ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Geothermal Energy

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Geothermal Energy"

Transcript

1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Τεχνολογίας Πετρελαίου και Φυσικού Αερίου ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Geothermal Energy Πτυχιακή εργασία της σπουδάστριας: ΣΟΦΙΑΣ ΦΙΣΤΗ Εισηγητής: Ευάγγελος Κ. Καργιώτης Αν. Καθηγητής Τ.Ε.Ι. Καβάλας ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 1

2 ΠΕΡΙΛΗΨΗ Η παρούσα πτυχιακή εργασία πραγματεύεται την έρευνα στη γεωθερμική ενέργεια. Η γεωθερμική ενέργεια παράγεται με τη μετατροπή ζεστού νερού ή υδρατμού που βρίσκεται σε αρκετό βάθος από την επιφάνεια της γης σε ηλεκτρική ενέργεια. Η θερμοκρασία του κατοικιών και άλλων κτιρίων ή κτιριακών εγκαταστάσεων, θερμοκηπίων, κτηνοτροφικών μονάδων, ιχθυοκαλλιεργειών κ.λ.π. Στις περιπτώσεις που τα γεωθερμικά γεωθερμικού ρευστού ποικίλλει από περιοχή σε περιοχή και μπορεί να έχει τιμές από 25 C μέχρι 350 ^Ό ταν η θερμοκρασία είναι χαμηλότερη, η γεωθερμική ενέργεια αξιοποιείται για τη θέρμανση ρευστά έχουν υψηλή θερμοκρασία (πάνω από 150 ^ ), η γεωθερμική ενέργεια μπορεί να χρησιμοποιηθεί κυρίως για την παραγωγή ηλεκτρικής ενέργειας. Η χώρα μας λόγω της διαμόρφωσης του υπεδάφους της, είναι πλούσια σε γεωθερμική ενέργεια. Η ενέργεια αυτή αξιοποιείται σήμερα με αυξανόμενους ρυθμούς. Στην περιοχή του Νότιου Αιγαίου οι θερμοκρασίες των γεωθερμικών ρευστών είναι πολύ ψηλές, ενώ περιοχές πλούσιες σε γεωθερμία, με ρευστά χαμηλότερων θερμοκρασιών, είναι διάσπαρτες σε ολόκληρη τη χώρα. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 2

3 ΠΡΟΛΟΓΟΣ Ιδιαίτερες ευχαριστίες οφείλω στον κ. Ευάγγελο Καργιώτη Αν. Καθηγητή του τμήματος Τεχνολογίας Πετρελαίου και Φυσικού Αερίου του Τεχνολογικού Εκπαιδευτικού Ιδρύματος Καβάλας, τόσο για την ανάθεση του θέματος, όσο και για την άψογη συνεργασία και πολύτιμη καθοδήγηση που μου πρόσφερε κατά τη διάρκεια εκπόνησης της πτυχιακής μου εργασίας. Επίσης θέλω να αναφέρω ότι ο τελικός έλεγχος και οι σημαντικές παρατηρήσεις που δέχτηκα από τον ίδιο κ. Ευάγγελο Καργιώτη, ήταν άξιες γι αυτό το αποτέλεσμα της εργασίας αυτής. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 3

4 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΕΡΙΛΗΨΗ...2 ΠΡΟΛΟΓΟΣ...3 ΚΕΦΑΛΑΙΟ 1 ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ 1.1 ΕΙΣΑΓΩΓΗ ΣΥΝΤΟΜΟ ΙΣΤΟΡΙΚΟ ΤΗΣ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑ ΣΗΜΕΡΙΝΟ ΚΑΘΕΣΤΩΣ ΧΡΗΣΗΣ ΤΗΣ ΓΕΩΘΕΡΜ ΙΑΣ Η ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΙΣ ΑΝΑΠΤΥΣΣΟΜΕΝΕΣ ΧΩΡΕΣ ΚΕΦΑΛΑΙΟ 2 Η ΦΥΣΗ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΟΡΩΝ 2.1 Η ΘΕΡΜΙΚΗ ΜΗΧΑΝΗ ΤΗΣ ΓΗΣ α Ο ΦΛΟΙΟΣ β Η ΛΙΘΟΣΦΑΙΡΑ γ Η ΑΣΘΕΝΟΣΦΑΙΡΑ δ ΟΙ ΕΚΤΕΙΝΟΜΕΝΕΣ ΡΑΧΕΣ/ SPREADING RIDGS ΤΙ ΕΙΝΑΙ ΕΝΑ ΓΕΩΘΕΡΜΙΚΟ ΣΥΣΤΗΜΑ ΚΑΙ ΤΙ ΣΥΜΒΑΙΝΕΙ ΜΕΣΑ Σ ΑΥΤΟ ΤΟ ΠΡΟΓΡΑΜΜΑ ΤΩΝ ΘΕΡΜΩΝ ΞΗΡΩΝ ΠΕΤΡΩΜΑΤΩΝ ΚΑΙ ΟΙ ΠΡΩΤΕΣ ΠΕΙΡΑΜΑΤΙΚΕΣ ΔΟΚΙΜ ΕΣ...26 ΚΕΦΑΛΑΙΟ 3 ΟΡΙΣΜΟ! ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΟΡΩΝ 3.1 ΚΑΘΙΕΡΩΜΕΝΗ ΟΡΟΛΟΓΙΑ Η ΕΥΘΑΛΠΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΩΣ ΚΡΑΤΑΜΕ ΣΤΑΘΕΡΗ ΤΙΜΗ ΙΣΗ ΜΕ 1atm TA ΓΕΩΠΙΣΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 4 ΓΕΩΘΕΡΜΙΚΗ ΕΡΕΥΝΑ 4.1 ΑΝΤΙΚΕΙΜΕΝΑ ΕΡΕΥΝΑΣ ΜΕΘΟΔΟΙ ΕΡΕΥΝΑΣ ΚΑΤΑΡΤΙΣΗ ΤΟΥ ΕΡΕΥΝΗΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 4

5 ΚΕΦΑΛΑΙΟ 5 ΧΡΗΣΕΙΣ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΟΡΩΝ ΤΟ ΔΙΑΓΡΑΜΜΑ ΤΟΥ LINDAL ΠΑΡΑΓΩΓΗ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ α ΣΥΜΒΑΤΙΚΟΙ ΑΤΜΟΣΤΡΟΒΙΛΟΙ β ΚΥΚΛΟΣ RANKINE γ ΚΥΚΛΟΣ K A LIN A ΑΜΕΣΕΣ ΧΡΗΣΕΙΣ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ α Η ΘΕΡΜΑΝΣΗ ΧΩΡΩΝ β Η ΨΥΞΗ ΧΩΡΩΝ γ Ο ΓΕΩΘΕΡΜΙΚΟΣ ΚΛΙΜΑΤΙΣΜΟΣ δ ΟΙ ΑΓΡΟΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ε Η ΘΕΡΜΑΝΣΗ ΘΕΡΜΟΚΗΠΙΩΝ ΟΙΚΟΝΟΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΚΕΦΑΛΑΙΟ 6 ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ 6.1 ΓΕΝΙΚΑ ΠΗΓΕΣ ΡΥΠΑΝΣΗΣ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΤΗΣ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ...68 ΒΙΒΛΙΟΓΡΑΦΙΑ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 5

6 ΚΕΦΑΛΑΙΟ 1 ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ 1.1 ΕΙΣΑΓΩΓΗ H θερμότητα είναι μια μορφή ενέργειας και η γεωθερμική ενέργεια είναι η θερμότητα που περιέχεται στο εσωτερικό της γης, η οποία προκαλεί τη δημιουργία διαφόρων γεωλογικών φαινομένων σε παγκόσμια κλίμακα. Είναι καθαρή παρατετανόμενη και υποφερτή από το περιβάλλον._η ενέργεια αυτή σχετίζεται με την ηφαιστειότητα και τις ειδικότερες γεωλογικές και γεωτεκτονικές συνθήκες της κάθε περιοχής. Είναι μια ήπια και σχετικά ανανεώσιμη ενεργειακή πηγή, που με τα σημερινά τεχνολογικά δεδομένα μπορεί να καλύψει σημαντικές ενεργειακές ανάγκες. Οι γεωθερμικές περιοχές συχνά εντοπίζονται από τον ατμό που βγαίνει από σχισμές του φλοιού της γης,δηλαδή από τις ηφαιστειακές εκροές ή από την παρουσία θερμών πηγών, αλλά και με την εμφάνιση ρηγμάτων του υπεδάφους. Συνήθως όμως, ο όρος «γεωθερμική ενέργεια» χρησιμοποιείται σήμερα για να δηλώσει εκείνο το τμήμα της γήινης θερμότητας που μπορεί να ανακτηθεί και να αξιοποιηθεί από τον άνθρωπο, και με την έννοια αυτή θα χρησιμοποιήσουμε τον όρο από τώρα και στο εξής. 1.2 Σύντομο ιστορικό της γεωθερμίας Η παρουσία ηφαιστείων, θερμών πηγών και άλλων επιφανειακών εκδηλώσεων θερμότητας είναι αυτή που οδήγησε τους προγόνους μας στο συμπέρασμα ότι το εσωτερικό της γης είναι ζεστό. Όμως, μόνο κατά την περίοδο μεταξύ του 16ου και 17 ου αιώνα, όταν δηλαδή κατασκευάστηκαν τα πρώτα μεταλλεία που ανορύχθηκαν σε βάθος μερικών εκατοντάδων μέτρων κάτω από την επιφάνεια του εδάφους, οι άνθρωποι, με τη βοήθεια κάποιων απλών φυσικών παρατηρήσεων, κατέληξαν στο συμπέρασμα ότι η θερμοκρασία της γης αυξάνεται με το βάθος. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 6

7 Οι πρώτες μετρήσεις με θερμόμετρο έγιναν κατά πάσα πιθανότητα το 1740, σε ένα ορυχείο κοντά στο Belfort της Γαλλίας (Bullard, 1965). Ήδη από το 1870, για τη μελέτη της θερμικής κατάστασης του εσωτερικού της γης χρησιμοποιούνταν κάποιες προχωρημένες για την εποχή επιστημονικές μέθοδοι, ενώ η θερμική κατάσταση που διέπει τη γη, η θερμική ισορροπία και εξέλιξή της κατανοήθηκαν καλύτερα τον 20ο αιώνα, με την ανακάλυψη του ρόλου της «ραδιενεργής θερμότητας». Πράγματι, σε όλα τα σύγχρονα πρότυπα (μοντέλα) της θερμικής κατάστασης του εσωτερικού της γης πρέπει να συμπεριλαμβάνεται η θερμότητα που συνεχώς παράγεται από τη διάσπαση των μακράς διάρκειας ζωής ραδιενεργών ισοτόπων του ουρανίου (U238, U235), του θορίου (Th232) και του καλίου (Κ40), τα οποία βρίσκονται στο εσωτερικό της γης (Lubimova, 1968). Εκτός από τη ραδιενεργό θερμότητα, δρουν αθροιστικά, σε απροσδιόριστες όμως ποσότητες, και άλλες δυνητικές πηγές θερμότητας, όπως είναι η «αρχέγονη ενέργεια» από την εποχή δημιουργίας και μεγέθυνσης του πλανήτη. Μέχρι τη δεκαετία του 1980 τα μοντέλα αυτά δεν βασίζονταν σε κάποιες ρεαλιστικές θεωρίες. Τότε όμως αποδείχθηκε ότι αφενός δεν υπάρχει ισοζύγιο μεταξύ της ραδιενεργής θερμότητας που δημιουργείται στο εσωτερικό της γης και της θερμότητας που διαφεύγει από τη γη προς το διάστημα, και αφετέρου ότι ο πλανήτης μας ψύχεται με αργό ρυθμό και στο εσωτερικό του. Ως μια γενική ιδέα της φύσης και της κλίμακας του εμπλεκόμενου φαινομένου, μπορεί να αναφερθεί η λεγόμενη «θερμική ισορροπία», όπως διατυπώθηκε από τους Stacey and Loper (1988). Σύμφωνα με αυτήν, η ολική ροή θερμότητας από τη γη (αγωγή, συναγωγή και ακτινοβολία) εκτιμάται ότι ανέρχεται στα 42x1012 W. Από αυτά, 8x1012 W προέρχονται από το φλοιό, που αντιπροσωπεύει μόνο το 2% του συνολικού όγκου της γης αλλά είναι πλούσιος σε ραδιενεργά ισότοπα, 32,3x1012 W προέρχονται από το μανδύα, ο οποίος αντιπροσωπεύει το 82% του συνολικού όγκου της γης, και 1,7x1012 W προέρχονται από τον πυρήνα, ο οποίος αντιπροσωπεύει το 16% του συνολικού όγκου της γης και δεν περιέχει ραδιενεργά ισότοπα (βλέπουμε στην Εικόνα 1.1 ένα σχήμα της εσωτερικής δομής της γης). Αφού η ραδιενεργή θερμότητα του μανδύα εκτιμάται σε 22x1012 W, η μείωση της θερμότητας στο συγκεκριμένο τμήμα της γης είναι 10,3x1012 W. Σύμφωνα με πιο πρόσφατες εκτιμήσεις και υπολογισμούς, που βασίζονται σε μεγαλύτερο αριθμό δεδομένων, η ολική θερμική ροή της γης είναι περίπου 6% υψηλότερη από τις τιμές που χρησιμοποίησαν οι Stacey and Loper το Ούτως ή άλλως όμως, η διαδικασία ψύξης παραμένει αργή. Η θερμοκρασία του μανδύα δεν έχει μειωθεί περισσότερο από 'IC τα τελευταία 3 δισεκατομμύρια χρόνια, παραμένοντας περίπου στους 4000'IC στη βάση του. Έχει υπολογιστεί ότι το συνολικό θερμικό περιεχόμενο της γης (για θερμοκρασίες πάνω από τη μέση επιφανειακή των 15'IC) είναι της τάξης των 12,6x1024 MJ και του φλοιού 5,4x1021 MJ (Armstead, 1983). Όπως λοιπόν προκύπτει από τα παραπάνω, η θερμική ενέργεια της γης είναι απέραντη, όμως μόνο τμήμα αυτής μπορεί να χρησιμοποιηθεί τελικά από τον ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 7

8 άνθρωπο. Μέχρι σήμερα η εκμετάλλευση της γεωθερμικής ενέργειας έχει περιοριστεί σε περιοχές όπου οι γεωλογικές συνθήκες επιτρέπουν σε ένα μέσο (νερό σε υγρή ή αέρια φάση) να «μεταφέρει» τη θερμότητα από τις βαθιές θερμές ζώνες στην επιφάνεια ή κοντά σε αυτήν. Με τον τρόπο αυτό δημιουργούνται οι γεωθερμικοί πόροι (geothermal resources). Πιθανώς, στο άμεσο μέλλον, νέες πρωτοποριακές τεχνικές θα μας προσφέρουν καινούργιες προοπτικές στον τομέα αυτόν. Εικόνα 1.1 :Ο Φλοιός, ο Μανδύας και ο Πυρήνας της γης. Πάνω δεξιά: τομή του φλοιού και του ανώτερου μανδύα ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 8

9 Σε πολλούς τομείς της ανθρώπινης ζωής οι πρακτικές εφαρμογές προηγούνται της επιστημονικής έρευνας και της τεχνολογικής ανάπτυξης. Η γεωθερμία αποτελεί χαρακτηριστικό παράδειγμα του φαινομένου αυτού. Αξιοποίηση του ενεργειακού περιεχόμενου των γεωθερμικών ρευστών γινόταν ήδη από τις αρχές του 19ου αιώνα. Εκείνη την περίοδο, στην Τοσκάνη της Ιταλίας, και συγκεκριμένα στην περιοχή του Larderello, λειτουργούσε μια χημική βιομηχανία για την παραγωγή βορικού οξέος από τα βοριούχα θερμά νερά που ανάβλυζαν από φυσικές πηγές ή αντλούνταν από ρηχές γεωτρήσεις. Η παραγωγή του βορικού οξέος γινόταν με εξάτμιση των βοριούχων νερών μέσα σε σιδερένιους «λέβητες», χρησιμοποιώντας ως καύσιμη ύλη ξύλα από τα κοντινά δάση. Το 1827, ο Francesco Larderel, ιδρυτής της βιομηχανίας αυτής, αντί να καίγονται ξύλα από τα διαρκώς αποψιλωμένα δάση της περιοχής. ανέπτυξε ένα σύστημα για τη χρήση της θερμότητας των βοριούχων ρευστών στη διαδικασία εξάτμισης (Εικόνα 1.2). Εικόνα 1.2 :Η καλυμμένη «λιμνούλα» (covered lagoon), που χρησιμοποιούνταν κατά το πρώτο μισό του 19ου αιώνα στην περιοχή του Larderello, για τη συλλογή των βοριούχων υδάτων και την παραγωγή βορικού οξέος. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 9

