ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ"

Transcript

1 ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ Εισαγωγή Τα περισσότερα είδη ινών είναι υγροσκοπικά, έχουν δηλαδή την ιδιότητα να απορροφούν υγρασία (υδρατμούς) όταν η ατμόσφαιρα έχει αυξημένη υγρασία και αντιστρόφως να χάνουν νερό όταν η ατμόσφαιρα είναι ξηρή. Η αλληλεπίδραση των υγροσκοπικών ινών με τους υδρατμούς της ατμόσφαιρας παρουσιάζει ιδιαίτερο ενδιαφέρον. Πράγματι, η απορρόφηση υγρασίας μεταβάλλει τις ιδιότητες των ινών. Για παράδειγμα, προκαλεί διόγκωση δηλαδή μεταβολή των διαστάσεων της ίνας και η μεταβολή αυτή με τη σειρά της προκαλεί αλλαγές στο μέγεθος, στο σχήμα, στη σκληρότητα και στην (υδατική) διαπερατότητα των νημάτων και των υφασμάτων. Επιπλέον η απορρόφηση υγρασίας έχει ως αποτέλεσμα την μεταβολή των μηχανικών τους ιδιοτήτων, όπως η ελαστικότητα, η ευκαμψία και η αντοχή, με αποτέλεσμα να επηρεάζεται η συμπεριφορά τους τόσο κατά την επεξεργασία όσο και κατά τη χρήση τους. Επίσης, οι ηλεκτρικές ιδιότητες των ινών μεταβάλλονται σημαντικά με την υγρασία, για παράδειγμα ο στατικός ηλεκτρισμός είναι σπάνιο να εμφανιστεί σε συνθήκες υγρασίας. Η ιδιότητα που έχουν οι ίνες να απορροφούν υγρασία είναι ένα χρήσιμο χαρακτηριστικό των ενδυμάτων. Πράγματι, η απορρόφηση νερού από το ύφασμα (εκτός από την προφανή άμεση συνέπεια ότι κρατά το ανθρώπινο σώμα στεγνό), κάνει το ύφασμα να δρα σαν δεξαμενή θερμότητας προστατεύοντας κατ αυτόν τον τρόπο το ανθρώπινο σώμα από απότομες εναλλαγές θερμοκρασίας. Από τα παραπάνω γίνεται εμφανές ότι το φαινόμενο της απορρόφησης υγρασίας από τις ίνες έχει μεγάλη τεχνολογική σημασία. Πέραν τούτου, έχει και άμεση εμπορική σημασία, καθόσον, για παράδειγμα, στα 1Κg ακατέργαστου βαμβακιού μπορεί να υπάρχουν μέχρι και 12 Κg νερού. Προκειμένου να συζητηθούν οι υγροσκοπικές ιδιότητες των ινών είναι αναγκαία η γνώση βασικών φυσικών εννοιών όπως η έννοια της θερμοκρασίας και της θερμότητας, οι μετατροπές φάσης, η υγροποίηση των αερίων, η υγρασία, η πίεση κορεσμένων ατμών κλπ. Στις επόμενες παραγράφους γίνεται μια σύντομη ανασκόπηση αυτών των εννοιών Νόμοι των ιδανικών αερίων-μετατροπές φάσης Φάσεις ενός υλικού Με τον όρο φάσεις ενός υλικού χαρακτηρίζουμε τις τρεις διαφορετικές μορφές τις οποίες δύναται να λάβει κάθε υλικό, δηλαδή τη στερεά, υγρή και αέρια κατάσταση. Στην στερεά φάση τα μόρια είναι διευθετημένα σε μια τρισδιάστατη διάταξη (κρυσταλλικό πλέγμα) και οι αποστάσεις μεταξύ τους είναι μικρές. Αντιθέτως, στην αέρια φάση τα μόρια είναι απομακρυσμένα μεταξύ τους, κινούνται διαρκώς και τυχαία, ενώ τέλος η υγρή φάση είναι μια ενδιάμεση κατάσταση όπου τα μόρια δεν βρίσκονται σε σταθερές θέσεις το ένα ως προς το άλλο και το κάθε μόριο ολισθαίνει κατά μήκος των γειτονικών του χωρίς να παύει να εφάπτεται αυτών Η έννοια της θερμοκρασίας Παρά το γεγονός ότι είναι γνωστό πως η θερμοκρασία αποτελεί ένα μέτρο του πόσο θερμό ή ψυχρό είναι ένα σώμα, ο ακριβής ορισμός της δεν είναι τόσο εύκολος και ασφαλώς δεν μπορεί να στηριχθεί σε υποκειμενικά κριτήρια (π.χ μια μεταλλική καρέκλα την αισθανόμαστε ψυχρότερη από μια ξύλινη ακόμη και όταν και οι δύο βρίσκονται στην ίδια θερμοκρασία). Ένα αξιοσημείωτο χαρακτηριστικό της θερμοκρασίας είναι η τάση που έχει να εξισώνεται. Για παράδειγμα, ένα φλυντζάνι με ζεστό καφέ που αφήνεται στο τραπέζι, μετά 3

2 από κάποιο χρονικό διάστημα θα κρυώσει. Αντίθετα ένα παγωμένο ποτό θα ζεσταθεί. Με άλλα λόγια, όταν δύο σώματα που αρχικά δημιουργούν διαφορετική αίσθηση θερμοκρασίας (το ένα ψυχρότερο ή θερμότερο από το άλλο) έρθουν σε επαφή μεταξύ τους, μετά από κάποιο χρονικό διάστημα θα δημιουργούν την ίδια αίσθηση θερμοκρασίας, δηλαδή οι θερμοκρασίες τους τελικά θα εξισωθούν. Όταν οι θερμοκρασίες εξισωθούν, λέμε ότι τα δύο σώματα βρίσκονται σε θερμική ισορροπία μεταξύ τους. Για την επίτευξη της θερμικής ισορροπίας μεταξύ δύο συστημάτων η μόνη απαίτηση είναι να εξισωθούν οι θερμοκρασίες τους. Δηλαδή, στη θερμική ισορροπία τα σώματα έχουν μια κοινή ιδιότητα η οποία βεβαιώνει ότι βρίσκονται μεταξύ τους σε κατάσταση θερμικής ισορροπίας. Αυτήν την ιδιότητα την ονομάζουμε θερμοκρασία. Άρα θερμοκρασία ενός συστήματος είναι μια ιδιότητα η οποία καθορίζει αν το σύστημα είναι σε θερμική ισορροπία με άλλα συστήματα Η έννοια της πίεσης ενός αερίου Η πίεση που αναπτύσσεται στο εσωτερικό ενός δοχείου που περιέχει κάποιο αέριο οφείλεται στις συγκρούσεις των μεμονωμένων μορίων με τα τοιχώματα του δοχείου. Αποτέλεσμα αυτών των συγκρούσεων είναι η άσκηση μιας δύναμης στα τοιχώματα ανάλογη της μέσης ταχύτητας των μορίων και του αριθμού των μορίων ανά μονάδα όγκου του δοχείου). Επομένως η πίεση που ασκεί ένα αέριο εξαρτάται σε μεγάλο βαθμό από την πυκνότητα και τη θερμοκρασία του αερίου. Επιπλέον, η πίεση ενός αερίου μίγματος, όπως μετριέται με ένα αισθητήριο, είναι το άθροισμα των πιέσεων που ασκούν τα μεμονωμένα αέρια συστατικά του και οι πιέσεις αυτές ονομάζονται μερικές πιέσεις. Η πίεση ενός αερίου μίγματος, όπως μετριέται με ένα αισθητήριο είναι το άθροισμα των πιέσεων που ασκούν τα μεμονωμένα αέρια συστατικά του οι πιέσεις αυτές ονομάζονται μερικές πιέσεις. Μπορεί να δειχθεί ότι η μερική πίεση ενός αερίου σε ένα μίγμα είναι ανάλογη του αριθμού των γραμμομορίων του αερίου. Ο ατμοσφαιρικός αέρας μπορεί να θεωρηθεί μίγμα ξηρού αέρα (αέρα με μηδενικό περιεχόμενο υγρασίας) και ατμών νερού (οι οποίοι αναφέρονται και ως υγρασία). Στην περίπτωση αυτή η ατμοσφαιρική πίεση είναι το άθροισμα της πίεσης του ξηρού αέρα P a και της πίεσης των ατμών του νερού η οποία ονομάζεται πίεση των ατμών P v ή τάση ατμών : P = P + P (1.1) atm Εφόσον η πίεση είναι η δύναμη που ασκείται ανά μονάδα επιφάνειας η μονάδα 1N της θα είναι το Νewton ανά τετραγωνικό μέτρο που ονομάζεται Pascal (Pa): 1Pa = 2 m Επίσης άλλες δεδομένες μονάδες είναι το bar, η κανονική ατμόσφαιρα και το psi, το Torr: 1bar=1 5 Pa 1 atm=11.325pa=14.7 psi=76mmhg=1 Torr Θερμική διαστολή Ως γνωστό, μεταβολές στη θερμοκρασία των υλικών επιφέρουν μεταβολές στις διαστάσεις τους αλλά και στην κατάσταση τους. Ας μελετήσουμε αρχικά μεταβολές των διαστάσεων ενός υλικού χωρίς μεταβολή στην κατάστασή του. Θερμική διαστολή είναι το φαινόμενο κατά το οποίο μεταβάλλονται οι διαστάσεις ενός υλικού όταν μεταβάλλεται η θερμοκρασία του. Το φαινόμενο της διαστολής εμφανίζεται και στις τρεις καταστάσεις της ύλης, στερεά, υγρή και αέρια είναι όμως εντονότερο στα αέρια, λιγότερο στα υγρά και ακόμα λιγότερο στα στερεά. a v 4

3 1.1.4α Θερμική διαστολή στερεών Ένας τρόπος για να κατανοήσουμε τη θερμική διαστολή είναι το μηχανικό μοντέλο του σχήματος 1.1 (όπου οι δεσμοί ανάμεσα στα άτομα προσομοιώνονται με ελατήρια. Ας θεωρήσουμε το απλό μοντέλο ενός κρυσταλλικού στερεού. Τα άτομα κρατιούνται μεταξύ τους σε μια κανονική διάταξη με δυνάμεις ηλεκτρικής φύσεως. Οι δυνάμεις αυτές είναι όμοιες με αυτές που θα εξασκούσε ένα σύνολο ελατηρίων που συνδέει τα άτομα. Σε οποιαδήποτε θερμοκρασία τα άτομα του στερεού ταλαντώνονται. Όταν η θερμοκρασία αυξάνεται η μέση απόσταση μεταξύ των ατόμων αυξάνεται και αυτό οδηγεί σε διαστολή ολόκληρου του στερεού. Σχήμα 1.1: Ένα στερεό συμπεριφέρεται από πολλές απόψεις σαν να ήταν ένα μικροσκοπικό πλέγμα με σούστες στρώματος στο οποίο τα άτομα κρατιούνται μεταξύ τους με ελαστικές δυνάμεις. Σε ένα στερεό διακρίνουμε τη γραμμική, επιφανειακή και κυβική διαστολή η οποία αναφέρεται στη μεταβολή του μήκους, της επιφάνειας ή του όγκου ενός σώματος. Σε όλες τις περιπτώσεις ισχύει η γενική σχέση dx = k x dθ (1.2), όπου dx είναι η μεταβολή του μεγέθους x που επηρεάζει η μεταβολή της θερμοκρασίας dθ και k είναι μια σταθερά χαρακτηριστική του υλικού που ονομάζεται συντελεστής διαστολής Η παραπάνω σχέση μπορεί να γραφτεί ως: dx = k dθ (1.3) x Αν x είναι αρχική τιμή του μεγέθους x, όταν η θερμοκρασία του είναι ο C, ολοκληρώνοντας την παραπάνω σχέση παίρνουμε: x dx θ kθ = k dθ x = x e x x (1.4) Η παραπάνω σχέση γράφεται 1 : kθ x = x e x ( 1+ k θ ) (1.5) 1 kθ Η έκφραση e αναπτύσσεται σε σειρά θ k θ k θ e k = 1+ k θ ! 3! θ Η ποσότητα k είναι πολύ μικρή και συνεπώς : e k 1+ k θ. 5

4 Σχήμα 1.2: μήκος μιας ράβδου συναρτήσει της θερμοκρασίας της (θεωρητική καμπύλη) Έτσι αν πρόκειται για γραμμική διαστολή μιας μεταλλικής ράβδου η παραπάνω σχέση γράφεται: L = L ( 1+ a θ ) (1.6), όπου L είναι το μήκος της ράβδου όταν η θερμοκρασία της είναι ο C. Ο συντελεστής α ονομάζεται συντελεστής γραμμικής διαστολής και εξαρτάται από το υλικό. Η γραφική παράσταση της παραπάνω σχέσης είναι ευθεία γραμμή, ωστόσο πειραματικά προκύπτει ότι καμπύλη γεγονός που υποδηλώνει ότι ο συντελεστής γραμμικής διαστολής εξαρτάται και από τη θερμοκρασία. Η μεταβολή του όμως είναι συνήθως αμελητέα σε σύγκριση με την ακρίβεια με την οποία απαιτείται κατά τη μετρητική διαδικασία και συνεπώς συνήθως θεωρείται σταθερό για δοσμένο υλικό ανεξάρτητα από τη θερμοκρασία. Ακριβώς ανάλογα με τα παραπάνω για την επιφανειακή διαστολή ενός σώματος ισχύει: ( + β θ ) S = 1 (1.7) S όπου S είναι η επιφάνεια ενός σώματος στους ο C S είναι η επιφάνειά του στους θ ο C και β είναι ο συντελεστής επιφανειακής διαστολής. Ο συντελεστής επιφανειακής διαστολής αποδεικνύεται διπλάσιος του συντελεστή γραμμικής διαστολής: β = 2 a (1.8) Για την κυβική διαστολή ισχύει αντίστοιχη σχέση: ( + γ θ ) V = 1 (1.9) V όπου V είναι ο όγκος ενός σώματος στους ο C, V είναι ο όγκος του στους θ ο C και γ είναι ο συντελεστής κυβικής διαστολής, ο οποίος αποδεικνύεται τριπλάσιος από το συντελεστή γραμμικής διαστολής γ = 3 a (1.1) Αφού μεταβάλλεται ο όγκος των υλικών με τη θερμοκρασία θα μεταβάλλεται και η πυκνότητά τους : m m ρ ρ = = = (1.11) V 1+ γ θ 1+ γ V ( ) θ (όπου m ρ = είναι η πυκνότητα του υλικού στους ο C V 1.1.4β Θερμική διαστολή υγρών Προκύπτει πειραματικά ότι όταν αυξηθεί η θερμοκρασία ενός υγρού αυξάνεται και ο όγκος του. Όπως και για τα στερεά έτσι και για τα υγρά ισχύει : V = V ( 1+ γ θ ), όπου γ είναι ο απόλυτος συντελεστής κυβικής διαστολής υγρού. Ο παραπάνω τύπος ισχύει υπό την προϋπόθεση ότι ο συντελεστής γ είναι ανεξάρτητος της θερμοκρασίας. Στην πραγματικότητα η σχέση μεταξύ όγκου και θερμοκρασίας δεν είναι γραμμική, γεγονός που δηλώνει ότι ο συντελεστής γ δεν είναι σταθερός αλλά μεταβάλλεται με τη θερμοκρασία. 6

