Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Υδροηλεκτρικά έργα. Ενέργεια, ηλεκτρική ενέργεια, υδροηλεκτρική ενέργεια

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Υδροηλεκτρικά έργα. Ενέργεια, ηλεκτρική ενέργεια, υδροηλεκτρική ενέργεια"

Transcript

1 Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Υδροηλεκτρικά έργα Ενέργεια, ηλεκτρική ενέργεια, υδροηλεκτρική ενέργεια Νίκος Μαμάσης, Επίκουρος Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών

2 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.

3 Υδροηλεκτρικά έργα Ενέργεια, ηλεκτρική ενέργεια, υδροηλεκτρική ενέργεια Νίκος Μαμάσης, Α. Ευστρατιάδης και Δ. Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2015

4 Διάρθρωση παρουσίασης Ενέργεια Ηλεκτρική ενέργεια Ορισμοί Πηγές Μονάδες Ιστορικό Παραγωγή Ζήτηση Μεταφορά Διαχείριση Ανανεώσιμες μορφές ενέργειας 4

5 Ορισμοί Ενέργεια: H ικανότητα ενός φυσικού συστήματος να παράγει έργο. Το μέγεθος αυτό συνδέεται με κάθε μεταβολή στο φυσικό κόσμο. Η λέξη αναφέρεται πρώτη φορά από τον Αριστοτέλη (Ηθικά Νικομάχεια) με την έννοια της «δραστηριότητας που απαιτείται για να γίνει πράξη η δυνατότητα (δύναμις)» Ισχύς: Ο ρυθμός μεταβολής της ενέργειας στη μονάδα του χρόνου Μορφές ενέργειας Μηχανική (δυναμική, κινητική) Ηλεκτρομαγνητική (ηλεκτρική, μαγνητική) Πυρηνική Χημική Θερμική-βιολογική Θερμότητα-Ακτινοβολία

6 Πηγές ενέργειας Ηλιακή ακτινοβολία. Η ηλιακή ενέργεια σε ένα έτος είναι περίπου μεγαλύτερη από την παγκόσμια κατανάλωση ενέργειας (ηλιακή σταθερά (1367 W/m 2 ). Εκτός των άλλων η ενέργεια αυτή: (α) απορροφάται από τη γη και μετατρέπεται σε θερμότητα διατηρώντας τη θερμοκρασία περιβάλλοντος, (β) συντηρεί τον υδρολογικό κύκλο (εξάτμιση-βροχόπτωση), (γ) συντηρεί την κατακόρυφη μεταφορά (αιολική ενέργεια, ρεύματα), και (δ) συντηρεί την φωτοσύνθεση Βιομάζα. Η πρώτη πηγή που χρησιμοποιήθηκε από τον άνθρωπο πριν έτη και προκάλεσε τεχνολογική επανάσταση. Ορυκτά καύσιμα. Πρόκειται για τον άνθρακα, το πετρέλαιο και το φυσικό αέριο που προέρχονται από τα λείψανα της αρχαίας χλωρίδας και πανίδας. Είναι αποθηκευμένα για 600 εκατομμύρια έτη και η καύση τους παράγει ενέργεια τα τελευταία 300 έτη. Ο ρυθμός κατανάλωσης είναι πολλαπλάσιος από το ρυθμό δημιουργίας τους και στο μέλλον θα εξαντληθούν Γη. Οι θερμικές, χημικές και ραδιενεργές πηγές που βρίσκονται στο εσωτερικό της γης προκαλούν ροή ενέργειας στην επιφάνεια (της τάξης των W/m 2) Βαρύτητα. Προέρχεται από τη σχετική θέση Γης, Ηλίου και Σελήνης και δημιουργεί τις παλίρροιες και τα θαλάσσια ρεύματα. 6

7 Ενέργεια Calorie (cal): Η ενέργεια που απαιτείται για να ανέβει η θερμοκρασία 1 gr νερού κατά 1 ο C Μονάδες Ισχύς Ίππος (hp): Η ισχύς ενός αλόγου όπως εκτιμήθηκε από τον James Watt τον 18 ο συγκρίνοντας την ατμομηχανές. Joule (J): 1 cal = J Στον ηλεκτρισμό χρησιμοποιούνται: W = J/s Watt (W): 1 hp = 746 W British thermal unit (Btu): 1 Btu = kcal W h = 3600 J 1 kwh = 3.6 MJ = 860 kcal = 3412 Btu Τα ορυκτά καύσιμα μετρούνται σε τόνους ισοδύναμου πετρελαίου (ΤΙΠ) ή toe (tones oil equivalent) 1 toe προσεγγιστικά ισοδυναμεί με: 10 6 kcal ή 42 GJ ή 40*10 6 Btu ή 11.6 ΜWh Ο βαθμός απόδοσης σε ηλεκτρική ενέργεια είναι κάτω από 40% 1 toe παράγει περίπου 4.4 MWh

8 Χαρακτηριστικά μεγέθη Καύση 1 kg και ενέργεια που αποδίδεται: άνθρακας 34 ΜJ λιγνίτης 10 ΜJ βενζίνη 44 ΜJ πετρέλαιο 42 ΜJ φυσικό αέριο 47 ΜJ ξύλο 15 ΜJ Η ημερήσια ενέργεια μεταβολισμού που χρειάζεται ένας άνθρωπος είναι περίπου MJ ( kcal). Η χημική ενέργεια που παίρνει από τις τροφές μετατρέπεται σε κινητική (κίνηση σώματος), δυναμική (σύσπαση μυών), θερμική (διατήρηση θερμοκρασίας) και ηλεκτρική (επικοινωνία εγκεφάλου με μέρη σώματος) Λαμπτήρας 100 W που λειτουργεί συνεχώς για μια ημέρα αποδίδει 2.4 kwh (8.6 MJ) Η ωριαία ενέργεια που χρειάζεται ένας άνθρωπος 75 kg ο οποίος τρέχει με 13 km/hr είναι περίπου 3.5 MJ (800 kcal) Κινητήρας αυτοκινήτου 1400 cm 3 είναι 56 kw και σε μία ώρα αποδίδει 200 ΜJ Κινητήρας ενός αεροπλάνου Boeing 707 είναι 21 MW και σε ένα δευτερόλεπτο αποδίδει 21 ΜJ Η μέση ημερήσια ηλιακή ενέργεια Ιουνίου στο εξωτερικό όριο της ατμόσφαιρας σε 1 m 2 ενός τόπου που βρίσκεται σε γεωγραφικό πλάτος 40 ο είναι 42 MJ Η μέση ημερήσια ηλιακή ενέργεια Δεκεμβρίου στο εξωτερικό όριο της ατμόσφαιρας σε 1 m 2 ενός τόπου που βρίσκεται σε γεωγραφικό πλάτος 40 ο είναι 14 MJ 8

9 Ιστορία της ενέργειας Η ηλιακή ενέργεια είναι το βασικό συστατικό της ζωής στη Γη έτη πριν Καύση βιομάζας για κανονική χρήση φωτιάς 4 η -2 η χιλιετία π.χ. Αιολική ενέργεια για ναυσιπλοΐα (Μεσόγειος) Υδραυλική ενέργεια ποταμών για ναυσιπλοΐα (Μεσοποταμία) Καύση άνθρακα για θέρμανση και μαγείρεμα (Κίνα) 1 η χιλιετία π.χ Καύση φυσικού αερίου (Κίνα). Χρήση υδρόμυλων για άλεσμα δημητριακών (Ελλάδα) 1 η χιλιετία μ.χ Χρήση πετρελαίου σε λάμπες φωτισμού (Κίνα) Χρήση ρευμάτων στη ναυσιπλοΐα (Ειρηνικός) Ηλιακή ενέργεια για αφαλάτωση σε πλοία (Μεσόγειος) Εκτεταμένη χρήση υδρόμυλων (Ευρώπη) Ανεμόμυλοι κατακόρυφου άξονα για άλεσμα δημητριακών (Περσία, Μέση Ανατολή) 13 ος αιώνας μ.χ Ανεμόμυλοι οριζοντίου άξονα (Ευρώπη) 16 ος αιώνας μ.χ Χρήση ανεμόμυλων στην για αποστράγγιση εδαφών (Ολλανδία) 17 ος αιώνας μ.χ Χρήση του άνθρακα σαν καύσιμο (Βρετανία). Ο άνθρακας γίνεται η κυρία πηγή ενέργειας τους επόμενους αιώνες 9

10 Ιστορία της ενέργειας 18 ος αιώνας Ο Ελβετός Horace de Saussure, ανακαλύπτει τον πρώτο ηλιακό συλλέκτη (1767) Ο Γάλλος μηχανικός Bernard Forest de Blidor εκδίδει πραγματεία για την εκμετάλλευση της υδροηλεκτρικής ενέργειας (1774) 19 ος αιώνας Γίνεται η πρώτη γεώτρηση φυσικού αερίου στη Νέα Υόρκη (1820) Κατασκευάζεται γεννήτρια ηλεκτρικού ρεύματος (1830) Γίνεται η πρώτη γεώτρηση πετρελαίου στην Pennsylvania-ΗΠΑ (1859) Κατασκευάζεται ο πρώτος υδροηλεκτρικός σταθμός στο Wisconsin-ΗΠΑ (1882) Κατασκευάζεται η πρώτη ανεμογεννήτρια στη Δανία (1892) Χρήση γεωθερμικής ενέργειας για τη θέρμανση κτηρίων στο Idaho-ΗΠΑ (1892) 20 ος αιώνας Κατασκευάζονται οι πρώτοι ηλιακοί συλλέκτες (1908) Ανακάλυψη του μεγαλύτερου κοιτάσματος πετρελαίου στη Σαουδική Αραβία (1948) Φωτοβολταϊκά χρησιμοποιούνται για την ενεργειακή τροφοδοσία δορυφόρων (1950) Τα πρώτα πυρηνικά εργοστάσια κατασκευάζονται στη Σοβιετική Ένωση και τις ΗΠΑ (1952) Γίνεται η πρώτη παγκόσμια ενεργειακή κρίση. Ξεκινάει το ενδιαφέρον για τις ανανεώσιμες πηγές ενέργειας και το φυσικό αέριο (1970) 10

11 Ιστορία της ενέργειας Χρονική εξέλιξη χρήσης πηγών ενέργειας στις ΗΠΑ 11

12 Πηγές ενέργειας Ορυκτά καύσιμα Στερεά (Άνθρακας) Υγρά (Πετρέλαιο) Αέρια (Φυσικό Αέριο) Πυρηνικά (Ουράνιο) Ανανεώσιμες Ηλιακή Αιολική Υδραυλική Βιομάζας Παραγωγή-ζήτηση Βαθμός απόδοσης >80% Συμπαραγωγή ηλεκτρισμού-θερμότητας Βαθμός απόδοσης >70% Βαθμός απόδοσης >35-55% Ανάγκες Μεταφορές Οικιακός Βιομηχανία Τριτογενής Γεωργία-Αλιεία Βαθμός απόδοσης Ηλεκτρική ενέργεια Γεωθερμική Θαλάσσια (κυμάτων παλιρροιών-ρευμάτων) Βαθμός απόδοσης 15-90%

13 Παραγωγή-ζήτηση Πρωτογενής ενέργεια- Κατανάλωση ανά καύσιμο το 2009 Κόσμος: Mtoe ΗΠΑ: 2182 Mtoe Κίνα: 2177 Mtoe Πετρέλαιο Φυσικό αέριο Άνθρακας Πυρηνική Υδροηλεκτρικά Πετρέλαιο Φυσικό αέριο Άνθρακας Πυρηνική Υδροηλεκτρικά Πετρέλαιο Φυσικό αέριο Άνθρακας Πυρηνική Υδροηλεκτρικά Πετρέλαιο Φυσικό αέριο ΕΕ: 1623 Mtoe Πρώην 29.4 ΣΕ: 955 Mtoe Ελλάδα: 32.7 Mtoe Άνθρακας Πυρηνική Υδροηλεκτρικά Πετρέλαιο Φυσικό αέριο Άνθρακας Πυρηνική Υδροηλεκτρικά 24.1 Πετρέλαιο Φυσικό αέριο 23.8 Άνθρακας Πυρηνική Υδροηλεκτρικά Πετρέλαιο Φυσικό αέριο Άνθρακας Πυρηνική Υδροηλεκτρικά

14 Παραγωγή-ζήτηση Ενεργειακή παραγωγή και ζήτηση ανά τομέα (Ελλάδα 2009) Σύνολο: 32.7 Mtoe Πρωτογενής (ΜΤΙΠ-Μtoe) Μεταφορές 9.2 (45 %) Οικιακός 4.8 (24%) Βιομηχανία 3.5 (17%) Τριτογενής 2.1 (10%) Γεωργία-Αλιεία 0.9 (4)% Πετρέλαιο Φυσικό αέριο Άνθρακας Πυρηνική Υδροηλεκτρικά Ηλεκτρική ενέργεια: 52.5 TWh Σύνολο 20.5 Μtoe Σύνολο 12.2 Μtoe 34.8 Πετρέλαιο Φυσικό αέριο Ηλεκτρική ενέργειας από ανανεώσιμες πηγές: 2.8 TWh Άνθρακας Πυρηνική Υδροηλεκτρικά Σύνολο ζήτησης ηλεκτρικής ενέργειας: 55.3 TWh

15 Στερεά καύσιμα Άνθρακας (Coal) 1 mt =1000 kg Βαθμός απόδοσης σε θερμική ενέργεια: >80% Ορυκτά Καύσιμα Υγρά καύσιμα Πετρέλαιο (Oil) Πυκνότητα: 858 kg/m 3 1 barrel= 159 lt =136 kg 1 mt = m 3 = 7.33 barrels Βαθμός απόδοσης σε θερμική ενέργεια: 80% Θερμογόνος δύναμη Αέρια καύσιμα Φυσικό αέριο Natural Gas (NG) 1 m 3 NG = 0.73 kg LNG Yγροποιημένο φυσικό αέριο-liquified Natural Gas (LNG) Βαθμός απόδοσης σε θερμική ενέργεια: 95% Ανθρακίτης Λιθάνθρακας Λιγνίτης Λιγνίτης (Ελληνικός 8.5 Τύρφη Βιομάζα (kj/kg) (kj/m 3 ) Βενζίνη Μεθάνιο Ελαφρύ πετρέλαιο Φυσικό αέριο 37.7 Βαρύ πετρέλαιο

16 Καταλληλότητα περιοχών για παραγωγή ενέργειας Ενεργειακό δυναμικό Ορυκτά καύσιμα Αιολικό δυναμικό Ηλιοφάνεια Υδατοπτώσεις Γεωθερμικό πεδίο Βιομάζα Θαλάσσια ενέργεια Χαρακτηριστικά περιοχής Φυσικό περιβάλλον Ακραία φυσικά φαινόμενα (σεισμός, πλημμύρες) Πυκνότητα πληθυσμού Τουρισμός Τεχνολογική ανάπτυξη Αποδοχή κοινωνίας Το ενεργειακό μείγμα κάθε χώρας εξαρτάται από παράγοντές όπως: τα γεωλογικά και κλιματολογικά χαρακτηριστικά οι διαθέσιμοι τοπικοί ενεργειακοί πόροι το διεθνές περιβάλλον (γεωπολιτική) και η η ενεργειακή πολιτική 16

