-*%7-; & 4 8 δ δ δ δ / 3/5/ m fod c δ / { m 3/ 5/ fod fod } 3 4 ±} 3 { δ [ / 3/ 5/ 4 [ ] *%-R' 5 δ t%-/-9 fod 4 7*7-*%-%*&-M*9*7'**3&%/-*%7-4 4 m fod ±} m & & & & 5 { 3 4 [ δ ] [ δ ] / 3/ 5/ 9 fod fod spi c 4 %*&-M*9%/-*%7-J m %-%*&-M*9%/-*%7-4 5 { [ } { & } 3 ee & δ [ δ ] ee spi δ { } δ 5 fod 5 fod & 6 ee spi } { } 3 5 ee & { c 5 & &[ 6 ] δ ] [ δ m m 4 { ±} 3 / 3/ 5/ 4 5 { 6 5 } m %--q*%*%'s*3%-

4 K'H[/%7-**3%-w]*'%^ c / 3/ 5/ 7'*3%&'*%*&-M**7'**3& &7*37--*%%/-*%7-g9 %&'*/-%*3%&'*&7/37** 7'*3%&'*&7/37**7/*<M*%l-R% -6'**'[[%*//-M**37'-3*i&**i&*3%&'*D c / 3/ 5/ ± ± ± ± ± ± / 3/ 377-*-'7-*]?'W*^9XL4Y;[/%7-* 5/ c/ 3/ 5/ 3%&'*7/lF7R-][7-/-^9XL>M7*7-* / 3/ 5/ %&'*%-%*&-M*9**&7/3%M*<& 3 / 5/ 3/ 3 *7--**7'**3&%/-*%7-J-R-39 7%*%7--'H7/*lF7R-l-R%&%-%' 3 3 /3'7%-%9 *%-R' δ { ±} δ 3 δ δ //-*<7%*%'-*3&7/%'7--*'-M7*7-7''-[/%7-` 4 4 ± ± ± ± spi ee { }{ δ } ] 4 3 [ δ ] [ 4 ;;d944&7-*44377-*44-'7-*x ee 5 [7-LcY;[/%7-4 %3 4 5 ;?d944&7-*44377-*4;-'7-*x [7-L4M7*7-5 5 d'%9 L &8*7-&3%-'7-*'%*&%*%< δ ] [ δ ] 5 [ 5&7-* 4377-* { 5 ee } { } ee 6 { ee ee { } 6 } { 4 δ δ 5 } T'-['%-%&7/3'3%-&%3'%` <7'%7-/%7-%-- { } { } { e ee } { } 6 ± ee ee ± ± ± 3 3-3%-&%37'/3*/%* { } { } 7 7 '-*7'&-R--'-3' ee ee ± ± ] ± 3 ± δ { ±} 7 4 { [ ±} 6 87-*D7MD & ee { { fod ee } 3%&'*%-%'*]M7*7-*7'[/%7-*^ } 7 > R R '-3%&'-9 ± ± ± 4± 4 R R fod 8 8 spi } { & { } 8 5 ee ] } 8 { δ 6 4 & } { & ee & [ ee ee spi '-*7'&-'-*7'&- ± ± ± ± 3H/39 fod fod fod spi 8 8 7M&'-3%&'-R fod δ δ 5 5 R '-'-` 9 spi 9 fod 9 δ δ 6 7 o7'**3%&'*67'-//a-* 9 5 c 8 spi *%-7-*-*%-3*%-%'*Q spi 9 %&'*%*&-M*9 9 fod m fod [ δ ] 6 δ δ 6 R R R P R R R fod spi { [ δ ] 7 ±} 8 { } m / } δ δ { 6 3/ 5/ 9 fod spi R R R R R m H&%&9/7-'8'-<&'8%-%%/-*F/%'7' [ δ ] 7 P R 7*7-*%-%'**3%--'9 [ δ ] 7 m m -%*F/%'R&373%'&7'*8<7'%7-3 [ δ ] 9 8 { & } { & } 3 ee ee m spi [ 7 ] δ m R R R R X%&7'</-*-R%RM%DD*% 8 [ δ ] 8 m 7**H3**%7-**&*%*&-M%-%*&-M&7-&%- m m 9 8 [ δ ] fod fod fod fod m { ±}

5 y-/7*%/3%[%37'l7/l%'/ d7f'&r-z'h&7-*-'/7*4;9 ;D 7-*'-&*3F*%'*'3%-&%3'%9 -<-R%R%&%/3'*%7--&7-*? 337H%/%7--l*<M-7'%R'''*% -R%**%* l7/l%'/]*'%^ l7/%%'/ d7f'?&7-*dx%7--r%r3'*%7--&7-*9 [7-/-97-/&'&7--*-%<'[7-/- ]4*^[7-&%7-87-<&Z p//7m%37'*'h&7-* pl*3%-7%-%*f/%' 7'4* ; 4* [7-/-4* ; ;*l-r%9 '-&7--*l4**3%-G ;* '-&7--*l4**3%- '-&7--*l;**3%-± 4* K-*&/7*%/3%*9 fod 4 I 4 I 8 I {'/*'H3%/-/-9 fod 58 I K-*&/7*%/3%*9 fod 9 I 9 I 9 I 4 5 I <'/*'H3%/-/-9 fod 496 I