5 1.1.4γ Θερμική διαστολή αερίων Πριν αναφερθούμε στους πειραματικούς νόμους που προέκυψαν από τη μελέτη της μεταβολής της θερμοκρασίας ορισμένων αερίων, πρέπει να καθοριστούν οι προϋποθέσεις που πρέπει να πληροί ένα αέριο για να ακολουθεί τους εν λόγω νόμους. Αν δεχθούμε ότι υπάρχουν αέρια που τα μόρια τους κατά τις συγκρούσεις τους τόσο μεταξύ τους όσο και με τα τοιχώματα των δοχείων μέσα στα οποία βρίσκονται, συμπεριφέρονται ως ελαστικές σφαίρες αμελητέων διαστάσεων που δεν ασκούν μεταξύ τους δυνάμεις παρά μόνο κατά τη στιγμή της σύγκρουσης, τα αέρια αυτά ονομάζονται ιδανικά αέρια. Στην πραγματικότητα τα αέρια δεν πληρούν ακριβώς αυτούς τους κανόνες αλλά έχει βρεθεί πειραματικά ότι υπό ορισμένες προϋποθέσεις ακολουθούν με καλή προσέγγιση τους νόμους των ιδανικών αερίων. Α) Θέρμανση αερίου υπό σταθερή πίεση (1 ος νόμος Gay-Lussac) Έχει αποδειχθεί πειραματικά ότι όταν ένα αέριο θερμαίνεται υπό σταθερή πίεση διαστέλλεται, ο δε όγκος του ακολουθεί τη γραμμική σχέση (σχήμα 1.3): V = V ( 1+ a θ ) (1.12), όπου η σταθερά α ονομάζεται θερμικός συντελεστής όγκου υπό σταθερή πίεση και έχει τιμή α=1/273 grad -1, ίδια για όλα τα αέρια. Σχήμα 1.3 : Διαστολή αερίου υπό σταθερή πίεση Β) Θέρμανση αερίου υπό σταθερό όγκο (2 ος νόμος Gay-Lussac) Έχει βρεθεί πειραματικά ότι η πίεση ενός αερίου που θερμαίνεται ενώ ο όγκος του διατηρείται σταθερός αυξάνεται γραμμικά (σχήμα 1.4), ισχύει δηλαδή η σχέση: P = P ( 1+ a θ ), V=σταθερό, (1.13) Ο συντελεστής α ονομάζεται θερμικός συντελεστής πίεσης υπό σταθερό όγκο και έχει τιμή α=1/273 grad-1, ίδια για όλα τα αέρια. Σχήμα 1.4 : Διαστολή αερίου υπό σταθερό όγκο Γ) Νόμος Boyle-Mariotte Έχει βρεθεί πειραματικά ότι όταν η θερμοκρασία ενός αερίου παραμένει σταθερή το γινόμενο της πίεσης P επί τον όγκο V μιας ορισμένης μάζας αερίου παραμένει σταθερή: P V = σταθ. όταν Τ=σταθ. Ή αλλιώς P V = P (1.14) V 2 Σχήμα 1.5: Νόμος Boyle-Mariotte 7

6 1.1.5 Aπόλυτος θερμοκρασία Παρατηρούμε στο διάγραμμα V-θ (σχήμα 1.3) ότι όταν ψύξουμε ένα ιδανικό αέριο στους -273 ο C ενώ ταυτόχρονα διατηρούμε την πίεσή του σταθερή ο όγκος του μηδενίζεται. Παρόμοια, παρατηρούμε στο διάγραμμα P-θ (σχήμα 1.4) ότι αν ψύξουμε ένα ιδανικό αέριο στους -273 ο C ενώ ταυτόχρονα διατηρήσουμε την πίεσή του σταθερή ο όγκος του μηδενίζεται. Τη θερμοκρασία αυτή (-273 ο C) όπου ο όγκος ή η πίεση ενός ιδανικού αερίου μηδενίζεται ονομάζεται απόλυτο μηδέν. Αν θεωρήσουμε μια κλίμακα θερμοκρασιών με αρχή το -273 ο C τότε η θερμοκρασία που μετριέται σε αυτήν την κλίμακα ονομάζεται απόλυτος θερμοκρασία και κάθε βαθμός σε αυτήν την κλίμακα ονομάζεται Kelvin (K). Προφανώς η απόλυτη θερμοκρασία (Τ) συνδέεται με τη θερμοκρασία Κελσίου (θ) με τη σχέση: Τ=-273+θ (1.15) Χρησιμοποιώντας την απόλυτη θερμοκρασία μπορούμε να γράψουμε τους νόμους Gay-Lussac ως εξής: 1 ος νόμος Gay-Lussac Όπως προκύπτει από την ομοιότητα των δύο τριγώνων στο σχήμα: V T = (1.16) V T Δηλαδή οι όγκοι ενός αερίου υπό σταθερή πίεση είναι ανάλογοι των απολύτων θερμοκρασιών. Σχήμα 1.6 Νόμος Gay-Lussac Παρόμοια, από το διάγραμμα P-θ του σχήματος προκύπτει για τον 2 ο νόμο Gay- Lussac P T = (1.17) P T δηλαδή οι πιέσεις ενός αερίου υπό σταθερό όγκο είναι ανάλογες των απολύτων θερμοκρασιών. Στους παραπάνω νόμους παρατηρούμε ότι από τα μεγέθη P, V και θ που καθορίζουν την κατάσταση ενός αερίου μεταβάλλονται δύο μεγέθη ενώ το τρίτο παραμένει σταθερό. Υπάρχουν όμως περιπτώσεις στις οποίες μεταβάλλονται και τα τρία αυτά μεγέθη. Στις περιπτώσεις αυτές ισχύει ο νόμος Boyle-Mariotte Gay-Lussac, ο οποίος συνδέει τα αρχικά μεγέθη P, V, T με τα τελικά μεγέθη P, V, T : PV P V = (1.18) T T Η παραπάνω σχέση δηλώνει ότι αν μεταβάλλουμε την πίεση, τον όγκο και τη PV θερμοκρασία δεδομένης ποσότητας αερίου η τιμή του μεγέθους παραμένει σταθερή. T Δηλαδή: PV = A, όπου Α=σταθερό (1.19) T Η σταθερά Α εξαρτάται από τη φύση και τη μάζα του θεωρούμενου αερίου και μπορεί να γραφτεί ως: A = n R (1.2), 8

7 όπου n είναι η μάζα του αερίου εκφρασμένη σε γραμμομόρια 2 και R μια σταθερά που η τιμή της είναι ανεξάρτητη τόσο από τη μάζα όσο και από τη φύση του αερίου και γι αυτό ονομάζεται παγκόσμια σταθερά των ιδανικών αερίων. Έτσι ο παραπάνω τύπος γράφεται PV = nrt (1.21) όπου R =.82lit atm / mol grad Λανθάνουσα θερμότητα Όταν οι συνθήκες κάτω από τις οποίες βρίσκεται ένα σώμα αλλάζουν (για παράδειγμα όταν αυξάνεται η θερμοκρασία ή όταν μεταβάλλεται ο όγκος) είναι δυνατόν το σώμα να μεταβεί από μια φάση σε μια άλλη. Η μεταβολή φάσης συνοδεύεται πάντα από απορρόφηση ή έκλυση θερμότητας η οποία ονομάζεται λανθάνουσα θερμότητα (ο όρος λανθάνουσα οφείλεται στο ότι η θερμότητα αυτή δεν γίνεται αντιληπτή μέσω μεταβολής της θερμοκρασίας). Υπό ειδικές συνθήκες πίεσης και θερμοκρασίας ένα σώμα είναι δυνατόν να βρίσκεται είτε σε μια συγκεκριμένη φάση είτε εν μέρει σε μια φάση και εν μέρει σε μια άλλη (Για παράδειγμα στη θερμοκρασία ο C και υπό πίεση 1 Atm η χημική ένωση H 2 O μπορεί να υπάρχει είτε ως πάγος είτε ως νερό είτε ως μίγμα και των δύο) Τήξη και πήξη Τήξη ονομάζεται η μετάβαση ενός υλικού από την στερεά στην υγρή φάση. Η θερμοκρασία στην οποία πραγματοποιείται αυτή η μετάβαση ονομάζεται σημείο τήξεως. Προς μελέτη αυτού του φαινομένου ας θεωρήσουμε ένα στερεό όπως ο κασσίτερος εντός δοχείου στο οποίο προσφέρουμε συνεχώς θερμότητα. Παρατηρούμε ότι η θερμοκρασία του κασσίτερου αρχικά αυξάνεται με σταθερή ταχύτητα (τμήμα α της καμπύλης του σχήματος 1.7), όταν όμως φτάσει το σημείο τήξεως παρατηρούμε ότι παρότι προσφέρουμε θερμότητα η θερμοκρασία του δεν αυξάνεται ενώ ταυτόχρονα αρχίζει η τήξη (ευθύγραμμο τμήμα της καμπύλης του σχήματος 1-7). Με την πάροδο του χρόνου όταν πλέον όλο το στερεό μετατραπεί σε υγρό η θερμοκρασία του υγρού κασσιτέρου αρχίζει να ανεβαίνει πάλι (τμήμα β της καμπύλης). Σχήμα 1.7: Κατά τη διάρκεια της τήξης συνυπάρχουν στερεό και υγρό Η ταχύτητα αύξησης της θερμοκρασίας του στερεού εξαρτάται από την ειδική θερμότητά του 3, ομοίως και η ταχύτητα αύξησης της θερμοκρασίας του υγρού εξαρτάται από την ειδική θερμότητα του υγρού και επειδή 2 Ένα γραμμομόριο (mol) είναι η μάζα τόσων γραμμαρίων από το αέριο όσο είναι το μοριακό του βάρος. (Μοριακό βάρος Μ μιας ουσίας είναι το πηλίκο της μάζας ενός μορίου δια της μάζας του ατόμου του υδρογόνου. Ο αριθμός των μορίων Ν που περιέχει ένα γραμμομόριο μιας ουσίας υπολογίζεται από το πηλίκο mmol N =, όπου m mol είναι η μάζα ενός γραμμομορίου και m η μάζα ενός μορίου. Πειραματικά έχει m βρεθεί ότι ο αριθμός των μορίων Ν που περιέχει ένα γραμμομόριο οποιασδήποτε ουσίας είναι 23 1 σταθερός N = mol 3 Εννοια ειδικής θερμότητας Ας θεωρήσουμε ένα σώμα που υφίσταται μια διεργασία κατά την οποία μεταφέρεται θερμότητα Q με αποτέλεσμα η θερμοκρασία του να μεταβάλλεται από μια αρχική τιμή θ i σε μια τελική τιμή θ f. Ορίζουμε ως μέση θερμοχωρητικότητα του σώματος το πηλίκο : Q μέση θερμοχωρητικότητα =. Η στιγμιαία τιμή της θερμοχωρητικότητας ορίζεται ως: θ f θi dq C =. dθ Η θερμοχωρητικότητα ενός σώματος ανά μονάδα μάζας ονομάζεται ειδική θερμοχωρητικότητα και είναι η θερμότητα που απαιτείται για τη μεταβολή της θερμοκρασίας της μονάδας μάζας μιας ουσίας κατά ένα βαθμό. Η ειδική θερμοχωρητικότητα συνήθως μετριέται σε JKg -1 deg -1 9

8 εν γένει οι ειδικές αυτές θερμότητες είναι διαφορετικές οι κλίσεις των ευθειών α και β θα είναι διαφορετικές. Αντίστοιχο διάγραμμα που περιγράφει τη μεταβολή της θερμοκρασίας με το χρόνο παίρνουμε αν ψύξουμε ένα τηγμένο σώμα αφαιρώντας από αυτό θερμότητα με σταθερή ταχύτητα. Η μετάβαση από την υγρή φάση στην στερεά ονομάζεται πήξη και λαμβάνει χώρα στην ίδια θερμοκρασία στην οποία λαμβάνει χώρα και η τήξη. Στο προαναφερθέν πείραμα είδαμε ότι κατά τη διάρκεια της τήξης η θερμοκρασία του σώματος παραμένει σταθερή παρότι προσφέρουμε διαρκώς θερμότητα. Η θερμότητα αυτή καταναλίσκεται για τη μετατροπή της φάσεως. Η θερμότητα η οποία απαιτείται για να λιώσει 1gr κάποιου υλικού το οποίο βρίσκεται στη θερμοκρασία τήξεως την ονομάζουμε λανθάνουσα θερμότητα τήξεως (λ). Προφανώς για να λιώσουν m γραμμάρια κάποιου υλικού απαιτείται θερμότητα Q ίση προς : Q = λ m (1.22) Από τον παραπάνω τύπο προκύπτει ότι η μονάδα θερμότητας τήξεως είναι cal/gr. Κατά την πήξη τους τα σώματα αποδίδουν θερμότητα την οποία έλαβαν προκειμένου να λιώσουν. Άρα η θερμότητα πήξεως είναι ίση με τη θερμότητα τήξεως Μεταβολή του όγκου κατά την πήξη και τήξη Ως γνωστόν ο πάγος επιπλέει στο νερό, δηλαδή η πυκνότητά του είναι μικρότερη της πυκνότητας του νερού. Αυτό οφείλεται στο ότι ο όγκος ορισμένης ποσότητας νερού αυξάνεται όταν αυτή μετατραπεί σε πάγο. Το σχήμα 1.8 δίδει τη σχέση μεταξύ του όγκου μιας ορισμένης ποσότητας νερού και της θερμοκρασίας. Παρατηρούμε ότι για θερμοκρασίες μικρότερες του σημείου τήξεως ( ο C) όταν αυξάνεται η θερμοκρασία αυξάνεται και ο όγκος (θερμική διαστολή του πάγου). Στο σημείο τήξεως παρατηρείται απότομη ελάττωση του όγκου από την τιμή V στερεό στην τιμή V υγρό. Στην περιοχή μεταξύ ο C Σχήμα 1.8: Σχέση όγκου και θερμοκρασίας. και +4 ο C ο όγκος του νερού ελαττώνεται ελαφρά Οι μεταβολές του όγκου έχουν σχεδιαστεί (ανωμαλία διαστολής νερού) και πέραν των +4 ο C ο μεγαλύτερες των πραγματικών όγκος αυξάνεται και πάλι (θερμική διαστολή νερού). Η απότομη αύξηση του όγκου κατά την πήξη εξηγεί το φαινόμενο κατά το οποίο θραύονται για παράδειγμα οι σωλήνες ύδρευσης κατά τις πολύ ψυχρές νύχτες αν δεν προνοήσουμε να αφήσουμε το νερό να ρέει διαρκώς οπότε αυτό δεν προλαβαίνει να στερεοποιηθεί. Ομοίως για την πρόληψη καταστροφής των ψυγείων των αυτοκινήτων κατά τον χειμώνα και αν πρόκειται να παραμείνουν ακίνητα για καιρό επιβάλλεται να αφαιρείται το νερό ή να αντικαθίσταται από κατάλληλο υγρό το οποίο πήζει σε πολύ χαμηλή θερμοκρασία (αντιπηκτικά υγρά) Επίδραση της πίεσης στο σημείο τήξεως Σχήμα 1.9: Σχέση πίεσης και σημείου τήξεως του πάγου.οι μεταβολές του σημείου τήξεως είναι σχεδιασμένες μεγαλύτερες των πραγματικών Το σημείο τήξεως μεταβάλλεται με την πίεση, όμως αυτή η μεταβολή είναι πολύ μικρή και συνεπώς για μικρές μεταβολές της πίεσης μπορεί να θεωρηθεί σταθερό. Ονομάζουμε κανονικό σημείο τήξεως το σημείο τήξεως ενός υλικού υπό πίεση 76 Τοrr. Στο σχήμα 1.9 αποδίδεται γραφικά η σχέση μεταξύ του σημείου τήξεως του πάγου και της πίεσης. Παρατηρούμε ότι ενώ για πίεση μιας ατμόσφαιρας το σημείο τήξεως είναι 1