17 Σύγκριση Σύγκριση διαφόρων πηγών ενέργειας για την παραγωγή: (α) ενέργειας 10 kwh και (β) 3.3 toe (ετήσια ανά κάτοικο κατανάλωση πρωτογενούς ενέργειας στην Ελλάδα) Πηγή (α) (β) Ενέργεια σε kw 10 kwh 38.4 ΜWh Ισοδύναμο πετρέλαιο 0.86 kgr 3.3 tn Μαζούτ 0.92 kgr 3.5 tn Φυσικό αέριο 0.7 m m 3 Υγροποιημένου φυσικό αέριο 0.51 kgr 1.96 tn Ανθρακίτης 1.12 kgr 4.3 tn Λιγνίτης 1.88 kgr 7.2 tn Λιγνίτη Πτολεμαϊδας 5.9 kgr 22.7 tn Ουράνιο mg 1.7 gr Χ m 2 φωτοβολταϊκού στην Αθήνα σε Ψ χρόνο 10 m 2 για 2.5 ημέρες 265 m 2 για 1 έτος Ξηρή βιομάζα 2.15 kg 8.25 tn Την πτώση X m 3 νερού από ύψος Ψ m 450 m 3 από 10 m 170*10 3 m 3 από 100 m Συνεχής λειτουργία ανεμογεννήτριας διαμέτρου 4 m για Χ χρόνο με ταχύτητα ανέμου 8 m/s 1 hr 160 ημέρες 17

18 Ηλεκτρική ενέργεια Ο σύγχρονος κόσμος βασίζει την επιβίωση και την ευημερία του στην ηλεκτρική ενέργεια, που έχει ως βασικό πλεονέκτημα την ευκολία μετατροπής σε άλλες μορφές ενέργειας Μια από τις τέσσερις θεμελιώδεις αλληλεπιδράσεις της ύλης είναι η ηλεκτρομαγνητική. Υπεύθυνο για την αλληλεπίδραση αυτή είναι το ηλεκτρικό φορτίο, το οποίο αποτελεί ιδιότητα των υποατομικών σωματιδίων. Μια ροή ηλεκτρικού φορτίου αποτελεί το ηλεκτρικό ρεύμα, το οποίο διακρίνεται σε: (α) συνεχές (DC), το οποίο έχει σταθερή κατεύθυνση, και (β) εναλλασσόμενο (AC), το οποίο αλλάζει συνεχώς κατεύθυνση. Η ενέργεια που μεταφέρει το ηλεκτρικό ρεύμα είναι η ηλεκτρική ενέργεια Ο κύριος τρόπος για να παραχθεί ηλεκτρικό ρεύμα έγκειται στην περιστροφή ενός πηνίου εντός μαγνητικού πεδίου (Νόμος Ηλεκτρομαγνητικής Επαγωγής Faraday). Συνεπώς αυτό που απαιτείται είναι να παραχθεί μηχανικό έργο, το οποίο θα αξιοποιηθεί για την περιστροφή του πηνίου Στους σταθμούς που βασίζονται σε ορυκτά, πυρηνικά και βίο-καύσιμα, το μηχανικό έργο προκύπτει, μέσω παραγωγής ατμού, ο οποίος οδηγείται σε στρόβιλο, που με τη σειρά του κινεί την ηλεκτρογεννήτρια. Στα αιολικά, τα υδροηλεκτρικά και τα συστήματα αξιοποίησης της κυματικής και παλιρροιακής ενέργειας, η ηλεκτρογεννήτρια κινείται από ρεύμα κάποιου ρευστού. 18

19 ΟΡΥΚΤΑ ΚΑΥΣΙΜΑ Πηγές ηλεκτρικής ενέργειας Στερεά καύσιμα (λιθάνθρακας, λιγνίτης) Υγρά καύσιμα (diesel, μαζούτ) Αέρια καύσιμα (φυσικό αέριο) Ραδιενεργά υλικά (ουράνιο, πλουτώνιο) Τα ορυκτά καύσιμα έχουν σχηματιστεί πριν από εκατοντάδες εκατομμύρια έτη και βρίσκονται αποθηκευμένα στο υπέδαφος. Τα αποθέματα είναι πεπερασμένα και η εκμετάλλευσή τους εξαρτάται από οικονομικούς παράγοντες ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ Οι ανανεώσιμες πηγές είναι Αιολική διαχρονικές, αλλά συνδεδεμένες με Ηλιακή φυσικά φαινόμενα που παρουσιάζουν Υδροηλεκτρική τυχαιότητα. Οι μορφές αυτές δεν αποδεσμεύουν διοξείδιο του άνθρακα, Γεωθερμία τοξικά και ραδιενεργά απόβλητα. Βιομάζα (βιοαέριο, σκουπίδια) Θαλάσσια ενέργεια (κύματα, ρεύματα, παλίρροιες) ΜΕΤΑΦΟΡΑ ΕΞΟΙΚΟΝOΜΙΣΗ

20 Παραγωγή ηλεκτρικής ενέργειας Ενεργειακό μίγμα της παγκόσμιας ηλεκτρικής παραγωγής (%) Σύνολο: TWh Ανανεώσιμες: 2959 TWh (18.3%) Πυρηνική: 2661 TWh (16,5%) Ορυκτά καύσιμα: TWh (65.2%) Σύνολο: TWh Ανανεώσιμες: 4699 TWh (20.8%) Πυρηνική: 2463 TWh (10.9%) Ορυκτά καύσιμα: TWh (68.3%) 20

21 Παραγωγή ηλεκτρικής ενέργειας Παραγωγή ηλεκτρικής ενέργειας το 2006 (ΤWh) Οι 10 χώρες με τη μεγαλύτερη παραγωγή United States China Russia 985 Japan 983 Germany 549 Canada 530 India 517 France 447 Brazil 402 S. Korea % της παγκόσμιας παραγωγής Οι 10 χώρες με τη μικρότερη παραγωγή Comoros 0,0186 Montenegro 0,0186 São Tomé and Príncipe 0,0167 Falkland Islands (Islas Malvinas) 0,0149 Kiribati 0,0093 Turks and Caicos Islands 0,0093 Saint Helena 0,0074 Niue 0,0037 Johnston Atoll 0,0020 Gaza Strip 0, % της παγκόσμιας παραγωγής 21

22 0,0 Παραγωγή ηλεκτρικής ενέργειας Ενεργειακό μίγμα ηλεκτρικής Coal παραγωγής (%) Natural gas Oil 15,8 8,3 1,3 0,0 0,0 41,1 Denmark 40,6 Hydropower Other renewable Nuclear power Egypt 0,0 17,9 0,0 1,3 18,2 Germany 16,9 40,6 45,8 Coal Natural gas Oil Hydropower Coal Other Natural renewable gas Nuclear Oil power Hydropower Other renewable Nuclear power 10,9 1 15,8 0 74,6 48 0,0 1,32,9 16,9 Greece 1,1 14,1 24,3 22

23 Ενεργειακό μίγμα στην Ελλάδα Ορυκτά καύσιμα Λιγνίτης: Σημαντικά εγχώρια κοιτάσματα, αποτελεί τη βάση του συστήματος Λιθάνθρακας: Εισαγόμενο καύσιμο με σχετικά σταθερές τιμές, καλύτερο από το λιγνίτη Πετρέλαιο: Εισαγόμενο καύσιμο Φυσικό αέριο: Εισαγόμενο καύσιμο, με καλές περιβαλλοντικές επιδόσεις Ανανεώσιμες πηγές Αιολικά: Μεγάλη πυκνότητα ισχύος, μπορούν να συνδυαστούν, ιδανικά για κάλυψη ενεργειακών αναγκών νησιών περιορίζοντας το πετρέλαιο Υδροηλεκτρικά: Σημαντική πηγή ενέργειας με πολλά πλεονεκτήματα. Επιβάλλεται η περεταίρω ανάπτυξή τους Φωτοβολταϊκά Ηλιοθερμικά: Επιδοτούμενη ενέργεια. Δυστυχώς διείσδυσαν σε μεγάλο βαθμό στο ενεργειακό μίγμα της χώρας. Βιομάζα: Σημαντική ενεργειακή πηγή, με πολλά πλεονεκτήματα Γεωθερμία: Σημαντική πηγή σε συγκεκριμένες περιοχές της Ελλάδας. Η εκμετάλλευση της παρουσιάζει προβλήματα 23

24 Θερμικοί σταθμοί συνδεδεμένοι στο ελληνικό σύστημα (2013) Παραγωγή ηλεκτρικής ενέργειας Υδροηλεκτρικοί σταθμοί συνδεδεμένοι στο σύστημα (2009) Πηγή: ΑΔΜΗΕ, Μελέτη επάρκειας ισχύος

25 Παραγωγή ηλεκτρικής ενέργειας Ανάλυση παραγωγής στην Ελλάδα ,9 3, ΛΙΓΝΙΤΙΚΗ ΠΕΤΡΕΛΑΙΚΗ 12,8 ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ ΥΔΡΟΗΛΕΚΤΡΙΚΗ 57.8 ΑΠΕ ΙΣΟΖΥΓΙΟ ΕΙΣΑΓΩΓΩΝ -ΕΞΑΓΩΓΩΝ 19,8 0,2 ΛΙΓΝΙΤΙΚΗ ΠΕΤΡΕΛΑΙΚΗ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ ΥΔΡΟΗΛΕΚΤΡΙΚΗ ΑΠΕ ΙΣΟΖΥΓΙΟ ΕΙΣΑΓΩΓΩΝ -ΕΞΑΓΩΓΩΝ 25 52,4

26 Παραγωγή ηλεκτρικής ενέργειας Εγκατεστημένη ισχύς στην Ελλάδα (10/2013) Παραγωγή ενέργειας στην Ελλάδα (10/2013) Πηγή: ΑΔΜΗΕ, Μελέτη επάρκειας ισχύος

27 Παραγωγή Ηλεκτρικής Ενέργειας (GWh) Παραγωγή ηλεκτρικής ενέργειας Χρονική εξέλιξη παραγωγής ( ) σε GWh Διασυνδεδεμένο Σύστημα ΑΠΕ πλην Μεγ. ΥΗΕ Φυσικό Αέριο Εισαγωγές-Εξαγωγές Μεγάλα ΥΗΕ Πετρέλαιο Λιγνίτης Έτος 27

28 Παραγωγή Ηλεκτρικής Ενέργειας (GWh) Παραγωγή ηλεκτρικής ενέργειας Χρονική εξέλιξη παραγωγής ( ) σε GWh ΑΠΕ πλην Μεγ. ΥΗΕ Φυσικό Αέριο Διασυνδεδεμένο Σύστημα Εισαγωγές-Εξαγωγές Μεγάλα ΥΗΕ Πετρέλαιο Λιγνίτης Έτος 28

29 Ζήτηση ηλεκτρικής ενέργειας Παράγοντες διαμόρφωσης ζήτησης Η ζήτηση ενέργειας από ένα σύστημα (π.χ. κράτος-νησί) εξαρτάται από: Τον πληθυσμό (κάτοικοι-επισκέπτες, μετανάστες) Το είδος των δραστηριοτήτων (βιομηχανία) Τις κλιματολογικές συνθήκες (θερμοκρασία, υγρασία, ηλιακή ακτινοβολία, ταχύτητα ανέμου) Διάφορα οικονομικά μεγέθη (τιμή ενέργειας, μέσο εισόδημα, ΑΕΠ κλπ) Υποδομές (δίκτυα μεταφοράς, κατοχή οικιακών συσκευών κλπ) Κοινωνικές συνθήκες (καταναλωτικές συνήθειες, ημέρες και ώρες που γίνονται διάφορες δραστηριότητες) Πολιτικές συνθήκες (εξοικονόμηση ενέργειας, περιβαλλοντικοί περιορισμοί) 29

30 Ζήτηση ηλεκτρικής ενέργειας Κατανάλωση (kwh ανά κάτοικο ανά έτος) Χώρα Iceland Norway Finland Canada Luxembourg 15,681 16,414 16,315 Kuwait United Arab Emirates Sweden Bahrain United States Χώρα Haiti Ethiopia Benin Nepal Tanzania Sudan Cambodia Myanmar Togo Congo Ελλάδα

31 Ζήτηση ηλεκτρικής ενέργειας Συσχέτιση ημερήσιας θερμοκρασίας και ζήτησης ηλεκτρικής ενέργειας Η ζήτηση έχει σταθμιστεί ώστε να αφαιρεθεί η ανοδική τάση που οφείλεται στην αύξηση του ΑΕΠ Αθήνα Λονδίνο Υπάρχει εποχιακή διακύμανση με τους χειμωνιάτικους μήνες να απαιτείται περισσότερη ενέργεια Η Αθήνα (όπως και άλλες μεσογειακές πόλεις) παρουσιάζει δεύτερη αιχμή τους καλοκαιρινούς μήνες λόγω της ενέργειας για ψύξη Πηγή: Factors affecting electricity demand in Athens, Greece and London, UK:A comparative assessment. B.E. Psiloglou, 31 C. Giannakopoulos, S. Majithia, M. Petrakis, Energy, 34, , 2009.

32 Ζήτηση ηλεκτρικής ενέργειας Εξέλιξη μηνιαίας ζήτησης στο έτος Οι μηνιαίες ζητήσεις έχουν διαιρεθεί με την μέση ετήσια ζήτηση Αθήνα Λονδίνο Αθήνα: χειμερινοί και καλοκαιρινοί μήνες με υψηλές ζητήσεις (θέρμανση, ψύξη) Αθήνα: το Δεκέμβριο η υψηλότερη ζήτηση (Χριστούγεννα), Αύγουστο ή μικρότερη (μετακίνηση πληθυσμού) Λονδίνο: δεν υπάρχει η καλοκαιρινή αιχμή (λόγω θερμοκρασιακής άνεσης) Πηγή: Factors affecting electricity demand in Athens, Greece and London, UK:A comparative assessment. B.E. Psiloglou, 32 C. Giannakopoulos, S. Majithia, M. Petrakis, Energy, 34, , 2009.

33 Ζήτηση ηλεκτρικής ενέργειας Εξέλιξη ημερήσιας ζήτησης στην εβδομάδα Οι ημερήσιες ζητήσεις έχουν διαιρεθεί με τη μέση εβδομαδιαία ζήτηση Αθήνα Λονδίνο Σημαντική μείωση τα Σαββατοκύριακα λόγω μείωσης των δραστηριοτήτων και τη Δευτέρα λόγω αδράνειας Το Σαββατοκύριακα μικρότερες ζητήσεις τον Ιούλιο σε σχέση με τον Δεκέμβριο λόγω των εξόδων στην ύπαιθρο Πηγή: Factors affecting electricity demand in Athens, Greece and London, UK:A comparative assessment. B.E. Psiloglou, 33 C. Giannakopoulos, S. Majithia, M. Petrakis, Energy, 34, , 2009.