10 Η εκμετάλλευση της μηχανικής ενέργειας του φυσικού ατμού ξεκίνησε περίπου την ίδια περίοδο. Ο γεωθερμικός ατμός χρησιμοποιήθηκε για την ανέλκυση των ρευστών, αρχικά με κάποιους πρωτόγονους αέριους ανυψωτήρες και στη συνέχεια με παλινδρομικές και φυγοκεντρικές αντλίες και βαρούλκα. Ανάμεσα στο 1850 και 1875, οι εγκαταστάσεις του Larderello κατείχαν το μονοπώλιο παραγωγής βορικού οξέος στην Ευρώπη. Μεταξύ του 1910 και του 1940, στην περιοχή αυτή της Τοσκάνης ο χαμηλής πίεσης ατμός άρχισε να χρησιμοποιείται για τη θέρμανση βιομηχανικών κτιρίων, κατοικιών και θερμοκηπίων. Εν τω μεταξύ, ολοένα και περισσότερες χώρες άρχισαν να αναπτύσσουν τους γεωθερμικούς τους πόρους σε βιομηχανική κλίμακα. Το 1892, το πρώτο γεωθερμικό σύστημα τηλε-θέρμανσης (district heating) τέθηκε σε λειτουργία στο Boise του Αίνταχο των Η.Π.Α.. Το 1928, μια άλλη πρωτοπόρος χώρα στην εκμετάλλευση της γεωθερμικής ενέργειας, η Ισλανδία, ξεκίνησε επίσης την εκμετάλλευση των γεωθερμικών ρευστών (κυρίως θερμών νερών) για τη θέρμανση κατοικιών. Το 1904, έγινε η πρώτη απόπειρα παραγωγής ηλεκτρικής ενέργειας από γεωθερμικό ατμό, και πάλι στο Larderello της Ιταλίας (Εικόνα 1.3). Εικόνα 1.3:Η μηχανή που χρησιμοποιήθηκε στο Larderello το 1904 κατά την r r r r η r r λ / Ί r πρώτη πειραματική απόπειρα παραγωγής ηλεκτρικής ενεργειας απο γεωθερμικό ατμό. Διακρίνεται επίσης ο εφευρέτης της, πρίγκιπας Piero Ginori Conti. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 10

11 Η επιτυχία της αυτής πειραματικής προσπάθειας έδωσε μια ξεκάθαρη ένδειξη για τη βιομηχανική αξία της γεωθερμικής ενέργειας και σηματοδότησε την έναρξη μιας μορφής εκμετάλλευσης, που επρόκειτο έκτοτε να αναπτυχθεί σημαντικά. Η παραγωγή ηλεκτρικής ενέργειας στο Larderello αποτέλεσε πράγματι μια εμπορική επιτυχία. Το 1942, η εγκατεστημένη γεωθερμοηλεκτρική ισχύς ανερχόταν στα kwe. Σύντομα, πολλές χώρες ακολούθησαν το παράδειγμα της Ιταλίας. Το 1919 κατασκευάστηκαν οι πρώτες γεωθερμικές γεωτρήσεις στο Beppu της Ιαπωνίας, ενώ το 1921 ακολούθησαν εκείνες στο The Geysers της Καλιφόρνιας των ΗΠΑ. Το 1958 ένα μικρό εργοστάσιο παραγωγής ηλεκτρικής ενέργειας τέθηκε σε λειτουργία στη Νέα Ζηλανδία, ένα άλλο στο Μεξικό το 1959, στις ΗΠΑ το 1960 και ακολούθησαν πολλά άλλα σε διάφορες χώρες. 1.3 Σημερινό καθεστώς χρήσης της γεωθερμίας Μετά το 2ο Παγκόσμιο Πόλεμο, η αξιοποίηση της γεωθερμικής ενέργειας έγινε ελκυστική σε πολλές χώρες, επειδή ήταν ανταγωνιστική ως προς άλλες μορφές ενέργειας. Επιπλέον, η ενέργεια αυτή δε χρειαζόταν να εισαχθεί από άλλες χώρες, όπως συμβαίνει με τα ορυκτά καύσιμα ενώ σε πολλές περιπτώσεις αποτελούσε τον μοναδικό διαθέσιμο εγχώριο ενεργειακό πόρο. Στον Πίνακα 1.1 αναφέρονται οι χώρες που χρησιμοποιούν τη γεωθερμική ενέργεια για παραγωγή ηλεκτρισμού, καθώς και η εγκατεστημένη γεωθερμική ηλεκτρική ισχύς: 1995 (6.833 MWe), 2000 (7.974 MWe) και η αύξηση μεταξύ των ετών (Huttrer, 2001). Στον ίδιο Πίνακα φαίνεται επίσης η συνολική εγκατεστημένη ισχύς στις αρχές του 2003 (9.028 MWe). Η εγκατεστημένη γεωθερμική ηλεκτρική ισχύς στις αναπτυσσόμενες χώρες το 1995 και το 2000 αντιπροσωπεύει αντίστοιχα το 38% και το 47% της συνολικής εγκατεστημένης ισχύος παγκοσμίως. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 11

12 Πίνακας 1.1: Εγκατεστημένη θερμική ισχύς σε παγκόσμια κλίμακα, από το 1995 έως το 2000 (Huttrer, 2001) και στις αρχές του 2003 Country % 2003 (MWe) (MWe) (increase in MWe ) increase ( ) (MWe) Argentina Australia Austria China Costa Rica El Salvador Ethiopia France Germany Guatemala Iceland Inonesia ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 12

13 Italy Japan Kenya Mexico New Zealand Nicaragua Papua New Guinea Philippines Portugal Russia Thailand Turkey USA Total Η γεωθερμική ενέργεια στις αναπτυσσόμενες χώρες Η χρησιμοποίηση της γεωθερμικής ενέργειας στις αναπτυσσόμενες χώρες παρουσιάζει ενδιαφέρουσες τάσεις με το χρόνο. Μεταξύ των ετών 1975 και 1979 η εγκατεστημένη γεωθερμική ηλεκτρική ισχύς σ αυτές τις χώρες αυξήθηκε από 75 σε 462 MWe. Στο τέλος της επόμενης πενταετίας (1984) έφτασε στα MWe, παρουσιάζοντας ένα ρυθμό αύξησης κατά τη διάρκεια των δύο αυτών περιόδων 500% και 223% αντίστοιχα (Dickson and Fanelli, 1988).Στα επόμενα 16 χρόνια, από το 1984 έως το 2000, υπήρξε μια περαιτέρω αύξηση της τάξης του 150%. Η γεωθερμική ενέργεια συμμετέχει σημαντικά στο ενεργειακό ισοζύγιο αρκετών περιοχών. Για παράδειγμα, το 2001 η ηλεκτρική ενέργεια που παράχθηκε από γεωθερμικούς πόρους αντιπροσώπευε το 27% της συνολικής ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 13

14 ηλεκτρικής ενέργειας στις Φιλιππίνες, το 12,4 % στην Κένυα, το 11,4% στην Κόστα Ρίκα και το 4,3% στο Ελ Σαλβαδόρ. Όσον αφορά τις μη-ηλεκτρικές ή άμεσες εφαρμογές της γεωθερμικής ενέργειας, ο Πίνακας 1.2 δίνει την εγκατεστημένη ισχύ ( MWt) και την ενεργειακή παραγωγή και χρήση ( Ή) σε παγκόσμια κλίμακα για το έτος Κατά τη διάρκεια του έτους αυτού, άμεσες χρήσεις (direct uses) της γεωθερμίας καταγράφηκαν σε 58 χώρες, σε σύγκριση με τις 28 το 1995 και τις 24 το Ο αριθμός των χωρών αυτών είναι πολύ πιθανόν να έχει αυξηθεί από το 2000, όπως φυσικά και το ύψος της εγκατεστημένης ισχύος και της ενεργειακής χρήσης. Η πιο συνηθισμένη μη-ηλεκτρική χρήση της γεωθερμίας παγκόσμια είναι οι αντλίες θερμότητας (heat-pumps) (34,80%) και ακολουθούν η λουτροθεραπεία (26,2%), η θέρμανση χώρων (21,62%), η θέρμανση θερμοκηπίων (8,22%), οι υδατοκαλλιέργειες (3.93%) και οι βιομηχανικές χρήσεις (3,13%) (Lund and Freeston, 2001). Πίνακας 1.2: Μη-ηλεκτρικές χρήσεις της ηλεκτρικής ενέργειας ανά τον κόσμο (2000): εγκατεστημένη ισχύς (σε MW) και ενεργειακή χρήση (σε ΤΜέτος)^ηηά and Freeston, 2001). Country Power Energy (MWt) (TJ/yr) Algeria Argentina Armenia 1 15 Australia Austria Belgium ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 14

15 Bulgaria Canada Caribbean Islands Chile China Colombia Croatia Czech Republic Denmark Egypt 1 15 Finland France Georgia Germany Greece Guatemala Honduras Hungary Iceland India Indonesia Israel Italy Japan Jordan ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 15

16 Kenya Korea Lithuania Macedonia Mexico Nepal Netherlands New Zealand Norway 6 32 Peru Philippines 1 25 Poland Portugal Romania Russia Serbia Slovak Republic Slovenia Sweden Switzerland Thailand Tunisia Turkey United Kingdom * USA ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 16

17 Venezuela Yemen 1 15 Total ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 17

18 ΚΕΦΑΛΑΙΟ 2 Η ΦΥΣΗ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΟΡΩΝ 2.1 Η θερμική μηχανή της γης Η γεωθερμική βαθμίδα ορίζεται ως ο ρυθμός αύξησης της θερμοκρασίας της γης σε συνάρτηση με το βάθος, μέσα στο γήινο φλοιό. Σε βάθη που είναι προσβάσιμα με τις σύγχρονες γεωτρητικές μεθόδους, δηλαδή μέχρι τα m, η μέση γεωθερμική βαθμίδα κυμαίνεται περίπου στους 2,5-3'IC/100 m. Για παράδειγμα, εάν η θερμοκρασία στα πρώτα μέτρα κάτω από την επιφάνεια του εδάφους ανταποκρίνεται κατά μέσο όρο στη μέση ετήσια θερμοκρασία του ατμοσφαιρικού αέρα, δηλ. στους 15IC, τότε μπορούμε να υποθέσουμε ότι η θερμοκρασία στο βάθος των 2000 m θα είναι περίπου C, στα 3000 m 'IC, κ.ο.κ. για μερικά ακόμα χιλιάδες μέτρα. Παρόλα αυτά, υπάρχουν πολλές περιοχές στις οποίες η γεωθερμική βαθμίδα αποκλίνει πολύ από τη μέση τιμή. Εκεί όπου το γεωλογικό υπόβαθρο έχει υποστεί πολύ γρήγορη βύθιση και η λεκάνη έχει πληρωθεί με γεωλογικά «πολύ νέα» ιζήματα, η γεωθερμική βαθμίδα μπορεί να είναι μικρότερη και από 11C/100 m. Αντίθετα, σε μερικές «γεωθερμικές» καλούμενες περιοχές, η τιμή της γεωθερμικής βαθμίδας μπορεί να είναι και δεκαπλάσια της μέσης γήινης. Λόγω της θερμοκρασιακής διαφοράς ανάμεσα στα διάφορα στρώματα, προκαλείται ροή θερμότητας από τις βαθιές και θερμές ζώνες του υπεδάφους προς τις ρηχές και ψυχρότερες, τείνοντας έτσι στη δημιουργία ομοιόμορφων συνθηκών. Στην πραγματικότητα όμως, όπως πολύ συχνά συμβαίνει στη φύση, κάτι τέτοιο ουδέποτε επιτυγχάνεται πλήρως. Η μέση γήινη ροή θερμότητας στις ηπείρους και τους ωκεανούς είναι 65 και 101 mw/m2 αντίστοιχα, οι οποίες, υπολογίζοντας την έκταση των περιοχών, δίνουν ένα παγκόσμιο μέσο όρο της τάξης των 87 mw/m2 (Pollack et al., 1993). Οι τιμές αυτές προέκυψαν μετά από μετρήσεις σε θέσεις, που καλύπτουν το 62% περίπου της γήινης επιφάνειας. Υπάρχουν βέβαια και κάποιοι εμπειρικοί υπολογισμοί που αναφέρονται σε γεωλογικές χαρτογραφικές μονάδες και επιτρέπουν την εκτίμηση της θερμικής ροής χωρίς να προηγηθούν μετρήσεις. Η ανάλυση της θερμικής ροής από τους Pollack et al. (1993) είναι η πιο πρόσφατη και η μόνη σε έντυπη μορφή. Το Πανεπιστήμιο της Βόρ. Ντακότα, επιτρέπει σήμερα την πρόσβαση μέσο του διαδικτύου σε μια ανανεωμένη βάση δεδομένων θερμικής ροής, που περιλαμβάνει στοιχεία τόσο από ωκεάνιες όσο και από ηπειρωτικές περιοχές. Η θερμοκρασία αυξάνεται με το βάθος, και τα ηφαίστεια, οι θερμοπίδακες (geysers), οι θερμές πηγές κλπ, αποτελούν κατά μία έννοια την ορατή εκδήλωση της θερμότητας του εσωτερικού της γης. Η θερμότητα αυτή όμως προκαλεί και τη δημιουργία άλλων φαινομένων, που είναι λιγότερο διακριτά από τον άνθρωπο, τέτοιου μεγέθους όμως ώστε η ύπαρξή τους να οδηγεί στην ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 18

19 παρομοίωση της γης με μια τεράστια «θερμική μηχανή». Τα φαινόμενα αυτά αναφέρονται συνοπτικά στη «θεωρία των τεκτονικών πλακών». Στη συνέχεια θα προσπαθήσουμε να τα περιγράψουμε με απλό τρόπο και να αναλύσουμε τη σχέση τους με τους γεωθερμικούς πόρους α Ο Φλοιός Ο πλανήτης μας αποτελείται από το φλοιό, το πάχος του οποίου κυμαίνεται από km περίπου στις ηπειρωτικές περιοχές και 5-6 km στις ωκεάνιες, από το μανδύα, το πάχος του οποίου είναι κατά προσέγγιση km και τον πυρήνα με ακτίνα περίπου km (Εικόνα 1.1). Τα Εφυσικοχημικά χαρακτηριστικά του φλοιού, του μανδύα και του πυρήνα διαφέρουν από την επιφάνεια προς το κέντρο της γης β Η Λιθόσφαιρα Το εξωτερικό στερεό περίβλημα της γης, γνωστό ως λιθόσφαιρα, αποτελείται από το φλοιό και το ανώτερο τμήμα του μανδύα. Έχοντας μεταβαλλόμενο πάχος, από λιγότερο των 80 km στις ωκεάνιες ζώνες μέχρι πάνω από 200 km στις ηπειρωτικές, η λιθόσφαιρα συμπεριφέρεται σαν ένα συμπαγές σώμα γ Η Ασθενόσφαιρα Κάτω από τη λιθόσφαιρα βρίσκεται η ζώνη που ονομάζεται ασθενόσφαιρα, πάχους km και με μια λιγότερο «συμπαγή» και περισσότερο «πλαστική» συμπεριφορά. Με άλλα λόγια, στη γεωλογική κλίμακα, όπου ο χρόνος μετριέται σε εκατομμύρια χρόνια, αυτό το τμήμα της γης συμπεριφέρεται πιο κοντά με ένα ρευστό σε κάποιες διαδικασίες. Εξαιτίας της διαφοράς θερμοκρασίας ανάμεσα στα διάφορα τμήματα της ασθενόσφαιρας, δημιουργήθηκαν πριν από μερικές δεκάδες εκατομμύρια έτη μεταφορικές (συναγωγικές) κινήσεις μεταξύ της στερεάς βάσης αυτού του στρώματος και της βάσης του φλοιού και πιθανώς κάποιοι συναγωγικοί θύλακες. Οι κινήσεις αυτές θεωρούνται τα βασικά αίτια μετατόπισης των λιθοσφαιρικών πλακών. Είναι εξαιρετικά αργές (λίγα εκατοστά / έτος), παρόλα αυτά σταθερές, λόγω της συνεχούς παραγωγής θερμότητας από τη διάσπαση των ραδιενεργών στοιχείων και της προσφοράς θερμότητας από τα μεγαλύτερα βάθη της γης. Λόγω των κινήσεων αυτών, τεράστιοι όγκοι βαθύτερων και θερμών λιωμένων πετρωμάτων, με μικρότερη πυκνότητα και συνεπώς μικρότερο βάρος, ανέρχονται προς την επιφάνεια, ενώ ψυχρότερα και βαρύτερα πετρώματα, που βρίσκονται κοντά στην επιφάνεια, βυθίζονται, αναθερμαίνονται και ανεβαίνουν πάλι στην επιφάνεια. Στις ζώνες μικρού λιθοσφαιρικού πάχους, και κυρίως στις ωκεάνιες περιοχές, η λιθόσφαιρα ωθείται προς τα πάνω και στη συνέχεια κατακερματίζεται εξαιτίας της ανόδου των θερμών, και εν μέρει λιωμένων υλικών της ασθενόσφαιρας, εκεί όπου σχηματίζεται ο ανερχόμενος κλάδος των συναγωγικών θαλάμων. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 19