9 ο C αυτό ελαττώνεται όταν αυξάνεται η πίεση. Η γραμμή που δίδει τη σχέση μεταξύ πίεσης και σημείου τήξεως ονομάζεται καμπύλη τήξεως Επίδραση διαλυμένων ουσιών στο σημείο πήξεως Το σημείο πήξεως ενός υγρού ελαττώνεται όταν εντός αυτού διαλύσουμε κάποιο άλλο σώμα. Έτσι ενώ το σημείο πήξεως του καθαρού νερού είναι ο C αυτό ελαττώνεται σημαντικά αν διαλύσουμε εντός αυτού χλωριούχο νάτριο. Η θερμοκρασία πήξεως σε αυτήν την περίπτωση μπορεί να αγγίξει και τους -2 ο C. (Εφαρμογή αυτού του φαινομένου έχουμε στα αντιπηκτικά υγρά που χρησιμοποιούνται στα ψυγεία των αυτοκινήτων. Επίσης, έτσι εξηγείται και ο λόγος για τον οποίο αν ρίξουμε αλάτι σε επιφάνειες καλυμμένες με πάγο π.χ πεζοδρόμια ή δρόμους προκαλείται τήξη του πάγου παρότι η θερμοκρασία είναι μικρότερη του μηδενός Εξάτμιση Η μετάβαση από την υγρή φάση στην αέρια ονομάζεται εξάτμιση ή εξαέρωση ενώ η αντίθετη μεταβολή ονομάζεται υγροποίηση. Για να μελετηθούν οι συνθήκες κάτω απ τις οποίες λαμβάνει χώρα η εξαέρωση πρέπει προηγουμένως να γνωρίζουμε τις έννοιες των κορεσμένων ατμών και της τάσης (πίεσης) των κορεσμένων ατμών. Σχήμα 1.1: Το μανόμετρο Μ δείχνει την τάση κορεσμένων ατμών του υγρού. Ας θεωρήσουμε τώρα ένα αερόκενο δοχείο εντός του οποίου έχουμε εισάγει μικρή ποσότητα υγρού (νερό ή αιθέρα) (σχήμα 1.1). Το υγρό αυτό εξαερώνεται πολύ γρήγορα και ένα μανόμετρο μετρά την πίεση (την τάση) των παραγόμενων ατμών Εάν βάλουμε μέσα στο δοχείο και άλλη ποσότητα υγρού τότε αυτή θα εξαερωθεί και το μανόμετρο θα δείξει μεγαλύτερη πίεση. Συνεχίζοντας την εισαγωγή υγρού θα παρατηρήσουμε ότι θα έλθει κάποια στιγμή που η επιπλέον ποσότητα υγρού που εισάγουμε δεν εξαερώνεται αλλά παραμένει στην υγρή φάση ενώ ταυτόχρονα η πίεση παύει να αυξάνεται. Αυτό συμβαίνει διότι ο χώρος δεν δύναται να περιλάβει περισσότερους ατμούς, είναι δηλαδή κορεσμένος σε ατμούς. Κατ επέκταση οι περιεχόμενοι ατμοί ονομάζονται κορεσμένοι ατμοί, η δε μετρούμενη πίεσή τους ονομάζεται τάση κορεσμένων ατμών. Είδαμε, ότι εάν εντός του ήδη κορεσμένου χώρου εισάγουμε και άλλη ποσότητα υγρού η ένδειξη του μανόμετρου παραμένει αμετάβλητη. Σχήμα 1.11: Η τάση κορεσμένων ατμών είναι ανεξάρτητη του όγκου Παρατηρούμε δηλαδή ότι η τάση των κορεσμένων ατμών δεν εξαρτάται από την περιεχόμενη ποσότητα υγρού. Επίσης η τάση των κορεσμένων ατμών είναι ανεξάρτητη του όγκου. Πράγματι, εάν χρησιμοποιήσουμε ένα αερόκενο δοχείο με ένα έμβολο και κρατώντας σταθερή τη θερμοκρασία (σχήμα 1.11) εισάγουμε τόση ποσότητα υγρού ώστε αφού εξαερωθεί μέρος αυτής, να παραμείνει μέσα στο δοχείο λίγο υγρό, το μανόμετρο θα δείχνει τη τάση κορεσμένων ατμών (Ι). Εάν τώρα αυξήσουμε τον όγκο (ανυψώνοντας το έμβολο (II)) οπότε θα μειωθεί η πίεση, θα εξαερωθεί και άλλη ποσότητα υγρού η πίεση όμως θα παραμείνει αμετάβλητη. Εάν εξακολουθήσουμε να αυξάνουμε τον όγκο μέχρις ότου εξαντληθεί όλο το υγρό θα παρατηρήσουμε ότι περαιτέρω αύξηση του όγκου συνοδεύεται 11

10 από ελάττωση της πιέσεως. Οι ατμοί είναι πλέον ακόρεστοι. Κριτήριο λοιπόν του κόρου είναι η συνύπαρξη του υγρού και των ατμών του. Εάν επαναλάβουμε το παραπάνω πείραμα σε διαφορετικές θερμοκρασίες θα παρατηρήσουμε ότι η τάση κορεσμένων ατμών δεν είναι πλέον ίδια. Οι μετρήσεις δείχνουν ότι η τάση κορεσμένων ατμών αυξάνεται όταν αυξάνεται η θερμοκρασία (σχήμα 1.12). Για παράδειγμα, η τάση κορεσμένων ατμών του νερού στη θερμοκρασία περιβάλλοντος είναι σχετικώς μικρή (περίπου 2 Torr) ενώ στους 1 ο C είναι ίση προς 76 Τοrr. Υγρά των οποίων η τάση κορεσμένων ατμών είναι σχετικώς μεγάλη (όπως ο αιθέρας ο οποίος ήδη στη θερμοκρασία Σχήμα 1.12: Σχέση της τάσης κορεσμένων ατμών του νερού και της θερμοκρασίας. (Η κλίμακα του άξονα των πιέσεων είναι ανομοιόμορφη). Οι καμπύλες αυτού του είδους είναι χαρακτηριστικές για κάθε των 35 ο C έχει τάση κορεσμένων ατμών ίση με 76 Torr) ονομάζονται πτητικά Απαραίτητες συνθήκες για εξάτμιση Όπως είδαμε εντός του δοχείου του πείραμα του σχήματος 1.11 υπάρχει υγρό και οι κορεσμένοι ατμοί του, το δε μανόμετρο μετρά την τάση τους. Το γεγονός ότι η ένδειξη του μανόμετρου παραμένει σταθερή σημαίνει ότι δεν λαμβάνει πλέον χώρα εξαέρωση, πρόκειται δηλαδή για μια κατάσταση ισορροπίας. Στην κατάσταση αυτή η πίεση των ατμών που βρίσκονται πάνω από την ελεύθερη επιφάνεια του υγρού (την οποία και μετρά το μανόμετρο) είναι εξ ορισμού ίση με την τάση κορεσμένων ατμών του υγρού στη θερμοκρασία στην οποία βρίσκεται. Άρα η συνθήκη ισορροπίας πληρούται όταν 4 P Pκ. a ατμοι = (1.24) Εάν για οποιοδήποτε λόγω διαταραχθεί η κατάσταση ισορροπίας (είτε λόγω ελάττωσης της πίεσης των ατμών που βρίσκονται πάνω από την επιφάνεια του υγρού, π.χ με αύξηση του όγκου τους όπως στο πείραμα του σχήματος 1.11, είτε λόγω αύξησης της θερμοκρασίας του υγρού (οπότε σύμφωνα με το διάγραμμα τους σχήματος 1.17 θα αυξηθεί η τάση κορεσμένων ατμών του υγρού), το υγρό θα αρχίσει να εξατμίζεται. Η εξάτμιση θα συνεχιστεί μέχρις ότου οι δύο πιέσεις γίνουν πάλι ίσες. Συμπεραίνουμε λοιπόν ότι για να γίνεται εξάτμιση πρέπει η τάση κορεσμένων ατμών του υγρού (στη θερμοκρασία στην οποία βρίσκεται) να είναι έστω και κατ ελάχιστον μεγαλύτερη της πίεσης των ατμών που βρίσκονται πάνω από την επιφάνεια του υγρού. Γενικά, ας σημειωθεί σε αυτό το σημείο ότι όποτε υπάρχει μια ανισορροπία μιας ποσότητας σε ένα μέσο η φύση τείνει να την ανακατανέμει μέχρι να επιτευχθεί εκ νέου ισορροπία ή αλλιώς ισότητα. Η τάση αυτή η οποία συχνά χαρακτηρίζεται ως κινητήρια δύναμη είναι ο μηχανισμός που ευθύνεται για πολλά φυσικά φαινόμενα μεταφοράς, όπως η μεταφορά θερμότητας, η ροή των ρευστών και εν προκειμένω το φυσικό φαινόμενο της εξάτμισης 5. 4 Υπενθύμιση: Η πίεση P κ. a είναι ιδιότητα του υγρού ενώ η πίεση P ατμοι είναι ιδιότητα του χώρου έξω από το υγρό. 5 Αν ορίσουμε ως συγκέντρωση την ποσότητα που μεταφέρεται ανά μονάδα όγκου, τότε η ροή της ποσότητας αυτής έχει πάντα την κατεύθυνση εκείνη κατά την οποία μειώνεται η συγκέντρωση, δηλαδή η ροή είναι από την περιοχή υψηλής συγκέντρωσης προς την περιοχή χαμηλής συγκέντρωσης 12

11 Εξάτμιση παρουσία άλλων αερίων Όσα προαναφέρθηκαν αφορούν (λόγω απλότητας) στην εξάτμιση υγρού σε χώρο που δεν περιέχει άλλο αέριο εκτός από τους ατμούς του εν λόγω υγρού. Προφανώς, στην πράξη ενδιαφέρον παρουσιάζει η εξάτμιση σε χώρο που περιέχει και άλλο αέριο. Για τη μελέτη αυτού του φαινομένου ας θεωρήσουμε τη συσκευή του σχήματος Το δοχείο περιέχει ξηρό αέρα (αέρα με μηδενικό περιεχόμενο ατμών νερού, δηλαδή υγρασίας) σε συνήθη ατμοσφαιρική πίεση και συνεπώς το μανόμετρο δείχνει την πίεση του αέρα P αέρα =1Atm. Αν τώρα εισάγουμε στο δοχείο μια ποσότητα αιθέρα θα παρατηρήσουμε ότι η πίεση που δείχνει το μανόμετρο αυξάνεται με αργό ρυθμό. Η αύξηση αυτή οφείλεται στους ατμούς από την εξάτμιση του αιθέρα και η ολική πίεση είναι ίση με το άθροισμα P αέρας + P ατμοί των μερικών πιέσεων του αέρα και των ατμών του αιθέρα αντιστοίχως. Μετά από κάποιο χρονικό διάστημα οι ατμοί του αιθέρα θα γίνουν κορεσμένοι και η ένδειξη του μανόμετρου θα μείνει σταθερή. Η σταθερή αυτή τιμή της μετρούμενης πίεσης είναι ίση με το άθροισμα της μερικής πίεσης του αέρα και της τάσης των κορεσμένων ατμών του αιθέρα P αέρας +P κ. α.. Άρα η εξάτμιση του αιθέρα λαμβάνει χώρα Σχήμα 1.13: Πείραμα για τη μελέτη της εξάτμισης παρουσία αέρα. όταν η μερική πίεση των ατμών του αέρα είναι μικρότερη της τάσης κορεσμένων ατμών του αιθέρα και παύει όταν αυτές οι δύο πιέσεις γίνουν ίσες Εξάτμιση και βρασμός Όταν κατά την εξαέρωση ο ατμός παράγεται μόνο από την ελεύθερη επιφάνεια του υγρού το φαινόμενο καλείται εξάτμιση, ενώ όταν ο ατμός παράγεται και στο εσωτερικό του υγρού με τη μορφή φυσαλίδων τότε καλείται βρασμός. Όπως ήδη προαναφέρθηκε για να εξαερωθεί ένα υγρό στο κενό πρέπει η τάση των κορεσμένων ατμών του P κ.α., να είναι έστω και ελάχιστα μεγαλύτερη από την πίεση των ατμών (P ατμοί ) Στην περίπτωση που η εξάτμιση λαβαίνει χώρα όχι στο κενό αλλά παρουσία άλλων αερίων το κριτήριο εξατμίσεως είναι η τιμή που έχει η μερική πίεση του ατμού πάνω από το υγρό και πολύ κοντά στην επιφάνειά του 6. Όπως προαναφέρθηκε ο ατμοσφαιρικός αέρας θεωρείται μίγμα ξηρού αέρα και ατμών νερού (υδρατμούς). Στην περίπτωση αυτή η ατμοσφαιρική πίεση είναι το άθροισμα της πίεσης του ξηρού αέρα ( P a ) και της πίεσης των ατμών του νερού η οποία ονομάζεται πίεση ή τάση των ατμών ( P v ): P atm = Pa + Pv. Έτσι στην περίπτωση νερού που είναι εκτεθειμένο στην ατμόσφαιρα το κριτήριο εξάτμισης διατυπώνεται ως εξής: η τάση των κορεσμένων ατμών του (στη θερμοκρασία του νερού) πρέπει να είναι έστω και ελάχιστα μεγαλύτερη από την πίεση των ατμών στον αέρα. Pκ. = T (1.25) a v Ταχύτητα εξάτμισης Η ταχύτητα εξατμίσεως εξαρτάται από τη διαφορά της τάσης των κορεσμένων ατμών και της μερικής πίεσης των ατμών στην επιφάνεια του υγρού. Όσο η εν λόγω διαφορά αυξάνεται, η ταχύτητα εξατμίσεως αυξάνεται και αντιθέτως μηδενίζεται όταν η διαφορά γίνει ίση με το μηδέν. Επειδή κοντά στην επιφάνεια του υγρού η κατάσταση που επικρατεί λίγο 6 Ας σημειωθεί ότι η πίεση αυτή δεν είναι ίδια με τη μερική πίεση των ατμών σε σημεία απομακρυσμένα από την επιφάνεια διότι το υγρό εμποδίζει την ταχεία εξάτμιση των ατμών. 13