34 Ζήτηση ηλεκτρικής ενέργειας Εξέλιξη ωριαίας ζήτησης στην ημέρα Οι ωριαίες ζητήσεις έχουν διαιρεθεί με τη μέση μηνιαία ζήτηση Αθήνα Λονδίνο Στην Αθήνα αιχμή το μεσημέρι λόγω δραστηριοτήτων και δεύτερη αιχμή το βράδυ λόγω φωτισμού Στο Λονδίνο σταθερή ζήτηση μέχρι το απόγευμα γιατί πολλές δραστηριότητες συνεχίζονται Στη Αθήνα η βραδινή αιχμή τον Ιούλιο εξαφανίζεται γιατί οι άνθρωποι μένουν έξω Πηγή: Factors affecting electricity demand in Athens, Greece and London, UK:A comparative assessment. B.E. Psiloglou, 34 C. Giannakopoulos, S. Majithia, M. Petrakis, Energy, 34, , 2009.

35 Ζήτηση ηλεκτρικής ενέργειας Σχέση αιχμών ζήτησης και θερμοκρασίας Πηγή: ΔΕΣΜΗΕ, Μελέτη ανάπτυξη συστήματος μεταφοράς ( ) Αθήνα Λονδίνο Πηγή: Factors affecting electricity demand in Athens, Greece and London, UK:A comparative assessment. B.E. Psiloglou, 35 C. Giannakopoulos, S. Majithia, M. Petrakis, Energy, 34, , 2009.

36 Ζήτηση ηλεκτρικής ενέργειας Επίδραση υψομέτρου Bαθμοημέρες* θέρμανσης τεσσάρων πόλεων που βρίσκονται στο ίδιο γεωγραφικό πλάτος (θερμοκρασία βάσης 20 ο C) * Σε ένα έτος προσδιορίζονται οι ημέρες που η θερμοκρασία (Τ) είναι κάτω από τους 20 o C και αθροίζονται οι ποσότητες (20-Τ) Ετήσια κατανάλωση ενέργειας (kwh) Οι ανάγκες του Μετσόβου σε θερμότητα είναι κατά 266% μεγαλύτερες σε σχέση με την παραθαλάσσια Κέρκυρα 36

37 Διασυνδεδεμένο Σύστημα: Ωριαία παραγωγή MWh στην ημέρα Φθινόπωρο Τρίτη 10/10/2006 Τρίτη 27/06/2006 Καλοκάιρι Υδροηλεκτρικά Αεριοστρόβιλοι Πετρέλαιο Εισαγωγές-εξαγωγές ΑΠΕ Άντληση Λιγνιτικές Τρίτη 11/10/2011 Τρίτη 28/6/

38 ΙΣΧΥΣ (MW) Ζήτηση ηλεκτρικής ενέργειας Απαιτήσεις ισχύος το 2009 σε ετήσια, μηνιαία και ωριαία βάση 23/7/2007 Στιγμιαία ΜW (Μέγιστη παρατηρημένη) /7/2008 Στιγμιαία ΜW 24/7/ : ΜW ΜΕΣΗ ΕΤΗΣΙΑ ΜΕΣΗ ΜΗΝΙΑΙΑ ΜΕΓΙΣΤΗ ΩΡΙΑΙΑ ΕΓΚΑΤΕΣΤΗΜΕΝΗ ΙΑΝ ΦΕΒ ΜΑΡ ΑΠΡ ΜΑΪ ΙΟΥΝ ΙΟΥΛ ΑΥΓ ΣΕΠ ΟΚΤ ΝΟΕ ΔΕΚ 38

39 Ισχύς (MW) Αιχμή 50 ωρών ( ) για το Διασυνδεδεμένο Σύστημα Ζήτηση ηλεκτρικής ενέργειας 2001 (Ι= 775 MW, E=13,4 GW h) 2002 (I= 690 MW, E=13,1 GW h) 2003 (I= 620 MW, E=10,6 GW h) (I=1050 MW, E=13,4 GW h) 2005 (I=1070 MW, E=13,6 GW h) 2006 (Ι=967 MW, E=12,5 GW h) Ώρες το Έτος 39

40 Καύσιμη ύλη- Νερό-Αέρας-Ήλιος Σταθμός παραγωγής Γεννήτρια Μετασχηματιστής Μεταφορά ηλεκτρικής ενέργειας Σύστημα μεταφοράς ηλεκτρικής ενέργειας (δίκτυο υψηλής και υπερύψηλής τάσης) Υποσταθμός Δίκτυο διανομής ηλεκτρικής ενέργειας (μέσης και χαμηλής τάσης) Κατανάλωση 40

41 Μεταφορά ηλεκτρικής ενέργειας Στους σταθμούς παραγωγής ηλεκτρισμού, παράγεται από την ηλεκτρογεννήτρια ηλεκτρικό ρεύμα με μία ορισμένη τιμή τάσης (6,6 kv) Η τάση μέσω μετασχηματιστών ανυψώνεται σε υψηλές (66 και 150 kv) και υπερυψηλές τιμές (400 kv) ώστε να μειωθούν οι απώλειες μεταφοράς Με το Σύστημα Μεταφοράς Ηλεκτρικής Ενέργειας (το δίκτυο υψηλής και υπερυψηλής τάσης) η ηλεκτρική ενέργεια μεταφέρεται προς τους υποσταθμούς. Στους υποσταθμούς η τιμή της τάσης υποβιβάζεται για να διανεμηθεί στους καταναλωτές Με το Δίκτυο Διανομής Ηλεκτρικής Ενέργειας (μέσης και χαμηλής τάσης), η ηλεκτρική ενέργεια μεταφέρεται από τους υποσταθμούς στους καταναλωτές Στον οικιακό τομέα η τιμή της τάσης του ηλεκτρικού ρεύματος είναι 230V 41

42 Κύριο χαρακτηριστικό του Ελληνικού Διασυνδεδεμένου Συστήματος είναι η μεγάλη συγκέντρωση σταθμών παραγωγής στο βόρειο τμήμα της χώρας (Δυτική Μακεδονία, περιοχή Πτολεμαΐδας), ενώ το κύριο κέντρο κατανάλωσης βρίσκεται στο Νότο (περιοχή Αττικής). Δεδομένου ότι και οι διεθνείς διασυνδέσεις με Βουλγαρία και ΠΓΔΜ είναι στο Βορρά, υπάρχει μεγάλη γεωγραφική ανισορροπία μεταξύ παραγωγής και φορτίων. Μεταφορά ηλεκτρικής ενέργειας Το γεγονός αυτό οδηγεί στην ανάγκη μεταφοράς μεγάλων ποσοτήτων ισχύος κατά το γεωγραφικό άξονα Βορρά Νότου, η οποία εξυπηρετείται κυρίως από έναν κεντρικό κορμό 400kV αποτελούμενο από τρεις γραμμές μεταφοράς 400kV διπλού κυκλώματος. Οι γραμμές αυτές συνδέουν το κύριο κέντρο παραγωγής (Δυτική Μακεδονία) με τα ΚΥΤ που βρίσκονται πέριξ της ευρύτερης περιοχής της Πρωτεύουσας. Η μεγάλη γεωγραφική ανισορροπία μεταξύ παραγωγής και κατανάλωσης είχε οδηγήσει στο παρελθόν σε σημαντικά προβλήματα τάσεων. Η ένταξη νέων μονάδων παραγωγής στο Νότιο Σύστημα αναμένεται να διαφοροποιήσει σημαντικά αυτή τη γεωγραφική ανισορροπία στο άμεσο μέλλον. Πηγή: ΔΕΣΜΗΕ, Μελέτη ανάπτυξη συστήματος μεταφοράς ( ) 42

43 Μεταφορά ηλεκτρικής ενέργειας 2012 Ελλάδα-10/2013 Εισαγωγές Εξαγωγές 43

44 Μεταφορά ηλεκτρικής ενέργειας Διασύνδεση νησιών με υποβρύχιους αγωγούς Αυτόνομα-μη διασυνδεδεμένα νησιά Μεγάλες διακυμάνσεις μεταξύ χειμώνακαλοκαιριού και ημέραςνύχτας Τοπικοί πετρελαϊκοί σταθμοί Ευαίσθητα δίκτυα Υψηλό κόστος παραγόμενης ενέργειας Εξάρτηση από την τιμή του πετρελαίου 44

45 Διαχείριση ηλεκτρικής ενέργειας Η τροφοδότηση του ηλεκτρικού δικτύου με ενέργεια, έχει δύο βασικούς περιορισμούς: Το δίκτυο πρέπει συνεχώς να τροφοδοτείται με ακριβώς τόση ενέργεια όση καταναλώνεται για αυτό και η παραγωγή πρέπει να μεταβάλλεται συνεχώς. Ο χρόνος ενεργοποίησης και μεταβολής του φορτίου των σταθμών παραγωγής είναι διαφορετικός. Η τάξη μεγέθους του χρόνου αυτού είναι ημέρες για τους λιγνιτικούς, ώρες για τους σταθμούς φυσικού αερίου και λεπτά για τους υδροηλεκτρικούς. ατανάλωση λεκτρικής νέργειας Οι αιχμές ζήτησης φορτίου καθορίζουν τη συνολική ισχύ που πρέπει να υπάρχει εγκατεστημένη (Μονάδες Αιχμής) 12:00 24:00 Ώρες ημέρας Το κατώφλι ζήτησης φορτίου καθορίζει την τιμή της ισχύος που αδιάλειπτα πρέπει να παρέχεται (Μονάδες Βάσης) 45

46 Διαχείριση ηλεκτρικής ενέργειας Η μεταβολή της παραγωγής ώστε να ισούται με την κατανάλωση πραγματοποιείται με την παρακάτω διαδικασία: Όταν η ΔΕΗ προγραμματίζει την παραγωγή ενέργειας για τους επόμενους μήνες, με βάση την προηγούμενη εμπειρία για το ποια είναι η κατανάλωση κάθε μήνα, καθώς και τις διεθνείς τιμές ενέργειας, κάνει διεθνείς συμφωνίες για αγορά ή πώληση ενέργειας. Έτσι, άλλους μήνες αγοράζει ενέργεια και άλλους μήνες πουλά ενέργεια, πράγμα που επηρεάζει το ενεργειακό ισοζύγιο. Όταν προγραμματίζει την παραγωγή ενέργειας για τις επόμενες μέρες, με βάση την προηγούμενη εμπειρία και την πρόγνωση του καιρού, μπορεί να μεταβάλλει την «ενέργεια βάσης», δηλαδή την ελάχιστη ισχύ της ημέρας, αυξομειώνοντας την ισχύ των λιγνιτικών σταθμών. Όταν προγραμματίζει την παραγωγή για τις επόμενες ώρες, μπορεί να μεταβάλλει την ισχύ μικρών θερμοηλεκτρικών σταθμών, ιδιαίτερα σταθμών φυσικού αερίου, που έχουν σχετικά γρήγορη απόκριση. Η ρύθμιση της παραγωγής ενέργειας ώστε να προσαρμόζεται στην κατανάλωση από λεπτό σε λεπτό γίνεται μεταβάλλοντας την παραγωγή των υδροηλεκτρικών σταθμών, που έχουν απόκριση λίγων λεπτών. Τέλος, με τη χρήση αεριοστροβίλων επιτυγχάνεται η κάλυψη των αιχμών σε χρονική κλίμακα λεπτού. 46

47 Διαχείριση ηλεκτρικής ενέργειας Υδροηλεκτρικά έργα με δυνατότητα αποθήκευσης της ενέργειας Okinawa Λειτούργησε το 1999 στο νησί Okinawa της Ιαπωνίας. Tο πρώτο έργο άντλησηςταμίευσης στον κόσμο που χρησιμοποιεί θαλασσινό νερό. Έχει ισχύ 30 MW, μέγιστο ύψος πτώσης 140 m και μέγιστη παροχή 26 m 3 /s Kazunogawa Ολοκληρώθηκε το 2001 στην περιοχή Yamnashi-Ken της Ιαπωνίας, ισχύος 1600 MW. Αποτελείται από 2 ταμιευτήρες χωρητικότητας 19.2 και 18.4 hm 3 που έχουν υψομετρική διαφορά 685 m. 47

48 Ενέργεια GWh Ενέργεια GWh Όγκος νερού hm Φυσική εισροή Εισροή από άντληση Νερό που χρησιμοποιήθηκε για παραγωγή Παραγωγή σταθμού χωρίς άντληση (GWh) Άντληση ταμίευση στην Ελλάδα Λειτουργία Σφηκιάς ( ) Παραγωγή σταθμού (GWh) Κατανάλωση για άντληση (GWh) Παραγωγή νερού που αντλήθηκε (GWh) Διαχείριση ηλεκτρικής ενέργειας Μέση κατανάλωση άντλησης: kw/m 3 Μέση παραγωγή αντλούμενου νερού: kw/m 3 Επανάκτηση του 71.5% της ενέργειας άντλησης Μέση ετήσια παραγωγή: 358 GWh Μέση ετήσια παραγωγή χωρίς άντληση: 151 GWh Μέση ετήσια κατανάλωση για άντληση: 288 GWh

49 Διαχείριση ηλεκτρικής ενέργειας Λειτουργία ενεργειακής αγοράς στην Ελλάδα Ρ.Α.Ε. Ρυθμιστική Αρχή Ενέργειας Γνωμοδοτήσεις για ενεργειακή πολιτική Παρακολούθηση της ενεργειακής αγοράς Υπουργείο Ανάπτυξης Γενική εποπτεία και έλεγχος του συστήματος Γνωμοδοτήσεις για άδειες παραγωγής Δ.Ε.Σ.Μ.Η.Ε. (Α.Δ.Μ.Η.Ε. + Λ.ΑΓ.Η.Ε.) Διαχειριστής Ελληνικού Συστήματος Μεταφοράς Ηλεκτρικής Ενέργειας ΗΕΠ Παραγωγοί ηλεκτρικής ενέργειας Καθορίζουν τη ζήτηση Καταναλωτές Διοχέτευση ενέργειας με βάση τον ΗΕΠ Με βάση τη ζήτηση κάθε μέρα μέχρι τις γίνεται ο Ημερήσιος Ενεργειακός Προγραμματισμός (ΗΕΠ), με στόχο την ελάχιστη δαπάνη. Ο ΔΕΣΜΗΕ (που έχει ήδη διαχωριστεί στους Α.Δ.Μ.Η.Ε. + Λ.ΑΓ.Η.Ε.) καταστρώνει το πρόγραμμα, κατανέμει το φορτίο και υπολογίζει την οριακή τιμή συστήματος 49