20 2.1.δ Οι «εκτεινόμενες ράχες»/ «spreading ridges» Αυτός ακριβώς είναι ο μηχανισμός που δημιούργησε και συνεχίζει να δημιουργεί τις «εκτεινόμενες ράχες (spreading ridges)», οι οποίες εκτείνονται σε μήκος μεγαλύτερο των 60 km 10 κάτω από τους ωκεανούς. Οι ράχεις αυτές σε κάποιες περιοχές, όπως στις Αζόρες και την Ισλανδία, αναδύονται πάνω από την επιφάνεια της θάλασσας, ενώ σε άλλες, όπως στην Ερυθρά Θάλασσα, αναδύονται ανάμεσα στις ηπείρους. Ένα σχετικά μικρό ποσοστό αυτών των ασθενοσφαιρικών λιωμένων υλικών αναδύονται στην επιφάνεια της γης μέσω των κορυφογραμμών των υποθαλάσσιων οροσειρών (ραχών) και, ερχόμενα σε επαφή με το θαλασσινό νερό, ψύχονται, στερεοποιούνται και σχηματίζουν με τον τρόπο αυτό νέο ωκεάνιο φλοιό. Το μεγαλύτερο όμως μέρος του ασθενοσφαιρικού αυτού υλικού χωρίζεται σε δύο κλάδους, οι οποίοι κινούνται σε αντίθετες κατευθύνσεις κάτω από τη λιθόσφαιρα, στη θέση ακριβώς των «μέσο- ωκεάνιων ραχών». Η συνεχής δημιουργία νέου φλοιού και η απόκλιση του ωκεάνιου πυθμένα με ένα ρυθμό της τάξης των λίγων εκατοστών ανά έτος, προκαλεί συνεχή αύξηση της ωκεάνιας λιθόσφαιρας. Σε άλλα σημεία της λιθόσφαιρας σχηματίζονται τεράστιες κατακόρυφες διαρρήξεις, εκατέρωθεν των οποίων παρατηρείται οριζόντια μετακίνηση των λιθοσφαιρικών πλακών. Οι διαρρήξεις αυτές μπορούν να φτάσουν σε μήκος μερικών χιλιάδων χιλιομέτρων και ονομάζονται «ρήγματα μετασχηματισμού». Τα φαινόμενα αυτά οδηγούν σε μια εύστοχη παρατήρηση: αφού τελικά η συνολική επιφάνεια των λιθοσφαιρικών πλακών παραμένει περίπου σταθερή στο χρόνο, η συνεχής δημιουργία νέου φλοιού στις μεσωκεάνιες ράχεις και το άνοιγμα των ωκεάνιων τμημάτων θα πρέπει να εξισορροπείται κατά κάποιον τρόπο από συρρίκνωση (καταστροφή) της λιθόσφαιρας σε άλλα σημεία της γης. Αυτό ακριβώς συμβαίνει στις λεγόμενες «ζώνες καταβύθισης», οι μεγαλύτερες από τις οποίες καταδεικνύονται από τις τεράστιες ωκεάνιες τάφρους, όπως αυτές π.χ. που εκτείνονται κατά μήκος των δυτικών ορίων του Ειρηνικού Ωκεανού και των δυτικών ακτών της Νότιας Αμερικής. Στις ζώνες καταβύθισης η λιθόσφαιρα κάμπτεται και βυθίζεται κάτω από την παρακείμενη λιθόσφαιρα και φθάνει μέσα στις πολύ θερμές και βαθιές ζώνες της, όπου αφομοιώνεται από το μανδύα και ο κύκλος επαναλαμβάνεται. Μέρος του υλικού της λιθόσφαιρας επανατήκεται και ανεβαίνει πάλι προς την επιφάνεια μέσω των ρηγμάτων του φλοιού. Συνέπεια αυτών των φαινομένων είναι η δημιουργία «μαγματικών τόξων» με πολλά ηφαίστεια που εντοπίζονται παράλληλα προς τις τάφρους, στην αντίθετη πλευρά των οροσειρών. Όταν οι τάφροι βρίσκονται κατά μήκος των ηπειρωτικών περιθωρίων, τότε τα τόξα αποτελούνται από αλυσίδες οροσειρών με πολλά ηφαίστεια, όπως είναι οι Άνδεις. Όταν οι τάφροι εντοπίζονται σε ωκεάνιες περιοχές, όπως στον Ειρηνικό ωκεανό, τα μαγματικά τόξα αποτελούνται από πολλά ηφαιστειακά νησιά (π.χ. Ιαπωνία, Φιλιππίνες κλπ.). Στην εικόνα 2.1 περιγράφονται ακριβώς αυτά τα φαινόμενα. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 20

21 Εικόνα 2.1:Σχηματική τομή που δείχνει τις διεργασίες που λαμβάνουν χώρα στις τεκτονικές πλάκες. Οι μεσωκεάνιες ράχες, τα ρήγματα μετασχηματισμού και οι ζώνες καταβύθισης σχηματίζουν ένα εκτεταμένο δίκτυο που χωρίζει την επιφάνεια της γης σε έξι τεράστιες και πολλές άλλες μικρότερες λιθοσφαιρικές περιοχές ή καλύτερα πλάκες (Εικόνα 2.2). Εξαιτίας των τεράστιων τάσεων που προκαλούνται από τη γήινη θερμική μηχανή και την ασυμμετρία των ζωνών που δημιουργούν και καταστρέφουν λιθοσφαιρικό υλικό, οι πλάκες αυτές κινούνται αργά η μία προς την άλλη, αλλάζοντας συνεχώς τη σχετική τους θέση. Τα όρια των πλακών αντιστοιχούν σε πολύ διερρηγμένες ζώνες του φλοιού, που χαρακτηρίζονται από έντονη σεισμικότητα, μεγάλο αριθμό ηφαιστείων και, λόγω της ανόδου πολύ θερμών υλικών προς την επιφάνεια, από υψηλή γήινη θερμική ροή. Όπως φαίνεται στην εικόνα 2.2, οι πιο σημαντικές γεωθερμικές περιοχές εντοπίζονται κοντά στα όρια των πλακών. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 21

22 Εικόνα 2.2'.Τεκτονικές πλάκες, μεσωκεάνιες ράχες, ωκεάνιες τάφροι, ζώνες καταβύθισης και γεωθερμικά πεδία. Τα βέλη δείχνουν την κατεύθυνση κίνησης των λιθοσφαιρικών πλακών προς τις ζώνες καταβύθισης. (1) Γεωθερμικά πεδία όπου παράγεται ηλεκτρική ενέργεια (2) Μεσωκεάνιες ράχεις που τέμνονται από μεγάλα ρήγματα μετασχηματισμού (3) Ζώνες καταβύθισης, όπου η βυθιζόμενη πλάκα κάμπτεται προς τα κάτω και λιώνει μέσα στην ασθενόσφαιρα. 2.2 Γεωθερμικά συστήματα Τα γεωθερμικά συστήματα εντοπίζονται στις περιοχές με κανονική ή λίγο μεγαλύτερη από τη μέση γήινη γεωθερμική βαθμίδα, και κυρίως στις περιοχές γύρω από τα περιθώρια των τεκτονικών πλακών, όπου η βαθμίδα μπορεί να είναι σημαντικά υψηλότερη της μέσης τιμής. Στην πρώτη περίπτωση, τα γεωθερμικά συστήματα χαρακτηρίζονται από χαμηλές θερμοκρασίες, που συνήθως δεν ξεπερνούν τους 100'IC σε οικονομικά και προσβάσιμα βάθη. Στη ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 22

23 δεύτερη περίπτωση, οι θερμοκρασίες μπορεί να καλύπτουν ένα ευρύ φάσμα, από σχετικά χαμηλές τιμές μέχρι και μεγαλύτερες από 400 C. Σχηματικά μπορεί να περιγραφεί ως «ένα σύστημα» που βρίσκεται σε περιορισμένο χώρο στον ανώτερο φλοιό της γης και αποτελείται από «κινούμενο νερό» το οποίο μεταφέρει θερμότητα από μια «πηγή» σε μια «δεξαμενή» θερμότητας, που συνήθως είναι μια ελεύθερη επιφάνεια (Hochstein, 1990). Έτσι λοιπόν, ένα γεωθερμικό σύστημα αποτελείται από τρία στοιχεία: την εστία θερμότητας, τον ταμιευτήρα και το ρευστό, το οποίο λειτουργεί ως μέσο μεταφοράς της θερμότητας. Η εστία θερμότητας μπορεί να είναι είτε μια πολύ υψηλής (>600'IC) θερμοκρασίας μαγματική διείσδυση που έχει φτάσει σε σχετικά μικρά βάθη (5 10 km) ή, στα χαμηλής θερμοκρασίας συστήματα, η κανονική θερμοκρασία των πετρωμάτων του εσωτερικού της γης, η οποία όπως αναφέρθηκε αυξάνεται με το βάθος. Ο ταμιευτήρας είναι ένας σχηματισμός από θερμά υδατοπερατά πετρώματα, που επιτρέπει την κυκλοφορία των ρευστών μέσα σε αυτόν και από τον οποίο τα ρευστά αντλούν θερμότητα. Πάνω από τον ταμιευτήρα βρίσκεται συνήθως ένα κάλυμμα αδιαπέραστων πετρωμάτων. Ο ταμιευτήρας πολλές φορές συνδέεται με μια επιφανειακή περιοχή τροφοδοσίας, δια μέσου της οποίας μετεωρικό ή επιφανειακό γενικά νερό κατεβαίνει και αντικαθιστά μερικώς ή ολικώς τα ρευστά που φεύγουν από τον ταμιευτήρα και εξέρχονται στην επιφάνεια με τη μορφή θερμών πηγών ή αντλούνται από γεωτρήσεις. Το γεωθερμικό ρευστό συνήθως είναι νερό, στις περισσότερες περιπτώσεις μετεωρικής προέλευσης, το οποίο, ανάλογα με τις συνθήκες πίεσης και θερμοκρασίας που επικρατούν στον ταμιευτήρα, βρίσκεται σε υγρή ή αέρια κατάσταση. Συχνά το ρευστό είναι εμπλουτισμένο σε χημικά στοιχεία και αέρια, όπως CO2, H2S, κλπ. Στην εικόνα 2.3 αποτυπώνεται σε πολύ απλουστευμένη μορφή ένα πρότυπο γεωθερμικό σύστημα. Ο μηχανισμός που διέπει τη λειτουργία των γεωθερμικών συστημάτων εν γένει ελέγχεται από τη μεταφορά θερμότητας μέσω της (συναγωγής/ κυκλοφορίας) των ρευστών (fluid convection). Στην Εικόνα 2.3 παριστάνεται σχηματικά ο μηχανισμός στην περίπτωση ενός υδροθερμικού συστήματος ενδιάμεσης θερμοκρασίας. Η θερμική συναγωγή λαμβάνει χώρα λόγω της θέρμανσης και, κατ επέκταση, της θερμικής διαστολής των ρευστών σε ένα πεδίο βαρύτητας. Η ενέργεια που προκαλεί το συγκεκριμένο φαινόμενο είναι ουσιαστικά η θερμότητα που προσφέρεται από την εστία στη βάση του συστήματος κυκλοφορίας. Η πυκνότητα των ρευστών που θερμαίνονται μειώνεται, οπότε αυτά παρουσιάζουν τάσεις ανόδου προς μικρότερα βάθη, ενώ αντικαθίστανται στη συνέχεια από ρευστά μικρότερης θερμοκρασίας και μεγαλύτερης πυκνότητας, που προέρχονται από τα περιθώρια του γεωθερμικού συστήματος. Λόγω της θερμικής συναγωγής προκαλείται λοιπόν θερμοκρασιακή αύξηση ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 23

24 στο ανώτερο τμήμα του γεωθερμικού συστήματος, καθώς οι θερμοκρασίες στα κατώτερα τμήματα μειώνονται (White, 1973). Recharge area Geothermal well steam vent " Cold me leone waters Impermeable caprock (thermal conduction) L, Reservoir (thermal convection! Flow of heat [conduction) Impermeable rock onduckon) (thermal Εικόνα 2.3'.Σχηματική αναπαράσταση ενός ιδανικού γεωθερμικού συστήματος ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 24

25 T e m p e ra tu re ( C> :o: DO BOD t B o lin g \ b e g in s C a t A s u rfa c e - j.ν' I C u rv e ' C ry sta llin e 400 5X 2DQ T e m p e ra tu re <*Fi Convecting magma Εικόνα 2.4:Πρότυπο (μοντέλο) ενός γεωθερμικού συστήματος. Η γραμμή (1) είναι η καμπύλη αναφοράς του σημείου ζέσεως του καθαρού νερού. Η καμπύλη (2) δείχνει τη θερμοκρασιακή κατανομή κατά μήκος μια τυπικής διαδρομής κυκλοφορίας του ρευστού από το σημείο Α (τροφοδοσία) προς το σημείο Ε (αποφόρτιση) (Από White, 1973) Οι διεργασίες που μόλις περιγράφηκαν πιθανώς να φαίνονται πολύ απλές, όμως η κατασκευή ενός καλού προτύπου (μοντέλου), το οποίο να αντιστοιχεί σε ένα πραγματικό γεωθερμικό σύστημα, είναι πολύ δύσκολο να πραγματοποιηθεί. Μια τέτοια εργασία απαιτεί πολύπλευρες ικανότητες, ειδικές γνώσεις και μεγάλη εμπειρία, ιδιαίτερα όταν αφορά συστήματα υψηλής θερμοκρασίας. Εξάλλου, τα γεωθερμικά συστήματα εμφανίζονται στη φύση με πάρα πολλές ιδιαιτερότητες και ιδιομορφίες, οι οποίες σχετίζονται με διάφορους συνδυασμούς γεωλογικών, φυσικών και χημικών χαρακτηριστικών που μπορεί να οδηγήσουν σε διάφορους τύπους συστημάτων. Από τα τρία στοιχεία ενός γεωθερμικού συστήματος, η εστία θερμότητας είναι το μόνο που απαραιτήτως πρέπει να έχει φυσική προέλευση. Εάν οι συνθήκες είναι ευνοϊκές, τα άλλα δύο στοιχεία μπορεί να είναι και «τεχνητά». Για παράδειγμα, τα γεωθερμικά ρευστά που αντλούνται από τον ταμιευτήρα και χρησιμοποιούνται ως η κινητήρια δύναμη ενός γεωθερμικού ατμοστρόβιλου για την παραγωγή ηλεκτρικής ενέργειας, μπορούν μετά την ενεργειακή εκμετάλλευσή τους να επανεισαχθούν στον ταμιευτήρα μέσω συγκεκριμένων γεωτρήσεων επανεισαγωγής (injection wells). Έτσι λοιπόν, η φυσική τροφοδοσία ενός ταμιευτήρα μπορεί να συνοδευτεί και να συμπληρωθεί από μια τεχνητή επανατροφοδοσία. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 25

26 Εδώ και αρκετά χρόνια, η τεχνική επανεισαγωγής των ρευστών στον ταμιευτήρα εφαρμόζεται σε πολλές περιοχές του κόσμου, ως ένα μέσο δραστικής μείωσης των περιβαλλοντικών επιπτώσεων από τη λειτουργία των γεωθερμικών εγκαταστάσεων. Η χρήση των γεωτρήσεων επανεισαγωγής για τεχνητή επανατροφοδοσία μπορεί επίσης να βοηθήσει στην ανανέωση και συντήρηση κάποιων «παλιών» ή «εξαντλημένων» γεωθερμικών πεδίων. Ως παράδειγμα αναφέρεται η περίπτωση του γεωθερμικού πεδίου «The Geysers» της Καλιφόρνιας (ΗΠΑ), ενός από τα μεγαλύτερα γεωθερμικά πεδία στον κόσμο, όπου παρατηρήθηκε δραστική μείωση της παραγωγής στα τέλη της δεκαετίας του 1980, λόγω ακριβώς της έλλειψης ρευστών στον ταμιευτήρα. 2.3 Το πρόγραμμα Θερμών Ξηρών Πετρωμάτων και οι πρώτες πειραματικές δοκιμές Το 1997 ξεκίνησε ένα πρόγραμμα, το Southeast Geysers Effluent Recycling Project, που αποσκοπούσε στη μεταφορά επεξεργασμένων αστικών αποβλήτων στο γεωθερμικό πεδίο από μια απόσταση 48 km. Το πρόγραμμα αυτό οδήγησε στην επαναλειτουργία αρκετών εργοστασίων παραγωγής ηλεκτρικής ενέργειας, τα οποία είχαν εγκαταλειφθεί εξαιτίας της έλλειψης ρευστών. Σε άλλη περίπτωση, και στα πλαίσια του Santa Rosa Geysers Recharge Project, 41,5 εκατομμύρια λίτρα επεξεργασμένων αστικών αποβλήτων θα αντλούνται κάθε μέρα από τους τοπικούς σταθμούς επεξεργασίας της Santa Rosa και άλλων γειτονικών πόλεων και θα μεταφέρονται μέσω ενός δικτύου σωληνώσεων συνολικού μήκους 66 km στο γεωθερμικό πεδίο «The Geysers», όπου θα χρησιμοποιηθούν για την επανατροφοδοσία του ταμιευτήρα διαμέσου ειδικά διατρηθέντων γεωτρήσεων. Στα Προγράμματα των αποκαλούμενων Θερμών Ξηρών Πετρωμάτων (Hot Dry Rocks), για τα οποία έγιναν για πρώτη φορά πειραματικές δοκιμές το 1970 στο Los Alamos του Νέου Μεξικού (ΗΠΑ), τόσο τα ρευστά όσο και ο ταμιευτήρας είναι τεχνητά. Στην περίπτωση λοιπόν των HDR γίνεται, μέσω ειδικών γεωτρήσεων, τεχνητή εισαγωγή νερού με μεγάλη πίεση σε ένα θερμό και συμπαγές πέτρωμα, το οποίο βρίσκεται σε μεγάλο βάθος. Η εισπίεση αυτή προκαλεί στο πέτρωμα «υδραυλική διάρρηξη». Το νερό διαπερνά τις τεχνητές διαρρήξεις και λόγω της επαφής του με μεγάλες επιφάνειες θερμού πετρώματος αντλεί θερμότητα από αυτόν τον μεγάλο σε όγκο σχηματισμό, ο οποίος λειτουργεί ως ένας φυσικός ταμιευτήρας. Στη συνέχεια, ο «ταμιευτήρας» διαπερνάται από μια δεύτερη γεώτρηση, μέσα από την οποία αντλείται το νερό που θερμάνθηκε. Έτσι λοιπόν, το συγκεκριμένο γεωθερμικό σύστημα αποτελείται (i) από τη γεώτρηση που χρησιμοποιείται για την υδραυλική διάρρηξη, μέσω της οποίας εισπιέζεται κρύο νερό στον (ii) τεχνητό ταμιευτήρα και (iii) από τη γεώτρηση άντλησης του θερμού νερού. Όλο αυτό το σύστημα, μαζί με τις εγκαταστάσεις στην επιφάνεια, σχηματίζουν ένα κλειστό κύκλωμα (loop) (Garnish, 1987) (βλέπουμε Εικόνα 2.4). ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 26