12 διαφέρει από την κατάσταση κόρου, η ταχύτητα εξατμίσεως είναι σχετικώς μικρή και εξαρτάται από την ταχύτητα με την οποία οι ατμοί απομακρύνονται από την επιφάνεια του υγρού. Τα παραπάνω αναφερθέντα καθορίζουν τους τρόπους με τους οποίους μπορούμε να επιταχύνουμε τη ξήρανση ενός υφάσματος που έχει υγρανθεί. Δηλαδή ή πρέπει να αυξήσουμε την τάση κορεσμένων ατμών του υγρού (που έχει απορροφήσει το ύφασμα) ή να ελαττώσουμε τη μερική πίεση των ατμών του υγρού κοντά στην επιφάνεια του υφάσματος. Η αύξηση της τάσης των κορεσμένων ατμών επιτυγχάνεται αυξάνοντας τη θερμοκρασία του υφάσματος(π.χ σιδερώνοντάς το), ενώ η ελάττωση της μερικής πίεσης των ατμών επιτυγχάνεται φέρνοντας το ύφασμα σε ξηρό περιβάλλον. Για παράδειγμα, μια βρεγμένη μπλούζα θα στεγνώσει πολύ πιο γρήγορα σε ξηρό αέρα παρά σε υγρό. Αν ο αέρας είναι κορεσμένος με υδρατμούς, δεν πρόκειται να στεγνώσει καθόλου. Συνήθως, λόγω της εξατμίσεως, το περιβάλλον του υφάσματος με την πάροδο του χρόνου εμπλουτίζεται με ατμούς, επομένως για να διατηρείται χαμηλή η μερική πίεση των ατμών κοντά στην επιφάνεια, θα πρέπει οι παραγόμενοι ατμοί να απομακρύνονται συνεχώς, π.χ με έκθεση σε ρεύματα αέρα. (Για αυτό το λόγο, για παράδειγμα φυσάμε το φαγητό για να κρυώσει, οπότε επιτυγχάνεται εξάτμιση) Όσα προαναφέρθηκαν για την ταχύτητα εξατμίσεως εξηγούν το λόγο για τον οποίο ένα υγρό που βρίσκεται σε λεκάνη εξατμίζεται ταχύτερα παρά εάν βρισκόταν μέσα σε δοχείο με στενό στόμιο. Στην πρώτη περίπτωση οι ατμοί απάγονται συνεχώς λόγω των ρευμάτων αέρος ενώ στη δεύτερη, ο χώρος πάνω από το υγρό είναι σχεδόν κορεσμένος οπότε η εξάτμιση επιβραδύνεται σημαντικά. Εν προκειμένω, εξατμίζεται μόνο τόση ποσότητα του υγρού όση χρειάζεται για την αντικατάσταση των ατμών που εξέρχονται από το στόμιο του δοχείου μέσω διάχυσης. Συνθήκη βρασμού. Όπως προαναφέρθηκε, βρασμός είναι η εξαέρωση με τη δημιουργία φυσαλίδων στο εσωτερικό ενός υγρού. Η φυσαλίδα αποτελείται από κορεσμένους ατμούς και προκειμένου να δημιουργηθεί πρέπει η πίεση εντός αυτής (δηλαδή η τάση των κορεσμένων ατμών) να είναι λίγο μεγαλύτερη από την ολική εξωτερική πίεση (P εξ ) που επικρατεί στην ελεύθερη επιφάνεια του υγρού. Για να προκληθεί λοιπόν βρασμός, πρέπει: να αυξηθεί η θερμοκρασία του υγρού τόσο ώστε η τάση των κορεσμένων ατμών του να γίνει λίγο μεγαλύτερη από την ολική πίεση που επικρατεί στην ελεύθερη επιφάνεια του υγρού. Άρα για να βράσει το νερό πρέπει η θερμοκρασία του να ανέβει τόσο ώστε η τάση κορεσμένων ατμών του να υπερβεί κατ ελάχιστον τη τιμή της μίας ατμόσφαιρας. Η θερμοκρασία εκείνη κατά την οποία η τάση κορεσμένων ατμών ενός υγρού είναι ίση με 1Atm ονομάζεται κανονικό σημείο ζέσεως. να ελαττωθεί η πίεση (P εξ ) 7, χωρίς να θερμανθεί το υγρό, μέχρις ότου γίνει ίση ή λίγο μικρότερη της τάσης κορεσμένων ατμών που αντιστοιχεί στη δεδομένη θερμοκρασία του υγρού. Αξίζει να επισημανθεί ότι από το σχήμα 1.12 προκύπτει ότι η θερμοκρασία στην οποία μια καθαρή ουσία αρχίζει να εξατμίζεται (ή να βράζει) εξαρτάται από την πίεση. Αυτό σημαίνει ότι μια ουσία σε υψηλή πίεση βράζει σε υψηλότερη θερμοκρασία. Για παράδειγμα, στη μαγειρική, υψηλότερη θερμοκρασία βρασμού σημαίνει μικρότερο χρόνο μαγειρέματος και συνεπώς εξοικονόμηση ενέργειας. Το βοδινό κρέας για παράδειγμα, χρειάζεται 1-2 ώρες για να μαγειρευτεί σε κανονική χύτρα που λειτουργεί σε πίεση 1 Atm ενώ μόνο 2-3 λεπτά σε μια χύτρα ταχύτητας που λειτουργεί σε απόλυτη πίεση 2 Atm (αντίστοιχη θερμοκρασία βρασμού 12 ο C). Η ατμοσφαιρική πίεση και κατά συνέπεια η θερμοκρασία βρασμού ελαττώνονται με την αύξηση του υψομέτρου από την επιφάνεια της θάλασσας. Για παράδειγμα, σε υψόμετρο 2m η θερμοκρασία βρασμού είναι 93.2 ο C Επίδραση διαλυμένων ουσιών στο σημείο ζέσεως. 7 για παράδειγμα, εντός κλειστού γυάλινου δοχείου θέτουμε μικρή ποσότητα νερού και ελαττώνουμε την πίεση αφαιρώντας αέρα με μια αντλία. Τότε θα παρατηρήσουμε ότι εάν η πίεση γίνει περίπου ίση (περίπου 2 Torr) με την πίεση κορεσμένων υδρατμών στη θερμοκρασία του περιβάλλοντος (2 ο C ) τότε το νερό θα αρχίσει να βράζει. 14

13 Επειδή η τάση κορεσμένων ατμών ενός διαλύματος είναι μικρότερη από την τάση κορεσμένων ατμών του καθαρού διαλύτη, στην ίδια θερμοκρασία, για να βράσει ένα διάλυμα πρέπει να θερμανθεί σε θερμοκρασία μεγαλύτερη του σημείου ζέσεως του διαλύτη Θερμότητα εξαερώσεως Κατά την εξαέρωση εγκαταλείπουν το υγρό τα ταχύτερα μόριά του (δηλαδή εκείνα που έχουν μεγάλες κινητικές ενέργειες), κατά συνέπεια η μέση κινητική ενέργεια του υγρού μειώνεται, δηλαδή όταν ένα υγρό εξαερώνεται χωρίς να του προσφερθεί θερμότητα έξωθεν, ψύχεται. (Πράγματι, αν για παράδειγμα ρίξουμε στο χέρι μας λίγο οινόπνευμα αμέσως αισθανόμαστε ψύξη, διότι το οινόπνευμα εξαερώνεται παίρνοντας θερμότητα από το χέρι μας). Σύμφωνα με τα παραπάνω, για να διατηρηθεί η θερμοκρασία του υγρού σταθερή κατά τη διάρκεια της εξαέρωσής του πρέπει να του προσφερθεί θερμότητα. Η θερμότητα αυτή ονομάζεται θερμότητα εξαέρωσης. καταναλίσκεται θερμότητα. Ονομάζουμε λανθάνουσα θερμότητα εξαερώσεως L ενός υγρού τη θερμότητα που απαιτείται ώστε 1gr υγρού να μετατραπεί σε ατμό υπό την κανονική θερμοκρασία ζέσεως. Η θερμότητα εξαερώσεως μετριέται σε cal/gr. Για παράδειγμα, για να μετατραπεί ένα γραμμάριο νερού θερμοκρασίας 1 ο C σε ατμό απαιτούνται 539 θερμίδες. Προφανώς για να εξαερωθεί υγρό μάζας m πρέπει να προσφέρουμε σε αυτό θερμότητα Q ίση με : Q = L m (1.26) Είδαμε ότι για να μετατραπεί 1 gr υγρού σε ατμό πρέπει να λάβει θερμότητα ίση με τη θερμότητα εξαερώσεως. Την ίδια ακριβώς θερμότητα θα αποδώσει 1gr ατμού όταν μετατραπεί σε υγρό υπό τη θερμοκρασία ζέσεως. Άρα όταν ένα γραμμάριο νερού θερμοκρασίας 1 ο C μετατραπεί σε νερό της ίδιας θερμοκρασίας θα αποδώσει θερμότητα ίση με 539 θερμίδες. Όπως προαναφέρθηκε, η εξάτμιση έχει ψυκτική επίδραση στο υγρό, μειώνει δηλαδή τη θερμοκρασία του και κατά συνέπεια μειώνεται και η πίεση των κορεσμένων ατμών του και άρα ο ρυθμός εξάτμισης, μέχρις ότου να επιτευχθεί κάποια ψευδο-σταθερή κατάσταση. Έτσι εξηγείται το γεγονός ότι το νερό βρίσκεται συνήθως σε αρκετά χαμηλότερη θερμοκρασία από τον αέρα (ιδιαίτερα σε ξηρά κλίματα). Για τον ίδιο λόγο μπορεί να αυξηθεί ο ρυθμός εξάτμισης του νερού αυξάνοντας τη θερμοκρασία του νερού και άρα την πίεση κορεσμού του νερού. Καθώς το νερό εξατμίζεται η λανθάνουσα θερμότητα εξάτμισης απορροφάται από το νερό και τον περιβάλλοντα αέρα. Σαν αποτέλεσμα το νερό και ο αέρας ψύχονται. Ίσως κάποιος έχει παρατηρήσει ότι σε μια θερμή και ξηρή μέρα ο αέρας μοιάζει αρκετά ψυχρότερος όταν το έδαφος έχει βραχεί. Αυτό συμβαίνει διότι το νερό καθώς εξατμίζεται απορροφά θερμότητα από τον αέρα Εξάχνωση Εξάχνωση ονομάζεται το φαινόμενο της απευθείας μετάβασης ενός υλικού από τη στερεά κατάσταση στην αέρια, χωρίς να μεσολαβήσει η υγρή φάση. Εξάχνωση παρουσιάζεται στο ιώδιο, τη ναφθαλίνη, τον πάγο, κλπ. Κατά την εξάχνωση παράγονται ατμοί και το φαινόμενο μπορεί να παρατηρηθεί με το εξής απλό πείραμα. Σε ένα αερόκενο δοχείο (σχήμα 1.13) εισάγουμε μια ποσότητα ιωδίου. Το ιώδιο αρχίζει να εξαχνώνεται παράγοντας ατμούς οπότε η πίεση των ατμών (την οποία μετράει ένα μανόμετρο) ολοένα αυξάνεται. Η αύξηση όμως της πίεσης παύει όταν φτάσει μια Σχήμα 1.14: Καμπύλη εξαχνώσεως του πάγου ορισμένη τιμή την οποία καλούμε τάση κορεσμένων ατμών στερεού ιωδίου. Στην κατάσταση αυτή συνυπάρχουν το στερεό και οι ατμοί του σε ισορροπία. Εάν επαναλάβουμε το πείραμα σε μεγαλύτερη θερμοκρασία θα παρατηρήσουμε ότι η τάση των ατμών γίνεται 15