50 Φορτίο (MW) Διαχείριση ηλεκτρικής ενέργειας Διασυνδεδεμένο Σύστημα Καμπύλη Διαρκείας Φορτίου (2003) Αεροστρόβιλοι στην Αιχμή (14 GWh, 542 MW) Ενδιάμεσο Φορτίο (14222GWh, 2250 MW) Υδροηλεκτρικά στην Αιχμή (3453 GWh, 2500 MW) Υπόλ. Φορτίου Βάσης (31098 GWh, 3550 MW) Υδροηλεκτρικά στη Βάση (1752 GWh, 200 MW) Ώρες 50

51 Διαχείριση ηλεκτρικής ενέργειας Συμμετοχή των ΑΠΕ Η αιολική και η ηλιακή ενέργεια έχουν την ιδιαιτερότητα ότι δεν παράγονται όταν το σύστημα τις χρειάζεται, αλλά όταν οι καιρικές συνθήκες είναι κατάλληλες. Επομένως εισάγουν επιπλέον πολυπλοκότητα στο (ήδη περίπλοκο) σύστημα διαχείρισης της ενέργειας, αφού ο διαχειριστής πρέπει επιπλέον να αυξομειώνει την παραγόμενη ενέργεια από τους άλλους σταθμούς ακολουθώντας την αυξομείωση της παραγόμενης αιολικής και ηλιακής ενέργειας. Για να συμμετάσχει η αιολική ενέργεια κατά 20% στο ενεργειακό ισοζύγιο, χρειάζονται ανεμογεννήτριες εγκατεστημένης ισχύος περίπου 3 GW. Σήμερα η συνολική εγκατεστημένη αιολική ισχύς είναι περίπου 1.3 GW, αλλά αφορά και τα νησιά που δεν συνδέονται με το ηπειρωτικό δίκτυο. Μελέτη του ΕΜΠ* καταλήγει στο συμπέρασμα ότι αυτό δεν είναι εφικτό χωρίς την αλλαγή υποδομών αφού η ΔΕΗ δεν θα μπορεί να διαχειριστεί την ενέργεια, καθόσον μάλιστα η νομοθεσία την υποχρεώνει να αγοράζει όλη την παραγόμενη ενέργεια από ΑΠΕ ανεξάρτητα από το αν τη χρειάζεται. Για να μπορέσει λοιπόν να αυξηθεί η συμμετοχή των ανανεώσιμων πηγών ενέργειας χρειάζονται σημαντικές επεμβάσεις όπως η κατασκευή υδροηλεκτρικών έργων με δυνατότητα αποθήκευσης ενέργειας, και η δρομολόγηση διεθνών συμφωνιών για ανταλλαγή ενέργειας προσαρμοζόμενη σε πραγματικό χρόνο. * Ε. Διαλυνάς, Ν. Χατζηαργυρίου, Σ. Παπαθανασίου, και Κ. Βουρνάς, Μελέτες ορίων αιολικής διείσδυσης, Εργαστήριο Συστημάτων Ηλεκτρικής Ενέργειας, Εθνικό Μετσόβιο Πολυτεχνείο,

52 Ανανεώσιμες πηγές ενέργειας Οι Ήπιες Μορφές Ενέργειας (ΗΜΕ) είναι μορφές εκμεταλλεύσιμης ενέργειας που προέρχεται από διάφορες φυσικές διαδικασίες, όπως ο άνεμος, η γεωθερμία, η κυκλοφορία του νερού και άλλες. Ο όρος "ήπιες" αναφέρεται σε δυο βασικά χαρακτηριστικά τους: Δεν απαιτείται κάποια ενεργητική παρέμβαση για την εκμετάλλευσή τους (εξόρυξη, άντληση, καύση), αλλά απλώς η εκμετάλλευση της ήδη υπάρχουσας ροής ενέργειας στη φύση. Πρόκειται για μορφές ενέργειας οι οποίες που δεν αποδεσμεύουν υδρογονάνθρακες, διοξείδιο του άνθρακα ή τοξικά και ραδιενεργά απόβλητα Οι τεχνολογίες αυτές αναφέρονται και ως Ανανεώσιμες Πηγές Ενέργειας δεδομένου ότι το βασικό τους χαρακτηριστικό είναι η διαχρονική τους ανανέωση και η απεριόριστη διαθεσιμότητά τους. Ακόμη είναι γνωστές και σαν Εναλλακτικές Μορφές Ενέργειας γιατί αποτελούν σήμερα εναλλακτικές λύσεις για την παραγωγή ενέργειας αντί των συμβατικών Σήμερα οι Ήπιες Μορφές Ενέργειας χρησιμοποιούνται είτε άμεσα (κυρίως για θέρμανση) είτε μετατρεπόμενες σε άλλες μορφές ενέργειας (κυρίως ηλεκτρισμό ή μηχανική ενέργεια). Υπολογίζεται ότι το τεχνικά εκμεταλλεύσιμο ενεργειακό δυναμικό από τις μορφές αυτές είναι πολλαπλάσιο της παγκόσμιας συνολικής κατανάλωσης. 52

53 Πλεονεκτήματα Ανανεώσιμες πηγές ενέργειας Είναι ανεξάντλητες, σε αντίθεση με τα ορυκτά καύσιμα. Είναι πολύ φιλικές προς το περιβάλλον, έχοντας σχεδόν μηδενικά κατάλοιπα και απόβλητα. Μπορούν να αποτελέσουν εναλλακτική πρόταση σε σχέση με την οικονομία του πετρελαίου. Είναι ευέλικτες εφαρμογές που μπορούν να παράγουν ενέργεια ανάλογη με τις ανάγκες του επί τόπου πληθυσμού σε απομεμακρυσμένες περιοχές Στις περισσότερες εφαρμογές ο εξοπλισμός είναι κατασκευαστικά απλός και με μεγάλο χρόνο ζωής. Η υλοποίηση ΑΠΕ σήμερα επιδοτείται από τις περισσότερες κυβερνήσεις. Μειονεκτήματα Έχουν αρκετά μικρό συντελεστή απόδοσης και γι αυτό απαιτείται αρκετά μεγάλο αρχικό κόστος εφαρμογής. Η απόδοση της αιολικής, υδροηλεκτρικής και ηλιακής ενέργειας εξαρτάται από την εποχή του έτους, το γεωγραφικό πλάτος και το κλίμα της περιοχής στην οποία εγκαθίστανται. Για τις αιολικές μηχανές υπάρχει η άποψη ότι δεν είναι κομψές από αισθητική άποψη κι ότι προκαλούν θόρυβο και θανάτους πουλιών. Σήμερα τα προβλήματα αυτά έχουν επιλυθεί. 53

54 Ανανεώσιμες πηγές ενέργειας Αιολική ενέργεια: Χρησιμοποιείται η ένταση του ανέμου. Τα τελευταία χρόνια έχει αρχίσει να χρησιμοποιείται ευρέως στην παραγωγή ηλεκτρικού ρεύματος. Ηλιακή ενέργεια: Χρησιμοποιείται η ηλιακή ακτινοβολία. Η χρήση της για την παραγωγή ηλεκτρικού ρεύματος προωθείται από την Ευρωπαϊκή Ένωση. Υδατοπτώσεις: Χρησιμοποιείται η κινητική ενέργεια του νερού. Είναι η πιο διαδεδομένη μορφή ανανεώσιμης ενέργειας. Βιομάζα: Χρησιμοποιούνται οι υδατάνθρακες των φυτών με σκοπό την αποδέσμευση της ενέργειας που δεσμεύτηκε απ' το φυτό με τη φωτοσύνθεση. Είναι μια πηγή ενέργειας με πολλές δυνατότητες και εφαρμογές. Γεωθερμική ενέργεια: Προέρχεται από τη θερμότητα που παράγεται απ' τη ραδιενεργό αποσύνθεση των πετρωμάτων της γης. Είναι εκμεταλλεύσιμη εκεί όπου η θερμότητα ανεβαίνει με φυσικό τρόπο στην επιφάνεια. Ενέργεια από παλίρροιες: Εκμεταλλεύεται τη βαρύτητα του Ήλιου και της Σελήνης, που προκαλεί ανύψωση της στάθμης του νερού. Ενέργεια από κύματα: Εκμεταλλεύεται την κινητική ενέργεια των κυμάτων της θάλασσας. Ενέργεια από τους ωκεανούς: Εκμεταλλεύεται τη διαφορά θερμοκρασίας ανάμεσα στα στρώματα του ωκεανού, κάνοντας χρήση θερμικών κύκλων. 54

55 Ανανεώσιμες πηγές ενέργειας Εγκατεστημένη ισχύς και παραγωγή από ΑΠΕ στα μη διασυνδεδεμένα νησιά (Ιαν.-Σεπτ. 2013) Πηγή: ΛΑΓΗΕ,

56 Ανανεώσιμες πηγές ενέργειας Εγκατεστημένη ισχύς και παραγωγή από ΑΠΕ στο σύνολο της επικράτειας (Ιαν.-Σεπτ. 2013) Πηγή: ΛΑΓΗΕ,

57 Ανανεώσιμες πηγές ενέργειας Αξία (m ) και μέση τιμή ενέργειας ( /MWh) από ΑΠΕ στο σύνολο της επικράτειας (Ιαν.-Σεπτ. 2013) Πηγή: ΛΑΓΗΕ,

58 Ανανεώσιμες πηγές ενέργειας Το Πακέτο για την Ελλάδα ΑΠΕ: 18% της τελικής κατανάλωσης ενέργειας υποχρεωτικά μέχρι το 2020 (Οδηγία 2009/28/ΕΚ) Υποχρεωτικός στόχος 10% μέχρι το 2020 για βιοκαύσιμα Εξοικονόμηση 20% πρωτογενούς ενέργειας μέχρι το 2020 Έμφαση στην δημοπράτηση - Ηλεκτρισμός δεν παίρνει κανένα δικαίωμα δωρεάν Τομείς εκτός 2003/87/ΕΚ, μείωση κατά 4% των εκπομπών του 2005 (66.7 Μt) μέχρι το 2020 Τομείς εντός 2003/87/ΕΚ όπως όλα τα ΚΜ, μείωση κατά 1.74% ετησίως Πηγή: Υπουργείο Περιβάλλοντος, Ενέργειας και Κλιματικής Αλλαγής. Επιτροπή , 21/

59 Υδροηλεκτρική ενέργεια Υδροηλεκτρική ενέργεια ονομάζεται η ενέργεια του νερού το οποίο, μέσω υδατοπτώσεων κινεί υδροστροβίλους για παραγωγή ηλεκτρικής ενέργειας Η αξιοποίηση της υδραυλικής ενέργειας πραγματοποιούταν από την αρχαιότητα μέσω των υδρόμυλων για το άλεσμα των δημητριακών και την κοπή ξυλείας (υδροπρίονα)

60 Υδροηλεκτρική ενέργεια Υδροτροχοί 60

61 Tucurui, Βραζιλία 8.37 GW (1984) Υδροηλεκτρική ενέργεια Τα 4 μεγαλύτερα υδροηλεκτρικά έργα του κόσμου Itaipu, Βραζιλία-Παραγουάη 14 GW (2004) Guri (Simón Bolívar), Βενεζουέλα, 10.2 GW (1986) Three Gorges, Κίνα GW (2011) 61

62 Υδροηλεκτρική ενέργεια Η υδροηλεκτρική ενέργεια στην Ελλάδα Συγκρότημα Αράχθου (553,9 MW) Μεγάλα υδροηλεκτρικά έργα της ΔΕΗ Συγκρότημα Αλιάκμονα (879,3 MW) ΥΗΣ Λάδωνα (70 MW) ΥΗΣ Πλαστήρα (129,9 MW) Συγκρότημα Νέστου (500 MW) Συγκρότημα Αχελώου (925,6 MW) Στη Δυτική και Βόρεια Ελλάδα υπάρχει ιδιαίτερα πλούσιο δυναμικό υδατοπτώσεων, λόγω της διαμόρφωσης λεκανών απορροής με έντονες κλίσεις και των σημαντικών βροχοπτώσεων. Η συνολική εγκατεστημένη ισχύς είναι 3060 MW. Η μέση ετήσια παραγωγή ενέργειας είναι GWh. Η μέση συνεισφορά στην παραγωγή ηλεκτρικής ενέργειας είναι 8-10%. Η ενέργεια που προέρχεται από ΥΗΣ καλύπτει ηλεκτρικά φορτία αιχμής. Τα τρία μεγαλύτερα υδροηλεκτρικά έργα είναι στα Κρεμαστά (437 MW), στο Θησαυρό (384 MW) και στο Πολύφυτο (375 MW). Υπάρχει μεγάλη δυνατότητα περαιτέρω ανάπτυξης υδροηλεκτρικών σταθμών.