6 M M l7/%%'/]*'%^ ;* [/%7-**3%-w*-*%-&%7- m 4* &%'H3%&%8[7-/-`7*7-*9 M M 3%&'*-*'-37-%H%'9 m m fod m 3 m m 3%&'*9/%--X 4 &'%*8&%'**%9 m fod 3 m fod 3 /%--X 5 fod 4 fod 4 5 7//-[7/'-&7--*7*%-*%-]4^` t7-/-8'-*f*/m7*7-**-*%-&% [7%%**/-8'-R_87/*3* 5 fod /%*<&*M7*7-**3%--' 6 fod fod -R%9 7/* fod 3 spi d Xo 7--*7*%-*%- fod '-/%%87/**7%'/ \;&/ fod 4 m Pou u choi3 udicieu de l féquece des lses l supepositio spi X%*M7*7-*7-'-*3%--7--'9 fod des 6 foces de pessio de ditio cée ue foce de fottemet fod spi 3 7m**F/%'3&-R'H3%&'* spi visqueu comme pou ue cuillèe ds u pot de miel R/-8-R%9 5 efoidissemet dimiue l gittio themique m 4 m 4 m 3 t

7 35 m m m m 3 35 m /7'&/3/7F- 7//-[7/'-&7--*7*%-*%-];^` fod m m m ème étpe o che u «piège mgétique» utou des tomes pé-efoidis &'3'*3&%**-%<'Hl-R% 3%&'*-%-&% m W 3 it m egie d u dipôle mgétique ds le chmp W it Wit W m µ B µ B 38 it 37 m m Wit m et 3 eff37m/-7-*7'm-f%'/-//37' 3 Si lefod dipôle ot même diectio etle chmp 37 m des ses opposés eff dx meff µ B µ B 38 m eff eff 33 7m**7//9 m où B est miimum µ voisige B d u µ B 38 uvette de potetiel u poit '37-%H%']%DD-7F'8'-7/^9 '37-%3*--/-%337&8[[*''- 34 eff / m 3%&'* 3ème étpe - '*D-'%-*%3%&'* fod efoidissemet T T / p évpotio eff m /7q'7&7-s l/%**%7-*%/']m7*7-*^ %-&%7-37MM%% 7-*'-&*3F*%'*'3%-&%3'% 8/%**%7-*%/'8/%**%7-%-%M >3%&'*M7*7-%'* -*l 37MM%% *% %-&%7-3%&'* -*l

8 3%-&%3'* 8[[* P<&'-*7'&l-R%H%']&R-*'-R_3**R l'-&7'--*'-%7ddd^7-&'-i%-<*%7-373'%7-id X8%-8F<%3*8/%**%7-*%/' -3*-&8/%**%7-*%/' /%7% &7/3/- [&%**- -R% H%' /%7% 3%/- [&%**- d7/m377-*-*/7*9 [[**% /3* /3* 8/%**%7-%-%M][/%7-*^ -'7-*'-3%&'%-*MDK-*l*3&%M9 d7f'l%'/-7f'%%'/ S7*%/3-*'7-*%/'l%-&%7--&'-'&7- ]377-7'-'7-^*A-'*3'-3'%*37-% - 3 G G G-%-'%-7 '<%9>>* S%*%**M-**-7F'H*'[-&*%7&%<% 4> 4c / -'7-* 377-* d7f'l%'/j >4''488''&A'&- -*/B& K'H377-*G'H-'7-*9*M d7f'%%'/ %'/? -7F'%%'/ y-377-g'h-'7-*9%-*m -'7-* 377- G G% ]'<%4;-*^ '/-%4*&*%%&%A /48&-&-'4*

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! #  $ %& ' %$(%& % &'(!!)!*!&+ ,! %$( - .$'! ! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

! #! & 0/! ).#! 71 1&$ -+ # &>  %+# 1 2$ "#$" &""'(() *+ , -------------------------------------------------------------------------------------------------------------------. / 0-1 2 $1 " 1 /& 1------------------------------------------------------------------------------------------------------------------------3

Διαβάστε περισσότερα

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Ο γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση της ετήσιας αύξησης του οικονομικά ενεργού πληθυσμού

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ

Διαβάστε περισσότερα

2?nom. Bacc. 2 nom. acc. S nom. 7acc. acc >nom < <

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < < K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

!! #!!!$ #$! %!&' & (%!' #!% # *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2! # $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