27 To ερευνητικό Πρόγραμμα του Los Alamos αποτέλεσε πρόδρομο για άλλες παρόμοιες εφαρμογές στην Αυστραλία, Γαλλία, Γερμανία, Ιαπωνία και Μεγάλη Βρετανία. Μετά από μια περίοδο όπου κανείς δεν τις έδινε σημασία, οι εφαρμογές αυτές απέκτησαν νέα ώθηση, λόγω της ανακάλυψης σε πρώτη φάση ότι τα βαθιά πετρώματα έχουν ήδη κάποιες περιορισμένες φυσικές διαρρήξεις και στη συνέχεια ότι οι τεχνικές και η μεθοδολογία που πρέπει να χρησιμοποιηθεί εξαρτώνται κατά πολύ από τις τοπικές γεωλογικές συνθήκες. Οι πιο εξελιγμένες επιστημονικά και τεχνολογικά έρευνες στον τομέα των Θερμών Ξηρών Πετρωμάτων πραγματοποιήθηκαν στην Ιαπωνία και στο Ευρωπαϊκό Πρόγραμμα της Αλσατίας (Γαλλία). Πολλά προγράμματα που ξεκίνησαν στην Ιαπωνία τη δεκαετία του 1980 (στις περιοχές Hijiori, Ogachi και Yunomori), είχαν σημαντική χρηματοδότηση από την Ιαπωνική κυβέρνηση και τη βιομηχανία και κατέληξαν σε ενδιαφέροντα αποτελέσματα, τόσο από επιστημονική όσο και από βιομηχανική άποψη. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 27

28 Εικόνα 2.5:Σχηματική αναπαράσταση ενός συστήματος Θερμών Ξηρών Πετρωμάτων σε οικονομική κλίμακα (από Richards et al., 1994) ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 28

29 Από την άλλη, το Ευρωπαϊκό HDR Πρόγραμμα εφαρμόστηκε σε διάφορες φάσεις και περιέλαβε την κατασκευή δύο γεωτρήσεων, η μία από τις οποίες έφτασε τα 5.060m βάθους. Οι υδραυλικές δοκιμές και μετρήσεις, όπως εξάλλου και οι γεωφυσικές διασκοπήσεις, κατέληξαν σε καλά και πολλά υποσχόμενα αποτελέσματα. Έτσι λοιπόν, το Ευρωπαϊκό HDR Πρόγραμμα φαίνεται να είναι για την ώρα το πιο πετυχημένο (Tenzer, 2001). ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 29

30 ΚΕΦΑΛΑΙΟ 3 ΟΡΙΣΜΟΙ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΟΡΩΝ 3.1 Καθιερωμένη ορολογία Δεν υπάρχει δυστυχώς κάποια διεθνώς καθιερωμένη ορολογία που να χρησιμοποιείται από το σύνολο της γεωθερμικής κοινότητας, ώστε να διευκολύνεται η αμοιβαία κατανόηση και συνεννόηση. Στη συνέχεια του κεφαλαίου παρατίθενται μερικοί από τους πλέον κοινώς χρησιμοποιούμενους ορισμούς και ταξινομήσεις σχετικά με τη γεωθερμία. Σύμφωνα με τους Muffler & Cataldi (1978), ο γενικός όρος «γεωθερμικός πόρος» αναφέρεται στην προσβάσιμη βασική πηγή (accessible resource base). Η προσβάσιμη βασική πηγή είναι ουσιαστικά όλη η θερμική ενέργεια που βρίσκεται αποθηκευμένη κάτω από συγκεκριμένη περιοχή μεταξύ της επιφάνειας της γης και ενός συγκεκριμένου βάθους στο φλοιό. Αυτή η ενέργεια ξεκινά από την τοπική μέση ετήσια θερμοκρασία. Η προσβάσιμη πηγή περιλαμβάνει τον ωφέλιμο προσβάσιμο πόρο (useful accessible resource base), εκείνο δηλαδή το τμήμα της γεωθερμικής ενέργειας που μπορεί να ανακτηθεί με οικονομικά συμφέροντα και νόμιμο τρόπο, κάποια στιγμή στο σχετικά άμεσο μέλλον (μέσα σε λιγότερο από 100 χρόνια). Αυτή η κατηγορία περιλαμβάνει τους ταυτοποιημένους οικονομικά συμφέροντες πόρους (identified economic resources), οι οποίοι είναι γνωστοί και ως αποθέματα (reserves) και αναφέρονται στις ποσότητες της γεωθερμικής ενέργειας μιας συγκεκριμένης περιοχής που μπορούν να αξιοποιηθούν με ανταγωνιστικό κόστος σε σχέση με τις άλλες πηγές ενέργειας, και οι οποίοι πόροι είναι γνωστό ότι υπάρχουν και έχουν προκύψει ως αποτέλεσμα γεωτρητικών, γεωχημικών, γεωφυσικών και άλλων γεωλογικών ερευνών-μελετών. Το Σχήμα 9 παρουσιάζει σε γραφική μορφή τους παραπάνω και άλλους όρους, που μπορούν να χρησιμοποιούνται από τους ειδικούς στη γεωθερμία. Το πλέον συνηθισμένο κριτήριο για την ταξινόμηση των γεωθερμικών πόρων είναι αυτό που βασίζεται στην ενθαλπία των γεωθερμικών ρευστών, τα οποία λειτουργούν ως ο φορέας «μεταφοράς» της θερμότητας από τα βαθιά και θερμά πετρώματα προς την επιφάνεια. 3.2 Η ενθαλπία Η ενθαλπία, η οποία σε γενικές γραμμές θεωρείται ότι είναι ανάλογη της θερμοκρασίας, χρησιμοποιείται για να εκφράσει την περιεχόμενη θερμική ενέργεια των ρευστών και δίνει μια γενική εικόνα της ενεργειακής «αξίας» τους. Οι γεωθερμικοί πόροι διακρίνονται σε χαμηλής, μέσης και υψηλής ενθαλπίας (ή θερμοκρασίας), σύμφωνα με το ενεργειακό τους περιεχόμενο και τις πιθανές μορφές αξιοποίησής τους. Στον Πίνακα 3 αναφέρονται οι χαρακτηριστικοί τρόποι ταξινόμησης, όπως αυτοί προτάθηκαν από διάφορους συγγραφείς. Όπως ακριβώς και για την ορολογία, μια κοινώς αποδεκτή μέθοδος ταξινόμησης θα βοηθούσε στην αποφυγή συγχύσεων και παρανοήσεων. Όμως, μέχρι να γίνει αυτό, θα πρέπει κάθε φορά και κατά περίπτωση να δηλώνουμε ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 30

31 τις τιμές των θερμοκρασιών ή το εύρος τους, διότι όροι όπως «χαμηλή», «ενδιάμεση» ή «υψηλή» δεν έχουν πάντα την ίδια ερμηνεία και πολλές φορές είναι παραπλανητικοί. Εικόνα 3.1 :Γραφική παράσταση που δίνει τις διάφορες κατηγορίες των γεωθερμικών πόρων (Από Muffler & Cataldi, 1978). Ο κάθετος άξονας παριστάνει το βαθμό της οικονομικής επιτευξιμότητας, ενώ ο οριζόντιος το βαθμό της γεωλογικής βεβαιότητας. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 31

32 Πίνακας3.1 Ταξινόμηση των γεωθερμικών πόρων ( C)Source: (a) Muffler and Cataldi (1978). (b) Hochstein (1990). (c) Benderitter and Cormy (1990). (d) Nicholson (1993). (e) Axelsson and Gunnlaugsson (2000) (a) (b) (c) (d) (e) Low enthalpy resources < 90 <125 <100 <150 <190 Intermediate enthalpy resources High enthalpy resources >150 >225 >200 >150 >190 Συχνά γίνεται διάκριση ανάμεσα στα γεωθερμικά συστήματα όπου το κυρίαρχο ρευστό είναι το νερό στην υγρή φάση (liquid dominated systems) και σε 20 εκείνα όπου το κυρίαρχο ρευστό είναι ο ατμός (vapour dominated systems ή dry steam systems) (White, 1973). Στα συστήματα όπου επικρατεί το νερό, η υγρή φάση είναι αυτή που ελέγχει συνεχώς την πίεση. Μέσα στη φάση αυτή μπορεί να περιέχονται και κάποια αέρια με τη μορφή μικρών φυσαλίδων. Αυτά τα γεωθερμικά συστήματα, των οποίων οι θερμοκρασίες κυμαίνονται από 125'IC μέχρι 225'IC, είναι τα πλέον συνηθισμένα παγκοσμίως. Ανάλογα με τις συνθήκες πίεσης και θερμοκρασίας, μπορούν να παράγουν θερμό νερό, μίγμα νερού και ατμού, υγρό ατμό, ενώ σε κάποιες περιπτώσεις ξηρό ατμό. Στα συστήματα όπου το κυρίαρχο ρευστό είναι ο ατμός, το υγρό νερό και ο ατμός συνήθως συνυπάρχουν στον ταμιευτήρα, με τον ατμό να λειτουργεί ως η φάση που ελέγχει συνεχώς την πίεση. Τέτοιου τύπου γεωθερμικά συστήματα, τα πιο γνωστά εκ των οποίων είναι το Larderello στην Ιταλία και το ^ e Geysers στην Καλιφόρνια (ΗΠΑ), είναι κατά βάση σπάνια και συνιστούν συστήματα υψηλής θερμοκρασίας. Κατά κύριο λόγο παράγουν ξηρό έως υπέρθερμο ατμό. Οι όροι υγρός, ξηρός και υπέρθερμος ατμός, οι οποίοι χρησιμοποιούνται συχνά από τους γεωθερμικούς, χρειάζονται κάποιες επιπλέον επεξηγήσεις, κυρίως για όσους δεν έχουν το σχετικό τεχνικό υπόβαθρο. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 32

33 3.3 Παράδειγμα πώς κρατάμε σταθερή και ίση τιμή με 1 atm Για να γίνει όσο το δυνατόν απλούστερο, θα χρησιμοποιήσουμε το παράδειγμα μιας κατσαρόλας γεμάτης νερό, μέσα στην οποία η πίεση μπορεί να κρατηθεί σταθερή και ίση με 1 atm (101,3 kpa). Εάν θερμάνουμε το νερό, τότε μόλις φτάσει στη θερμοκρασία των 100'IC (=σημείο ζέσεως για πίεση ίση με 1atm) θα αρχίσει να βράζει και θα περάσει από την υγρή στην αέρια φάση του ατμού. Μετά από κάποια ώρα, μέσα στην κατσαρόλα το υγρό και ο ατμός θα συνυπάρχουν. Ο υδρατμός συνυπάρχει με το υγρό, βρίσκεται σε θερμοδυναμική ισορροπία με αυτό, αποτελώντας ουσιαστικά τον υγρό ατμό. Εάν συνεχίσουμε να θερμαίνουμε την κατσαρόλα, διατηρώντας την πίεση στη 1 atm, το υγρό θα εξατμιστεί εντελώς και τελικά η κατσαρόλα θα περιέχει μόνο ατμό. Αυτός αποκαλείται ξηρός ατμός. Και ο υγρός και ο ξηρός ατμός αποκαλούνται επίσης «κορεσμένοι ατμοί». Τέλος, αυξάνοντας κι άλλο τη θερμοκρασία, για παράδειγμα στους 120'IC, και συνεχίζοντας να διατηρούμε την πίεση σταθερή, θα πάρουμε υπέρθερμο ατμό, με υπερθέρμανση 20'IC πάνω από τη θερμοκρασία εξάτμισης στις συγκεκριμένες συνθήκες πίεσης. Τα ίδια σε γενικές γραμμές φαινόμενα, αλλά σε διαφορετικά μεγέθη και υπό διαφορετικές συνθήκες πίεσης και θερμοκρασίας, λαμβάνουν χώρα στο υπέδαφος, σε αυτό που χρόνια ένας συγγραφέας αποκαλούσε «φυσική - γήινη - τσαγιέρα». 3.4 Τα «γεωπιεσμένα» συστήματα Ένας άλλος διαχωρισμός των γεωθερμικών συστημάτων είναι αυτός που βασίζεται στην κατάσταση ισορροπίας στον ταμιευτήρα (Nicholson, 1993), σύμφωνα με τον οποίο λαμβάνονται υπόψη η κυκλοφορία των ρευστών του ταμιευτήρα και ο μηχανισμός μεταφοράς της θερμότητας. Στα δυναμικά συστήματα ο ταμιευτήρας τροφοδοτείται συνεχώς με νερό, το οποίο θερμαίνεται. Στη συνέχεια, ο ταμιευτήρας «αποφορτίζεται», είτε γιατί το θερμό ρευστό ανέβηκε μέχρι την επιφάνεια είτε γιατί άρχισε να γεμίζει τους υδατοπερατούς υπόγειους σχηματισμούς. Η θερμότητα μεταφέρεται στο σύστημα μέσω του μηχανισμού της συναγωγής (convection) και της κυκλοφορίας του ρευστού. Αυτή η κατηγορία περιλαμβάνει συστήματα τόσο υψηλής (>150'IC) όσο και χαμηλής (<100'IC) θερμοκρασίας. Στα στατικά συστήματα, γνωστά και ως στάσιμα ή συστήματα αποθήκευσης, παρατηρείται ελάχιστη ή καμμία τροφοδοσία του ταμιευτήρα και η μεταφορά θερμότητας γίνεται μόνο με τη βοήθεια του μηχανισμού αγωγής (conduction). H συγκεκριμένη κατηγορία περιλαμβάνει τα χαμηλής θερμοκρασίας και τα «γεωπεπιεσμένα» (geopressured) συστήματα. Γεωπεπιεσμένα συστήματα έχουν προσδιοριστεί σε μεγάλες ιζηματογενείς λεκάνες (π.χ. στον Κόλπο του Μεξικού, ΗΠΑ) σε βάθη 3-7 km. ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 33