63 25 υδροηλεκτρικά έργα της ΔΕΗ σε λειτουργία 16 ΜΕΓΑΛΑ ΥΗ ΕΡΓΑ (έτος ένταξης-ωφέλιμος όγκος ταμιευτήρα hm 3 ) Υδροηλεκτρική ενέργεια 11 ΜΙΚΡΑ ΥΗ ΕΡΓΑ ΛΟΥΡΟΣ (1954-0,035) ΑΓΡΑΣ (1954-3,8) ΛΑΔΩΝΑΣ ( ,2) ΠΛΑΣΤΗΡΑΣ ( ) ΚΡΕΜΑΣΤΑ ( ) ΚΑΣΤΡΑΚΙ ( ) ΕΔΕΣΣΑΙΟΣ (1969-0,46) ΠΟΛΥΦΥΤΟ ( ) ΠΟΥΡΝΑΡΙ ( ) ΑΣΩΜΑΤΑ ( ) ΣΦΗΚΙΑ ( ) ΣΤΡΑΤΟΣ ( ) ΠΗΓΕΣ ΑΩΟΥ ( ) ΘΗΣΑΥΡΟΣ ( ) ΠΟΥΡΝΑΡΙ ΙΙ (1999-3,6) ΠΛΑΤΑΝΟΒΡΥΣΗ ( ) ΓΛΑΥΚΟΣ (1927) ΒΕΡΜΙΟ (1929) ΑΓΙΑ ΚΡΗΤΗΣ (1929) ΑΛΜΥΡΟΣ ΚΡΗΤΗΣ (1931) ΑΓ. ΙΩΑΝΝΗΣ ΣΕΡΡΩΝ (1931) ΓΚΙΩΝΑ (1988) ΣΤΡΑΤΟΣ ΙΙ (1988) ΜΑΚΡΟΧΩΡΙ (1992) ΑΓ. ΒΑΡΒΑΡΑ ΑΛΙΑΚΜΟΝΑ (2008) ΣΜΟΚΟΒΟ (2008) ΠΑΠΑΔΙΑ (2010) 63

64 Υδροηλεκτρική ενέργεια YHE Πηγών Αώου Λειτουργεί με εκτροπή των νερών από τον ποταμό Αώο (εκβάλλει στην Αδριατική), στον Μετσοβίτικο (παραπόταμο του Αράχθου) 64

65 Υδροηλεκτρική ενέργεια YHE Πηγών Αώου (με εκτροπή των νερών από τον Αώο στον Άραχθο) 65

66 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα Ε.Μ.Π.» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Υδροηλεκτρικά έργα Ενέργεια, ηλεκτρική ενέργεια, υδροηλεκτρική ενέργεια

Υδροηλεκτρικά έργα Ενέργεια, ηλεκτρική ενέργεια, υδροηλεκτρική ενέργεια Υδροηλεκτρικά έργα Ενέργεια, ηλεκτρική ενέργεια, υδροηλεκτρική ενέργεια Νίκος Μαμάσης, Α. Ευστρατιάδης και Δ. Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2015

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία. Ηλεκτρική ενέργεια

Εισαγωγή στην Ενεργειακή Τεχνολογία. Ηλεκτρική ενέργεια Εισαγωγή στην Ενεργειακή Τεχνολογία 1 ο και 5 ο εξάμηνο Σχολής Πολιτικών Μηχανικών Ηλεκτρική ενέργεια Νίκος Μαμάσης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Ανανεώσιμη Ενέργεια και Υδροηλεκτρικά Έργα Ενέργεια, ηλεκτρική ενέργεια, υδροηλεκτρική ενέργεια

Ανανεώσιμη Ενέργεια και Υδροηλεκτρικά Έργα Ενέργεια, ηλεκτρική ενέργεια, υδροηλεκτρική ενέργεια Ανανεώσιμη Ενέργεια και Υδροηλεκτρικά Έργα Ενέργεια, ηλεκτρική ενέργεια, υδροηλεκτρική ενέργεια Νίκος Μαμάσης, Α. Ευστρατιάδης και Δ. Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Υδροηλεκτρικά έργα Ενέργεια, ηλεκτρική ενέργεια, υδροηλεκτρική ενέργεια

Υδροηλεκτρικά έργα Ενέργεια, ηλεκτρική ενέργεια, υδροηλεκτρική ενέργεια Υδροηλεκτρικά έργα Ενέργεια, ηλεκτρική ενέργεια, υδροηλεκτρική ενέργεια Νίκος Μαμάσης, Α. Ευστρατιάδης και Δ. Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2016

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων - Νερό και Ενέργεια

Διαχείριση Υδατικών Πόρων - Νερό και Ενέργεια ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ Επιστήμη & Τεχνολογία Υδατικών Πόρων Διαχείριση Υδατικών Πόρων - Παρουσίαση: Αλέξανδρος Θ. Γκιόκας Πολ. Μηχανικός ΕΜΠ e-mail: al.gkiokas@gmail.com Διάρθρωση ρ παρουσίασης

Διαβάστε περισσότερα

Πτυχές της υδροηλεκτρικής παραγωγής

Πτυχές της υδροηλεκτρικής παραγωγής Ειδική Μόνιμη Επιτροπή Προστασίας Περιβάλλοντος Υποεπιτροπή Υδατικών Πόρων 26 Μαΐου 2016 Θέμα ημερήσιας διάταξης: Φράγματα και μικρά Υδροηλεκτρικά έργα Πτυχές της υδροηλεκτρικής παραγωγής Νίκος Μαμάσης

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ήπιες Μορφές Ενέργειας Ενότητα 1: Εισαγωγή Καββαδίας Κ.Α. Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία

Εισαγωγή στην Ενεργειακή Τεχνολογία Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή στην ηλεκτρική ενέργεια Νίκος Μαμάσης, Επίκουρος Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας Ήπιες Μορφές Ενέργειας Ενότητα 1: Ελευθέριος Αμανατίδης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Κατανόηση βασικών αρχών παραγωγής ενέργειας από ανανεώσιμες πηγές με ιδιαίτερη έμφαση σε αυτές που έχουν

Διαβάστε περισσότερα

Παγκόσμια Κατανάλωση Ενέργειας

Παγκόσμια Κατανάλωση Ενέργειας ΘΕΜΕΛΙΩΔΕΙΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Ήλιος Κίνηση και ελκτικό δυναμικό του ήλιου, της σελήνης και της γης Γεωθερμική ενέργεια εκλύεται από ψύξη του πυρήνα, χημικές αντιδράσεις και ραδιενεργό υποβάθμιση στοιχείων

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ. Γ. Λευθεριώτης, Αναπλ. Καθηγητής Γ. Συρροκώστας, Μεταδιδακτορικός Ερευνητής

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ. Γ. Λευθεριώτης, Αναπλ. Καθηγητής Γ. Συρροκώστας, Μεταδιδακτορικός Ερευνητής ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Γ. Λευθεριώτης, Αναπλ. Καθηγητής Γ. Συρροκώστας, Μεταδιδακτορικός Ερευνητής Τι είναι ενέργεια; (Αφηρημένη έννοια) Στιγμιότυπο από την κίνηση ενός βλήματος καθώς διαπερνά ένα

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία Οικονομικά της ενέργειας

Εισαγωγή στην Ενεργειακή Τεχνολογία Οικονομικά της ενέργειας Εισαγωγή στην Ενεργειακή Τεχνολογία Οικονομικά της ενέργειας Νίκος Μαμάσης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 215 Οικονομικά της ενέργειας Διάρθρωση παρουσίασης

Διαβάστε περισσότερα

1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ

1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ 1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ 1.1. ΕΙΣΑΓΩΓΗ Η ενέργεια είναι κύρια ιδιότητα της ύλης που εκδηλώνεται με διάφορες μορφές (κίνηση, θερμότητα, ηλεκτρισμός, φως, κλπ.) και γίνεται αντιληπτή (α) όταν μεταφέρεται

Διαβάστε περισσότερα

Η τραγωδία της υδροηλεκτρικής ενέργειας στην Ελλάδα της κρίσης

Η τραγωδία της υδροηλεκτρικής ενέργειας στην Ελλάδα της κρίσης Ημερίδα Εταιρίας Θεσσαλικών Μελετών (ΕΘΕΜ) Η ΘΕΣΣΑΛΙΑ ΚΑΙ Ο ΥΔΑΤΙΝΟΣ ΠΛΟΥΤΟΣ ΤΗΣ Οι νέες προκλήσεις στην γεωργία και στην υδροηλεκτρική ενέργεια, η νέα λίμνη Κάρλα Αθήνα, 5 Φεβρουαρίου 2019 Η τραγωδία

Διαβάστε περισσότερα

Νερό και ενέργεια τον 21 ο αιώνα Πτυχές της υδροηλεκτρικής παραγωγής

Νερό και ενέργεια τον 21 ο αιώνα Πτυχές της υδροηλεκτρικής παραγωγής Ημερίδα Ομοσπονδίας Εργαζομένων ΕΥΔΑΠ για την Παγκόσμια Ημέρα Νερού 21 Μαρτίου 2016, Περισσός Νερό και ενέργεια τον 21 ο αιώνα Πτυχές της υδροηλεκτρικής παραγωγής Νίκος Μαμάσης και Δημήτρης Κουτσογιάννης

Διαβάστε περισσότερα

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ ΜΗΝΙΑΙΟ ΔΕΛΤΙΟ ΕΝΕΡΓΕΙΑΣ - ΣΕΠΤΕΜΒΡΙΟΣ 213 1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1.1. ΣΕΠΤΕΜΒΡΙΟΣ 213 ΕΚΤΙΜΗΣΗ ΣΥΝΟΛΙΚΗΣ ΖΗΤΗΣΗΣ (GWh) 3.997 GWh Υ/Σ ΟΡΙΩΝ ΣΥΣΤΗΜΑΤΟΣ- ΔΙΚΤΥΟΥ

Διαβάστε περισσότερα

ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ

ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΔΟΜΗ ΜΑΘΗΜΑΤΟΣ - ΕΙΣΑΓΩΓΗ 1o Μάθημα Διδάσκων: Επ. Καθηγητής Ε. Αμανατίδης ΤΕΤΑΡΤΗ 11/10/2017 Τμήμα Χημικών Μηχανικών Πανεπιστήμιο Πατρών Στόχος μαθήματος Βασικές αρχές παραγωγής

Διαβάστε περισσότερα

Υ ΡΟΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ

Υ ΡΟΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ Υ ΡΟΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ Υδροϊσχύς λέγεται η ισχύς που παράγεται κατά την πτώση νερού ορισμένης παροχής από ορισμένο ύψος. Το φαινόμενο αυτό λέγεται υδατόπτωση. Η ισχύς μιας υδατόπτωσης δίνεται από τη σχέση:

Διαβάστε περισσότερα

Η τραγωδία της υδροηλεκτρικής ενέργειας στην Ελλάδα της κρίσης

Η τραγωδία της υδροηλεκτρικής ενέργειας στην Ελλάδα της κρίσης Ημερίδα Εταιρείας Θεσσαλικών Μελετών (ΕΘΕΜ) Η ΘΕΣΣΑΛΙΑ ΚΑΙ Ο ΥΔΑΤΙΝΟΣ ΠΛΟΥΤΟΣ ΤΗΣ Οι νέες προκλήσεις στη γεωργία και στην υδροηλεκτρική ενέργεια, η νέα λίμνη Κάρλα Αθήνα, 5 Φεβρουαρίου 2019 Η τραγωδία

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ανανεώσιμες Πηγές Ενέργειας Εισηγητές : Βασιλική Σπ. Γεμενή Διπλ. Μηχανολόγος Μηχανικός Δ.Π.Θ Θεόδωρος Γ. Μπιτσόλας Διπλ. Μηχανολόγος Μηχανικός Π.Δ.Μ Λάρισα 2013 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΑΠΕ 2. Ηλιακή ενέργεια

Διαβάστε περισσότερα

Oι Υδροηλεκτρικοί Σταθμοί της ΔΕΗ

Oι Υδροηλεκτρικοί Σταθμοί της ΔΕΗ Oι Υδροηλεκτρικοί Σταθμοί της ΔΕΗ Γεώργιος Λέρης Διευθυντής Διεύθυνσης Εκμετάλλευσης Υδροηλεκτρικών Σταθμών Οι Υδροηλεκτρικοί Σταθμοί της ΔΕΗ σήμερα - Συγκρότημα Αχελώου (Κρεμαστά, Καστράκι, Στράτος I

Διαβάστε περισσότερα

ΜΥΗΕ µόνο ή και Μεγάλα Υδροηλεκτρικά Έργα;

ΜΥΗΕ µόνο ή και Μεγάλα Υδροηλεκτρικά Έργα; ΜΥΗΕ µόνο ή και Μεγάλα Υδροηλεκτρικά Έργα; Ορόλοςτουςστοενεργειακό σύστηµα τηςχώρας Ι.Π. Στεφανάκος ρ. Πολιτικός µηχανικός, Λέκτορας ΕΜΠ Ιωάννινα, 2009 Προσυνεδριακή Εκδήλωση ΤΕΕ, 20-21 Μαρτίου 1 Ιωάννινα,

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία

Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή στην Ενεργειακή Τεχνολογία Νίκος Μαμάσης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα, 2018 Διάρθρωση μαθήματος α/α Ημερομηνία Μάθημα Διδάσκοντες

Διαβάστε περισσότερα

Βασικές αρχές ενεργειακής τεχνολογίας

Βασικές αρχές ενεργειακής τεχνολογίας Ανανεώσιμη Ενέργεια & Υδροηλεκτρικά Έργα 8 ο εξάμηνο Σχολής Πολιτικών Μηχανικών Βασικές αρχές ενεργειακής τεχνολογίας Νίκος Μαμάσης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό

Διαβάστε περισσότερα

Αντλησιοταμιεύσεις: Έργα με

Αντλησιοταμιεύσεις: Έργα με Αντλησιοταμιεύσεις: Έργα με υψηλή εγχώρια προστιθέμενη αξία Ο ρόλος των Αντλησιοταμιεύσεων & των Μεγάλων Υδροηλεκτρικών Έργων στο ενεργειακό σύστημα της χώρας Ι.Π. Στεφανάκος Δρ. Πολ. Μηχανικός, τ. Επίκ.

Διαβάστε περισσότερα

Παρά το γεγονός ότι παρατηρείται αφθονία του νερού στη φύση, υπάρχουν πολλά προβλήματα σε σχέση με τη διαχείρισή του.

Παρά το γεγονός ότι παρατηρείται αφθονία του νερού στη φύση, υπάρχουν πολλά προβλήματα σε σχέση με τη διαχείρισή του. ΕΙΣΑΓΩΓΗ Το νερό είναι ανανεώσιμος πόρος και αποτελεί ζωτικό στοιχείο για την επιβίωση του ανθρώπου, της πανίδας, της χλωρίδας και τη διατήρηση του φυσικού περιβάλλοντος. Η ύπαρξη και η επάρκειά του είναι

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Υδροηλεκτρικά έργα. Οικονομικά της ενέργειας

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Υδροηλεκτρικά έργα. Οικονομικά της ενέργειας Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Υδροηλεκτρικά έργα Οικονομικά της ενέργειας Νίκος Μαμάσης, Επίκουρος Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Νερό & Ενέργεια. Όνομα σπουδαστών : Ανδρέας Κατσιγιάννης Μιχάλης Παπαθεοδοσίου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Νερό & Ενέργεια. Όνομα σπουδαστών : Ανδρέας Κατσιγιάννης Μιχάλης Παπαθεοδοσίου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ Νερό & Ενέργεια Όνομα σπουδαστών : Ανδρέας Κατσιγιάννης Μιχάλης Παπαθεοδοσίου Υπεύθυνος Καθηγητής : κ. Δημήτρης

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή στην ηλεκτρική ενέργεια

Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή στην ηλεκτρική ενέργεια Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή στην ηλεκτρική ενέργεια Νίκος Μαμάσης και Γιάννης Στεφανάκος Τομέας Υδατικών Πόρων και Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2015 Διάρθρωση παρουσίασης:

Διαβάστε περισσότερα

Υδατικό Περιβάλλον και Ανάπτυξη

Υδατικό Περιβάλλον και Ανάπτυξη Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Υδατικό Περιβάλλον και Ανάπτυξη Υδροηλεκτρική ενέργεια Νίκος Μαμάσης, Επίκουρος Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

ΧΡΙΣΤΟΣ ΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ ΚΑΝΕΛΛΟΣ ΓΙΩΡΓΟΣ ΔΙΒΑΡΗΣ ΠΑΠΑΧΡΗΣΤΟΥ ΣΤΙΓΚΑ ΠΑΝΑΓΙΩΤΗΣ ΣΩΤΗΡΙΑ ΓΑΛΑΚΟΣ ΚΑΖΑΤΖΙΔΟΥ ΔΕΣΠΟΙΝΑ ΜΠΙΣΚΟΣ ΚΥΡΙΑΚΟΣ ΚΟΡΝΕΖΟΣ