). = + U = -U U= mgy (y= H) =0 = mgh. y=0 = U=0

). = + U = -U U= mgy (y= H) =0 = mgh. y=0 = U=0 3761 5226 9585 ). = + U = -U U= mgy (y= H) =0 = mgh. y=0 = U=0 y = mgh mgy, 3761 5226 ) ) =mg 2 F=ma F-B=ma Fmg=m.2g F=3mg F=3B B = F/3 3763 5208 ) ) W 1 = -mgh W 2 =mgh W = W 1 + W 2 = -mgh + mgh=0 3763

Διαβάστε περισσότερα

Για τον ορισμό της ισχύος θα χρησιμοποιηθεί η παρακάτω διάταξη αποτελούμενη από ένα κύκλωμα Κ και μία πηγή Π:

Για τον ορισμό της ισχύος θα χρησιμοποιηθεί η παρακάτω διάταξη αποτελούμενη από ένα κύκλωμα Κ και μία πηγή Π: 1. Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα ορίζεται ως ο ρυθμός μιας συνισταμένης κίνησης φορτίων. Δηλαδή εάν στα άκρα ενός μεταλλικού αγωγού εφαρμοστεί μια διαφορά δυναμικού, τότε το παραγόμενο ηλεκτρικό πεδίο

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

Couplage dans les applications interactives de grande taille

Couplage dans les applications interactives de grande taille Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications

Διαβάστε περισσότερα

/&25*+* 24.&6,2(2**02)' 24

/&25*+* 24.&6,2(2**02)' 24 !! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &

Διαβάστε περισσότερα

ACI sécurité informatique KAA (Key Authentification Ambient)

ACI sécurité informatique KAA (Key Authentification Ambient) ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,

Διαβάστε περισσότερα

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση του αριθμού του οικονομικά ενεργού

Διαβάστε περισσότερα

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο απασχολούμενου πληθυσμού - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού υπολογίζεται με τη διαίρεση του αριθμού του ισοδύναμου πλήρως

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

ΤΙΜΟΚΑΤΑΛΟΓΟΣ ΑΝΑΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΑΝΑΛΩΣΙΜΩΝ ΕΚΤΥΠΩΤΩΝ

ΤΙΜΟΚΑΤΑΛΟΓΟΣ ΑΝΑΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΑΝΑΛΩΣΙΜΩΝ ΕΚΤΥΠΩΤΩΝ ΤΙΜΟΚΑΤΑΛΟΓΟΣ ΑΝΑΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΑΝΑΛΩΣΙΜΩΝ ΕΚΤΥΠΩΤΩΝ ΚΩΔΙΚΟΣ ΠΡΩΤΟΤΥΠΟΥ ΣΕΛΙΔΕΣ ΤΕΛΙΚΗ ΤΙΜΗ (ανακ/μένου) ΜΕ Φ.Π.Α. ΣΥΜΒΑΤΟΤΗΤΑ LaserJet HP 83A 1.500 31,00 HP Laserjet M225dw HP Laserjet Pro M125 HP Laserjet

Διαβάστε περισσότερα

Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο

Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών υπολογίζεται με

Διαβάστε περισσότερα

!! "#$%& ! " # $ &%"+,(-. (# / 0 1%23%(2443

!! #$%& !  # $ &%+,(-. (# / 0 1%23%(2443 "#$& " # $ & ' &( &)* &"# &"+,(-. (# / 0 123(2443 2443 56 1 7 & '()(()(*+( ),)(-.(/)((,),24420 8.94: -; :53&:54::549 '()((0)(#'(1)(' ( )(-.(/)((,),24460..94: < * 94&5=>6 '()( 2( )(3(1)((0)('.( )4)((,)

Διαβάστε περισσότερα

Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο

Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών υπολογίζεται με τη διαίρεση

Διαβάστε περισσότερα

Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο

Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το μερίδιο εργοδοτουμένων με μερική ή/και προσωρινή απασχόληση

Διαβάστε περισσότερα

( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x

( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x Η ΑΝΕΠ Η Η Ν Ω Ν Ω ΑΘΗ Α ΑΝIV Ε ε ά ει Ν επ ε β ί 5 (3-9-5) Επώ : Ό α: ΑΝ Ν: ΘΕ ΑΝ Τα π α Chebyshev T ( ) α π ω μ ( ) y y y (,,, ) π [,] Η ω α α α π α μ / d d T ( ) Tm ( ) [ T ( )] Α απ f ( ) 3, [,], α

Διαβάστε περισσότερα

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ )

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) Η περιστροφική αδράνεια ενός σώματος είναι το μέτρο της αντίστασης του στη μεταβολής της περιστροφικής του κατάστασης, αντίστοιχο της μάζας στην περίπτωση της μεταφορικής

Διαβάστε περισσότερα

Wilo-Drain TS 40/10, TS 40/14 TS 40/10 A, TS 40/14 A

Wilo-Drain TS 40/10, TS 40/14 TS 40/10 A, TS 40/14 A Wilo-Drain TS 40/10, TS 40/14 TS 40/10 A, TS 40/14 A D GB F NL E I P GR Einbau- und Betriebsanleitung Installation and operating instructions Notice de montage et de mise en service Inbouw- en bedieningsvoorschriften

Διαβάστε περισσότερα

! " #$% & '()()*+.,/0.