34 Οι γεωπεπιεσμένοι ταμιευτήρες αποτελούνται από περατά ιζηματογενή πετρώματα που βρίσκονται ανάμεσα σε αδιαπέρατα, χαμηλής αγωγιμότητας, στρώματα, και περιέχουν πεπιεσμένο θερμό νερό που εγκλωβίστηκε εκεί κατά την περίοδο δημιουργίας των λεκανών και απόθεσης των ιζημάτων. Η πίεση του θερμού νερού υπερβαίνει κατά πολύ την υδροστατική και προσεγγίζει τη λιθοστατική. Οι γεωπεπιεσμένοι ταμιευτήρες μπορεί επίσης να περιέχουν σημαντικές ποσότητες μεθανίου ή άλλων υδρογονανθράκων, οπότε μπορούν να παράγουν θερμική και υδραυλική ενέργεια (πεπιεσμένο θερμό νερό) καθώς και αέριο μεθάνιο. Τέτοιοι ενεργειακοί πόροι έχουν υποστεί εκτεταμένη έρευνα, αλλά μέχρι στιγμής δεν υπήρξε κάποια βιομηχανική αξιοποίησή τους. Ο όρος γεωθερμικό πεδίο αποτελεί ένα γεωγραφικό προσδιορισμό, που συνήθως χρησιμοποιείται για να περιγράψει μια περιοχή στην οποία παρουσιάζεται κάποια επιφανειακή γεωθερμική δραστηριότητα. Στις περιπτώσεις όπου δεν παρατηρείται δραστηριότητα στην επιφάνεια, ο όρος αυτός μπορεί να χρησιμοποιηθεί για να προσδιορίσει μια περιοχή που αντιστοιχεί στο γεωθερμικό ταμιευτήρα, ο οποίος βρίσκεται στο υπέδαφος ακριβώς κάτω από αυτήν (Axelsson & Gunnlaugsson, 2000). Επειδή η γεωθερμική ενέργεια περιγράφεται ως ανανεώσιμη (renewable) και αειφορική (sustainable), είναι σημαντικό να διαχωρίσουμε τις δύο αυτές έννοιες: Ο όρος «ανανεώσιμη» περιγράφει μια ιδιότητα του ενεργειακού πόρου, ενώ η «αειφορία» τον τρόπο με τον οποίο αυτός αξιοποιείται. Το πιο σημαντικό κριτήριο για την ταξινόμηση της γεωθερμικής ενέργειας στις ανανεώσιμες πηγές είναι ο ρυθμός επαναφόρτισης του ενεργειακού συστήματος. Κατά την εκμετάλλευση ενός φυσικού γεωθερμικού συστήματος, η επανατροφοδοσία επιτυγχάνεται με την αναπλήρωση του θερμού νερού στον ταμιευτήρα στο ίδιο χρονικό διάστημα στο οποίο γίνεται η παραγωγή των θερμών ρευστών. Αυτή ακριβώς η διαδικασία δικαιολογεί την ταξινόμηση της γεωθερμικής στις ανανεώσιμες πηγές ενέργειας. Στην περίπτωση των θερμών ξηρών πετρωμάτων και κάποιων θερμών εγκλωβισμένων υδροφόρων σε ιζηματογενείς λεκάνες, η ενεργειακή φόρτιση ελέγχεται αποκλειστικά από την αγωγή θερμότητας, η οποία είναι μια ιδιαιτέρως αργή διαδικασία. Για το λόγο αυτό, ίσως θα έπρεπε τα συστήματα αυτά να κατατάσσονται στις πεπερασμένες πηγές ενέργειας (Stefansson, 2000). Η αειφορία που αφορά την κατανάλωση ενός πόρου εξαρτάται από το αρχικό του μέγεθος, το ρυθμό εκμετάλλευσης (παραγωγής ρευστών) και το ρυθμό κατανάλωσης. Η κατανάλωση μπορεί προφανώς να διατηρηθεί σταθερή για τη χρονική περίοδο κατά την οποία η επαναφόρτιση της πηγής είναι ταχύτερη ή ίση με την αποφόρτιση. Ο όρος αειφόρος ανάπτυξη χρησιμοποιείται από την Παγκόσμια Επιτροπή για το Περιβάλλον και την Ανάπτυξη (World Commission on Environment and Development) για να περιγράψει την ανάπτυξη η οποία «...ανταποκρίνεται στις ανάγκες της σημερινής γενιάς, χωρίς όμως να θέτει σε κίνδυνο την κάλυψη των αναγκών των μελλοντικών γενεών..». ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 34

35 Σε αυτό το πλαίσιο, η αειφόρος ανάπτυξη δεν υποδηλώνει ότι κάθε δεδομένη πηγή ενέργειας πρέπει να αξιοποιείται με έναν εξολοκλήρου αειφόρο τρόπο, αλλά ότι θα πρέπει να βρεθεί μια «φόρμουλα» αντικατάστασης του πόρου που υφίσταται εκμετάλλευση, έτσι ώστε οι επόμενες γενιές να μπορούν να εξασφαλίσουν για αυτές τους κατάλληλους ενεργειακούς πόρους, ανεξάρτητα αν ο συγκεκριμένος θα έχει εξαντληθεί. Με την έννοια αυτή, οι μελέτες που αφορούν την αειφορική ανάπτυξη ενός συγκεκριμένου γεωθερμικού πεδίου θα έπρεπε πιθανώς να προσανατολίζονται καταρχήν στην απόκτηση και στη συνέχεια στην εξεύρεση τρόπων διατήρησης ενός σταθερού επιπέδου παραγωγής γεωθερμικής ενέργειας σε εθνικό ή περιφερειακό πλαίσιο. Αυτό βέβαια ισχύει τόσο για τις ηλεκτρικές όσο και για τις άμεσες χρήσεις, και θα αφορά κάποιο συγκεκριμένο χρονικό διάστημα, για παράδειγμα μια περίοδο 300 ετών, με καινούρια γεωθερμικά πεδία να αντικαθιστούν αυτά που έχουν εξαντληθεί (Wright, 1998). ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 35

36 ΚΕΦΑΛΑΙΟ 4 ΓΕΩΘΕΡΜΙΚΗ ΕΡΕΥΝΑ 4.1 Αντικείμενα έρευνας Τα αντικείμενα μιας γεωθερμικής έρευνας είναι (Lumb, 1981): 1. Ο προσδιορισμός των γεωθερμικών φαινομένων 2. Η επιβεβαίωση της ύπαρξης ενός ωφέλιμου παραγωγικού γεωθερμικού πεδίου 3. Η εκτίμηση του μεγέθους του ενεργειακού πόρου 4. Ο καθορισμός του τύπου του γεωθερμικού πεδίου 5. Ο εντοπισμός των παραγωγικών ζωνών 6. Ο καθορισμός του θερμικού περιεχομένου των γεωθερμικών ρευστών που θα παραχθούν από το γεωθερμικό πεδίο μέσω των παραγωγικών γεωτρήσεων 7. Η συλλογή των βασικών δεδομένων, πάνω στα οποία θα βασιστούν τα αποτελέσματα της μελλοντικής παρακολούθησης του πεδίου 8. Ο καθορισμός της τιμής των ευαίσθητων περιβαλλοντικών παραμέτρων πριν από την εκμετάλλευση 9. Η συλλογή πάσης φύσεως πληροφορίας και γνώσης για κάθε χαρακτηριστικό στοιχείο που θα μπορούσε να προκαλέσει προβλήματα κατά την ανάπτυξη του πεδίου. Η σχετική σπουδαιότητα καθενός από τα παραπάνω εξαρτάται από πολλούς παράγοντες, οι περισσότεροι από τους οποίους συνδέονται με αυτό καθαυτό τον ενεργειακό πόρο, και περιλαμβάνουν το είδος της αναμενόμενης εκμετάλλευσης, τη διαθέσιμη τεχνολογία, τα οικονομικά μεγέθη, ως επίσης την κατάσταση, τη γεωγραφική θέση και τη χρονική περίοδο. Όλα τα παραπάνω επηρεάζουν άμεσα τον προγραμματισμό και την έκβαση μιας γεωθερμικής έρευνας. Για παράδειγμα, οι προκαταρκτικές αναγνωριστικές έρευνες των γεωθερμικών εκδηλώσεων επιφανείας αποκτούν ιδιαίτερη σημασία και χρησιμότητα όταν αφορούν μια απομακρυσμένη και μη μελετημένη περιοχή, σε σχέση με μια γνωστή και εκτενώς μελετημένη. Εξάλλου, η εκτίμηση του ακριβούς μεγέθους του γεωθερμικού πόρου αποκτά ίσως μικρότερη σημασία εφόσον πρόκειται για μια μικρής κλίμακας εφαρμογή, αφού η τελευταία προφανώς απαιτεί πολύ λιγότερη θερμική ενέργεια απ ότι ήδη παράγεται με φυσικό τρόπο. Επίσης, εάν η γεωθερμική ενέργεια πρόκειται να χρησιμοποιηθεί για τηλε θέρμανση μιας περιοχής ή σε εφαρμογές που απαιτούν χαμηλού βαθμού θερμότητα, τότε η εύρεση ρευστών υψηλής θερμοκρασίας δεν αποτελεί απαραίτητα τον αντικειμενικό σκοπό της γεωθερμικής έρευνας (Lumb, 1981). ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ 36

Τί είναι Γεωθερμική Ενέργεια; (What is Geothermal Energy?)

Τί είναι Γεωθερμική Ενέργεια; (What is Geothermal Energy?) Τί είναι Γεωθερμική Ενέργεια; (What is Geothermal Energy?) Συγγραφή : Mary H. Dickson και Mario Fanelli Istituto di Geoscienze e Georisorse, CNR, Pisa, Italy Μετάφραση : Μιχάλης Φυτίκας και Μαρία Παπαχρήστου

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερμική Ενέργεια

Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερμική Ενέργεια Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερμική Ενέργεια Ιωάννης Στεφανάκος και Νίκος Μαμάσης Τομέας Υδατικών Πόρων & Περιβάλλοντος - Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2015 Διάρθρωση παρουσίασης: Γεωθερμική

Διαβάστε περισσότερα

«Γεωθερμική ενέργεια με τη μέθοδο της τηλεθέρμανσης στη περιοχή του Πολιχνίτου Λέσβου»

«Γεωθερμική ενέργεια με τη μέθοδο της τηλεθέρμανσης στη περιοχή του Πολιχνίτου Λέσβου» ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΘΕΟΦΡΑΣΤΕΙΟ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ & ΟΙΚΟΛΟΓΙΚΗ ΜΗΧΑΝΙΚΗ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ «Γεωθερμική ενέργεια με τη μέθοδο της τηλεθέρμανσης στη περιοχή του Πολιχνίτου

Διαβάστε περισσότερα

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Α ΘΕΡΜΟΤΗΤΑ ΣΤΟ ΥΠΕΔΑΦΟΣ ΚΑΤΑΛΛΗΛΗ ΓΙΑ: ΘΕΡΜΑΝΣΗ & ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ ΜΕΣΩ ΤΟΥ ΑΤΜΟΥ, ΟΠΩΣ ΜΕ ΤΗΝ ΣΥΜΒΑΤΙΚΗ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Α ΘΕΡΜΟΤΗΤΑ ΣΤΟ ΥΠΕΔΑΦΟΣ ΚΑΤΑΛΛΗΛΗ ΓΙΑ: ΘΕΡΜΑΝΣΗ & ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ ΜΕΣΩ ΤΟΥ ΑΤΜΟΥ, ΟΠΩΣ ΜΕ ΤΗΝ ΣΥΜΒΑΤΙΚΗ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Α ΓΕΩΘΕΡΜΙΑ ΘΕΡΜΟΤΗΤΑ ΣΤΟ ΥΠΕΔΑΦΟΣ ΚΑΤΑΛΛΗΛΗ ΓΙΑ: ΘΕΡΜΑΝΣΗ & ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ ΜΕΣΩ ΤΟΥ ΑΤΜΟΥ, ΟΠΩΣ ΜΕ ΤΗΝ ΣΥΜΒΑΤΙΚΗ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ 1 ΓΕΩΘΕΡΜΙΑ : πώς γίνεται αντιληπτή στην επιφάνεια

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερµική Ενέργεια. Ιωάννης Στεφανάκος

Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερµική Ενέργεια. Ιωάννης Στεφανάκος Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερµική Ενέργεια Ιωάννης Στεφανάκος Τοµέας Υδατικών Πόρων & Περιβάλλοντος - Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2010 ιάρθρωση παρουσίασης: Γεωθερµική Ενέργεια Εισαγωγή

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία. Γεωθερμική ενέργεια

Εισαγωγή στην Ενεργειακή Τεχνολογία. Γεωθερμική ενέργεια Εισαγωγή στην Ενεργειακή Τεχνολογία 1 ο και 5 ο εξάμηνο Σχολής Πολιτικών Μηχανικών Γεωθερμική ενέργεια Νίκος Μαμάσης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΔΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΕΔΙΩΝ ΤΟΥ ΝΟΜΟΥ ΣΕΡΡΩΝ

ΜΕΛΕΤΗ ΤΗΣ ΔΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΕΔΙΩΝ ΤΟΥ ΝΟΜΟΥ ΣΕΡΡΩΝ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΤΗΣ ΔΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΕΔΙΩΝ ΤΟΥ ΝΟΜΟΥ ΣΕΡΡΩΝ Πούλιος Δημήτριος Α.Ε.Μ.: 4389 Χαραλαμπίδης Ιωάννης

Διαβάστε περισσότερα

ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ ΓΙΑ ΠΑΡΑΓΩΓΗ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΓΚΑΡ ΙΑΚΟΣ ΧΡΗΣΤΟΣ

ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ ΓΙΑ ΠΑΡΑΓΩΓΗ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΓΚΑΡ ΙΑΚΟΣ ΧΡΗΣΤΟΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ ΓΙΑ ΠΑΡΑΓΩΓΗ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΓΚΑΡ ΙΑΚΟΣ ΧΡΗΣΤΟΣ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: ΑΡΘΟΥΡΟΣ ΖΕΡΒΟΣ

Διαβάστε περισσότερα

Η γεωθερμική ενέργεια είναι η ενέργεια που προέρχεται από το εσωτερικό της Γης. Η θερμότητα αυτή προέρχεται από δύο πηγές: από την θερμότητα του

Η γεωθερμική ενέργεια είναι η ενέργεια που προέρχεται από το εσωτερικό της Γης. Η θερμότητα αυτή προέρχεται από δύο πηγές: από την θερμότητα του Η γεωθερμική ενέργεια είναι η ενέργεια που προέρχεται από το εσωτερικό της Γης. Η θερμότητα αυτή προέρχεται από δύο πηγές: από την θερμότητα του αρχικού σχηματισμού της Γης και από την ραδιενεργό διάσπαση

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία

Εισαγωγή στην Ενεργειακή Τεχνολογία Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερμική Ενέργεια Νίκος Μαμάσης, Επίκουρος Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

Εγκρίνεται η Πτυχιακή Εργασία Καβάλα, / /2010

Εγκρίνεται η Πτυχιακή Εργασία Καβάλα, / /2010 Εγκρίνεται η Πτυχιακή Εργασία Καβάλα, / /2010 Η επιβλέπουσα Καθηγήτρια Ο Προϊστάμενος του Τμήματος Κόγια Φωτεινή Σωτηρόπουλος Φίλιππος Η Εξεταστική Επιτροπή 1. Κόγια Φωτεινή 2. Ανδρεάδου Ελισάβετ 3. Αντωνιάδης

Διαβάστε περισσότερα

Ταξινόμηση γεωθερμικών συστημάτων σε σχέση με το είδος των γεωθερμικών πόρων

Ταξινόμηση γεωθερμικών συστημάτων σε σχέση με το είδος των γεωθερμικών πόρων Ταξινόμηση γεωθερμικών συστημάτων σε σχέση με το είδος των γεωθερμικών πόρων α) Τα υδροθερμικά συστήματα ή πόροι, δηλαδή τα φυσικά υπόγεια θερμά ρευστά, τα οποία βρίσκονται σε έναν ή περισσότερους ταμιευτήρες.

Διαβάστε περισσότερα

Α.Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Α.Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Α.Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΦΟΡΑ ΣΕ ΚΤΙΡΙΟ ΜΕ ΧΡΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ ΣΤΗΝ ΠΟΛΗ ΤΗΣ ΛΑΜΙΑΣ

Διαβάστε περισσότερα

Γεωθερμία. Ενότητα 3: Η Γεωθερμική Ενέργεια. Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Τμήμα Πολιτικών Μηχανικών ΑΠΘ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

Γεωθερμία. Ενότητα 3: Η Γεωθερμική Ενέργεια. Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Τμήμα Πολιτικών Μηχανικών ΑΠΘ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Η Γεωθερμική Ενέργεια Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης ΑΠΘ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Διδάσκοντες Ομότιμος Καθηγητής Ιωάννης Διαμαντής Καθηγητής Φώτιος-Κων/νος Πλιάκας και συνεργάτες

Διδάσκοντες Ομότιμος Καθηγητής Ιωάννης Διαμαντής Καθηγητής Φώτιος-Κων/νος Πλιάκας και συνεργάτες Διδάσκοντες Ομότιμος Καθηγητής Ιωάννης Διαμαντής Καθηγητής Φώτιος-Κων/νος Πλιάκας και συνεργάτες ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ 1. ΕΙΣΑΓΩΓΗ (ΑΠΕ, Εσωτερική θερμότητα, Δομή της γης, Ροή θερμότητας) 2. ΓΕΩΘΕΡΜΙΚΑ

Διαβάστε περισσότερα

Η Γεωθερμία στην Ελλάδα

Η Γεωθερμία στην Ελλάδα ΤΕΙ ΠΕΙΡΑΙΑ Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Η Γεωθερμία στην Ελλάδα Ομάδα Παρουσίασης Επιβλέπουσα Θύμιος Δημήτρης κ. Ζουντουρίδου Εριέττα Κατινάς Νίκος Αθήνα 2014 Τι είναι η γεωθερμία; Η Γεωθερμική ενέργεια

Διαβάστε περισσότερα

Παγκόσμια Κατανάλωση Ενέργειας

Παγκόσμια Κατανάλωση Ενέργειας ΘΕΜΕΛΙΩΔΕΙΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Ήλιος Κίνηση και ελκτικό δυναμικό του ήλιου, της σελήνης και της γης Γεωθερμική ενέργεια εκλύεται από ψύξη του πυρήνα, χημικές αντιδράσεις και ραδιενεργό υποβάθμιση στοιχείων