ΧΡΙΣΤΟΣ ΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ ΚΑΝΕΛΛΟΣ ΓΙΩΡΓΟΣ ΔΙΒΑΡΗΣ ΠΑΠΑΧΡΗΣΤΟΥ ΣΤΙΓΚΑ ΠΑΝΑΓΙΩΤΗΣ ΣΩΤΗΡΙΑ ΓΑΛΑΚΟΣ ΚΑΖΑΤΖΙΔΟΥ ΔΕΣΠΟΙΝΑ ΜΠΙΣΚΟΣ ΚΥΡΙΑΚΟΣ ΚΟΡΝΕΖΟΣ ΚΑΡΑΔΗΜΗΤΡΙΟΥΧΡΙΣΤΟΣ ΝΙΚΟΛΑΣΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣΚΑΝΕΛΛΟΣ ΘΑΝΑΣΗΣΔΙΒΑΡΗΣ ΚΩΣΤΑΝΤΙΝΟΣΠΑΠΑΧΡΗΣΤΟΥ ΑΛΕΞΑΝΔΡΟΣΣΤΙΓΚΑ ΠΑΠΑΓΕΩΡΓΙΟΥΠΑΝΑΓΙΩΤΗΣ ΖΗΝΤΡΟΥΣΩΤΗΡΙΑ ΝΙΚΗΦΟΡΟΣΓΑΛΑΚΟΣ ΣΟΦΙΑΚΑΖΑΤΖΙΔΟΥ ΣΠΥΡΟΠΟΥΛΟΥΔΕΣΠΟΙΝΑ

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΤΑΞΗ Β ΤΜΗΜΑΤΑ: ΗΛΕΚΤΡΟΛΟΓΩΝ, ΜΗΧΑΝΟΛΟΓΩΝ

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΤΑΞΗ Β ΤΜΗΜΑΤΑ: ΗΛΕΚΤΡΟΛΟΓΩΝ, ΜΗΧΑΝΟΛΟΓΩΝ 1 ο ΕΠΑΛ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2012-13 ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΤΑΞΗ Β ΤΜΗΜΑΤΑ: ΗΛΕΚΤΡΟΛΟΓΩΝ, ΜΗΧΑΝΟΛΟΓΩΝ ΥΠΕΥΘΥΝΟΣ ΕΚΠΑΙΔΕΥΤΙΚΟΣ: ΘΕΟΔΩΡΟΣ ΓΚΑΝΑΤΣΟΣ ΦΥΣΙΚΟΣ-ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ: 1.

Διαβάστε περισσότερα

1 ΕΠΑΛ Αθηνών. Β` Μηχανολόγοι. Ειδική Θεματική Ενότητα

1 ΕΠΑΛ Αθηνών. Β` Μηχανολόγοι. Ειδική Θεματική Ενότητα 1 ΕΠΑΛ Αθηνών Β` Μηχανολόγοι Ειδική Θεματική Ενότητα ΘΕΜΑ Ανανεώσιμες πήγες ενεργείας ΣΚΟΠΟΣ Η ευαισθητοποίηση των μαθητών για την χρήση ήπιων μορφών ενεργείας. Να αναγνωρίσουν τις βασικές δυνατότητες

Διαβάστε περισσότερα

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ ΜΗΝΙΑΙΟ ΔΕΛΤΙΟ ΕΝΕΡΓΕΙΑΣ - ΙΟΥΛΙΟΣ 218 - v1 1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1.1. ΙΟΥΛΙΟΣ 218 ΕΚΤΙΜΗΣΗ ΣΥΝΟΛΙΚΗΣ ΖΗΤΗΣΗΣ () 4.951 Υ/Σ ΟΡΙΩΝ ΣΥΣΤΗΜΑΤΟΣ- ΔΙΚΤΥΟΥ 3.69

Διαβάστε περισσότερα

Ανανεώσιμες πηγές ενέργειας. Project Τμήμα Α 3

Ανανεώσιμες πηγές ενέργειας. Project Τμήμα Α 3 Ανανεώσιμες πηγές ενέργειας Project Τμήμα Α 3 Ενότητες εργασίας Η εργασία αναφέρετε στις ΑΠΕ και μη ανανεώσιμες πήγες ενέργειας. Στην 1ενότητα θα μιλήσουμε αναλυτικά τόσο για τις ΑΠΕ όσο και για τις μη

Διαβάστε περισσότερα

ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ?

ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ? ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ? Αντώνης Θ. Αλεξανδρίδης Καθηγητής Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ ΜΗΝΙΑΙΟ ΔΕΛΤΙΟ ΕΝΕΡΓΕΙΑΣ - ΦΕΒΡΟΥΑΡΙΟΣ 218 - v1 1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1.1. ΦΕΒΡΟΥΑΡΙΟΣ 218 ΕΚΤΙΜΗΣΗ ΣΥΝΟΛΙΚΗΣ ΖΗΤΗΣΗΣ () 4.17 Υ/Σ ΟΡΙΩΝ ΣΥΣΤΗΜΑΤΟΣ- ΔΙΚΤΥΟΥ

Διαβάστε περισσότερα

Μελέτη και οικονομική αξιολόγηση φωτοβολταϊκής εγκατάστασης σε οικία στη νήσο Κω

Μελέτη και οικονομική αξιολόγηση φωτοβολταϊκής εγκατάστασης σε οικία στη νήσο Κω Μελέτη και οικονομική αξιολόγηση φωτοβολταϊκής εγκατάστασης σε οικία στη νήσο Κω ΙΩΑΝΝΙΔΟΥ ΠΕΤΡΟΥΛΑ /04/2013 ΓΑΛΟΥΖΗΣ ΧΑΡΑΛΑΜΠΟΣ Εισαγωγή Σκοπός αυτής της παρουσίασης είναι μία συνοπτική περιγραφή της

Διαβάστε περισσότερα

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1.1. ΦΕΒΡΟΥΑΡΙΟΣ 219 ΕΚΤΙΜΗΣΗ ΣΥΝΟΛΙΚΗΣ ΖΗΤΗΣΗΣ () 4.346 Υ/Σ ΟΡΙΩΝ ΣΥΣΤΗΜΑΤΟΣ- ΔΙΚΤΥΟΥ 3.292 76% ΑΠΩΛΕΙΕΣ ΣΥΣΤΗΜΑΤΟΣ 92 2% ΑΝΤΛΗΣΗ

Διαβάστε περισσότερα

Εκμετάλλευση των Υδροηλεκτρικών Σταθμών ως Έργων Πολλαπλού Σκοπού

Εκμετάλλευση των Υδροηλεκτρικών Σταθμών ως Έργων Πολλαπλού Σκοπού ΤΕΧΝΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ ΕΛΛΑΔΑΣ & Περιφερειακό Τμήμα Ηπείρου του ΤΕΕ Η ΣΥΜΒΟΛΗ ΤΩΝ ΥΔΡΟΗΛΕΚΤΡΙΚΩΝ ΕΡΓΩΝ ΣΤΟΝ ΕΝΕΡΓΕΙΑΚΟ ΣΧΕΔΙΑΣΜΟ ΤΗΣ ΧΩΡΑΣ Εκμετάλλευση των Υδροηλεκτρικών Σταθμών ως Έργων Πολλαπλού Σκοπού

Διαβάστε περισσότερα

Α Τοσίτσειο Αρσκάκειο Λύκειο Εκάλης. Αναγνωστάκης Νικόλας Γιαννακόπουλος Ηλίας Μπουρνελάς Θάνος Μυλωνάς Μιχάλης Παύλοβιτς Σταύρος

Α Τοσίτσειο Αρσκάκειο Λύκειο Εκάλης. Αναγνωστάκης Νικόλας Γιαννακόπουλος Ηλίας Μπουρνελάς Θάνος Μυλωνάς Μιχάλης Παύλοβιτς Σταύρος Α Τοσίτσειο Αρσκάκειο Λύκειο Εκάλης Αναγνωστάκης Νικόλας Γιαννακόπουλος Ηλίας Μπουρνελάς Θάνος Μυλωνάς Μιχάλης Παύλοβιτς Σταύρος Εισαγωγή στις ήπιες μορφές ενέργειας Χρήσεις ήπιων μορφών ενέργειας Ηλιακή

Διαβάστε περισσότερα

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1.1. ΑΠΡΙΛΙΟΣ 219 ΕΚΤΙΜΗΣΗ ΣΥΝΟΛΙΚΗΣ ΖΗΤΗΣΗΣ () 3.918 Υ/Σ ΟΡΙΩΝ ΣΥΣΤΗΜΑΤΟΣ- ΔΙΚΤΥΟΥ 2.71 69% ΖΗΤΗΣΗ ΠΟΥ ΚΑΛΥΠΤΕΤΑΙ ΑΠΟ ΜΟΝΑΔΕΣ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1.1. ΔΕΚΕΜΒΡΙΟΣ 218 ΕΚΤΙΜΗΣΗ ΣΥΝΟΛΙΚΗΣ ΖΗΤΗΣΗΣ () 4.785 Υ/Σ ΟΡΙΩΝ ΣΥΣΤΗΜΑΤΟΣ- ΔΙΚΤΥΟΥ 3.73 78% ΑΠΩΛΕΙΕΣ ΣΥΣΤΗΜΑΤΟΣ 115 3% ΑΝΤΛΗΣΗ

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ανανεώσιμες Πηγές Ενέργειας Εργασία από παιδιά του Στ 2 2013-2014 Φυσικές Επιστήμες Ηλιακή Ενέργεια Ηλιακή είναι η ενέργεια που προέρχεται από τον ήλιο. Για να μπορέσουμε να την εκμεταλλευτούμε στην παραγωγή

Διαβάστε περισσότερα

Πηγές ενέργειας - Πηγές ζωής

Πηγές ενέργειας - Πηγές ζωής Πηγές ενέργειας - Πηγές ζωής Κέντρο Περιβαλλοντικής Εκπαίδευσης Καστρίου 2014 Παράγει ενέργεια το σώμα μας; Πράγματι, το σώμα μας παράγει ενέργεια! Για να είμαστε πιο ακριβείς, παίρνουμε ενέργεια από τις

Διαβάστε περισσότερα

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1.1. ΜΑΡΤΙΟΣ 219 ΕΚΤΙΜΗΣΗ ΣΥΝΟΛΙΚΗΣ ΖΗΤΗΣΗΣ () 4.251 Υ/Σ ΟΡΙΩΝ ΣΥΣΤΗΜΑΤΟΣ- ΔΙΚΤΥΟΥ 2.929 69% ΖΗΤΗΣΗ ΠΟΥ ΚΑΛΥΠΤΕΤΑΙ ΑΠΟ ΜΟΝΑΔΕΣ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ ΜΗΝΙΑΙΟ ΔΕΛΤΙΟ ΕΝΕΡΓΕΙΑΣ - ΟΚΤΩΒΡΙΟΣ 217 - v1 1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1.1. ΟΚΤΩΒΡΙΟΣ 217 ΕΚΤΙΜΗΣΗ ΣΥΝΟΛΙΚΗΣ ΖΗΤΗΣΗΣ () 3,848 Υ/Σ ΟΡΙΩΝ ΣΥΣΤΗΜΑΤΟΣ- ΔΙΚΤΥΟΥ

Διαβάστε περισσότερα

4.. Ενεργειακά Ισοζύγια

4.. Ενεργειακά Ισοζύγια ιαχείριση Ενέργειας και Περιβαλλοντική Πολιτική 4.. Ενεργειακά Ισοζύγια Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστηµάτων Αποφάσεων & ιοίκησης Γρ. 0.2.7. Ισόγειο Σχολής Ηλεκτρολόγων Τηλέφωνο: 210-7723551,

Διαβάστε περισσότερα

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ ΜΗΝΙΑΙΟ ΔΕΛΤΙΟ ΕΝΕΡΓΕΙΑΣ - ΜΑΙΟΣ 218 - v1 1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1.1. ΜΑΙΟΣ 218 ΕΚΤΙΜΗΣΗ ΣΥΝΟΛΙΚΗΣ ΖΗΤΗΣΗΣ () 3.896 Υ/Σ ΟΡΙΩΝ ΣΥΣΤΗΜΑΤΟΣ- ΔΙΚΤΥΟΥ 2.651 68%

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ Σελίδα 13 ΚΕΦΑΛΑΙΟ 1. ΕΝΕΡΓΕΙΑ (ΓΕΝΙΚΑ) «17

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ Σελίδα 13 ΚΕΦΑΛΑΙΟ 1. ΕΝΕΡΓΕΙΑ (ΓΕΝΙΚΑ) «17 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ Σελίδα 13 ΚΕΦΑΛΑΙΟ 1. ΕΝΕΡΓΕΙΑ (ΓΕΝΙΚΑ) «17 1.1.Ορισμός, ιστορική αναδρομή «17 1.2. Μορφές ενέργειας «18 1.3. Θερμική ενέργεια «19 1.4. Κινητική ενέργεια «24 1.5. Δυναμική ενέργεια

Διαβάστε περισσότερα

ΟΙ ΕΝΕΡΓΕΙΑΚΟΙ ΠΟΡΟΙ ΤΗΣ ΕΛΛΑΔΑΣ ΚΑΙ Η ΔΙΑΧΕΙΡΗΣΗ ΤΟΥΣ

ΟΙ ΕΝΕΡΓΕΙΑΚΟΙ ΠΟΡΟΙ ΤΗΣ ΕΛΛΑΔΑΣ ΚΑΙ Η ΔΙΑΧΕΙΡΗΣΗ ΤΟΥΣ ΟΙ ΕΝΕΡΓΕΙΑΚΟΙ ΠΟΡΟΙ ΤΗΣ ΕΛΛΑΔΑΣ ΚΑΙ Η ΔΙΑΧΕΙΡΗΣΗ ΤΟΥΣ Κατηγορίες ενεργειακών πόρων: 1. Συμβατικές ή μη ανανεώσιμες πηγές ενέργειας 2. Ανανεώσιμες πηγές ενέργειας (ΑΠΕ) Μορφές των ΑΠΕ Αιολική Ενέργεια:

Διαβάστε περισσότερα

Καύση υλικών Ηλιακή ενέργεια Πυρηνική ενέργεια Από τον πυρήνα της γης Ηλεκτρισμό

Καύση υλικών Ηλιακή ενέργεια Πυρηνική ενέργεια Από τον πυρήνα της γης Ηλεκτρισμό Ενεργειακή Μορφή Θερμότητα Φως Ηλεκτρισμός Ραδιοκύματα Μηχανική Ήχος Τι είναι; Ενέργεια κινούμενων σωματιδίων (άτομα, μόρια) υγρής, αέριας ή στερεάς ύλης Ακτινοβολούμενη ενέργεια με μορφή φωτονίων Ενέργεια