!  #$% & '()()*+.,/0. ! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

Λύσεις Τέταρτου Πακέτου Ασκήσεων

Λύσεις Τέταρτου Πακέτου Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2015-16 Λύσεις Τέταρτου Πακέτου Ασκήσεων 1. Πρώτη άσκηση 2. Δεύτερη άσκηση 3. α) Για τη συνάρτηση κέρδους έχουµε Π=P f(x)

Διαβάστε περισσότερα

Ροπή δύναµης Μεθοδολογία ασκήσεων

Ροπή δύναµης Μεθοδολογία ασκήσεων ΦΥΣ 131 - Διαλ.3 1 Ροπή δύναµης Μεθοδολογία ασκήσεων q Κάντε ένα σκίτσο του προβλήµατος και διαλέξτε το σώµα ή σώµατα που θα αναλύσετε. q Για κάθε σώµα σχεδιάστε τις δυνάµεις που ασκούνται (διάγραµµα ελευθέρου

Διαβάστε περισσότερα

a,b a f a = , , r = = r = T

a,b a f a = , , r = = r = T !" #$%" &' &$%( % ) *+, -./01/ 234 5 0462. 4-7 8 74-9:;:; < =>?@ABC>D E E F GF F H I E JKI L H F I F HMN E O HPQH I RE F S TH FH I U Q E VF E WXY=Z M [ PQ \ TE K JMEPQ EEH I VF F E F GF ]EEI FHPQ HI E

Διαβάστε περισσότερα

Η κάθετη δύναμη που ασκεί το ρευστό επάνω στην μονάδα επιφανείας των ορίων του.

Η κάθετη δύναμη που ασκεί το ρευστό επάνω στην μονάδα επιφανείας των ορίων του. Υδροστατική πίεση Η κάθετη δύναμη που ασκεί το ρευστό επάνω στην μονάδα επιφανείας των ορίων του. p F F df = = lim = A Α 0 Α d Α Η πίεση σε ένα ρευστό είναι ανεξάρτητη του προσανατολισμού και είναι βαθμωτό

Διαβάστε περισσότερα

Εισαγωγή στο Πεδίο Βαρύτητας

Εισαγωγή στο Πεδίο Βαρύτητας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 9: Προσδιορισμός Γεωειδούς με Ολοκληρωματικές, Στοχαστικές και Φασματικές Μεθόδους Η.Ν. Τζιαβός -

Διαβάστε περισσότερα

!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

!#$ %&$ ##%&%'()) *..$ /. 0-1$ )$.'- !!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8

Διαβάστε περισσότερα

FICHA TΙCNICA Tνtulo original em russo: Na Rubeje - (1901) Traduzido para o portuguκs por: Vicente Paulo Nogueira

FICHA TΙCNICA Tνtulo original em russo: Na Rubeje - (1901) Traduzido para o portuguκs por: Vicente Paulo Nogueira FICHA TΙCNICA Tνtulo original em russo: Na Rubeje - (1901) Traduzido para o portuguκs por: Vicente Paulo Nogueira NA FRONTEIRA Copyright - 1991 5ͺ Ediηγo (revisada) LIVRARIA ESPΝRITA BOA NOVA LIDA. Rua

Διαβάστε περισσότερα

A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards

A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards Table of Contents Introduction (Arabic)... 1 Introduction (English)...396 Part One: Texts of the Constitutions

Διαβάστε περισσότερα

! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $

!  #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $ [ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Συναρτήσεις ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Συναρτήσεις ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Συναρτήσεις ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr ..1! A y! B! A y!

Διαβάστε περισσότερα

y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

Les gouttes enrobées

Les gouttes enrobées Les gouttes enrobées Pascale Aussillous To cite this version: Pascale Aussillous. Les gouttes enrobées. Fluid Dynamics. Université Pierre et Marie Curie - Paris VI,. French. HAL Id: tel-363 https://tel.archives-ouvertes.fr/tel-363

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α γ Α α Α3 γ Α δ (ισχύει: Α5 ασ ισχύον: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κριακή Αριλίο 3 ιάρκεια Εξέτασης: 3

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΕΔΑΦΟΜΗΧΑΝΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΕΔΑΦΟΜΗΧΑΝΙΚΗΣ ΤΥΠΟΛΟΓΙΟ ΕΔΑΦΟΜΗΧΑΝΙΚΗΣ (σε αντιστοιχία με το σύγγραμμα «απλά βήματα στην εδαφομηχανική» των ιδίων συγγραφέων) Καθ. Β. Χρηστάρας & Δρ. Μ. Χατζηαγγέλου Εργαστήριο Τεχνικής Γεωλογίας Τμ. Γεωλογίας - ΑΠΘ