14 μεγαλύτερη. Εάν κάνουμε τη γραφική παράσταση της τάσης των ατμών ως συνάρτηση της θερμοκρασίας προκύπτει μια καμπύλη η οποία ονομάζεται καμπύλη εξαχνώσεως (σχήμα 1.14) Ισορροπία φάσεων-τριπλό σημείο Το διάγραμμα του σχήματος 1.15 παριστά την καμπύλη τήξεως, την καμπύλη τάσεως κορεσμένων ατμών και την καμπύλη εξαχνώσεως του νερού. Παρατηρούμε ότι οι τρείς καμπύλες τέμνονται σε ένα σημείο Τ, το οποίο ονομάζουμε τριπλό σημείο. Οι τρεις αυτές καμπύλες χωρίζουν το επίπεδο p-θ σε τρία χωρία α, β και γ. Όταν το νερό βρίσκεται υπό τέτοια πίεση p και θερμοκρασία θ ώστε το σημείο που αντιστοιχεί σε αυτές τις τιμές να βρίσκεται στο χωρίο α τότε το νερό βρίσκεται σε στερεά κατάσταση. Εάν το εν λόγω σημείο βρίσκεται στο χωρίο β ή γ τότε βρίσκεται σε υγρή ή αέρια κατάσταση αντιστοίχως. Πράγματι, ας θεωρήσουμε μια κατάσταση σταθερής πίεσης π.χ 76 Torr η οποία περιγράφεται προφανώς από μια οριζόντια γραμμή στο διάγραμμα P-θ. Η οριζόντια αυτή ευθεία τέμνει την καμπύλη τήξεως στο σημείο Α το οποίο αντιστοιχεί σε θερμοκρασία ο C (κανονικό σημείο τήξεως). Προφανώς, αν η Σχήμα 1.15 Τριπλό σημείο του νερού (Οι κλίμακες θερμοκρασία είναι μικρότερη των ο C το νερό πιέσεως και θερμοκρασίας είναι ανομοιόμορφες) βρίσκεται σε στερεή φάση (πάγος) ενώ αν η θερμοκρασία είναι μεγαλύτερη των ο C το νερό βρίσκεται στην υγρή φάση. Το σημείο Β της τομής της εν λόγω ευθείας με την καμπύλη τάσεως κορεσμένων υδρατμών θα αντιστοιχεί σε θερμοκρασία 1 ο C (κανονικό σημείο ζέσεως). Αν η θερμοκρασία είναι μεγαλύτερη των 1 ο C το νερό βρίσκεται στην αέριο φάση (υδρατμοί). Παρατηρούμε λοιπόν ότι σε κάθε χωρίο η χημική ένωση Η 2 Ο βρίσκεται σε μία εκ των τριών φάσεων. Νερό το οποίο βρίσκεται σε τέτοια θερμοκρασία και πίεση ώστε το αντίστοιχο σημείο να βρίσκεται πάνω σε μια από τις τρείς καμπύλες, δύναται να βρίσκεται είτε σε μια εκ των δύο φάσεων είτε σε δύο φάσεις ταυτόχρονα. Για παράδειγμα, στο σημείο Β δηλαδή υπό πίεση 76 Τοrr και θερμοκρασία 1 ο C το Η 2 Ο μπορεί να βρίσκεται είτε εξ ολοκλήρου στην υγρή φάση είτε εξ ολοκλήρου στην αέρια φάση είτε εν μέρει στην υγρή και εν μέρει στην αέρια φάση. Ομοίως υπό πίεση 76 Τοrr και θερμοκρασία ο C (σημείο Α) δύναται να συνυπάρχει μονίμως στερεά και υγρή φάση όπως για παράδειγμα συμβαίνει όταν ένα ποτήρι περιέχει νερό και παγάκια. Όταν συνυπάρχουν μονίμως δύο φάσεις λέμε ότι αυτές βρίσκονται σε ισορροπία. Συμφώνα με τα παραπάνω ισορροπία φάσεων υπάρχει όταν το σημείο που παριστά την κατάσταση βρίσκεται πάνω σε μια από τις τρεις καμπύλες. Στο τριπλό σημείο συνυπάρχουν και οι τρεις φάσεις σε ισορροπία Υγροποίηση των αερίων Στις προηγούμενες παραγράφους είδαμε ότι η μετάβαση από την υγρή φάση στην αέρια είναι δυνατόν να γίνει είτε αυξάνοντας τη θερμοκρασία είτε αυξάνοντας τον όγκο. Αντιστρόφως, προκειμένου να υγροποιήσουμε ένα αέριο αρκεί ή να το ψύξουμε ή να το συμπιέσουμε ή ταυτόχρονα να το συμπιέσουμε και να το ψύξουμε. Το φαινόμενο αυτό μελετάται εύκολα με χρήση του διαγράμματος πιέσεως-θερμοκρασίας (σχήμα 1.16) Ας θεωρήσουμε ένα αέριο που έχει θερμοκρασία και πίεση που αντιστοιχούν στο σημείο Α. Αν ελαττώσουμε τον όγκο του υπό σταθερή θερμοκρασία η πίεσή του θα αυξηθεί Σχήμα

15 (κατακόρυφος διακεκομμένη γραμμή), όταν δε η πίεσή του γίνει ίση προς την πίεση που αντιστοιχεί στο σημείο Β το αέριο θα υγροποιηθεί. Ομοίως το αέριο υγροποιείται όταν υπό σταθερή πίεση (οριζόντια γραμμή) ελαττώσουμε τη θερμοκρασία του έως ότου γίνει ίση προς τη θερμοκρασία που αντιστοιχεί στο σημείο Γ. Τέλος το αέριο υγροποιείται όταν το συμπιέζουμε και ταυτόχρονα το ψύχουμε π.χ γραμμή ΑΔ. Για τη μελέτη του φαινομένου της υγροποίησης αερίου με τη μέθοδο της συμπίεσης υπό σταθερή θερμοκρασία θεωρούμε αέριο που υγροποιείται πολύ εύκολα (π.χ CO 2 ) μέσα σε κύλινδρο εφοδιασμένο με έμβολο (σχήμα 1.17).. Ο κύλινδρος τοποθετείται σε δεξαμενή μεγάλης θερμοχωρητικότητας και συνεπώς η θερμοκρασία διατηρείται σταθερή οπότε η μεταβολή της κατάστασης του αερίου είναι ισόθερμη. Ας υποθέσουμε ότι αρχικά το έμβολο βρίσκεται στη θέση Ι εντελώς δεξιά έτσι ώστε ο όγκος και η πίεση να δίδονται από το σημείο 1 στην ισόθερμη καμπύλη του σχήματος. Κινούμε το έμβολο προς τα αριστερά οπότε ο όγκος ελαττώνεται και η πίεση αυξάνεται (καμπύλη α). Όταν το έμβολο φθάσει στη θέση ΙΙ παρατηρούμε ότι περαιτέρω ελάττωση του όγκου δεν προκαλεί αύξηση της πίεσης (καμπύλη β). Αυτό σημαίνει ότι ήδη από την κατάσταση 2 υπήρχαν μέσα στο κύλινδρο κορεσμένοι ατμοί και κατά την περαιτέρω ελάττωση του όγκου μέρος αυτών άρχισε να υγροποιείται. Καθώς συνεχίζεται η ελάττωση του όγκου υγροποιείται συνεχώς μεγαλύτερο ποσοστό κορεσμένων ατμών μέχρις ότου το έμβολο φτάσει σε τέτοια θέση (ΙV) Σχήμα 1.17 : Πειραματικός προσδιορισμός των ισόθερμων στην οποία όλη η ποσότητα των ατμών του Andrews. ( Η δεξαμενή θερμότητας δεν έχει σχεδιαστεί) έχει υγροποιηθεί (κατάσταση 4). Αν τώρα προσπαθήσουμε να ελαττώσουμε ακόμη περισσότερο τον όγκο θα παρατηρήσουμε ότι η πίεση θα αυξηθεί πολύ (κατάσταση 5). Σύμφωνα με τα παραπάνω η ισόθερμος που προκύπτει υποδιαιρείται σε τρία τμήματα. Το τμήμα α αντιστοιχεί σε ισόθερμη συμπίεση του αερίου. Το οριζόντιο τμήμα β αντιστοιχεί σε καταστάσεις στις οποίες συνυπάρχουν υγρό CO 2 και οι κορεσμένοι ατμοί του. Στη μεν κατάσταση 2 το ποσοστό των ατμών είναι 1% ενώ του υγρού CO 2 είναι % ενώ στην κατάσταση 4 το ποσοστό των ατμών έχει γίνει % ενώ το ποσοστό του υγρού είναι 1%. Αφού στο τμήμα β συνυπάρχουν υγρό και κορεσμένοι ατμοί πρέπει το τμήμα αυτό να είναι οριζόντιο διότι ως γνωστό η πίεση των κορεσμένων ατμών (P κ.α ) είναι ανεξάρτητη του όγκου. Τέλος το τμήμα γ της καμπύλης αντιστοιχεί σε μεταβολές της κατάστασης ενός υγρού. Ως γνωστό τα υγρά είναι πρακτικώς ασυμπίεστα και συνεπώς για μικρή μεταβολή του όγκου απαιτείται πολύ μεγάλη πίεση (μεγάλη κλίση του τμήματος γ της καμπύλης). Αν επαναλάβουμε το παραπάνω πείραμα σε υψηλότερη θερμοκρασία θα προκύψει μια άλλη ισόθερμη ίδιας μορφής της οποίας όμως το οριζόντιο τμήμα βρίσκεται υψηλότερα (σχήμα 1.18). Αυτό οφείλεται στο γνωστό φαινόμενο ότι η τάση των κορεσμένων ατμών αυξάνει με τη θερμοκρασία. Ταυτόχρονα παρατηρούμε ότι το μήκος του ευθύγραμμου τμήματος γίνεται μικρότερο. Αν επαναλάβουμε το πείραμα για όλο και υψηλότερες θερμοκρασίες θα πάρουμε μια καμπύλη της οποίας το μήκος του ευθύγραμμου τμήματος μηδενίζεται και καταλήγει σε ένα σημείο. Το σημείο αυτό Κ ονομάζεται κρίσιμο σημείο και η αντίστοιχη πίεση κρίσιμη πίεση. 17

16 Η θερμοκρασία της ισόθερμης που διέρχεται από το κρίσιμο σημείο ονομάζεται κρίσιμη θερμοκρασία. Για θερμοκρασίες υψηλότερες της κρίσιμης θερμοκρασίας οι ισόθερμες δεν παρουσιάζουν οριζόντιο τμήμα. Αυτό σημαίνει ότι καθώς ελαττώνεται ο όγκος του αερίου η πίεση διαρκώς θα αυξάνεται χωρίς να επέρχεται υγροποίηση. Άρα ένα αέριο του οποίου η θερμοκρασία είναι μεγαλύτερη της κρίσιμης δεν είναι δυνατό να υγροποιηθεί οσοδήποτε μεγάλη πίεση και αν ασκήσουμε σε αυτό. Το σμήνος των ισόθερμων καμπυλών ενός πραγματικού αερίου ονομάζονται ισόθερμες του Andrews. Στο σχήμα 1.18 το επίπεδο P-V έχει χωριστεί με γραμμοσκίαση σε τρία μέρη. Το γραμμοσκιασμένο μέρος δεξιά αντιστοιχεί στην κατάσταση που υπάρχει μόνο αέριος φάση, ενώ το αριστερό μέρος αντιστοιχεί στην υγρή μόνο φάση. Στην κεντρική μηγραμμοσκιασμένη περιοχή συνυπάρχουν υγρό και κορεσμένοι ατμοί. Παρατηρούμε ότι δεν υπάρχει περιοχή που να αντιστοιχεί στην στερεά φάση. Αυτό οφείλεται στο εξής. Η στερεά φάση του CO 2 εμφανίζεται μόνο σε πολύ χαμηλές θερμοκρασίες (η θερμοκρασία του τριπλού σημείου του CO 2 είναι ο C ) και συνεπώς η περιοχή αυτή θα βρίσκεται πολύ κοντά στον άξονα του όγκου. Σχήμα 1.18.Οι ισόθερμες του Andrews για το διοξείδιο του άνθρακα. ( Η κλίμακα των πιέσεων είναι ανομοιόμορφη) Ατμοί Στο σχήμα 1.18 η περιοχή που χαρακτηρίζεται ως «υγρό και κορεσμένοι ατμοί» χωρίζεται από την περιοχή που αντιστοιχεί στην αέριο φάση με μια διακεκομμένη γραμμή η οποία ονομάζεται καμπύλη κόρου διότι είναι ο γεωμετρικός τόπος των καταστάσεων εκείνων στις οποίες έχουμε αποκλειστικά κορεσμένους ατμούς. Αέρια των οποίων η κατάσταση παριστάνεται από σημεία που βρίσκονται κοντά στην καμπύλη κόρου ονομάζονται ατμοί Υγρασία Όπως προαναφέρθηκε, ο ατμοσφαιρικός αέρας θεωρείται μίγμα ξηρού αέρα και ατμών νερού (υδρατμούς). Στην περίπτωση αυτή η ατμοσφαιρική πίεση είναι το άθροισμα της πίεσης του ξηρού αέρα ( P a ) και της πίεσης των ατμών του νερού η οποία ονομάζεται πίεση ή τάση των ατμών ( P v ). Η πίεση των ατμών αποτελεί ένα μικρό κλάσμα (συνήθως μικρότερο από 3%) της ατμοσφαιρικής πίεσης, αφού τα κύρια συστατικά του αέρα είναι το άζωτο και το οξυγόνο (ενώ ο αριθμός των μορίων του νερού είναι ένα μικρό ποσοστό των συνολικών μορίων του αέρα). Ωστόσο, το ποσό των ατμών στον αέρα παίζει σημαντικό ρόλο σε πολλές διεργασίες όπως στη ξήρανση και στον κλιματισμό ενός χώρου. Το πηλίκο της μάζας m των υδρατμών που υπάρχουν σε δεδομένο όγκο V του ατμοσφαιρικού αέρα, δια του όγκου αυτού ονομάζεται απόλυτος υγρασία (h) της ατμόσφαιρας. Η απόλυτος υγρασία εκφράζεται συνήθως σε γραμμάρια ανά κυβικό μέτρο. m h = (1.26) V Εάν γνωρίζουμε την απόλυτη υγρασία μπορούμε να προσδιορίσουμε τη μερική πίεση των υδρατμών ως εξής: Επειδή οι υδρατμοί της ατμόσφαιρας είναι αραιοί συμπεριφέρονται 18

17 ως ιδανικό αέριο οπότε η μερική πίεσή τους βρίσκεται από την καταστατική εξίσωση 8 των ιδανικών αέριων m pv = R T (1.27), mmol όπου m είναι η μάζα ενός γραμμομορίου Mol Αντικαθιστούμε στην παραπάνω σχέση το V m δια του ίσου του h, οπότε προκύπτει ότι η μερική πίεση p των υδρατμών είναι : h R T p = (1.28) m Mol Για μια δεδομένη θερμοκρασία η πίεση των υδρατμών δεν μπορεί να υπερβεί την τάση κορεσμένων ατμών. Άρα για κάθε θερμοκρασία προκύπτει μια μέγιστη τιμή απόλυτης υγρασίας (η απόλυτη υγρασία της ατμόσφαιρας hκ. υ όταν αυτή είναι κορεσμένη) και αντίστοιχα μια μέγιστη τιμή μερικής πίεσης ( η μερική πίεση κορεσμένων ατμών στην εν λόγων θερμοκρασία, p κ. υ ). Όσο μεγαλύτερη είναι η θερμοκρασία τόσο μεγαλύτερη είναι η απόλυτη υγρασία στην κατάσταση κόρου και συνεπώς τόσο περισσότερους υδρατμούς μπορεί να συγκρατήσει η ατμόσφαιρα Με την ίδια συλλογιστική (συνδυασμός των σχέσεων 1.26 και 1.27) μπορούμε να υπολογίσουμε την απόλυτη υγρασία, αν γνωρίζουμε τη μερική πίεση των υδρατμών: p mmol h = (1.29) R T Ο παραπάνω τύπος είναι χρήσιμος διότι μας επιτρέπει να υπολογίζουμε την απόλυτη υγρασία hκ. υ που πρέπει να έχει η ατμόσφαιρα για να είναι κορεσμένη, η οποία κατ αντιστοιχία με τον παραπάνω τύπο θα είναι: pκ. υ mmol h = (1.3) κ. υ R T Ωστόσο, πιο χρήσιμο μέγεθος είναι η σχετική υγρασία (Η): Όπως προαναφέρθηκε, ο αέρας μπορεί να συγκρατήσει μόνο ένα συγκεκριμένο ποσό υγρασίας. Το πηλίκο της ποσότητας της απόλυτης υγρασίας που περιέχει ο αέρας σε μια δεδομένη θερμοκρασία προς το μέγιστο δυνατό ποσό υγρασίας που μπορεί να κατακρατήσει σε αυτή τη θερμοκρασία και πίεση ονομάζεται σχετική υγρασία. Ο λόγος αυτός συνήθως εκφράζεται επί τοις εκατό: h H = 1 % (1.31) h κ. υ Ο ορισμός της σχετικής υγρασίας μπορεί να διατυπωθεί και ως εξής: ορίζουμε ως σχετική υγρασία το πηλίκο της μάζας m των υδρατμών που υπάρχουν σε ορισμένο όγκο V του ατμοσφαιρικού αέρα δια της μάζας m κ.υ των υδρατμών που θα έπρεπε να περιέχει αυτός ο όγκος του ατμοσφαιρικού αέρα για να είναι κορεσμένος, υπό την ίδια θερμοκρασία 8 Κάθε σχέση που συνδέει τη θερμοκρασία, την πίεση και τον ειδικό όγκο (όγκο ανά μονάδα μάζας) μιας καθαρής ουσίας ονομκζεται καταστατική εξίσωση. Η απλούστερη και πιο γνωστή είναι η καταστατική εξίσωση των ιδανικών αερίων. Η εξίσωση αυτή πρέπει να χρησιμοποιείται με προσοχή γιατί το ιδανικό αέριο είναι μια φανταστική ουσία. Τα πραγματικά αέρια συμπεριφέρονται ως ιδανικό άεριο σε σχετικά χαμηλές πιέσεις και υψηλές θερμοκρασίες. 19

18 m H = (1.32) Σύμφωνα με τον ορισμό της η σχετική υγρασία είναι καθαρός αριθμός και συνήθως εκφράζεται επί τοις εκατό, παρέχει δε το μέτρο του κατά πόσο η ατμόσφαιρα είναι κοντά ή όχι στην κατάσταση κόρου (σχετική υγρασία 1%). Η σχετική υγρασία κυμαίνεται από για ξηρό αέρα μέχρι 1 για κορεσμένο αέρα. Η σχετική υγρασία μπορεί να γραφτεί και ως το πηλίκο της υπάρχουσας μερικής πίεσης p των υδρατμών δια της τάσεως κορεσμένων ατμών, υπό την αυτήν θερμοκρασία. p H = (1.33) m κ.υ Όπου p κ.υ είναι η πίεση κορεσμένων ατμών στη συγκεκριμένη θερμοκρασία. Πράγματι, διαιρώντας κατά μέλη τις εξισώσεις 3 και 4 προκύπτει: Άρα h h κ. υ = m m κ. υ p p κ. υ = p p κ. υ p κ.υ p κ.υ m V m κ. υ V = p p κ. υ p H (1.34). Αξίζει να παρατηρήσουμε ότι η ποσότητα της υγρασίας που μπορεί να κατακρατήσει ο αέρας εξαρτάται από τη θερμοκρασία στην οποία βρίσκεται. Όταν η θερμοκρασία αυξάνεται η πίεση κορεσμένων ατμών αυξάνεται άρα η σχετική υγρασία μειώνεται. Επομένως η σχετική υγρασία μεταβάλλεται με τη θερμοκρασία. Αντίθετα η τιμή της απόλυτης υγρασίας που έχει ο αέρας σε κατάσταση κορεσμού (hκ.υ) αυξάνεται με την άνοδο της θερμοκρασίας του και αντίστροφα (σχέση 1.3) Σε συνηθισμένες θερμοκρασίες όπως οι θερμοκρασίες στις οποίες γίνονται οι έλεγχοι και η επεξεργασία των ινών, ο λόγος της σχέσης 1.31 διαφέρει ελάχιστα από το αντίστοιχο λόγο των πιέσεων (σχέση 1.34) Επειδή, οι ιδιότητες των ινών μεταβάλλονται με τις συνθήκες υγρασίας οι έλεγχοι γίνονται κάτω από ελεγχόμενες συνθήκες. Έτσι έχει ορισθεί ότι οι έλεγχοι (στις εύκρατες περιοχές) θα πρέπει να γίνονται σε περιβάλλον με 65% σχετική υγρασία και 2 C και η επιτρεπόμενη ανοχή για τους ελέγχους είναι ± 2 % τόσο για τη σχετική υγρασία όσο και για τη θερμοκρασία. Όπως θα φανεί στις επόμενες παραγράφους, κυρίως χρησιμοποιείται η έννοια της σχετικής υγρασίας και όχι της απόλυτης υγρασίας διότι μια πολύ σημαντική ιδιότητα των κλωστουφαντουργικών προϊόντων η ανάκτηση εξαρτάται από τη σχετική υγρασία. Παράδειγμα : Ένα δωμάτιο περιέχει αέρα σε θερμοκρασία 25 ο C και πίεση 1KPa με σχετική υγρασία 75%. Να υπολογιστεί η μερική πίεση του ξηρού αέρα. Δίδεται ότι η πίεση κορεσμένων ατμών του αέρα σε θερμοκρασία 25οC είναι 3.169KPa. Απάντηση Ως γνωστό ισχύει: P atm = Pa + Pv, όπου P a η μερική πίεση του ξηρού αέρα και P v η μερική πίεση των υδρατμών. Άρα Pv = Patm Pa. Σύμφωνα με τον ορισμό της σχετικής υγρασίας Pv H = Pv = H Pκ. υ = = 2.38kPa. Άρα P a = = kPa P κ. υ 2

19 Υγρόμετρα Όργανα με τα οποία μετρούμε την υγρασία του αέρα, ονομάζονται υγρόμετρα. Οι πιο απλοί τύποι υγρομέτρων είναι οι ακόλουθοι α) β) Σχήμα 1.19 : α)υγρόμετρο δια τριχός β) Ψυχρόμετρο α) Υγρόμετρα δια τριχός. (σχήμα 82) Αυτά στηρίζονται στην ιδιότητα που έχουν οργανικές ίνες όπως οι ζωϊκές τρίχες να μεταβάλλουν το μήκος τους όταν μεταβάλλεται η σχετική υγρασία. Στη συνέχεια η μεταβολή του μήκους μετατρέπεται σε κίνηση δείκτου μπροστά σε κλίμακα. β) Ψυχρόμετρα. Με τα όργανα αυτά προσδιορίζεται η υγρασία από την ταχύτητα εξάτμισης του νερού δηλαδή από την ψύξη που προκαλεί η εξάτμιση. Το ψυχρόμετρο του σχήματος 83 αποτελείται από δύο θερμόμετρα εκ των οποίων το ένα καλύπτεται στη βάση του από ύφασμα. Το άκρο του υφάσματος βαπτίζεται σε νερό. Είναι προφανές ότι όσο μικρότερη είναι η σχετική υγρασία τόσο ταχύτερα προχωρεί η εξάτμιση και συνεπώς τόσο χαμηλότερη θα είναι η ένδειξη αυτού του θερμομέτρου. Το άλλο θερμόμετρο δείχνει τη θερμοκρασία του αέρα. Από τη διαφορά των δύο ενδείξεων είναι δυνατόν με τη βοήθεια πινάκων που έχουν προκύψει από πειράματα να βρούμε την υγρασία Υγροσκοπικές ιδιότητες των ινών Ανάκτηση και περιεχόμενη υγρασία Το ποσό της υγρασίας που περιέχει ένα δείγμα εκφράζεται με τον όρο ανάκτηση ή περιεχόμενη υγρασία. Συγκεκριμένα: Ονομάζουμε περιεχόμενη υγρασία (Moisture Content) (Μ) ενός δείγματος υλικού το λόγο της μάζας του νερού που έχει απορροφήσει το υλικό ως προς τη συνολική μάζα του, επί τοις εκατό. W M = 1 (1.35), W + D όπου W είναι η μάζα του νερού που έχει απορροφήσει και D είναι η μάζα του δείγματος υλικού χωρίς καθόλου υγρασία (ξηρό δείγμα) Ονομάζουμε ανάκτηση (regain) α, το λόγο της μάζας του νερού που έχει απορροφήσει το δείγμα προς τη μάζα του δείγματος χωρίς καθόλου υγρασία (ξηρό δείγμα) W a = 1 (1.36) D Από τις παραπάνω σχέσεις ορισμού, προκύπτει ότι η σχέση που συνδέει την ανάκτηση και την περιεχόμενη υγρασία σε ένα δείγμα μπορεί να εκφραστεί ως εξής W W D a M = 1 1 = = (1.37) W + D 1+ W D 1+ R 1 Η ανάκτηση ενός κλωστοϋφαντουργικού υλικού εξαρτάται μεταξύ άλλων όχι ακριβώς από την απόλυτη υγρασία (δηλαδή το ποσό των υδρατμών ανά μονάδα όγκου) αλλά από τη σχετική υγρασία (δηλαδή από τη σχετική τους ποσότητα σε κατάσταση κορεσμού της 21

20 ατμόσφαιρας). Δεδομένου ότι η ανάκτηση επηρεάζει τις ιδιότητες των υφασμάτων, στους ελέγχους ποιότητας πρέπει να καθορίζονται οι περιβαλλοντικές συνθήκες Σχέση μεταξύ ανάκτησης και περιεχόμενης υγρασίας Όπως έχει ήδη αναφερθεί, το γεγονός ότι τα κλωστοϋφαντουργικά προϊόντα απορροφούν υδρατμούς από το περιβάλλον έχει μεγάλη εμπορική και τεχνολογική σημασία και συνεπώς έχει οδηγήσει σε μελέτες της εξάρτησής αυτής της απορρόφησης από τη θερμοκρασία και τη σχετική υγρασία Ισορροπία Όταν μια ίνα βρεθεί σε συγκεκριμένο περιβάλλον θα απορροφήσει ή θα αποβάλλει υγρασία με ρυθμό ο οποίος σταδιακά ελαττώνεται, μέχρις ότου δεν παρατηρείται περαιτέρω μεταβολή, οπότε λέμε ότι έχει επέλθει ισορροπία (βλ. σχήμα 1.2). Πρόκειται για μια δυναμική ισορροπία κατά την οποία ο αριθμός των μορίων νερού που εξατμίζονται σε ένα ορισμένο χρονικό διάστημα από το δείγμα γίνεται ίσος με τον αριθμό των μορίων που απορροφούνται. Σχήμα 1.2 Η προσέγγιση κατάστασης ισορροπίας της υγρασίας Το φαινόμενο της υστέρησης. Σχήμα 1.21 Το φαινόμενο της υστέρησης κατά την απορρόφηση υγρασίας. Ας θεωρήσουμε δύο δείγματα από το ίδιο υλικό (στην ίδιο περιβάλλον) το ένα υγρό και το άλλο απόλυτα ξηρό και ας υποθέσουμε ότι προσδιορίζουμε την ανάκτηση του καθενός σαν συνάρτηση του χρόνου. Παρατηρούμε (βλ. Σχήμα 1.21) ότι η ανάκτηση και για τα δύο δείγματα μεταβάλλεται πολύ γρήγορα στην αρχή ενώ στη συνέχεια η μεταβολή είναι μικρότερη έως ότου επιτευχθεί ισορροπία. Παρατηρούμε ότι η τιμή της ισορροπίας είναι διαφορετική για τα δύο δείγματα. Το δείγμα που αρχικά είχε μεγαλύτερη τιμή ανάκτησης παρουσιάζει μεγαλύτερη τιμή ανάκτησης και στην ισορροπία σε σύγκριση με το άλλο δείγμα. Το φαινόμενο αυτό είναι γνωστό ως υστέρηση Η συμπεριφορά των υφασμάτων συνήθως μελετάται από τις καμπύλες ανάκτησης σαν συνάρτηση της σχετικής υγρασίας (Σχήμα 1.22). Η καμπύλη Α είναι η καμπύλη απορρόφησης δηλαδή η ανάκτηση σαν συνάρτηση της σχετικής υγρασίας καθώς το υλικό απορροφά υγρασία από το περιβάλλον. Η καμπύλη D είναι η Σχήμα 1.22: Καμπύλες απορρόφησης -αποβολής 22

Επιλεγμένα θέματα Κλωστοϋφαντουργικής Φυσικής

Επιλεγμένα θέματα Κλωστοϋφαντουργικής Φυσικής ΑΤΕΙ ΠΕΙΡΑΙΑ Τμήμα Φυσικής, Χημείας και Τεχνολογίας Υλικών Επιλεγμένα θέματα Κλωστοϋφαντουργικής Φυσικής για τους σπουδαστές του τμήματος Κλωστοϋφαντουργίας ρ. Ζαχαριάδου Αικατερίνη 1 Επιλεγμένα θέματα

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Μαΐου 2010 Ώρα : 10:00-12:30 Προτεινόμενες λύσεις ΘΕΜΑ 1 0 (12 μονάδες) Για τη μέτρηση της πυκνότητας ομοιογενούς πέτρας (στερεού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ.

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. 2.1 Η ΕΝΝΟΙΑ ΤΗΣ ΚΑΘΑΡΗΣ ΟΥΣΙΑΣ. Μια ουσία της οποίας η χημική σύσταση παραμένει σταθερή σε όλη της την έκταση ονομάζεται καθαρή ουσία. Δεν είναι υποχρεωτικό να

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου 2006 Ώρα: 10:30 13.00 Προτεινόµενες Λύσεις ΜΕΡΟΣ Α 1. α) Η πυκνότητα του υλικού υπολογίζεται από τη m m m σχέση d

Διαβάστε περισσότερα

ΟΙ ΑΛΛΑΓΕΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΝΕΡΟΥ Ο «ΚΥΚΛΟΣ» ΤΟΥ ΝΕΡΟΥ

ΟΙ ΑΛΛΑΓΕΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΝΕΡΟΥ Ο «ΚΥΚΛΟΣ» ΤΟΥ ΝΕΡΟΥ ΟΙ ΑΛΛΑΓΕΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΝΕΡΟΥ Ο «ΚΥΚΛΟΣ» ΤΟΥ ΝΕΡΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 6 Τι πρέπει να γνωρίζεις Θεωρία 6.1 Να αναφέρεις τις τρεις φυσικές καταστάσεις στις οποίες μπορεί να βρεθεί ένα υλικό σώμα. Όπως και

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης)

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία - Θερμότητα (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία Ποσοτικοποιεί την αντίληψή μας για το πόσο ζεστό ή κρύο είναι

Διαβάστε περισσότερα

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται 1 2 Θερµότητα χρόνος θέρµανσης Εξάρτηση από είδος (c) του σώµατος Αν ένα σώµα θερµαίνεται από µια θερµική πηγή (γκαζάκι, ηλεκτρικό µάτι), τότε η θερµότητα (Q) που απορροφάται από το σώµα είναι ανάλογη

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική

Διαβάστε περισσότερα

Καταστατική εξίσωση ιδανικών αερίων

Καταστατική εξίσωση ιδανικών αερίων Καταστατική εξίσωση ιδανικών αερίων 21-1. Από τι εξαρτάται η συμπεριφορά των αερίων; Η συμπεριφορά των αερίων είναι περισσότερο απλή και ομοιόμορφη από τη συμπεριφορά των υγρών και των στερεών. Σε αντίθεση

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr Χημική Ισορροπία 61 Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών Χημικός Διδάκτωρ Παν. Πατρών 62 Τι ονομάζεται κλειστό χημικό σύστημα; Παναγιώτης Αθανασόπουλος Κλειστό ονομάζεται το

Διαβάστε περισσότερα

Πείραμα 2 Αν αντίθετα, στο δοχείο εισαχθούν 20 mol ΗΙ στους 440 ºC, τότε το ΗΙ διασπάται σύμφωνα με τη χημική εξίσωση: 2ΗΙ(g) H 2 (g) + I 2 (g)

Πείραμα 2 Αν αντίθετα, στο δοχείο εισαχθούν 20 mol ΗΙ στους 440 ºC, τότε το ΗΙ διασπάται σύμφωνα με τη χημική εξίσωση: 2ΗΙ(g) H 2 (g) + I 2 (g) Α. Θεωρητικό μέρος Άσκηση 5 η Μελέτη Χημικής Ισορροπίας Αρχή Le Chatelier Μονόδρομες αμφίδρομες αντιδράσεις Πολλές χημικές αντιδράσεις οδηγούνται, κάτω από κατάλληλες συνθήκες, σε κατάσταση ισορροπίας

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ B ΓΥΜΝΑΣΙΟΥ Κυριακή, 17 Μαΐου 2009 Ώρα: 10:00 12:30 Οδηγίες: 1) Το δοκίμιο αποτελείται από οκτώ (8) θέματα. 2) Απαντήστε σε όλα τα θέματα. 3) Επιτρέπεται η χρήση μόνο μη

Διαβάστε περισσότερα

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac;

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac; Τάξη : Β ΛΥΚΕΙΟΥ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Εξεταστέα Ύλη : Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση Καθηγητής : Mάρθα Μπαμπαλιούτα Ημερομηνία : 14/10/2012 ΘΕΜΑ 1 ο 1. Ποιο από τα παρακάτω διαγράμματα

Διαβάστε περισσότερα

Μαρία Κωνσταντίνου. Τρίτη Διάλεξη ΟΙ ΤΡΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ. Στη φύση τα σώματα κατατάσσονται σε τρεις κατηγορίες:

Μαρία Κωνσταντίνου. Τρίτη Διάλεξη ΟΙ ΤΡΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ. Στη φύση τα σώματα κατατάσσονται σε τρεις κατηγορίες: Τρίτη Διάλεξη ΟΙ ΤΡΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Στη φύση τα σώματα κατατάσσονται σε τρεις κατηγορίες: ΥΛΙΚΑ ΣΩΜΑΤΑ Στερεά Υγρά Αέρια ΙΔΙΟΤΗΤΕΣ ΣΤΕΡΕΩΝ 1. Έχουν συγκεκριμένο όγκο 2. Έχουν

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 ΑΤΜΟΣΦΑΙΡΙΚΗ ΥΓΡΑΣΙΑ

ΑΣΚΗΣΗ 5 ΑΤΜΟΣΦΑΙΡΙΚΗ ΥΓΡΑΣΙΑ ΑΣΚΗΣΗ 5 ΑΤΜΟΣΦΑΙΡΙΚΗ ΥΓΡΑΣΙΑ Με τον όρο ατμοσφαιρική υγρασία περιγράφουμε την ποσότητα των υδρατμών που περιέχονται σε ορισμένο όγκο ατμοσφαιρικού αέρα. Η περιεκτικότητα της ατμόσφαιρας σε υδρατμούς μπορεί

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Χημεία Α Λυκείου

Τράπεζα Θεμάτων Χημεία Α Λυκείου Τράπεζα Θεμάτων Χημεία Α Λυκείου ΟΛΑ ΤΑ ΘΕΜΑΤΑ ΣΤΗ ΔΙΑΛΥΤΟΤΗΤΑ ΑΠΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 11 ερωτήσεις με απάντηση Επιμέλεια: Γιάννης Καλαμαράς, Διδάκτωρ Χημικός 1. Σε ορισμένη ποσότητα ζεστού νερού διαλύεται

Διαβάστε περισσότερα

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ.

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ. . σκήσεις ς. Ομάδα..1. Ισοβαρής θέρμανση και έργο. Ένα αέριο θερμαίνεται ισοβαρώς από θερμοκρασία Τ 1 σε θερμοκρασία Τ, είτε κατά την μεταβολή, είτε κατά την μεταβολή Δ. i) Σε ποια μεταβολή παράγεται περισσότερο

Διαβάστε περισσότερα

7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. Α/Α Μετατροπή. 2. Οι μαθητές θα πρέπει να μετρήσουν τη μάζα

7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. Α/Α Μετατροπή. 2. Οι μαθητές θα πρέπει να μετρήσουν τη μάζα ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 15 Μαΐου, 2011 Ώρα: 11:00-13:30 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ 1. Α/Α Μετατροπή 1 2h= 2.60= 120 min Χρόνος 2 4500m= 4,5 km Μήκος 3 2m 3

Διαβάστε περισσότερα

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α)

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) Α. ΝΟΜΟΙ ΑΕΡΙΩΝ 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) P = σταθ. V P 2) Ισόχωρη µεταβολή β) = σταθ. 3) Ισοβαρής µεταβολή γ) V

Διαβάστε περισσότερα

Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας

Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI Αναφορά Εργασίας 1 Καραγκούνη Κατερίνα Α.Μ : 1312008050 Το παιχνίδι καρτών «Σκέψου και Ταίριαξε!», το οποίο

Διαβάστε περισσότερα

Υπολογισµοί του Χρόνου Ξήρανσης

Υπολογισµοί του Χρόνου Ξήρανσης Η πραγµατική επιφάνεια ξήρανσης είναι διασπαρµένη και ασυνεχής και ο µηχανισµός από τον οποίο ελέγχεται ο ρυθµός ξήρανσης συνίσταται στην διάχυση της θερµότητας και της µάζας µέσα από το πορώδες στερεό.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

1.4 Καταστάσεις της ύλης - Ιδιότητες της ύλης -Φυσικά και Χημικά φαινόμενα

1.4 Καταστάσεις της ύλης - Ιδιότητες της ύλης -Φυσικά και Χημικά φαινόμενα 1.4 Καταστάσεις της ύλης - Ιδιότητες της ύλης -Φυσικά και Χημικά φαινόμενα Μάθημα 4 Θεωρία Καταστάσεις της ύλης 4.1. Πόσες και ποιες είναι οι φυσικές καταστάσεις που μπορεί να έχει ένα υλικό σώμα; Τέσσερις.

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου 26 Ώρα : 1:3-13: Οδηγίες: 1)Το δοκίµιο αποτελείται από τρία (3) µέρη. Και στα τρία µέρη υπάρχουν συνολικά δώδεκα (12)

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

1. Τι είναι οι ΜΕΚ και πώς παράγουν το μηχανικό έργο ; 8

1. Τι είναι οι ΜΕΚ και πώς παράγουν το μηχανικό έργο ; 8 ΚΕΦΑΛΑΙΟ 1 ο 1. Τι είναι οι ΜΕΚ και πώς παράγουν το μηχανικό έργο ; 8 Είναι θερμικές μηχανές που μετατρέπουν την χημική ενέργεια του καυσίμου σε θερμική και μέρος αυτής για την παραγωγή μηχανικού έργου,

Διαβάστε περισσότερα

ΜΕΡΟΣ Β ΔΙΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΘΕΡΜΟΤΗΤΑ ΑΠΟΡΡΟΦΗΣΗΣ ΤΩΝ ΙΝΩΝ

ΜΕΡΟΣ Β ΔΙΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΘΕΡΜΟΤΗΤΑ ΑΠΟΡΡΟΦΗΣΗΣ ΤΩΝ ΙΝΩΝ ΜΕΡΟΣ Β ΔΙΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΘΕΡΜΟΤΗΤΑ ΑΠΟΡΡΟΦΗΣΗΣ ΤΩΝ ΙΝΩΝ 2. 1. Διάδοση της θερμότητας Σύμφωνα με τον ορισμό της, θερμότητα είναι η ενέργεια που μεταβιβάζεται από ένα σώμα σε ένα άλλο μόνο λόγω διαφοράς

Διαβάστε περισσότερα

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η εξαέρωση ενός υγρού µόνο από την επιφάνειά του, σε σταθερή

Διαβάστε περισσότερα

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής 1.Σκοπός Άσκηση 9 Προσδιορισμός του συντελεστή εσωτερικής τριβής υγρών Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός του συντελεστή εσωτερικής τριβής (ιξώδες) ενός υγρού. Βασικές θεωρητικές γνώσεις.1

Διαβάστε περισσότερα

4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier

4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier Χημικός Διδάκτωρ Παν. Πατρών 4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier Τι ονομάζεται θέση χημικής ισορροπίας; Από ποιους παράγοντες επηρεάζεται η θέση της χημικής

Διαβάστε περισσότερα

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα: Μετεωρολογία-Κλιματολογία. Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα: Μετεωρολογία-Κλιματολογία. Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 7. ΤΟ ΝΕΡΟ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα: Μετεωρολογία-Κλιματολογία. Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 1 7. ΤΟ ΝΕΡΟ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 METATPOΠEΣ ΦAΣEΩN

ΚΕΦΑΛΑΙΟ 9 METATPOΠEΣ ΦAΣEΩN ΚΕΦΑΛΑΙΟ 9 METATPOΠEΣ ΦAΣEΩN 9.1 Φάσεις υλικών Φάσεις ονοµάζονται οι διαφορετικές µορφές τις οποίες µπορεί να πάρει ένα υλικό. Oι µορφές αυτές είναι κατ' αρχήν η στερεά, η υγρή και η αέρια κατάσταση, είναι

Διαβάστε περισσότερα

AquaTec Φυσική των Καταδύσεων

AquaTec Φυσική των Καταδύσεων Σημειώσεις για τα σχολεία Τεχνικής Κατάδυσης 1.1 AquaTec Φυσική των Καταδύσεων Βασικές έννοιες και Αρχές Νίκος Καρατζάς www.aquatec.gr Προειδοποίηση: Το υλικό που παρουσιάζεται παρακάτω δεν πρέπει να θεωρηθεί

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ Η εξίσωση αυτή εκφράζει μια σχέση μεταξύ της πίεσης, της θερμοκρασίας και του ειδικού όγκου. P v = R Όπου P = πίεση σε Pascal v = Ο ειδικός

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 15: Διαλύματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 15: Διαλύματα Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 15: Διαλύματα Αν. Καθηγητής Γεώργιος Μαρνέλλος e-mail: gmarnellos@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

C=dQ/dT~ 6.4 cal/mole.grad

C=dQ/dT~ 6.4 cal/mole.grad ΘΕΡΜΟΤΗΤΑ Ηεσωτερικήενέργειαενόςσώµατος, είναι το σύνολο των οποιονδήποτε ενεργειών των ατόµων και των µορίων του Η θερµοκρασία είναι µέτρο της µέσης κινητικής ενέργειας των ατόµων και των µορίων Ε=3ΚΤ/2

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης 1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού

Διαβάστε περισσότερα

Ασκήσεις (Εισαγωγή-Ρευστά-Θερμότητα) Κ.-Α. Θ. Θωμά

Ασκήσεις (Εισαγωγή-Ρευστά-Θερμότητα) Κ.-Α. Θ. Θωμά Ασκήσεις (Εισαγωγή-Ρευστά-Θερμότητα) Κινήσεις-Διαγράμματα 1μ. Να σχεδιασθούν το διάστημα s, η ταχύτητα υ και η επιτάχυνση γ για ένα σώμα που πέφτει ελεύθερα επί 4 sec. μ. Η ταχύτητα υ ενός σώματος δίδεται

Διαβάστε περισσότερα

Τράπεζα Χημεία Α Λυκείου

Τράπεζα Χημεία Α Λυκείου Τράπεζα Χημεία Α Λυκείου 1 ο Κεφάλαιο Όλα τα θέματα του 1 ου Κεφαλαίου από τη Τράπεζα Θεμάτων 25 ερωτήσεις Σωστού Λάθους 30 ερωτήσεις ανάπτυξης Επιμέλεια: Γιάννης Καλαμαράς, Διδάκτωρ Χημικός Ερωτήσεις

Διαβάστε περισσότερα

ΕΞΑΤΜΙΣΗ Θοδωρής Καραπάντσιος

ΕΞΑΤΜΙΣΗ Θοδωρής Καραπάντσιος ΕΞ ΕΞΑΤΜΙΣΗ Θοδωρής Καραπάντσιος ΕΞ.1 Εισαγωγή Αντικείµενο της συµπύκνωσης είναι κατά κύριο λόγο η αποµάκρυνση νερού, µε εξάτµιση, από ένα υδατικό διάλυµα που περιέχει µια ή περισσότερες διαλυµένες ουσίες,

Διαβάστε περισσότερα

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Διαδοση θερμοτητας και εργο είναι δυο τροποι με τους οποιους η ενεργεια ενός θερμοδυναμικου συστηματος μπορει να αυξηθει ή να ελαττωθει. Δεν εχει εννοια

Διαβάστε περισσότερα

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C.

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. 4.1 Βασικές έννοιες Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. Σχετική ατομική μάζα ή ατομικό βάρος λέγεται ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη

Διαβάστε περισσότερα

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων Β' τάξη Γενικού Λυκείου Κεφάλαιο 1 Κινητική θεωρία αερίων Κεφάλαιο 1 Κινητική θεωρία αερίων Χιωτέλης Ιωάννης Γενικό Λύκειο Πελοπίου 1.1 Ποιο από τα παρακάτω διαγράμματα αντιστοιχεί σε ισοβαρή μεταβολή;

Διαβάστε περισσότερα

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ 7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ Συμβαίνει κι αυτό: ο όγκος ενός σώματος να 'ναι μεγάλος, αλλά η μάζα του να 'ναι μικρή Από την καθημερινή μας ζωή, ξέρουμε τι σημαίνει πυκνό και αραιό: πυκνό δάσος, αραιά

Διαβάστε περισσότερα

Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης

Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης Άσκηση 8 Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης 1.Σκοπός Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός της πυκνότητας στερεών και υγρών με τη μέθοδο της άνωσης. Βασικές Θεωρητικές

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

Θερμότητα. Κ.-Α. Θ. Θωμά

Θερμότητα. Κ.-Α. Θ. Θωμά Θερμότητα Οι έννοιες της θερμότητας και της θερμοκρασίας Η θερμοκρασία είναι μέτρο της μέσης κινητικής κατάστασης των μορίων ή ατόμων ενός υλικού. Αν m είναι η μάζα ενός σωματίου τότε το παραπάνω εκφράζεται

Διαβάστε περισσότερα

Φύλλο Εργασίας 4 Μετρήσεις Θερμοκρασίας Η Βαθμονόμηση α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι β. Συζητώ, Αναρωτιέμαι, Υποθέτω

Φύλλο Εργασίας 4 Μετρήσεις Θερμοκρασίας Η Βαθμονόμηση α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι β. Συζητώ, Αναρωτιέμαι, Υποθέτω Φύλλο Εργασίας 4 Μετρήσεις Θερμοκρασίας Η Βαθμονόμηση α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι Οι άνθρωποι προσπαθούν να εκτιμήσουν κατά προσέγγιση ή να μετρήσουν με ακρίβεια τη θερμοκρασία του περιβάλλοντος,

Διαβάστε περισσότερα

Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:.. Δημοτικό Σχολείο:.. Τάξη/Τμήμα:.. Εξεταστικό Κέντρο:...

Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:.. Δημοτικό Σχολείο:.. Τάξη/Τμήμα:.. Εξεταστικό Κέντρο:... Ε Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:.. Δημοτικό Σχολείο:.. Τάξη/Τμήμα:.. Εξεταστικό Κέντρο:.... Παρατήρησε τα διάφορα φαινόμενα αλλαγής της φυσικής κατάστασης του νερού που σημειώνονται

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ο ΝΟΜΟΙ ΑΕΡΙΩΝ -ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ Τι γνωρίζετε για την καταστατική εξίσωση των ιδανικών αερίων; Η καταστατική εξίσωση των αερίων είναι µια σχέση που συνδέει µεταξύ

Διαβάστε περισσότερα

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου;

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου; E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ 1. Β2.25 Θερµική µηχανή είναι, α) το τρόλεϊ; β) ο φούρνος; γ) το ποδήλατο; δ) ο κινητήρας του αεροπλάνου; Επιλέξτε τη σωστή απάντηση. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 10 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 11 Μαΐου 2014 Ώρα : 10:00-12:30 Οδηγίες: 1) Το δοκίμιο αποτελείται από έντεκα (11) θέματα και δέκα (10) σελίδες. 2) Να απαντήσετε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 23-10-11 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

AquaTec 1.2. Φυσική και φυσιολογία των Καταδύσεων Βασικές Αρχές Μεταφοράς Αερίων. Νίκος Καρατζάς

AquaTec 1.2. Φυσική και φυσιολογία των Καταδύσεων Βασικές Αρχές Μεταφοράς Αερίων. Νίκος Καρατζάς AquaTec 1.2 Φυσική και φυσιολογία των Καταδύσεων Βασικές Αρχές Μεταφοράς Αερίων Νίκος Καρατζάς 2 Φυσική και φυσιολογία των Καταδύσεων Προειδοποίηση: Το υλικό που παρουσιάζεται παρακάτω δεν πρέπει να θεωρηθεί

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: 08-11-2015 ΔΙΑΡΚΕΙΑ: 3 ώρες

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: 08-11-2015 ΔΙΑΡΚΕΙΑ: 3 ώρες ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: 08--05 ΔΙΑΡΚΕΙΑ: 3 ώρες ΘΕΜΑ Α Για τις ερωτήσεις Α. Α.5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH

ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH 8.1 Γραµµική διαστολή των στερεών Ένα στερεό σώµα θεωρείται µονοδιάστατο, όταν οι δύο διαστάσεις του είναι αµελητέες σε σχέση µε την τρίτη, το µήκος, όπως συµβαίνει στην

Διαβάστε περισσότερα

1. Το στοιχείο Χ έχει 17 ηλεκτρόνια. Αν στον πυρήνα του περιέχει 3 νετρόνια περισσότερα από

1. Το στοιχείο Χ έχει 17 ηλεκτρόνια. Αν στον πυρήνα του περιέχει 3 νετρόνια περισσότερα από Ερωτήσεις Ανάπτυξης 1. Το στοιχείο Χ έχει 17 ηλεκτρόνια. Αν στον πυρήνα του περιέχει 3 νετρόνια περισσότερα από τα πρωτόνια, να υπολογισθούν ο ατομικός και ο μαζικός του στοιχείου Χ 2. Δίνεται 40 Ca. Βρείτε

Διαβάστε περισσότερα

2 ο κεφάλαιο. φυσικές έννοιες. κινητήριες μηχανές

2 ο κεφάλαιο. φυσικές έννοιες. κινητήριες μηχανές 2 ο κεφάλαιο φυσικές έννοιες κινητήριες μηχανές 1. Τι μπορεί να προκαλέσει η επίδραση μιας δύναμης, πάνω σ ένα σώμα ; 21 Την μεταβολή της κινητικής του κατάστασης ή την παραμόρφωσή του. 2. Πώς καθορίζεται

Διαβάστε περισσότερα

5.1 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ

5.1 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ 5.1 ΑΣΚΗΣΗ 5 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ Α' ΜΕΡΟΣ: Ηλεκτρόλυση του νερού. ΘΕΜΑ: Εύρεση της μάζας οξυγόνου και υδρογόνου που εκλύονται σε ηλεκτρολυτική

Διαβάστε περισσότερα

Ασκήσεις Ακ. Έτους 2014 15 (επιλύθηκαν συζητήθηκαν κατά τη διδασκαλία) Όπου χρειάζεται ο Αριθμός Avogadro λαμβάνεται 0.6023 1024

Ασκήσεις Ακ. Έτους 2014 15 (επιλύθηκαν συζητήθηκαν κατά τη διδασκαλία) Όπου χρειάζεται ο Αριθμός Avogadro λαμβάνεται 0.6023 1024 Ασκήσεις Ακ. Έτους 014 15 (επιλύθηκαν συζητήθηκαν κατά τη διδασκαλία) Όπου χρειάζεται ο Αριθμός Avoadro λαμβάνεται 0.603 10 4 και τα ατομικά βάρη θεωρείται ότι ταυτίζονται με τον μαζικό αριθμό σε 1. Το

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

Εύρεση της πυκνότητας στερεών και υγρών.

Εύρεση της πυκνότητας στερεών και υγρών. Μ4 Εύρεση της πυκνότητας στερεών και υγρών. 1 Σκοπός Στην άσκηση αυτή προσδιορίζεται πειραματικά η πυκνότητα του υλικού ενός στερεού σώματος. Το στερεό αυτό σώμα βυθίζεται ή επιπλέει σε υγρό γνωστής πυκνότητας

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΠΙΙΕΣΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμ εε ααππααννττήή σσεει ιςς (σελ. 1) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 5) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ 1. Μετρήσεις μήκους Η μέση τιμή. 1. Ποια μεγέθη λέγονται φυσικά μεγέθη; Πως γίνεται η μέτρησή τους; Οι ποσότητες που μπορούν να μετρηθούν ονομάζονται φυσικά μεγέθη. Η μέτρησή

Διαβάστε περισσότερα

Γεωργικά Μηχανήματα (Εργαστήριο)

Γεωργικά Μηχανήματα (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Γεωργικά Μηχανήματα (Εργαστήριο) Ενότητα 3 : Γεωργικός Ελκυστήρας Σύστημα Ψύξεως Δρ. Δημήτριος Κατέρης Εργαστήριο 3 ο ΣΥΣΤΗΜΑ ΨΥΞΗΣ Σύστημα ψύξης

Διαβάστε περισσότερα

Άρης Ασλανίδης Πρότυπα Πειραματικά Γυμνάσια Οδηγός προετοιμασίας για τα Φυσικά

Άρης Ασλανίδης Πρότυπα Πειραματικά Γυμνάσια Οδηγός προετοιμασίας για τα Φυσικά Άρης Ασλανίδης Πρότυπα Πειραματικά Γυμνάσια Οδηγός προετοιμασίας για τα Φυσικά Ε Δημοτικού 5 Υλικά σώματα Μαθαίνω χρήσιμες πληροφορίες του Βιβλίου Μαθητή Παντού γύρω μας υπάρχει ύλη. Η ύλη μπορεί να είναι

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 8: Εκχύλιση, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Τύποι εκχύλισης

Διαβάστε περισσότερα

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι αυτό που προϋποθέτει την ύπαρξη μιας συνεχούς προσανατολισμένης ροής ηλεκτρονίων; Με την επίδραση διαφοράς δυναμικού ασκείται δύναμη στα ελεύθερα ηλεκτρόνια του μεταλλικού

Διαβάστε περισσότερα

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ.

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2.21. Έργο και µέγιστη Κινητική Ενέργεια. Ένα σώµα µάζας 2kg κινείται σε οριζόντιο επίπεδο και σε µια στιγµή περνά από την θέση x=0 έχοντας ταχύτητα υ 0 =8m/s,

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

Α Θερμοδυναμικός Νόμος

Α Θερμοδυναμικός Νόμος Α Θερμοδυναμικός Νόμος Θερμότητα Έχουμε ήδη αναφέρει ότι πρόκειται για έναν τρόπο μεταφορά ενέργειας που βασίζεται στη διαφορά θερμοκρασιών μεταξύ των σωμάτων. Ορίζεται από τη σχέση: Έργο dw F dx F dx

Διαβάστε περισσότερα

ΜΕΤΑΒΟΛΕΣ ΚΑΤΑΣΤΑΣΗΣ ΑΕΡΙΩΝ. 1. Δώστε τον ορισμό τον τύπο και το διάγραμμα σε άξονες P v της ισόθερμης μεταβολής. σελ. 10. και

ΜΕΤΑΒΟΛΕΣ ΚΑΤΑΣΤΑΣΗΣ ΑΕΡΙΩΝ. 1. Δώστε τον ορισμό τον τύπο και το διάγραμμα σε άξονες P v της ισόθερμης μεταβολής. σελ. 10. και ΜΕΤΑΒΟΛΕΣ ΚΑΤΑΣΤΑΣΗΣ ΑΕΡΙΩΝ 1. Δώστε τον ορισμό τον τύπο και το διάγραμμα σε άξονες P v της ισόθερμης μεταβολής. σελ. 10 ορισμός : Ισόθερμη, ονομάζεται η μεταβολή κατά τη διάρκεια της οποίας η θερμοκρασία

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7. Θερµοϊονικό φαινόµενο - ίοδος λυχνία

ΑΣΚΗΣΗ 7. Θερµοϊονικό φαινόµενο - ίοδος λυχνία ΑΣΚΗΣΗ 7 Θερµοϊονικό φαινόµενο - ίοδος λυχνία ΣΥΣΚΕΥΕΣ : Πηγή συνεχούς 0-50 Volts, πηγή 6V/2A, βολτόµετρο συνεχούς, αµπερόµετρο συνεχούς, βολτόµετρο, ροοστάτης. ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ Όταν η θερµοκρασία ενός

Διαβάστε περισσότερα

1 Aπώλειες θερμότητας - Μονωτικά

1 Aπώλειες θερμότητας - Μονωτικά 1 Aπώλειες θερμότητας - Μονωτικά 1.1 Εισαγωγή Όταν ένα ρευστό ρέει μέσα σ' έναν αγωγό και η θερμοκρασία του διαφέρει από τη θερμοκρασία του περιβάλλοντος, τότε μεταδίδεται θερμότητα: από το ρευστό προς

Διαβάστε περισσότερα

Παραγωγή Ηλεκτρικής Ενέργειας 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Ροή Ε. 1η Σειρά Ασκήσεων

Παραγωγή Ηλεκτρικής Ενέργειας 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Ροή Ε. 1η Σειρά Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Ακαδ. Έτος 0- Τομέας Ηλεκτρικής Ισχύος Αθήνα, 0 Μαρτίου 0 Καθηγητής Κ.Βουρνάς Παράδοση,,5: 8// Λέκτωρ Σ. Καβατζά 6,,4: /4/ Παραγωγή

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 7 /6/13 ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 7 /6/13 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 7 /6/13 ΤΑΞΗ: Β ΧΡΟΝΟΣ:2 ώρες ΟΝΟΜΑΤΕΠΩΝΥΜΟ: TΜΗΜΑ: AΡ:. ΒΑΘΜΟΣ: ΥΠΟΓΡΑΦΗ ΚΑΘΗΓΗΤΗ:.

Διαβάστε περισσότερα

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΕ ΝΕΡΟ ΓΕΝΙΚΑ Με το πείραμα αυτό μπορούμε να προσδιορίσουμε δύο βασικές παραμέτρους που χαρακτηρίζουν ένα

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

Προσδιορισμός της σταθεράς ενός ελατηρίου.

Προσδιορισμός της σταθεράς ενός ελατηρίου. Μ3 Προσδιορισμός της σταθεράς ενός ελατηρίου. 1 Σκοπός Στην άσκηση αυτή θα προσδιοριστεί η σταθερά ενός ελατηρίου χρησιμοποιώντας στην ακολουθούμενη διαδικασία τον νόμο του Hooke και τη σχέση της περιόδου

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΜΑΘΗΤΡΙΑΣ: ΘΕΜΑ Α Εξεταστέα ύλη: ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΟΡΜΗ ΑΕΡΙΑ Στις ερωτήσεις Α1 Α4 να επιλέξετε τη σωστή απάντηση. Α1. Όταν η πίεση ορισμένης ποσότητας

Διαβάστε περισσότερα

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ 1 ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ Προβλήματα μεταφοράς θερμότητας παρουσιάζονται σε κάθε βήμα του μηχανικού της χημικής βιομηχανίας. Ο υπολογισμός των θερμικών απωλειών, η εξοικονόμηση ενέργειας και ο σχεδιασμός

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΥΣΚΕΥΩΝ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ. 1η ενότητα

ΑΣΚΗΣΕΙΣ ΣΥΣΚΕΥΩΝ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ. 1η ενότητα 1η ενότητα 1. Εναλλάκτης σχεδιάζεται ώστε να θερμαίνει 2kg/s νερού από τους 20 στους 60 C. Το θερμό ρευστό είναι επίσης νερό με θερμοκρασία εισόδου 95 C. Οι συντελεστές συναγωγής στους αυλούς και το κέλυφος

Διαβάστε περισσότερα

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ ΕΝΩΗ ΚΥΠΡΙΩΝ ΦΥΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΙΚΗ Γ ΓΥΜΝΑΙΟΥ Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ 1. α) Ζεύγος δυνάμεων Δράσης Αντίδρασης είναι η δύναμη που ασκεί ο μαθητής στο έδαφος

Διαβάστε περισσότερα