Διαβάστε περισσότερα

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ

1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1. ΙΣΟΖΥΓΙΟ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΔΙΑΣΥΝΔΕΔΕΜΕΝΟ ΣΥΣΤΗΜΑ ΚΑΙ ΔΙΚΤΥΟ 1.1. ΙΑΝΟΥΑΡΙΟΣ 219 ΕΚΤΙΜΗΣΗ ΣΥΝΟΛΙΚΗΣ ΖΗΤΗΣΗΣ () 5.16 Υ/Σ ΟΡΙΩΝ ΣΥΣΤΗΜΑΤΟΣ- ΔΙΚΤΥΟΥ 4.33 79% ΑΠΩΛΕΙΕΣ ΣΥΣΤΗΜΑΤΟΣ 122 3% ΑΝΤΛΗΣΗ 17

Διαβάστε περισσότερα

Ήπιες και νέες μορφές ενέργειας

Ήπιες και νέες μορφές ενέργειας Τμήμα Μηχανολόγων Μηχανικών Ήπιες και νέες μορφές ενέργειας Ενότητα 1: ΥΔΡΟΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ I Εισαγωγή Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Yδρολογικός κύκλος. Κατηγορίες ΥΗΕ. Υδροδαμική (υδροηλεκτρική) ενέργεια: Η ενέργεια που προέρχεται από την πτώση του νερού από κάποιο ύψος

Yδρολογικός κύκλος. Κατηγορίες ΥΗΕ. Υδροδαμική (υδροηλεκτρική) ενέργεια: Η ενέργεια που προέρχεται από την πτώση του νερού από κάποιο ύψος ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ ΕΙΣΑΓΩΓΗ Υδροδαμική (υδροηλεκτρική) ενέργεια: Η ενέργεια που προέρχεται από την πτώση του νερού από κάποιο ύψος Πηγή της ενέργειας: η βαρύτητα Καθώς πέφτει το νερό από κάποιο ύψος Η,

Διαβάστε περισσότερα

οικονομία- Τεχνολογία ΜΑΘΗΜΑ: : OικιακήO : Σχολικό έτος:2011 Β2 Γυμνασίου Νεάπολης Κοζάνης

οικονομία- Τεχνολογία ΜΑΘΗΜΑ: : OικιακήO : Σχολικό έτος:2011 Β2 Γυμνασίου Νεάπολης Κοζάνης ΜΑΘΗΜΑ: : OικιακήO οικονομία- Τεχνολογία Σχολικό έτος:2011 :2011-20122012 Β2 Γυμνασίου Νεάπολης Κοζάνης ΠΕΡΙΕΧΟΜΕΝΟ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΣΥΜΒΑΤΙΚΕΣ ΑΝΑΝΕΩΣΙΜΕΣ ΜΑΘΗΤΕΣ ΠΟΥ ΕΡΓΑΣΤΗΚΑΝ: J ΧΡΗΣΤΟΣ ΣΑΝΤ J ΣΤΕΡΓΙΟΣ

Διαβάστε περισσότερα

ΥΔΡΟΔΥΝΑΜΙΚΑ ΕΡΓΑ. Αγγελίδης Π., Αναπλ. Καθηγητής

ΥΔΡΟΔΥΝΑΜΙΚΑ ΕΡΓΑ. Αγγελίδης Π., Αναπλ. Καθηγητής ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΟΔΥΝΑΜΙΚΑ ΕΡΓΑ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΕΤΗΣΙΑ ΚΑΤΑΝΑΛΩΣΗ ΑΝΑ ΚΑΤΟΙΚΟ (σε kwh) στην Ελλάδα

Διαβάστε περισσότερα

ΔΠΜΣ: «Τεχνοοικονομικά Συστήματα» Διαχείριση Ενεργειακών Πόρων 6. Ενεργειακά Ισοζύγια

ΔΠΜΣ: «Τεχνοοικονομικά Συστήματα» Διαχείριση Ενεργειακών Πόρων 6. Ενεργειακά Ισοζύγια ΔΠΜΣ: «Τεχνοοικονομικά Συστήματα» Διαχείριση Ενεργειακών Πόρων 6. Ενεργειακά Ισοζύγια Καθηγητής Ιωάννης Ψαρράς e-mail: john@epu.ntua.gr Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης - Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή στην ηλεκτρική ενέργεια

Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή στην ηλεκτρική ενέργεια Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή στην ηλεκτρική ενέργεια Νίκος Μαμάσης και Γιάννης Στεφανάκος Τομέας Υδατικών Πόρων και Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2014 Διάρθρωση παρουσίασης:

Διαβάστε περισσότερα

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04)

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04) ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη (ΠΕ02) Βασιλική Χατζηκωνσταντίνου (ΠΕ04) Β T C E J O R P Υ Ν Η Μ Α Ρ Τ ΤΕ Α Ν Α Ν Ε Ω ΣΙ Μ ΕΣ Π Η ΓΕ Σ ΕΝ Ε Ρ ΓΕ Ι Α Σ. Δ Ι Ε Ξ Δ Σ Α Π ΤΗ Ν Κ Ρ Ι ΣΗ 2 Να

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ορισμός «Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) είναι οι μη ορυκτές ανανεώσιμες πηγές ενέργειας, δηλαδή η αιολική, η ηλιακή και η γεωθερμική ενέργεια, η ενέργεια κυμάτων, η παλιρροϊκή ενέργεια, η υδραυλική

Διαβάστε περισσότερα

Yδρολογικός κύκλος. Κατηγορίες ΥΗΕ. Υδροδαμική (υδροηλεκτρική) ενέργεια: Η ενέργεια που προέρχεται από την πτώση του νερού από κάποιο ύψος

Yδρολογικός κύκλος. Κατηγορίες ΥΗΕ. Υδροδαμική (υδροηλεκτρική) ενέργεια: Η ενέργεια που προέρχεται από την πτώση του νερού από κάποιο ύψος ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ ΕΙΣΑΓΩΓΗ Υδροδαμική (υδροηλεκτρική) ενέργεια: Η ενέργεια που προέρχεται από την πτώση του νερού από κάποιο ύψος Πηγή της ενέργειας: η βαρύτητα Καθώς πέφτει το νερό από κάποιο ύψος Η,

Διαβάστε περισσότερα

Επισκόπηση της Ελληνικής

Επισκόπηση της Ελληνικής HYDRO 2006 Porto Carras, 25-27.09.2006 Μεγιστοποιώντας τα Οφέλη της Υδροηλεκτρικής Ενέργειας Επισκόπηση της Ελληνικής Υδροηλεκτρικής Ενέργειας Aβραάμ Mιζάν, Γενικός ιευθυντής ημόσια Επιχείρηση Ηλεκτρισμού

Διαβάστε περισσότερα

ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ. Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών

ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ. Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών Παγκόσμια ενεργειακή κατάσταση Συνολική παγκόσμια κατανάλωση ενέργειας 2009: 135.000 ΤWh (Ελλάδα

Διαβάστε περισσότερα

1 ο ΕΠΑ.Λ ΚΑΡΠΑΘΟΥ. Τάξη: Α. Μάθημα: ΖΩΝΗ ΔΗΜΙΟΥΡΓΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ. Θέμα εργασίας:

1 ο ΕΠΑ.Λ ΚΑΡΠΑΘΟΥ. Τάξη: Α. Μάθημα: ΖΩΝΗ ΔΗΜΙΟΥΡΓΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ. Θέμα εργασίας: 1 ο ΕΠΑ.Λ ΚΑΡΠΑΘΟΥ Τάξη: Α Μάθημα: ΖΩΝΗ ΔΗΜΙΟΥΡΓΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ Θέμα εργασίας: Η επιλογή του θέματος, η αναζήτηση και επεξεργασία του υλικού καθώς και η δημιουργία της παρουσίασης για το μάθημα Ζώνη

Διαβάστε περισσότερα

Εργαστήριο ΑΠΕ I. Εισαγωγικά στοιχεία: Δομή εργαστηρίου. Τεχνολογίες ΑΠΕ. Πολυζάκης Απόστολος Καλογήρου Ιωάννης Σουλιώτης Εμμανουήλ

Εργαστήριο ΑΠΕ I. Εισαγωγικά στοιχεία: Δομή εργαστηρίου. Τεχνολογίες ΑΠΕ. Πολυζάκης Απόστολος Καλογήρου Ιωάννης Σουλιώτης Εμμανουήλ Εργαστήριο ΑΠΕ I Εισαγωγικά στοιχεία: Δομή εργαστηρίου. Τεχνολογίες ΑΠΕ. Πολυζάκης Απόστολος Καλογήρου Ιωάννης Σουλιώτης Εμμανουήλ Ενότητες Εργαστηρίου ΑΠΕ Ι και Ασκήσεις Ενότητα 1 - Εισαγωγή: Τεχνολογίες

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 7: Μικρά Yδροηλεκτρικά Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

Επάρκεια Ισχύος. Συστήματος Ηλεκτροπαραγωγής 2013 & Ιουνίου Εξέλιξη της ζήτησης Η/Ε το 2013

Επάρκεια Ισχύος. Συστήματος Ηλεκτροπαραγωγής 2013 & Ιουνίου Εξέλιξη της ζήτησης Η/Ε το 2013 Επάρκεια Ισχύος Συστήματος Ηλεκτροπαραγωγής 213 & 22 14 Ιουνίου 213 Παραδοχές : Εξέλιξη της ζήτησης Η/Ε το 213 Η ετήσια ζήτηση Η/Ε το 213 αναμένεται να κυμανθεί στα επίπεδα του 212 (περίπου 53.3 GWh).

Διαβάστε περισσότερα

Ανανεώσιμες πηγές ενέργειας

Ανανεώσιμες πηγές ενέργειας Ανανεώσιμες πηγές ενέργειας Κέντρο Περιβαλλοντικής Εκπαίδευσης Καστρίου 2013 Ενέργεια & Περιβάλλον Το ενεργειακό πρόβλημα (Ι) Σε τι συνίσταται το ενεργειακό πρόβλημα; 1. Εξάντληση των συμβατικών ενεργειακών

Διαβάστε περισσότερα

Ιστορία και Κωδικοποίηση Νομοθεσίας ΑΠΕ: (πηγή: http://www.lagie.gr/)

Ιστορία και Κωδικοποίηση Νομοθεσίας ΑΠΕ: (πηγή: http://www.lagie.gr/) Ιστορία και Κωδικοποίηση Νομοθεσίας ΑΠΕ: (πηγή: http://www.lagie.gr/) Το ελληνικό κράτος το 1994 με τον Ν.2244 (ΦΕΚ.Α 168) κάνει το πρώτο βήμα για τη παραγωγή ηλεκτρικής ενέργειας από τρίτους εκτός της

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή

Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή Νίκος Μαµάσης και Γιάννης Στεφανάκος Τοµέας Υδατικών Πόρων και Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2013 ιάρθρωση παρουσίασης: Εισαγωγή Εισαγωγικές

Διαβάστε περισσότερα

Εργασία Πρότζεκτ β. Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι

Εργασία Πρότζεκτ β. Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι Εργασία Πρότζεκτ β Τετραμήνου Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι Λίγα λόγια για την ηλιακή ενέργεια Ηλιακή ενέργεια χαρακτηρίζεται

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή

Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή Εισαγωγή στην Ενεργειακή Τεχνολογία Εισαγωγή Νίκος Μαµάσης και Γιάννης Στεφανάκος Τοµέας Υδατικών Πόρων και Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2012 ιάρθρωση παρουσίασης: Εισαγωγή Εισαγωγικές

Διαβάστε περισσότερα

Η ΚΟΙΝΩΝΙΚΗ ΠΡΟΣΦΟΡΑ ΤΗΣ ΔΕΗ ΜΕΣΩ ΤΩΝ ΥΔΡΟΗΛΕΚΤΡΙΚΩΝ ΤΗΣ ΕΡΓΩΝ

Η ΚΟΙΝΩΝΙΚΗ ΠΡΟΣΦΟΡΑ ΤΗΣ ΔΕΗ ΜΕΣΩ ΤΩΝ ΥΔΡΟΗΛΕΚΤΡΙΚΩΝ ΤΗΣ ΕΡΓΩΝ 3 o ΣΥΝΕΔΡΙΟ ΕΤΑΙΡΙΚΗΣ ΚΟΙΝΩΝΙΚΗΣ ΕΥΘΥΝΗΣ Ο ΑΝΘΡΩΠΟΣ ΓΙΑ ΤΟΝ ΑΝΘΡΩΠΟ Η ΚΟΙΝΩΝΙΚΗ ΠΡΟΣΦΟΡΑ ΤΗΣ ΔΕΗ ΜΕΣΩ ΤΩΝ ΥΔΡΟΗΛΕΚΤΡΙΚΩΝ ΤΗΣ ΕΡΓΩΝ Σ. ΡΩΤΗ Τομεάρχης Κλάδου Περιβάλλοντος ΔΗΜΟΣΙΑ ΕΠΙΧΕΙΡΗΣΗ ΗΛΕΚΤΡΙΣΜΟΥ

Διαβάστε περισσότερα

Τεχνική Προστασίας Περιβάλλοντος Αρχές Αειφορίας

Τεχνική Προστασίας Περιβάλλοντος Αρχές Αειφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Τεχνική Προστασίας Περιβάλλοντος Αρχές Αειφορίας Ενότητα 8: Αειφορία στην Παραγωγή Ενέργειας Μουσιόπουλος Νικόλαος Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ευρωπαϊκές προκλήσεις για χρήση τεχνολογιών ΑΠΕ

Ευρωπαϊκές προκλήσεις για χρήση τεχνολογιών ΑΠΕ Ευρωπαϊκές προκλήσεις για χρήση τεχνολογιών ΑΠΕ Ανθή Χαραλάμπους Διευθύντρια Ενεργειακό Γραφείο Κυπρίων Πολιτών 24 Ιουνίου 2016 Ημερίδα: «Εφαρμογές της Αβαθούς Γεωθερμίας και Ηλιακής Ενέργειας στα Θερμοκήπια»

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ «Περιβάλλον και Ανάπτυξη των Ορεινών Περιοχών» Υδατικό Περιβάλλον και Ανάπτυξη

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ «Περιβάλλον και Ανάπτυξη των Ορεινών Περιοχών» Υδατικό Περιβάλλον και Ανάπτυξη http://www.circleofblue.org/waternews/2010/world/water-scarcity-prompts-different-plans-to-reckon-with-energy-choke-point-in-the-u-s/ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ «Περιβάλλον και Ανάπτυξη των Ορεινών

Διαβάστε περισσότερα

Εγγυημένη ισχύς Αιολικής Ενέργειας (Capacity credit) & Περικοπές Αιολικής Ενέργειας

Εγγυημένη ισχύς Αιολικής Ενέργειας (Capacity credit) & Περικοπές Αιολικής Ενέργειας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ AIOΛΙΚΗ ΕΝΕΡΓΕΙΑ Διδάσκων: Δρ. Κάραλης Γεώργιος Εγγυημένη ισχύς Αιολικής Ενέργειας (Capacity

Διαβάστε περισσότερα

Διάσκεψη Τύπου ΣΕΑΠΕΚ Φάνος Καραντώνης Πρόεδρος Συνδέσμου Εταιρειών Ανανεώσιμων Πηγών Ενέργειας Κύπρου