Διαβάστε περισσότερα

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =

Διαβάστε περισσότερα

! "#$%&'!()'"" %*+,-.+* "(*/0(/*'1 %+%/&2(#+)" 3#(4 0+)(#)/+/" (*2#("5 3#(4 02"' "(/1#'" +) (4' '6+&/(#+) +. 42%&+71#%&+#1" 2)1 8')'(#0 1#$+*%4#"$"

! #$%&'!()' %*+,-.+* (*/0(/*'1 %+%/&2(#+) 3#(4 0+)(#)/+/ (*2#(5 3#(4 02' (/1#' +) (4' '6+&/(#+) +. 42%&+71#%&+#1 2)1 8')'(#0 1#$+*%4#$ !"#$%&' "( )*"'"+*,&' -.%&/*,0!"#$ %& '"$ (& )*+,- (.//& /02/3.! "#$%&'!()'"" %*+,-.+* "(*/0(/*' %+%/&2(#+)" 3#(4 0+)(#)/+/" (*2#("5 3#(4 02"' "(/#'" +) (4' '6+&/(#+) +. 42%&+7#%&+#" 2) 8')'(#0 #$+*%4#"$"

Διαβάστε περισσότερα

Βαθιές Θεµελιώσεις Πάσσαλοι υπό Οριζόντια Φόρτιση

Βαθιές Θεµελιώσεις Πάσσαλοι υπό Οριζόντια Φόρτιση Απόκριση Θεµελιώσεων µε Πασσάλους υπό Οριζόντια Φόρτιση Απόκριση Πασσάλων υπό Οριζόντια Φόρτιση Μενονωµένος Πάσσαλος Οµάδα Πασσάλων Φέρουσα Ικανότητα Μέθοδος Broms Υπολογισµός Καµπύλης Απόκρισης Μέθοδος

Διαβάστε περισσότερα

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης.

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης. Αποδείξεις. Απόδειξη της σχέσης N t T N t T. Απόδειξη της σχέσης t t T T 3. Απόδειξη της σχέσης t Ικανή και αναγκαία συνθήκη για την Α.Α.Τ. είναι : d F D ma D m D Η εξίσωση αυτή είναι μια Ομογενής Διαφορική

Διαβάστε περισσότερα

!"##$%& '()*+,-./ ,*+, *4*5 6 #7#*8*8*94#* 56)/:::3; '<( = />. / 2 0 *+, ' ()-

!##$%& '()*+,-./ ,*+, *4*5 6 #7#*8*8*94#* 56)/:::3; '<( = />. / 2 0 *+, ' ()- !"##$%& '()*+,-./01 23...01,*+, *4*5 6 #7#*8*8*94#* 56)/:::3; '. / 2 0 *+, ' ()- "*?@A@?=6(*?*4*?BCDEF?GHG?CIJ;?DKK;(G?CIJ;-./ H

Διαβάστε περισσότερα

Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΕΡΥΘΡΑΙΑΣ 1-12134 -ΠΕΡΙΣΤΕΡΙ Τ ΗΛ 210-5757255

Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΕΡΥΘΡΑΙΑΣ 1-12134 -ΠΕΡΙΣΤΕΡΙ Τ ΗΛ 210-5757255 ΕΡΥΘΡΑΙΑΣ - -ΠΕΡΙΣΤΕΡΙ Τ ΗΛ 0-77 ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5..

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mil: info@iliskos.gr www.iliskos.gr Fl] = f]! D G] = F]

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

ΟΘΡΥΣ ΑΤΕ ΑΝΑΔΟΧΟΣ: ΕΡΓΟ :

ΟΘΡΥΣ ΑΤΕ ΑΝΑΔΟΧΟΣ: ΕΡΓΟ : ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΓ.ΔΗΜΗΤΡΙΟΣ ΑΘΗΝΑ ΤΗΛ.: FAX: e mail:othris.ate@gmail.com ΟΘΡΥΣ ΑΤΕ ΑΝΑΔΟΧΟΣ: ΕΡΓΟ : ΑΡΙΘΜΟΣ ΣΧΕΔΙΟΥ : ΚΥΡΙΟΣ ΕΡΓΟΥ : ΟΘΡΥΣ ΑΤΕ ΠΡΟΜΗΘΕΙΑ, ΕΓΚΑΤΑΣΤΑΣΗ ΚΑΙ ΘΕΣΗ ΣΕ ΣΥΣΤΗΜΑΤΟΣ ΤΗΛΕΛΕΓΧΟΥ ΤΗΛΕΧΕΙΡΙΣΜΟΥ

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

METIERS PORTEURS Institut pour le Développement des Compétences en Nouvelle-Calédonie

METIERS PORTEURS Institut pour le Développement des Compétences en Nouvelle-Calédonie 2010 METIERS PORTEURS Institut pour le Développement des Compétences en Nouvelle-Calédonie 1, rue de la Somme B.P 497-98845 Nouméa cedex Tél. 28 10 82 - Fax. 27 20 79 - Courriel : idc.nc@idcnc.nc Site