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ: ΓΕΩΡΘΕΜΙΚΗ ΕΝΕΡΓΕΙΑ

ΕΡΓΑΣΙΑ: ΓΕΩΡΘΕΜΙΚΗ ΕΝΕΡΓΕΙΑ ΕΡΓΑΣΙΑ: ΓΕΩΡΘΕΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΑΞΗ Ε TMHMA 2 ΟΜΑΔΑ:PC2 Πέτρος & Μάριος Γεωθερμία Αποθέσεις αλάτων από την επιφανειακή απορροή της θερμής πηγής (Θέρμες Ξάνθης). Τι είναι η γεωθερμική ενέργεια Είναι μια ανανεώσιμη

Διαβάστε περισσότερα

ΓΕΩΘΕΡΜΙΑ ΕΝΑΣ ΦΥΣΙΚΟΣ ΕΝΕΡΓΕΙΑΚΟΣ ΠΛΟΥΤΟΣ

ΓΕΩΘΕΡΜΙΑ ΕΝΑΣ ΦΥΣΙΚΟΣ ΕΝΕΡΓΕΙΑΚΟΣ ΠΛΟΥΤΟΣ ΓΕΩΘΕΡΜΙΑ ΕΝΑΣ ΦΥΣΙΚΟΣ ΕΝΕΡΓΕΙΑΚΟΣ ΠΛΟΥΤΟΣ ΓΕΩΘΕΡΜΙΚΟ ΠΕΔΙΟ ΕΡΑΤΕΙΝΟΥ-ΔΗΜΟΥ ΝΕΣΤΟΥ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΕΡΑΤΕΙΝΟΥ- ΠΕΤΡΟΠΗΓΗΣ-ΠΟΝΤΟΛΙΒΑΔΟΥ Ο όρος Γεωθερμία σημαίνει θερμότητα από τη Γη, επομένως η γεωθερμική

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΓΕΩΘΕΡΜΙΑΣ ΕΦΑΡΜΟΓΗ ΣΕ ΟΙΚΙΑΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ

ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΓΕΩΘΕΡΜΙΑΣ ΕΦΑΡΜΟΓΗ ΣΕ ΟΙΚΙΑΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΓΕΩΘΕΡΜΙΑΣ ΕΦΑΡΜΟΓΗ ΣΕ ΟΙΚΙΑΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΠΛΕΟΝΕΚΤΗΜΑΤΑ Δ.Μενδρινός, Κ.Καρύτσας Κέντρο Ανανεώσιμων Πηγών και Εξοικονόμησης Ενέργειας Νοέμβριος 2009 Γεωθερμική Ενέργεια: η θερμότητα της

Διαβάστε περισσότερα

Εγκρίνεται η Πτυχιακή Εργασία Καβάλα, / /2010

Εγκρίνεται η Πτυχιακή Εργασία Καβάλα, / /2010 Εγκρίνεται η Πτυχιακή Εργασία Καβάλα, / /2010 Η επιβλέπουσα Καθηγήτρια Ο Προϊστάμενος του Τμήματος Κόγια Φωτεινή Σωτηρόπουλος Φίλιππος Η Εξεταστική Επιτροπή 1. Κόγια Φωτεινή 2. Ανδρεάδου Ελισάβετ 3. Αντωνιάδης

Διαβάστε περισσότερα

Γεωθερμικό πεδίο ποσότητα θερμοκρασία βάθος των γεωθερμικών ρευστών γεωθερμικό πεδίο Γεωθερμικό πεδίο 3175/2003 άρθρο 2 (ορισμοί)

Γεωθερμικό πεδίο ποσότητα θερμοκρασία βάθος των γεωθερμικών ρευστών γεωθερμικό πεδίο Γεωθερμικό πεδίο 3175/2003 άρθρο 2 (ορισμοί) Γεωθερμικό πεδίο Νοείται μια γεωθερμική περιοχή, η οποία με κριτήριο την ποσότητα, τη θερμοκρασία και το βάθος των γεωθερμικών ρευστών χαρακτηρίζεται εκμεταλλεύσιμη (κυρίως με οικονομικά κριτήρια). Ο όρος

Διαβάστε περισσότερα

Νίκος Ανδρίτσος. Συνέδριο ΙΕΝΕ, Σύρος, 20-21 Ιουνίου 2008. Τμήμα Γεωλογίας Α.Π.Θ. Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας Πανεπιστήμιο Θεσσαλίας

Νίκος Ανδρίτσος. Συνέδριο ΙΕΝΕ, Σύρος, 20-21 Ιουνίου 2008. Τμήμα Γεωλογίας Α.Π.Θ. Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας Πανεπιστήμιο Θεσσαλίας Το Ενεργειακό Πρόβλημα των Κυκλάδων: Κρίσιμα Ερωτήματα και Προοπτικές Συνέδριο ΙΕΝΕ, Σύρος, 20-21 Ιουνίου 2008 Γεωθερμικές Εφαρμογές στις Κυκλάδες και Εφαρμογές Υψηλής Ενθαλπίας Μιχάλης Φυτίκας Τμήμα Γεωλογίας

Διαβάστε περισσότερα

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Η θερμοκρασία του εδάφους είναι ψηλότερη από την ατμοσφαιρική κατά τη χειμερινή περίοδο, χαμηλότερη κατά την καλοκαιρινή

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 5: Γεωθερμία Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Γεωθερμική έρευνα - Ερευνητικές διαδικασίες

Γεωθερμική έρευνα - Ερευνητικές διαδικασίες Γεωθερμική έρευνα - Ερευνητικές διαδικασίες Tεχνικο οικονομικοί παράγοντες για την αξιολόγηση της οικονομικότητας των γεωθερμικών χρήσεων και της «αξίας» του ενεργειακού προϊόντος: η θερμοκρασία, η παροχή

Διαβάστε περισσότερα

ΓΕΩΘΕΡΜΙΑ - Η ΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΗΣ ΓΗΣ ΩΣ ΛΥΣΗ ΣΤΟ ΕΝΕΡΓΕΙΑΚΟ ΕΛΛΕΙΜΑ ΤΗΣ ΕΠΟΧΗΣ

ΓΕΩΘΕΡΜΙΑ - Η ΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΗΣ ΓΗΣ ΩΣ ΛΥΣΗ ΣΤΟ ΕΝΕΡΓΕΙΑΚΟ ΕΛΛΕΙΜΑ ΤΗΣ ΕΠΟΧΗΣ 2 ο Λύκειο Λαμίας Τμήμα: Α 3 2 η ομάδα ΓΕΩΘΕΡΜΙΑ - Η ΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΗΣ ΓΗΣ ΩΣ ΛΥΣΗ ΣΤΟ ΕΝΕΡΓΕΙΑΚΟ ΕΛΛΕΙΜΑ ΤΗΣ ΕΠΟΧΗΣ Θεματική ενότητα: Γεωλογικό μέρος της γεωθερμίας ΜΑΣ ΜΕΛΗ ΟΜΑΔΑΣ: Πανάγου Ράνια,

Διαβάστε περισσότερα

Το Γεωθερμικό Δυναμικό της Ελλάδας

Το Γεωθερμικό Δυναμικό της Ελλάδας Το Γεωθερμικό Δυναμικό της Ελλάδας Γιώργος Χατζηγιάννης, MSc. τ. Προϊστάμενος Διεύθυνσης Γεωθερμίας και Θερμομεταλλικών Υδάτων (ΔΙ.ΓΕ.ΘΜ.Υ.) του ΙΓΜΕ ECOCITY ΠΕΡΙΒΑΛΛΟΝ 1 Γεωθερμική Ενέργεια (ορισμοί)

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΜΟΝΤΕΛΟΥ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ ΣΕ ΓΕΩΘΕΡΜΙΚΟ ΠΕΔΙΟ

ΕΦΑΡΜΟΓΗ ΜΟΝΤΕΛΟΥ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ ΣΕ ΓΕΩΘΕΡΜΙΚΟ ΠΕΔΙΟ AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗΣ ΠΡΟΣΤΑΣΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΒΙΩΣΙΜΗ ΑΝΑΠΤΥΞΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΜΟΝΤΕΛΟΥ

Διαβάστε περισσότερα

Περιβαλλοντικές επιδράσεις γεωθερμικών εκμεταλλεύσεων

Περιβαλλοντικές επιδράσεις γεωθερμικών εκμεταλλεύσεων ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΗΠΙΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΛΕΞΗ ΙΙI Περιβαλλοντικές επιδράσεις γεωθερμικών εκμεταλλεύσεων ΑΠΟ Δρ. Α. ΤΖΑΝΗ ΕΠΙΚΟΥΡΟ ΚΑΘΗΓΗΤΗ ΓΕΩΦΥΣΙΚΗΣ ΚΛΑΣΣΙΚΗ

Διαβάστε περισσότερα

Αυλακογένεση. Ιδανικές συνθήκες: ένα μανδυακό μανιτάρι κινείται κατακόρυφα σε όλους τους βραχίονες (ράχες).

Αυλακογένεση. Ιδανικές συνθήκες: ένα μανδυακό μανιτάρι κινείται κατακόρυφα σε όλους τους βραχίονες (ράχες). Αυλακογένεση Αυλακογένεση Γένεση αύλακας Δημιουργία τάφρου, οριοθετημένης από ρήγματα μεγάλου μήκους και μεγάλης κλίσης Θεωρείται ότι είναι το αποτέλεσμα της εξέλιξης ενός τριπλού σημείου Τ-Τ-Τ ή Τ-Τ-F

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΟΝΙΤΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Εισαγωγή Άνθρωπος και ενέργεια Σχεδόν ταυτόχρονα με την εμφάνιση του ανθρώπου στη γη,

Διαβάστε περισσότερα

ΟΙ ΥΔΡΙΤΕΣ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥΣ ΩΣ ΚΑΥΣΙΜΗ ΥΛΗ ΤΟΥ ΜΕΛΛΟΝΤΟΣ. ΤΟ ΕΡΕΥΝΗΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ANAXIMANDER. Από Δρ. Κωνσταντίνο Περισοράτη

ΟΙ ΥΔΡΙΤΕΣ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥΣ ΩΣ ΚΑΥΣΙΜΗ ΥΛΗ ΤΟΥ ΜΕΛΛΟΝΤΟΣ. ΤΟ ΕΡΕΥΝΗΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ANAXIMANDER. Από Δρ. Κωνσταντίνο Περισοράτη ΟΙ ΥΔΡΙΤΕΣ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥΣ ΩΣ ΚΑΥΣΙΜΗ ΥΛΗ ΤΟΥ ΜΕΛΛΟΝΤΟΣ. ΤΟ ΕΡΕΥΝΗΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ANAXIMANDER Από Δρ. Κωνσταντίνο Περισοράτη Οι υδρίτες (εικ. 1) είναι χημικές ενώσεις που ανήκουν στους κλειθρίτες, δηλαδή

Διαβάστε περισσότερα

Μήλου και προοπτικές ανάπτυξης του. Θόδωρος. Τσετσέρης

Μήλου και προοπτικές ανάπτυξης του. Θόδωρος. Τσετσέρης Το γεωθερμικό πεδίο της Μήλου και προοπτικές ανάπτυξης του 21 Ιουνίου, 2008 Θόδωρος. Τσετσέρης Τι είναι η Γεωθερμία; Η Γεωθερμική ενέργεια δημιουργείται από την αποθηκευμένη θερμότητα στο εσωτερικό της

Διαβάστε περισσότερα

Ορισμοί και βασικές έννοιες της αβαθούς γεωθερμίας Συστήματα αβαθούς γεωθερμίας

Ορισμοί και βασικές έννοιες της αβαθούς γεωθερμίας Συστήματα αβαθούς γεωθερμίας Ορισμοί και βασικές έννοιες της αβαθούς γεωθερμίας Συστήματα Ενότητες: 1.1 Η παροχή θερμικής ενέργειας στα κτίρια 1.2 Τα συστήματα της σε ευρωπαϊκό & τοπικό επίπεδο 1.3 Το δυναμικό των συστημάτων της 1.1

Διαβάστε περισσότερα

Αυλακογένεση Γένεση και εξέλιξη ενός µανδυακού µανιταριού, δηµιουργώντας τριπλά σηµεία συνάντησης

Αυλακογένεση Γένεση και εξέλιξη ενός µανδυακού µανιταριού, δηµιουργώντας τριπλά σηµεία συνάντησης Αυλακογένεση Αυλακογένεση Γένεση και εξέλιξη ενός µανδυακού µανιταριού, δηµιουργώντας τριπλά σηµεία συνάντησης Α: άνοδος µανδυακού µανιταριού που συνδέεται µε ηφαιστειότητα Β: δηµιουργία ραχών RRR C: εξέλιξη

Διαβάστε περισσότερα

Ήπιες και νέες μορφές ενέργειας

Ήπιες και νέες μορφές ενέργειας Τμήμα Μηχανολόγων Μηχανικών Ήπιες και νέες μορφές ενέργειας Ενότητα : Γεωθερμική Ενέργεια IΙ Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ. Εισαγωγικά

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ. Εισαγωγικά ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Εισαγωγικά Γενικότερα, το ενεργειακά ζητήματα, αν και αποτελούν κατ εξοχήν πεδίο δραστηριότητας των μηχανολόγων και ηλεκτρολόγων μηχανικών, αποτελούν σύνθετα κοινωνικά ζητήματα που

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ - ΝΟΜΟΙ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ - ΝΟΜΟΙ ΘΕΡΜΟΔΥΝΑΜΙΚΗ - ΝΟΜΟΙ Α ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Η ενέργεια δεν μπορεί ούτε να δημιουργηθεί ούτε να καταστραφεί. Υπάρχει σε μια σταθερή ποσότητα. Μπορεί να αποθηκευτεί, και μπορεί να μεταφερθεί από ένα σώμα

Διαβάστε περισσότερα

1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ

1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ 1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ 1.1. ΕΙΣΑΓΩΓΗ Η ενέργεια είναι κύρια ιδιότητα της ύλης που εκδηλώνεται με διάφορες μορφές (κίνηση, θερμότητα, ηλεκτρισμός, φως, κλπ.) και γίνεται αντιληπτή (α) όταν μεταφέρεται

Διαβάστε περισσότερα

Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ):

Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ): Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ): Μιχάλης Βραχνάκης Αναπληρωτής Καθηγητής ΤΕΙ Θεσσαλίας ΠΕΡΙΕΧΟΜΕΝΑ 6 ΟΥ ΜΑΘΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 1. Η ΓΗ ΚΑΙ Η ΑΤΜΟΣΦΑΙΡΑ ΤΗΣ ΚΕΦΑΛΑΙΟ 2. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΚΕΦΑΛΑΙΟ 3. ΘΕΡΜΟΚΡΑΣΙΑ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης ΕΙΣΑΓΩΓΗ Ο όρος βιομάζα μπορεί να δηλώσει : α) Τα υλικά ή τα υποπροϊόντα και κατάλοιπα της φυσικής, ζωικής δασικής και αλιευτικής παραγωγής

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Θέµα: «EΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ ΘΕΡΜΑΝΣΗΣ- ΚΛΙΜΑΤΙΣΜΟΥ ΜΕ ΓΕΩΘΕΡΜΙΑ ΣΕ ΚΑΤΟΙΚΙΑ» ΣΠΟΥ ΑΣΤΗΣ : ΜΠΙΝΙΑΡΗΣ ΓΕΩΡΓΙΟΣ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Θέµα: «EΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ ΘΕΡΜΑΝΣΗΣ- ΚΛΙΜΑΤΙΣΜΟΥ ΜΕ ΓΕΩΘΕΡΜΙΑ ΣΕ ΚΑΤΟΙΚΙΑ» ΣΠΟΥ ΑΣΤΗΣ : ΜΠΙΝΙΑΡΗΣ ΓΕΩΡΓΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Θέµα: «EΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ ΘΕΡΜΑΝΣΗΣ- ΚΛΙΜΑΤΙΣΜΟΥ ΜΕ ΓΕΩΘΕΡΜΙΑ ΣΕ ΚΑΤΟΙΚΙΑ» ΣΠΟΥ ΑΣΤΗΣ : ΜΠΙΝΙΑΡΗΣ ΓΕΩΡΓΙΟΣ ΕΙΣΗΓΗΤΗΣ ΚΑΘΗΓΗΤΗΣ ΦΡΑΓΚΙΑ ΑΚΗΣ ΜΙΧΑΗΛ ΗΡΑΚΛΕΙΟ 2012 ΠΡΟΛΟΓΟΣ Η εργασία

Διαβάστε περισσότερα

Τ.Ε.Ι. ΗΡΑΚΛΕΙΟΥ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΙΑΣ

Τ.Ε.Ι. ΗΡΑΚΛΕΙΟΥ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΙΑΣ Τ.Ε.Ι. ΗΡΑΚΛΕΙΟΥ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Τεχνικοοικονοµική µελέτη σκοπιµότητας και ενδεικτική µελέτη εγκατάστασης για κλιµατισµό σχολικού κτηρίου µε αβαθή γεωθερµία. Σπουδαστής: Τσατσάκης

Διαβάστε περισσότερα

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ: Η ΣΥΜΒΟΛΗ ΤΟΥ ΙΓΜΕ στην ΕΡΕΥΝΑ και ΑΞΙΟΠΟΙΗΣΗ της ΔΕΘ 2016

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ: Η ΣΥΜΒΟΛΗ ΤΟΥ ΙΓΜΕ στην ΕΡΕΥΝΑ και ΑΞΙΟΠΟΙΗΣΗ της ΔΕΘ 2016 ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ: Η ΣΥΜΒΟΛΗ ΤΟΥ ΙΓΜΕ στην ΕΡΕΥΝΑ και ΑΞΙΟΠΟΙΗΣΗ της ΔΕΘ 2016 ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Η θερμική ενέργεια που βρίσκεται αποθηκευμένη στα θερμά ρευστά και πετρώματα (>25 ο C). Η θερμική ενέργεια

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ανανεώσιμες Πηγές Ενέργειας Εισηγητές : Βασιλική Σπ. Γεμενή Διπλ. Μηχανολόγος Μηχανικός Δ.Π.Θ Θεόδωρος Γ. Μπιτσόλας Διπλ. Μηχανολόγος Μηχανικός Π.Δ.Μ Λάρισα 2013 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΑΠΕ 2. Ηλιακή ενέργεια

Διαβάστε περισσότερα

ΔΙΕΞΑΓΩΓΗ ΔΙΕΘΝΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΤΗΝ ΕΚΜΙΣΘΩΣΗ ΠΕΡΙΟΧΩΝ ΓΙΑ ΕΡΕΥΝΑ ΓΕΩΘΕΡΜΙΑΣ ΥΨΗΛΩΝ ΘΕΡΜΟΚΡΑΣΙΩΝ

ΔΙΕΞΑΓΩΓΗ ΔΙΕΘΝΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΤΗΝ ΕΚΜΙΣΘΩΣΗ ΠΕΡΙΟΧΩΝ ΓΙΑ ΕΡΕΥΝΑ ΓΕΩΘΕΡΜΙΑΣ ΥΨΗΛΩΝ ΘΕΡΜΟΚΡΑΣΙΩΝ ΔΙΕΞΑΓΩΓΗ ΔΙΕΘΝΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΤΗΝ ΕΚΜΙΣΘΩΣΗ ΠΕΡΙΟΧΩΝ ΓΙΑ ΕΡΕΥΝΑ ΓΕΩΘΕΡΜΙΑΣ ΥΨΗΛΩΝ ΘΕΡΜΟΚΡΑΣΙΩΝ Το ΥΠΕΚΑ αναλαμβάνει συντονισμένες πρωτοβουλίες ώστε να αξιοποιηθεί σωστά και υπεύθυνα το γεωθερμικό

Διαβάστε περισσότερα

ΓΕΩΦΥΣΙΚΕΣ ΚΑΤΑΓΡΑΦΕΣ

ΓΕΩΦΥΣΙΚΕΣ ΚΑΤΑΓΡΑΦΕΣ ΓΕΩΦΥΣΙΚΕΣ ΚΑΤΑΓΡΑΦΕΣ Well Log 1 ο Μέρος SP Resistivity Τι είναι η γεωφυσική καταγραφή και πως συμβάλει στην αξιολόγηση του ταμιευτήρα Αξιολόγηση ταμιευτήρα Διαδικασία/μέθοδος προκειμένου να προσδιοριστεί

Διαβάστε περισσότερα

Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού

Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού ρ. Ηλίας Κούτσικος, Φυσικός - Γεωφυσικός Πάρεδρος Παιδαγωγικού Ινστιτούτου ιδάσκων Πανεπιστηµίου Αθηνών Ε ι σ α γ ω γ ή...

Διαβάστε περισσότερα

Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας

Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας Η Αντλία Θερµότητας ανήκει στην κατηγορία των Ανανεώσιµων Πηγών Ενέργειας. Για την θέρµανση, το ζεστό νερό χρήσης και για την ψύξη, το 70-80% της ενέργειας

Διαβάστε περισσότερα

Γεωθερμία Εξοικονόμηση Ενέργειας

Γεωθερμία Εξοικονόμηση Ενέργειας GRV Energy Solutions S.A Γεωθερμία Εξοικονόμηση Ενέργειας Ανανεώσιμες Πηγές Σκοπός της GRV Ενεργειακές Εφαρμογές Α.Ε. είναι η κατασκευή ενεργειακών συστημάτων που σέβονται το περιβάλλον με εκμετάλλευση

Διαβάστε περισσότερα

ρ. Ε. Λυκούδη Αθήνα 2005 ΩΚΕΑΝΟΙ Ωκεανοί Ωκεάνιες λεκάνες

ρ. Ε. Λυκούδη Αθήνα 2005 ΩΚΕΑΝΟΙ Ωκεανοί Ωκεάνιες λεκάνες ρ. Ε. Λυκούδη Αθήνα 2005 ΩΚΕΑΝΟΙ Ωκεανοί Ωκεάνιες λεκάνες Ωκεανοί Το νερό καλύπτει τα δύο τρίτα της γης και το 97% όλου του κόσµου υ και είναι κατοικία εκατοµµυρίων γοητευτικών πλασµάτων. Οι ωκεανοί δηµιουργήθηκαν

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ «Περιβάλλον και Ανάπτυξη των Ορεινών Περιοχών» Υδατικό Περιβάλλον και Ανάπτυξη

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ «Περιβάλλον και Ανάπτυξη των Ορεινών Περιοχών» Υδατικό Περιβάλλον και Ανάπτυξη http://www.circleofblue.org/waternews/2010/world/water-scarcity-prompts-different-plans-to-reckon-with-energy-choke-point-in-the-u-s/ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ «Περιβάλλον και Ανάπτυξη των Ορεινών

Διαβάστε περισσότερα

Ενότητα 2: Τεχνικές πτυχές και διαδικασίες εγκατάστασης συστημάτων αβαθούς γεθερμίας

Ενότητα 2: Τεχνικές πτυχές και διαδικασίες εγκατάστασης συστημάτων αβαθούς γεθερμίας ΚΕΝΤΡΟ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΚΑΙ ΕΞΟΙΚΟΝΟΜΗΣΗΣ ΕΝΕΡΓΕΙΑΣ Ενότητα 2: Τεχνικές πτυχές και διαδικασίες εγκατάστασης συστημάτων αβαθούς γεθερμίας «Συστήματα ΓΑΘ Ταξινόμηση Συστημάτων ΓΑΘ και Εναλλαγή Θερμότητας

Διαβάστε περισσότερα

ΦΑΣΕΙΣ ΒΡΑΣΜΟΥ ΚΑΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ

ΦΑΣΕΙΣ ΒΡΑΣΜΟΥ ΚΑΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ο εναλλάκτης ψύξης ονομάζεται και εξατμιστής. Τούτο διότι στο εσωτερικό του λαμβάνει χώρα μετατροπή του ψυκτικού ρευστού, από υγρό σε αέριο (εξάτμιση) σε μια κατάλληλη πίεση, ώστε η αντίστοιχη θερμοκρασία

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT

ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT Οι μαθήτριες : Αναγνωστοπούλου Πηνελόπη Αποστολοπούλου Εύα Βαλλιάνου Λυδία Γερονικόλα Πηνελόπη Ηλιοπούλου Ναταλία Click to edit Master subtitle style ΑΠΡΙΛΙΟΣ 2012 Η ΟΜΑΔΑ

Διαβάστε περισσότερα

ΓΕΩΛΟΓΙΑ ΓΕΩΜΟΡΦΟΛΟΓΙΑ

ΓΕΩΛΟΓΙΑ ΓΕΩΜΟΡΦΟΛΟΓΙΑ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ Για τη διευκόλυνση των σπουδαστών στη μελέτη τους και την καλύτερη κατανόηση των κεφαλαίων που περιλαμβάνονται στο βιβλίο ΓΕΝΙΚΗ ΓΕΩΛΟΓΙΑ ΓΕΩΜΟΡΦΟΛΟΓΙΑ Σημείωση: Το βιβλίο καλύπτει την ύλη

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ ΤΕ ΓΕΝΙΚΗ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ ΚΑΘΗΓΗΤΗΣ κ. ΠΑΠΑΘΕΟΔΩΡΟΥ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

1. Το φαινόµενο El Niño

1. Το φαινόµενο El Niño 1. Το φαινόµενο El Niño Με την λέξη Ελ Νίνιο, προσφωνούν οι Ισπανόφωνοι το Θείο Βρέφος. Η ίδια λέξη χρησιµοποιείται για να εκφράσει µια µεταβολή του καιρού στις ακτές του Περού, που εµφανίζεται εδώ και

Διαβάστε περισσότερα

ΕΓΚΑΤΑΣΤΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΓΕΩΘΕΡΜΙΑΣ

ΕΓΚΑΤΑΣΤΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΓΕΩΘΕΡΜΙΑΣ ΕΓΚΑΤΑΣΤΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΓΕΩΘΕΡΜΙΑΣ ΤΥΠΟΙ, ΛΕΙΤΟΥΡΓΙΑ, ΥΠΕΔΑΦΟΣ ΤΟ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟ ΟΦΕΛΟΣ ΑΠΟ ΤΗ ΧΡΗΣΗ ΓΕΩΘΕΡΜΙΚΩΝ ΑΝΤΛΙΩΝ ΘΕΡΜΟΤΗΤΑΣ ΠΡΟΚΥΠΤΕΙ ΑΠΟ ΤΗΝ ΕΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ ΚΑΙ ΚΑΤ ΕΠΕΚΤΑΣΗ ΑΠΟ ΤΗ ΜΕΙΩΣΗ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΟΛΥΤΕΧΝΙΚΗΣ ΣΧΟΛΗΣ ΠΑΝ/ΜΙΟΥ ΠΑΤΡΑΣ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΟΛΥΤΕΧΝΙΚΗΣ ΣΧΟΛΗΣ ΠΑΝ/ΜΙΟΥ ΠΑΤΡΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΟΛΥΤΕΧΝΙΚΗΣ ΣΧΟΛΗΣ ΠΑΝ/ΜΙΟΥ ΠΑΤΡΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ (Α.Π.Ε.) Ο ήλιος Ο άνεμος Η Γη (υπέδαφος) Τα νερά (επιφανειακά ή υπόγεια) ΟΙ Α.Π.Ε. ΧΡΗΣΙΜΟΠΟΙΟΥΝΤΑΙ: ΓΙΑ ΠΑΡΑΓΩΓΗ

Διαβάστε περισσότερα

"AdBlue" trademarks of VDA Verband der Automobilindustrie e.v.

AdBlue trademarks of VDA Verband der Automobilindustrie e.v. Angola 29.05.2014 01 Angola 29.05.2014 04 Angola 29.05.2014 08.06.2016 40309 07 29.05.2024 Angola 29.05.2014 09 Angola 29.05.2014 21.06.2016 40311 12 29.05.2024 Argentina 29.10.2007 06.11.2008 2.256.182

Διαβάστε περισσότερα

Προϊόν Παραπροϊόν Υποπροϊόν

Προϊόν Παραπροϊόν Υποπροϊόν Γεωθερμική ενέργεια Ήπια και σχετικά ανανεώσιμη μορφή ενέργειας Ενέργεια με τη μορφή θερμότητας που μεταδίδεται από το κέντρο της γης προς την επιφάνεια της Η θερμική ενέργεια που περιέχεται στα πετρώματα

Διαβάστε περισσότερα

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΤΜΟΣΤΡΟΒΙΛΟΙ Σημειώσεις Δ. Κουζούδη Εαρινό Εξάμηνο 2017 ΑΤΜΟ-ΣΤΡΟΒΙΛΟΙ (ΑΤΜΟ-ΤΟΥΡΜΠΙΝΕΣ) Που χρησιμοποιούνται; Για παραγωγή ηλεκτρικής ς σε μεγάλη κλίμακα. Εκτός από τα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΧΗΜΙΚΗ ΓΕΩΛΟΓΙΚΗ ΒΙΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΗ

ΦΥΣΙΚΗ ΧΗΜΙΚΗ ΓΕΩΛΟΓΙΚΗ ΒΙΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ ΩΚΕΑΝΟΓΡΑΦΙΑ Αρχές και έννοιες της Ωκεανογραφίας, με ιδιαίτερη έμφαση στις φυσικές διεργασίες των ωκεάνιων συστημάτων. Φυσικές ιδιότητες και οι φυσικές παράμετροι του θαλασσινού νερού, και χωροχρονικές

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ Τ.Ε ΚΑΙ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

World Happiness Report 2013

World Happiness Report 2013 Table A2. National Averages in 2010-12 World Happiness Report 2013 Appendix material for Chapter 2 World Happiness: Trends, Explanations and Distribution John F. Helliwell & Shun Wang Social support Freedom

Διαβάστε περισσότερα

ΚΛΙΜΑΤΙΣΜΟΣ ΔΗΜΑΡΧΕΙΟΥ ΚΑΛΑΜΑΤΑΣ ΜΕ ΣΥΣΤΗΜΑTA ΓΕΩΘΕΡΜΙΑΣ

ΚΛΙΜΑΤΙΣΜΟΣ ΔΗΜΑΡΧΕΙΟΥ ΚΑΛΑΜΑΤΑΣ ΜΕ ΣΥΣΤΗΜΑTA ΓΕΩΘΕΡΜΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΚΛΙΜΑΤΙΣΜΟΣ ΔΗΜΑΡΧΕΙΟΥ ΚΑΛΑΜΑΤΑΣ ΜΕ ΣΥΣΤΗΜΑTA ΓΕΩΘΕΡΜΙΑΣ ΣΠΟΥΔΑΣΤΗΣ : XAΠΠΑΣ

Διαβάστε περισσότερα

Αξιοποίηση του Γεωθερμικού πεδίου Αρίστηνου από το Δήμο Αλεξανδρούπολης

Αξιοποίηση του Γεωθερμικού πεδίου Αρίστηνου από το Δήμο Αλεξανδρούπολης «3η Ημερίδα: Γεωθερμία & Αστικό Περιβάλλον» Συνδιοργάνωση: EcoCity Σύνδεσμος Ελλήνων Γεωλόγων Σάββατο 16/2/2019, Αθήνα Αξιοποίηση του Γεωθερμικού πεδίου Αρίστηνου από το Δήμο Αλεξανδρούπολης Ιωάννης ΦΑΛΕΚΑΣ

Διαβάστε περισσότερα

Χειμερινό εξάμηνο

Χειμερινό εξάμηνο Μεταβατική Αγωγή Θερμότητας: Ανάλυση Ολοκληρωτικού Συστήματος Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής 1 Μεταβατική Αγωγή (ranen conducon Πολλά προβλήματα μεταφοράς θερμότητας εξαρτώνται από

Διαβάστε περισσότερα

Τ Α Η Φ Α Ι Σ Τ Ε Ι Α

Τ Α Η Φ Α Ι Σ Τ Ε Ι Α ΤΑ ΗΦΑΙΣΤΕΙΑ ΤΑ ΗΦΑΙΣΤΕΙΑ ΠΑΝΩ ΣΤΗ ΓΗ ΒΡΙΣΚΟΝΤΑΙ ΣΥΝΗΘΩΣ ΕΚΕΙ ΟΠΟΥ ΔΥΟ Η ΤΡΕΙΣ ΤΕΚΤΟΝΙΚΕΣ ΠΛΑΚΕΣ ΣΥΓΚΡΟΥΟΝΤΑΙ Η ΑΠΟΜΑΚΡΥΝΟΝΤΑΙ: ΜΙΑ ΜΕΣΟΩΚΕΑΝΕΙΑ ΡΑΧΗ Η ΟΡΟΣΕΙΡΑ, ΟΠΩΣ ΣΤΟ ΜΕΣΟ ΤΟΥ ΑΤΛΑΝΤΙΚΟΥ ΩΚΕΑΝΟΥ, ΔΙΝΕΙ

Διαβάστε περισσότερα

Γεωθερµική Ενέργεια και Εφαρµογές Νίκος Ανδρίτσος

Γεωθερµική Ενέργεια και Εφαρµογές Νίκος Ανδρίτσος Γεωθερµική Ενέργεια και Εφαρµογές Νίκος Ανδρίτσος Επίκουρος Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας, Πανεπιστήµιο Θεσσαλίας Γεωθερµική Ενέργεια Γεωθερµική ενέργεια είναι στην κυριολεξία η θερµότητα

Διαβάστε περισσότερα

Προϊόν Παραπροϊόν Υποπροϊόν

Προϊόν Παραπροϊόν Υποπροϊόν Γεωθερμική ενέργεια Ήπια και σχετικά ανανεώσιμη μορφή ενέργειας Ενέργεια με τη μορφή θερμότητας που μεταδίδεται από το κέντρο της γης προς την επιφάνεια της Η θερμική ενέργεια που περιέχεται στα πετρώματα

Διαβάστε περισσότερα

ΓΕΩΧΗΜΕΙΑ ΥΔΡΟΘΕΡΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Αριάδνη Αργυράκη

ΓΕΩΧΗΜΕΙΑ ΥΔΡΟΘΕΡΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Αριάδνη Αργυράκη !1 ΓΕΩΧΗΜΕΙΑ ΥΔΡΟΘΕΡΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αριάδνη Αργυράκη ΠΕΡΙΕΧΟΜΕΝΑ!2 1. ΥΠΟΘΑΛΑΣΣΙΕΣ ΘΕΡΜΕΣ ΠΗΓΕΣ 2. ΥΔΡΟΘΕΡΜΙΚΑ ΡΕΥΣΤΑ 3. ΔΙΕΡΓΑΣΙΕΣ ΕΛΕΓΧΟΥ ΣΥΣΤΑΣΗΣ ΥΔΡΟΘΕΡΜΙΚΩΝ ΡΕΥΣΤΩΝ 4. ΧΡΟΝΙΚΗ ΜΕΤΑΒΟΛΗ ΣΥΣΤΑΣΗΣ 5.

Διαβάστε περισσότερα

New Technologies on Normal Geothermal Energy Applications (in Smart-Social Energy Networks )

New Technologies on Normal Geothermal Energy Applications (in Smart-Social Energy Networks ) ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ Technological University of Central Hellas New Technologies on Normal Geothermal Energy Applications (in Smart-Social Energy Networks ) ΑΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ Εργαστήριο Ενεργειακών &

Διαβάστε περισσότερα

ΩΚΕΑΝΟΓΡΑΦΙΑ E ΕΞΑΜΗΝΟ

ΩΚΕΑΝΟΓΡΑΦΙΑ E ΕΞΑΜΗΝΟ ΩΚΕΑΝΟΓΡΑΦΙΑ E ΕΞΑΜΗΝΟ Θαλάσσια ρεύματα και Ωκεάνια κυκλοφορία Οι θαλάσσιες μάζες δεν είναι σταθερές ΑΙΤΙΑ: Υπάρχει (αλληλ)επίδραση με την ατμόσφαιρα (π.χ., ο άνεμος ασκεί τριβή στην επιφάνεια της θάλασσας,

Διαβάστε περισσότερα

Αντλίες θερμότητας πολλαπλών πηγών (αέρας, γη, ύδατα) συνδυασμένης παραγωγής θέρμανσης / ψύξης Εκδήλωση ελληνικού παραρτήματος ASHRAE 16.02.

Αντλίες θερμότητας πολλαπλών πηγών (αέρας, γη, ύδατα) συνδυασμένης παραγωγής θέρμανσης / ψύξης Εκδήλωση ελληνικού παραρτήματος ASHRAE 16.02. Αντλίες θερμότητας πολλαπλών πηγών (αέρας, γη, ύδατα) συνδυασμένης παραγωγής θέρμανσης / ψύξης Εκδήλωση ελληνικού παραρτήματος ASHRAE 16.02.2012 Μητσάκης Ευάγγελος, Μηχανολόγος Μηχανικός Υπεύθυνος πωλήσεων

Διαβάστε περισσότερα

ΓΕΩΘΕΡΜΙΚΕΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ REACH

ΓΕΩΘΕΡΜΙΚΕΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ REACH ΓΕΩΘΕΡΜΙΚΕΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ και το ΕΡΓΟ GROUND-REACH REACH Δ. Μενδρινός, Κ. Καρύτσας Κέντρο Ανανεώσιμων Πηγών Ενέργειας Ref: http://www.groundreach.eu/ Οι γεωθερμικές αντλίες θερμότητας αξιοποιούν την

Διαβάστε περισσότερα

Ειδική Ενθαλπία, Ειδική Θερµότητα και Ειδικός Όγκος Υγρού Αέρα

Ειδική Ενθαλπία, Ειδική Θερµότητα και Ειδικός Όγκος Υγρού Αέρα θερµοκρασία που αντιπροσωπεύει την θερµοκρασία υγρού βολβού. Το ποσοστό κορεσµού υπολογίζεται από την καµπύλη του σταθερού ποσοστού κορεσµού που διέρχεται από το συγκεκριµένο σηµείο. Η απόλυτη υγρασία

Διαβάστε περισσότερα

4 η Εβδομάδα Ενέργειας ΙΕΝΕ, 22-27 Νοεμβρίου 2010, Αθήνα Μ. ΦΥΤΙΚΑΣ-Μ. ΠΑΠΑΧΡΗΣΤΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ

4 η Εβδομάδα Ενέργειας ΙΕΝΕ, 22-27 Νοεμβρίου 2010, Αθήνα Μ. ΦΥΤΙΚΑΣ-Μ. ΠΑΠΑΧΡΗΣΤΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ 4 η Εβδομάδα Ενέργειας ΙΕΝΕ, 22-27 Νοεμβρίου 2010, Αθήνα Επιχειρηµατική Συνάντηση «ΕΝΕΡΓΕΙΑ Β2Β» - Workshop J «ΓΕΩΘΕΡΜΙΑ» Μ. ΦΥΤΙΚΑΣ-Μ. ΠΑΠΑΧΡΗΣΤΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ

Διαβάστε περισσότερα

Κατανάλωση νερού σε παγκόσμια κλίμακα

Κατανάλωση νερού σε παγκόσμια κλίμακα Κατανάλωση νερού σε παγκόσμια κλίμακα ΠΡΟΕΛΕΥΣΗ - ΜΟΡΦΗ ΕΡΓΟΥ ΚΑΙ ΧΡΗΣΗ ΝΕΡΟΥ ΣΤΗΝ ΕΛΛΑΔΑ Προέλευση Μορφή έργων Χρήση Επιφανειακό νερό Φράγματα (ταμιευτήρες) Λιμνοδεξαμενές (ομβροδεξαμενές) Κύρια για

Διαβάστε περισσότερα

Χρήσεις γεωθερμικής ενέργειας

Χρήσεις γεωθερμικής ενέργειας Χρήσεις γεωθερμικής ενέργειας Θερμοκρασία ρευστών Υψηλής ενθαλπίας Χαμηλής ενθαλπίας Παραγωγή ηλεκτρικής ενέργειας Άλλες χρήσεις (Άμεσες χρήσεις) Ξηρού ατμού Στρόβιλοι υγρού ατμού Δυαδικός κύκλος με πτητικό

Διαβάστε περισσότερα

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04)

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04) ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη (ΠΕ02) Βασιλική Χατζηκωνσταντίνου (ΠΕ04) Β T C E J O R P Υ Ν Η Μ Α Ρ Τ ΤΕ Α Ν Α Ν Ε Ω ΣΙ Μ ΕΣ Π Η ΓΕ Σ ΕΝ Ε Ρ ΓΕ Ι Α Σ. Δ Ι Ε Ξ Δ Σ Α Π ΤΗ Ν Κ Ρ Ι ΣΗ 2 Να

Διαβάστε περισσότερα

Γεωθερμικές Αντλίες Θερμότητας στον κτιριακό τομέα

Γεωθερμικές Αντλίες Θερμότητας στον κτιριακό τομέα 1 3η ΔιεθνήςΈκθεσηΕξοικονόμησηςκαι Ανανεώσιμων Πηγών Ενέργειας EnergyReS 2009 19-22 Φεβρουαρίου 2009 Γεωθερμικές Αντλίες Θερμότητας στον κτιριακό τομέα Αναστασία Μπένου Διπλ. Μηχανολόγος Μηχανικός, MSc

Διαβάστε περισσότερα

Ν. Κολιός Γεωλόγος ρ. Γεωθερµίας

Ν. Κολιός Γεωλόγος ρ. Γεωθερµίας ΠΡΟΟΠΤΙΚΕΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΥΝΑΜΙΚΟΥ ΣΤΟΝ ΑΓΡΟ ΙΑΤΡΟΦΙΚΟ ΤΟΜΕΑ Ν. Κολιός Γεωλόγος ρ. Γεωθερµίας Ι.Γ.Μ.Ε. Σε σχέση µε τις υπόλοιπες Α.Π.Ε., η γεωθερµική ενέργεια παρουσιάζει την υψηλότερη εγκατεστηµένη

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας Ήπιες Μορφές Ενέργειας Ενότητα 10: Ελευθέριος Αμανατίδης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Περιεχόμενα ενότητας Γεωθερμία Μορφές Γεωθερμικής Ενέργειας Υψηλής Ενθαλπίας Χαμηλής Ενθαλπίας Αβαθούς

Διαβάστε περισσότερα

ΓΕΩΧΗΜΕΙΑ Δ ΕΞΑΜΗΝΟ ΕΙΣΑΓΩΓΗ- ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ. Χριστίνα Στουραϊτη

ΓΕΩΧΗΜΕΙΑ Δ ΕΞΑΜΗΝΟ ΕΙΣΑΓΩΓΗ- ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ. Χριστίνα Στουραϊτη 1 ΓΕΩΧΗΜΕΙΑ Δ ΕΞΑΜΗΝΟ ΕΙΣΑΓΩΓΗ- ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ Χριστίνα Στουραϊτη ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΩΝ ΓΕΩΧΗΜΕΙΑΣ Δ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2016-2017 ΕΒΔΟΜΑΔΑ ΗΜ/ΝΙΑ ΠΕΡΙΕΧΟΜΕΝΟ ΔΙΔΑΣΚΟΥΣΑ 1 η Τετ 22/2/17 Εισαγωγή-

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑΣ. Τους δάνεισα το περιβάλλον που θα ζήσω. Θα μου το επιστρέψουν καθαρό;

ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑΣ. Τους δάνεισα το περιβάλλον που θα ζήσω. Θα μου το επιστρέψουν καθαρό; ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑΣ Τους δάνεισα το περιβάλλον που θα ζήσω. Θα μου το επιστρέψουν καθαρό; ΠΡΟΓΡΑΜΜΑ ΕΞΟΙΚΟΝΩΜΗΣΗΣ ΕΝΕΡΓΕΙΑΣ APOLYTON : ΠΑΡΑΓΩΓΗ ΕΝΕΡΓΕΙΑΣ ΚΟΥΦΩΜΑΤΑ ΥΨΗΛΗΣ Θ Προστατέψτε το περιβάλλον και

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) Στόχοι και Πραγματικότητα. Δρ Ιωάννης Μιχαηλίδης Ακαδημαϊκός, Μηχανολόγος Μηχανικός

Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) Στόχοι και Πραγματικότητα. Δρ Ιωάννης Μιχαηλίδης Ακαδημαϊκός, Μηχανολόγος Μηχανικός Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) Στόχοι και Πραγματικότητα Δρ Ιωάννης Μιχαηλίδης Ακαδημαϊκός, Μηχανολόγος Μηχανικός Περιεχόμενα Κυριότερες μορφές ΑΠΕ Σημαντικότερα έργα ΑΠΕ στον κόσμο Πρωτοπόρες χώρες

Διαβάστε περισσότερα

Γεωθερμική ενέργεια και Τοπική Αυτοδιοίκηση Το παράδειγμα του γεωθερμικού πεδίου Αρίστηνου-Αλεξανδρούπολης

Γεωθερμική ενέργεια και Τοπική Αυτοδιοίκηση Το παράδειγμα του γεωθερμικού πεδίου Αρίστηνου-Αλεξανδρούπολης Σχεδιάζοντας τη Μετάβαση προς Ενεργειακά Αποδοτικές Πόλεις Εξοικονόμηση Ενέργειας σε επίπεδο Δήμων και Δημοτών 11 12 Ιουνίου 2015, Αθήνα Γεωθερμική ενέργεια και Τοπική Αυτοδιοίκηση Το παράδειγμα του γεωθερμικού

Διαβάστε περισσότερα

Ερευνητικές δραστηριότητες στις ΑΠΕ- Γεωθερμία

Ερευνητικές δραστηριότητες στις ΑΠΕ- Γεωθερμία ΣΕΜΙΝΑΡΙΟ ΓΕΩΘΕΡΜΙΑΣ Συστήματα Γεωθερμικών Αντλιών Θερμότητας (ΓΑΘ) Καινοτόμες εφαρμογές στo πλαίσιο του έργου CHEAP-GSHPs Ερευνητικές δραστηριότητες στις ΑΠΕ- Γεωθερμία Δρ. Κωνσταντίνος Καρύτσας Προϊστάμενος

Διαβάστε περισσότερα

ΦΟΙΤΗΤΗΣ: ΔΗΜΑΣ ΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΦΟΙΤΗΤΗΣ: ΔΗΜΑΣ ΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΦΟΙΤΗΤΗΣ: ΔΗΜΑΣ ΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ Θέμα της εργασίας είναι Η αξιοποίηση βιομάζας για την παραγωγή ηλεκτρικής ενέργειας. Πρόκειται

Διαβάστε περισσότερα

ΩΚΕΑΝΟΓΡΑΦΙΑ Δ ΕΞΑΜΗΝΟ ΘΕΩΡΙΑ ΤΕΚΤΟΝΙΚΩΝ ΠΛΑΚΩΝ ΔΥΝΑΜΙΚΕΣ ΚΙΝΗΣΕΙΣ ΣΤΟ ΕΣΩΤΕΡΙΚΟ ΤΗΣ ΓΗΣ. Βασίλης ΚΑΨΙΜΑΛΗΣ

ΩΚΕΑΝΟΓΡΑΦΙΑ Δ ΕΞΑΜΗΝΟ ΘΕΩΡΙΑ ΤΕΚΤΟΝΙΚΩΝ ΠΛΑΚΩΝ ΔΥΝΑΜΙΚΕΣ ΚΙΝΗΣΕΙΣ ΣΤΟ ΕΣΩΤΕΡΙΚΟ ΤΗΣ ΓΗΣ. Βασίλης ΚΑΨΙΜΑΛΗΣ ΩΚΕΑΝΟΓΡΑΦΙΑ Δ ΕΞΑΜΗΝΟ ΘΕΩΡΙΑ ΤΕΚΤΟΝΙΚΩΝ ΠΛΑΚΩΝ ΔΥΝΑΜΙΚΕΣ ΚΙΝΗΣΕΙΣ ΣΤΟ ΕΣΩΤΕΡΙΚΟ ΤΗΣ ΓΗΣ Βασίλης ΚΑΨΙΜΑΛΗΣ Γεωλόγος-Ωκεανογράφος Κύριος Ερευνητής, ΕΛ.ΚΕ.Θ.Ε. Τηλ. Γραφείου: 22910 76378 Κιν.: 6944 920386

Διαβάστε περισσότερα

Σύνοψη και Ερωτήσεις 5ου Μαθήματος

Σύνοψη και Ερωτήσεις 5ου Μαθήματος Σύνοψη και Ερωτήσεις 5ου Μαθήματος - ΙΔΙΟΤΗΤΕΣ ΝΕΡΟΥ Ιδιότητα Θερμοχωρητικότητα Θερμική Αγωγιμότητα Λανθάνουσα Θερμότητα εξάτμισης Λανθάνουσα Θερμότητα Τήξης Διαλυτική Ικανότητα Επιφανειακή Τάση Φυσική

Διαβάστε περισσότερα

4ο Εργαστήριο: ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ

4ο Εργαστήριο: ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ 4ο Εργαστήριο: ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ Συστήματα θέρμανσης Στόχος του εργαστηρίου Στόχος του εργαστηρίου είναι να γνωρίσουν οι φοιτητές: - τα συστήματα θέρμανσης που μπορεί να υπάρχουν σε ένα κτηνοτροφικό

Διαβάστε περισσότερα

Τουρκία: Εξαγωγές Μαρμάρου (*2515) Αξία Εξαγωγών σε χιλίαδες ευρώ

Τουρκία: Εξαγωγές Μαρμάρου (*2515) Αξία Εξαγωγών σε χιλίαδες ευρώ Τουρκία: Εξαγωγές Μαρμάρου 2011-2015 (*2515) Αξία Εξαγωγών σε χιλίαδες ευρώ Importers 2011 2012 2013 2014 2015 World 553,015.00 721,765.00 843,510.00 734,227.00 785,603.00 China 452,579.00 606,384.00 735,665.00

Διαβάστε περισσότερα

Φωτογραφία του Reykjavik το 1932, όταν τα κτίρια θερμαίνονταν με συμβατικά καύσιμα.

Φωτογραφία του Reykjavik το 1932, όταν τα κτίρια θερμαίνονταν με συμβατικά καύσιμα. Φωτογραφία του Reykjavik το 1932, όταν τα κτίρια θερμαίνονταν με συμβατικά καύσιμα. Σήμερα, το Reykjavik είναι η πιο καθαρή πόλη στον κόσμο, αφού το σύνολο των κτιρίων θερμαίνεται από τα γεωθερμικά νερά.

Διαβάστε περισσότερα

4.1 Εισαγωγή. Μετεωρολογικός κλωβός

4.1 Εισαγωγή. Μετεωρολογικός κλωβός 4 Θερμοκρασία 4.1 Εισαγωγή Η θερμοκρασία αποτελεί ένα μέτρο της θερμικής κατάστασης ενός σώματος, δηλ. η θερμοκρασία εκφράζει το πόσο ψυχρό ή θερμό είναι το σώμα. Η θερμοκρασία του αέρα μετράται διεθνώς

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Γεωλογίας/Τομέας Γεωλογίας Μιχάλης Φυτίκας, Ομ. Καθηγητής Γεωθερμίας Α.Π.Θ. Μαρία Παπαχρήστου, MSc Γεωλόγος Α.Π.Θ. Περιοχές γεωθερμικού ενδιαφέροντος στην Ελλάδα

Διαβάστε περισσότερα

Εργασία Πρότζεκτ β. Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι

Εργασία Πρότζεκτ β. Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι Εργασία Πρότζεκτ β Τετραμήνου Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι Λίγα λόγια για την ηλιακή ενέργεια Ηλιακή ενέργεια χαρακτηρίζεται

Διαβάστε περισσότερα