Διάσκεψη Τύπου ΣΕΑΠΕΚ Φάνος Καραντώνης Πρόεδρος Συνδέσμου Εταιρειών Ανανεώσιμων Πηγών Ενέργειας Κύπρου Διάσκεψη Τύπου ΣΕΑΠΕΚ Φάνος Καραντώνης Πρόεδρος Συνδέσμου Εταιρειών Ανανεώσιμων Πηγών Ενέργειας Κύπρου Σύνδεσμος Εταιρειών Ανανεώσιμων Πηγών Ενέργειας Κύπρου (Σ.Ε.Α.Π.Ε.Κ.) Ιστορία Ο ΣΕΑΠΕΚ ιδρύθηκε το

Διαβάστε περισσότερα

ΜΑΝΑΣΑΚΗ ΒΙΡΓΙΝΙΑ ΑΝΤΙΠΕΡΙΦΕΡΕΙΑΡΧΗΣ ΚΡΗΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ ΒΙΟΜΗΧΑΝΙΑΣ

ΜΑΝΑΣΑΚΗ ΒΙΡΓΙΝΙΑ ΑΝΤΙΠΕΡΙΦΕΡΕΙΑΡΧΗΣ ΚΡΗΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ ΒΙΟΜΗΧΑΝΙΑΣ ΜΑΝΑΣΑΚΗ ΒΙΡΓΙΝΙΑ ΑΝΤΙΠΕΡΙΦΕΡΕΙΑΡΧΗΣ ΚΡΗΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ ΒΙΟΜΗΧΑΝΙΑΣ Νησί που βρίσκεται στο νοτιοανατολικό άκρο της Ευρώπης. Μόνιμος πληθυσμός (απογρ. 2011) 680.000 κάτοικοι. Ελκυστικός τουριστικός προορισμός

Διαβάστε περισσότερα

Eεξελίξεις στο Ελληνικό Σύστημα Μεταφοράς Ηλεκτρικής Ενέργειας Α. Κορωνίδης Ανεξάρτητος Διαχειριστής Μεταφοράς Ηλεκτρικής Ενέργειας

Eεξελίξεις στο Ελληνικό Σύστημα Μεταφοράς Ηλεκτρικής Ενέργειας Α. Κορωνίδης Ανεξάρτητος Διαχειριστής Μεταφοράς Ηλεκτρικής Ενέργειας INDEPENDENT POWER Συνάντηση εργασίας ΤΕΕ Πέμπτη 18 Απριλίου 2013 Πρόγραμμα SEA PLUS Eεξελίξεις στο Ελληνικό Σύστημα Μεταφοράς Ηλεκτρικής Ενέργειας Α. Κορωνίδης Ανεξάρτητος Διαχειριστής Μεταφοράς Ηλεκτρικής

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT

ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT Οι μαθήτριες : Αναγνωστοπούλου Πηνελόπη Αποστολοπούλου Εύα Βαλλιάνου Λυδία Γερονικόλα Πηνελόπη Ηλιοπούλου Ναταλία Click to edit Master subtitle style ΑΠΡΙΛΙΟΣ 2012 Η ΟΜΑΔΑ

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία Ορυκτά καύσιµα και ενέργεια

Εισαγωγή στην Ενεργειακή Τεχνολογία Ορυκτά καύσιµα και ενέργεια Εισαγωγή στην Ενεργειακή Τεχνολογία Ορυκτά καύσιµα και ενέργεια Νίκος Μαµάσης και Ιωάννης Στεφανάκος Τοµέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 211 ιάρθρωση παρουσίασης: Ορυκτά καύσιµα και

Διαβάστε περισσότερα

Αρχές Οικολογίας και Περιβαλλοντικής Χηµείας

Αρχές Οικολογίας και Περιβαλλοντικής Χηµείας Αρχές Οικολογίας και Περιβαλλοντικής Χηµείας Ενεργειακή στρατηγική και εναλλακτικές πηγές ενέργειας Νίκος Μαµάσης Τοµέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 214 Εισαγωγικές έννοιες Ενέργεια:

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία Ι. Μάθημα 4: Σημερινό Πλαίσιο Λειτουργίας Αγοράς Ηλεκτρικής Ενέργειας

Εισαγωγή στην Ενεργειακή Τεχνολογία Ι. Μάθημα 4: Σημερινό Πλαίσιο Λειτουργίας Αγοράς Ηλεκτρικής Ενέργειας Μάθημα 4: Σημερινό Πλαίσιο Λειτουργίας Αγοράς Ηλεκτρικής Ενέργειας Μεταβολές στο πλαίσιο λειτουργίας των ΣΗΕ (δεκαετία 1990) Κύριοι λόγοι: Απελευθέρωση αγοράς ΗΕ. Δίκτυα φυσικού αερίου. Φαινόμενο θερμοκηπίου

Διαβάστε περισσότερα

ΘΕΜΑ : ΕΝΕΡΓΕΙΑ ΠΗΓΕΣ / ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΔΙΑΡΚΕΙΑ: 1 περίοδος

ΘΕΜΑ : ΕΝΕΡΓΕΙΑ ΠΗΓΕΣ / ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΔΙΑΡΚΕΙΑ: 1 περίοδος ΘΕΜΑ : ΕΝΕΡΓΕΙΑ ΠΗΓΕΣ / ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΡΚΕΙΑ: 1 περίοδος ΤΙ ΕΙΝΑΙ ΕΝΕΡΓΕΙΑ; Η ενέργεια υπάρχει παντού παρόλο που δεν μπορούμε να την δούμε. Αντιλαμβανόμαστε την ύπαρξη της από τα αποτελέσματα της.

Διαβάστε περισσότερα

Σηµερινή Κατάσταση των ΑΠΕ στην Ελλάδα

Σηµερινή Κατάσταση των ΑΠΕ στην Ελλάδα Σηµερινή Κατάσταση των ΑΠΕ στην Ελλάδα Χ. ηµουλιάς Λέκτορας Α.Π.Θ. Κατανάλωση και παραγωγή ΗΕ σήµερα Κατανάλωση ενέργειας: : 57.8 TWh (δισ. kwh) Εγκατεστηµένη ισχύς: : 12.500 MW ( ΕΗ( ΕΗ) 1.400 ΜW (άλλοι)

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΕΦΑΡΜΟΓΕΣ ΣΕ ΚΑΤΟΙΚΙΕΣ

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΕΦΑΡΜΟΓΕΣ ΣΕ ΚΑΤΟΙΚΙΕΣ ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΕΦΑΡΜΟΓΕΣ ΣΕ ΚΑΤΟΙΚΙΕΣ Τι είναι οι Ανανεώσιμες Πηγές Ενέργειας; Ως Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) ορίζονται οι ενεργειακές πηγές, οι οποίες

Διαβάστε περισσότερα

2 Υφιστάμενη κατάσταση και θεσμικό πλαίσιο

2 Υφιστάμενη κατάσταση και θεσμικό πλαίσιο Διαχείριση Υδατικών Πόρων και Ενέργεια Αλέξανδρος θ. Γκιόκας Πολιτικός Μηχανικός ΕΜΠ Αθήνα, 2009 1 Εισαγωγή Ο όρος «βιώσιμη ανάπτυξη» αποτελεί σήμερα ίσως τον πιο δημοφιλή όρο, που συνοδεύει προτάσεις

Διαβάστε περισσότερα

Ήπιες µορφές ενέργειας

Ήπιες µορφές ενέργειας ΕΒ ΟΜΟ ΚΕΦΑΛΑΙΟ Ήπιες µορφές ενέργειας Α. Ερωτήσεις πολλαπλής επιλογής Επιλέξετε τη σωστή από τις παρακάτω προτάσεις, θέτοντάς την σε κύκλο. 1. ΥΣΑΡΕΣΤΗ ΟΙΚΟΝΟΜΙΚΗ ΣΥΝΕΠΕΙΑ ΤΗΣ ΧΡΗΣΗΣ ΤΩΝ ΟΡΥΚΤΩΝ ΚΑΥΣΙΜΩΝ

Διαβάστε περισσότερα

2. ΠΑΓΚΟΣΜΙΟ ΕΝΕΡΓΕΙΑΚΟ ΙΣΟΖΥΓΙΟ Η

2. ΠΑΓΚΟΣΜΙΟ ΕΝΕΡΓΕΙΑΚΟ ΙΣΟΖΥΓΙΟ Η 2. ΠΑΓΚΟΣΜΙΟ ΕΝΕΡΓΕΙΑΚΟ ΙΣΟΖΥΓΙΟ Η παγκόσμια παραγωγή (= κατανάλωση + απώλειες) εκτιμάται σήμερα σε περίπου 10 Gtoe/a (10.000 Mtoe/a, 120.000.000 GWh/a ή 420 EJ/a), αν και οι εκτιμήσεις αποκλίνουν: 10.312

Διαβάστε περισσότερα

Το Ελληνικό Σύστημα Ηλεκτρικής Ενέργειας σε Συνθήκες Μεγάλης Διείσδυσης Ανανεώσιμων Πηγών

Το Ελληνικό Σύστημα Ηλεκτρικής Ενέργειας σε Συνθήκες Μεγάλης Διείσδυσης Ανανεώσιμων Πηγών Το Ελληνικό Σύστημα Ηλεκτρικής Ενέργειας σε Συνθήκες Μεγάλης Διείσδυσης Ανανεώσιμων Πηγών Α. Κορωνίδης a.koronidis@admie.gr Ημερίδα Συλλόγου Μηχανικών ΔΕΗ Τεχνικού Επιμελητηρίου Ελλάδας 8 Νοεμβρίου 2013

Διαβάστε περισσότερα

ΣΤΕΦΑΝΟΣ ΝΤΑΙΛΙΑΝΗΣ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΠΑΤΡΑ 2014

ΣΤΕΦΑΝΟΣ ΝΤΑΙΛΙΑΝΗΣ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΠΑΤΡΑ 2014 ΡΥΠΟΓΟΝΕΣ ΟΥΣΙΕΣ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΕΠΙΠΤΩΣΕΙΣ ΤΟΥΣ ΣΤΟΥΣ ΟΡΓΑΝΙΣΜΟΥΣ ΜΗΧΑΝΙΣΜΟΙ ΑΠΟΤΟΞΙΚΟΠΟΙΗΣΗΣ ΠΑΡΑΚΟΛΟΥΘΗΣΗ ΤΗΣ ΡΥΠΑΝΣΗΣ ΤΟΥ ΘΑΛΑΣΣΙΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΣΤΕΦΑΝΟΣ ΝΤΑΙΛΙΑΝΗΣ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΠΑΤΡΑ

Διαβάστε περισσότερα

ΕΠΙΠΤΩΣΕΙΣ ΤΗΣ ΥΨΗΛΗΣ ΣΤΑΘΜΗΣ ΑΙΟΛΙΚΗΣ ΙΕΙΣ ΥΣΗΣ ΣΤΗ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΜΕ

ΕΠΙΠΤΩΣΕΙΣ ΤΗΣ ΥΨΗΛΗΣ ΣΤΑΘΜΗΣ ΑΙΟΛΙΚΗΣ ΙΕΙΣ ΥΣΗΣ ΣΤΗ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΜΕ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ (ΣΗΕ) ΕΠΙΠΤΩΣΕΙΣ ΤΗΣ ΥΨΗΛΗΣ ΣΤΑΘΜΗΣ ΑΙΟΛΙΚΗΣ ΙΕΙΣ ΥΣΗΣ ΣΤΗ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΕΛΛΗΝΙΚΟΥ

Διαβάστε περισσότερα

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΤΜΟΣΤΡΟΒΙΛΟΙ Σημειώσεις Δ. Κουζούδη Εαρινό Εξάμηνο 2017 ΑΤΜΟ-ΣΤΡΟΒΙΛΟΙ (ΑΤΜΟ-ΤΟΥΡΜΠΙΝΕΣ) Που χρησιμοποιούνται; Για παραγωγή ηλεκτρικής ς σε μεγάλη κλίμακα. Εκτός από τα

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 1: Εισαγωγή Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΛΙΝΑ ΒΑΓΙΑΝΟΥ ΓΛΥΚΕΡΙΑ ΔΕΝΔΡΙΝΟΥ 20-ΝΟΕ

ΕΛΙΝΑ ΒΑΓΙΑΝΟΥ ΓΛΥΚΕΡΙΑ ΔΕΝΔΡΙΝΟΥ 20-ΝΟΕ Ορισμός : Κάθε υλικό σώμα περικλείει ενέργεια, που μπορεί να μετατραπεί σε έργο. Η ιδιότητα των σωμάτων να παράγουν έργο ονομάζεται ενέργεια. Η ενέργεια που ορίζεται ως η ικανότητα για παραγωγή έργου,

Διαβάστε περισσότερα

Ένας σημαντικός ανανεώσιμος αναξιοποίητος ενεργειακός πόρος

Ένας σημαντικός ανανεώσιμος αναξιοποίητος ενεργειακός πόρος ΕΛΛΗΝΙΚΟ ΥΔΡΟΔΥΝΑΜΙΚΟ Ένας σημαντικός ανανεώσιμος αναξιοποίητος ενεργειακός πόρος Γιώργος Ανδριώτης Πολιτικός Μηχανικός ΣΥΝΕΔΡΙΟ ΤΕΕ 2010 ΕΝΕΡΓΕΙΑ:ΣΗΜΕΡΙΝΗ ΕΙΚΟΝΑ-ΣΧΕΔΙΑΣΜΟΣ-ΠΡΟΟΠΤΙΚΕΣ Διαπίστωση:Απαισιόδοξες

Διαβάστε περισσότερα

Τεχνικά και Θεσμικά ζητήματα για την διείσδυση των ΑΠΕ στο Ελληνικό ηλεκτρικό σύστημα. Γ. Κάραλης, Δρ Μηχανολόγος Μηχανικός ΕΜΠ

Τεχνικά και Θεσμικά ζητήματα για την διείσδυση των ΑΠΕ στο Ελληνικό ηλεκτρικό σύστημα. Γ. Κάραλης, Δρ Μηχανολόγος Μηχανικός ΕΜΠ Τεχνικά και Θεσμικά ζητήματα για την διείσδυση των ΑΠΕ στο Ελληνικό ηλεκτρικό σύστημα Γ. Κάραλης, Δρ Μηχανολόγος Μηχανικός ΕΜΠ Εθνικό σχέδιο δράσης Οριοθέτηση προβλήματος Χαρακτηριστικά ελληνικού συστήματος

Διαβάστε περισσότερα

Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού

Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού ρ. Ηλίας Κούτσικος, Φυσικός - Γεωφυσικός Πάρεδρος Παιδαγωγικού Ινστιτούτου ιδάσκων Πανεπιστηµίου Αθηνών Ε ι σ α γ ω γ ή...

Διαβάστε περισσότερα