Διαβάστε περισσότερα

ON THE MEASUREMENT OF

ON THE MEASUREMENT OF ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμόρφωση Συχνότητας Ευρείας Ζώνης Εύρος ζώνης μετάδοσης διαμορφωμένων κατά γωνία σημάτων Παραγωγή σημάτων FM + Περιεχόμενα

Διαβάστε περισσότερα

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10 ΚΕΦΑΛΑΙΟ 10 ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 1 ΕΞΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ (ΕΠΑΝΑΛΗΨΗ) Μέτρο εξωτερικού γινομένου 2 C A B C ABsin διανυσμάτων A και B Ιδιότητες εξωτερικού γινομένου A B B A εν είναι αντιμεταθετικό.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012 ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)

Διαβάστε περισσότερα

Έργο Κινητική Ενέργεια. ΦΥΣ 131 - Διαλ.16 1

Έργο Κινητική Ενέργεια. ΦΥΣ 131 - Διαλ.16 1 Έργο Κινητική Ενέργεια ΦΥΣ 131 - Διαλ.16 1 Είδη δυνάµεων q Δύο είδη δυνάμεων: Ø Συντηρητικές ή διατηρητικές δυνάμεις και μή συντηρητικές ü Μια δύναμη είναι συντηρητική όταν το έργο που παράγει ασκούμενη

Διαβάστε περισσότερα

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 29 5 2015

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 29 5 2015 Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 9 5 015 ΘΕΜΑ Α: Α1. α Α. β Α. α Α4. δ Α5. α) Λ β) Σ γ) Σ δ) Λ ε) Σ ΘΕΜΑ Β: B1. Σωστό το iii. Αιτιολόγηση: Οι εξωτερικές δυνάμεις

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α 1. γ.. β. 3. δ. 4. β. 5. α-λ, β-λ, γ-λ, δ-σ, ε-σ. ΘΕΜΑ B 1. Σωστή απάντηση είναι η (α). Η εξίσωση της φάσης ενός

Διαβάστε περισσότερα

Κεφάλαιο 9. Περιστροφική κίνηση. Ροπή Αδράνειας-Ροπή-Στροφορμή

Κεφάλαιο 9. Περιστροφική κίνηση. Ροπή Αδράνειας-Ροπή-Στροφορμή Κεφάλαιο 9 Περιστροφική κίνηση Ροπή Αδράνειας-Ροπή-Στροφορμή 1rad = 360o 2π Γωνιακή ταχύτητα (μέτρο). ω μεση = θ 1 θ 2 = θ t 2 t 1 t θ ω = lim t 0 t = dθ dt Μονάδες: περιστροφές/λεπτό (rev/min)=(rpm)=

Διαβάστε περισσότερα

Geometric Tomography With Topological Guarantees

Geometric Tomography With Topological Guarantees Geometric Tomography With Topological Guarantees Omid Amini, Jean-Daniel Boissonnat, Pooran Memari To cite this version: Omid Amini, Jean-Daniel Boissonnat, Pooran Memari. Geometric Tomography With Topological

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

". / / / !/!// /!!"/ /! / 1 "&

. / / / !/!// /!!/ /! / 1 & ! "#$ # % &! " '! ( $# ( )* +# ),,- ". / / /!"!0"!/!// /!!"/ /! / 1 "& 023!4 /"&/! 52! 4!4"444 4 "& (( 52! "444444!&/ /! 4. (( 52 " "&"& 4/444!/ 66 "4 / # 52 "&"& 444 "&/ 04 &. # 52! / 7/8 /4 # 52! "9/

Διαβάστε περισσότερα

ΠΑΓΚΟΣΜΙΑ ΗΜΕΡΑ ΑΣΟΠΟΝΙΑΣ. ασοπονία και αγορά προϊόντων ξύλου

ΠΑΓΚΟΣΜΙΑ ΗΜΕΡΑ ΑΣΟΠΟΝΙΑΣ. ασοπονία και αγορά προϊόντων ξύλου LOGO ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΟΥ ΜΑΡΚΕΤΙΝΓΚ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΠΑΓΚΟΣΜΙΑ ΗΜΕΡΑ ΑΣΟΠΟΝΙΑΣ ασοπονία και αγορά προϊόντων ξύλου ρ. ΠΑΠΑ ΟΠΟΥΛΟΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΤΕΙ Λάρισας E-mail: papad@teilar.gr

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5..

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( ) 3 3 Vol.3.3 0 3 JournalofHarbinEngineeringUniversity Mar.0 doi:0.3969/j.isn.006-7043.0.03.0 ARIMA GARCH,, 5000 :!""#$%&' *+&,$-.,/0 ' 3$,456$*+7&'89 $:;,/0 ?4@A$ ARI MA GARCHBCDE FG%&HIJKL$ B

Διαβάστε περισσότερα

ACCESSORIES YOU CAN T RESIST

ACCESSORIES YOU CAN T RESIST ACCESSORIES YOU CAN T RESIST COLLECTION 07 Δείτε τις τιμές των προϊόντων μας online Online Παραγγελίες www.gts-modaitalia.gr ΓΥΝΑΙΚΕΙΑ ΠΟΡΤΟΦΟΛΙΑ COLLECTION 07 ΓΥΝΑΙΚΕΙΑ ΠΟΡΤΟΦΟΛΙΑ SG00 ΓΥΝΑΙΚΕΙΟ ΠΟΡΤΟΦΟΛΙ

Διαβάστε περισσότερα

"#$%%!&' ( *+,%%- !%!%!*&."$%%/-0! !%!%4!*&."$((,%/ !%!%(!*&."$,1,$,%/,!%!%"!*&."$"%%%%!!%!%$!*&."$"(,/$!!%!%2!*&."$",%%%/%0 !%!%!*&.

#$%%!&' ( *+,%%- !%!%!*&.$%%/-0! !%!%4!*&.$((,%/ !%!%(!*&.$,1,$,%/,!%!%!*&.$%%%%!!%!%$!*&.$(,/$!!%!%2!*&.$,%%%/%0 !%!%!*&. "#$%% &' ( )* *+,%%- %%*&."$%%/-0 %%,*&."$((,%%%/ %%(*&."$,1,$,%/, %%"*&."$"%%%% %%$*&."$"(,/$ %%1*&."$"(%%%/23 %%2*&."$",%%%/%0 %%4*&."$((,%/ %%-*&."$"",%%/4 %%*&."$(%%%/% 56)7)89)7:;8

Διαβάστε περισσότερα

ΕΥΡΩΒΑΡΟΜΕΤΡΟ 72 ΚΟΙΝΗ ΓΝΩΜΗ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ

ΕΥΡΩΒΑΡΟΜΕΤΡΟ 72 ΚΟΙΝΗ ΓΝΩΜΗ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ Standard Eurobarometer European Commission ΕΥΡΩΒΑΡΟΜΕΤΡΟ 72 ΚΟΙΝΗ ΓΝΩΜΗ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΦΘΙΝΟΠΩΡΟ 2009 Standard Eurobarometer 72 / Φθινόπωρο 2009 TNS Opinion & Social ΕΘΝΙΚΗ ΑΝΑΛΥΣΗ GREECE Η έρευνα

Διαβάστε περισσότερα

1. Ένα σώμα m=1 kg εκτελεί γ.α.τ. και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο φαίνεται στο σχήμα.

1. Ένα σώμα m=1 kg εκτελεί γ.α.τ. και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο φαίνεται στο σχήμα. . Ένα σώμα m= kg εκτελεί γ.α.τ. και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο φαίνεται στο σχήμα. α. Να βρείτε τη σταθερά D και την ολική ενέργεια του ταλαντωτή. β. Να γράψετε τις εξισώσεις

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 29/5/2015

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 29/5/2015 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9//0 ΘΕΜΑ Α :α :β :α :δ : i) Λ ii) Σ iii) Σ iv) Λ v) Σ ΘΕΜΑ Β Β. Σωστή πρόταση είναι η ιιι) Αιτιολόηση: L/ Μg mg

Διαβάστε περισσότερα

Ανταλλακτικά για Laptop Toshiba

Ανταλλακτικά για Laptop Toshiba Ανταλλακτικά για Laptop Toshiba Ημερομηνία έκδοσης καταλόγου: 6/11/2011 Κωδικός Προϊόντος Είδος Ανταλλακτικού Μάρκα Μοντέλο F000000901 Inverter Satellite A10 Series, A10 PSA10L-033X4P F000000902 Inverter

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 3 o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α 1. γ.. β. 3. δ. 4. β. 5. α-λ, β-λ, γ-λ, δ-σ, ε-σ. ΘΕΜΑ

Διαβάστε περισσότερα

'( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( +

'( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( + ! " # $ %&&' '( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( + %( ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((('& %('(,,

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Ιστοσελίδα:

Ιστοσελίδα: ½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ÌÀÄ ½ Ð Ü Ιστοσελίδα: www.telecom.tuc.gr/courses/tel412 ÌÀÄ ½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ¼ ÌÑ Ñ ÀÅÅÍ ÈÓÐÙØ ÕÒ Ó ÃÖ Ø Συνελικτικοι Κωδικες (n, k) L blocks ½ ¾ k ½ ¾ k ½ ¾ k [ ] g1 G T kl

Διαβάστε περισσότερα

B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20

Διαβάστε περισσότερα

Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων

Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων Ε Κάππος 4 εκεµβρίου 7 Περιεχόµενα Ασκήσεις στο µετασχηµατισµό Laplace Ασκήσεις στα Συστήµατα Εξισώσεων 5 3 Ασκήσεις Fourier

Διαβάστε περισσότερα

d 1 d 1

d 1 d 1 É É d 1 d 1 n ; n ; x E x E Q 0 z db1 0 z W 0,( 0,d 0,1 ( (,W z 0 z 0 z 0 z z z z z z z z z z z z z z z z z z 0 Date 0 Date 1 Date 2 Borrowing Crisis Repayment Investment Consumption Date 0 Budget Constraint:

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó

jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó L09 cloj=klk=tsvjmosopa jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó 4 16 27 38 49 60 71 82 93 P Éå Ñê ÇÉ áí dbq=ql=hklt=vlro=^mmif^k`b mo pbkq^qflk=ab=slqob=^mm^obfi ibokbk=pfb=feo=dboûq=hbkkbk

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Στερεό Είμαστε τυχεροί που είμαστε δάσκαλοι Γ Λυκείου Θετ-Τεχν Κατ. 09-0-14 Θέμα 1 ο : 1) Σε ένα μολύβι που ισορροπεί σε οριζόντια επιφάνεια ασκούμε τις δυνάμεις F 1

Διαβάστε περισσότερα

LED LEnSER * H14. 13h**

LED LEnSER * H14. 13h** LED LEnSER * H14 210 210m* 13h** ** Μέση διάρκεια φωτισμού στη χαμηλότερη βαθμίδα έως φωτεινή ισχύ 1 λούμεν. LED LEnSER * H14R 220 210m* 25h** πλήρως φορτισμένους συσσωρευτές. Αφορά μέσες τιμές, οι οποίες

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ ΠΕΡΙΟΔΙΚΑ ΦΑΙΝΟΜΕΝΑ Περίοδος (Τ) ενός περιοδικού φαινομένου είναι ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου. Αν σε χρόνο t γίνονται Ν επαναλήψεις

Διαβάστε περισσότερα

Κεφάλαιο Μ10. Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα

Κεφάλαιο Μ10. Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα Κεφάλαιο Μ10 Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα Άκαµπτο σώµα Τα µοντέλα ανάλυσης που παρουσιάσαµε µέχρι τώρα δεν µπορούν να χρησιµοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούµε να

Διαβάστε περισσότερα

.,, T = N N f = T rad/s. : dφ. ω =. dt

.,, T = N N f = T rad/s. : dφ. ω =. dt -,.. -. ( ). -.,,.. ( ),. t, t T = N N f = t. s s - /s Hz.,. f = T,, ( ) π ω = = πf T rad/s.... : dφ ω =. dt. 8 -3 ).......,...,. x x = Aηµ ωt (. ).,,. 9 .. -. -... υ = υ συν ωt (.) max a = a ωt (.3) maxηµ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2013

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΠΝΛΗΠΤΙΚΟ ΙΓΩΝΙΣΜ ΦΥΣΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ 0 ΘΕΜ ο Να γράψετε στο φύλλο απαντήσεών σας τον αριµό καεµιάς από τις ακόλοες ηµιτελείς προτάσεις και δίπλα της το γράµµα πο αντιστοιχεί στο σωστό σµπλήρωµά της..

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Χρήσιμες μαθηματικές έννοιες Νίκος Ν. Αρπατζάνης Παράγωγος ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ y y = f(x) x φ y y y = f(x) x φ y y y = f(x) φ x 1 x 1 + х x x 1 x 1 + х x x 1 x tanϕ = y x tanϕ = dy dx

Διαβάστε περισσότερα

ΟΘΡΥΣ ΑΤΕ ΑΝΑΔΟΧΟΣ: ΕΡΓΟ : ΟΘΡΥΣ ΑΤΕ ΑΡΙΘΜΟΣ ΣΧΕΔΙΟΥ : ΚΥΡΙΟΣ ΕΡΓΟΥ : ΤΣΕ60: ΣΧΕΔΙΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Δ/Ξ ΚΑΒΑΚΙ ΔΕΥΑ ΠΑΡΟΥ

ΟΘΡΥΣ ΑΤΕ ΑΝΑΔΟΧΟΣ: ΕΡΓΟ : ΟΘΡΥΣ ΑΤΕ ΑΡΙΘΜΟΣ ΣΧΕΔΙΟΥ : ΚΥΡΙΟΣ ΕΡΓΟΥ : ΤΣΕ60: ΣΧΕΔΙΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Δ/Ξ ΚΑΒΑΚΙ ΔΕΥΑ ΠΑΡΟΥ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΓ.ΔΗΜΗΤΡΙΟΣ ΑΘΗΝΑ ΤΗΛ.: FAX: e mail:othris.ate@gmail.com ΟΘΡΥΣ ΑΤΕ ΑΝΑΔΟΧΟΣ: ΕΡΓΟ : ΟΘΡΥΣ ΑΤΕ ΠΡΟΜΗΘΕΙΑ, ΕΓΚΑΤΑΣΤΑΣΗ ΚΑΙ ΘΕΣΗ ΣΕ ΛΕΙΤΟΥΡΓΙΑ ΣΥΣΤΗΜΑΤΟΣ ΤΗΛΕΛΕΓΧΟΥ ΤΗΛΕΧΕΙΡΙΣΜΟΥ ΚΑΙ ΕΛΕΓΧΟΥ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9 ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα