(3Μονάδεσ) Δεδομζνα //Α// Για i από 1 μζχρι 10 k (100+i)mod 101 B[k] A[i] Τζλοσ_επανάλθψθσ Αποτελζςματα //Β,k//

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "(3Μονάδεσ) Δεδομζνα //Α// Για i από 1 μζχρι 10 k (100+i)mod 101 B[k] A[i] Τζλοσ_επανάλθψθσ Αποτελζςματα //Β,k//"

Transcript

1 Μάθημα: Ανάπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβάλλον Τάξη Γ Λυκείου, Πληροφορική Οικονομικών Καθηγητής : Σιαφάκασ Γιώργοσ Ημερομηνία : 21/2/2016 Διάρκεια: 3 ώρεσ ΘΕΜΑ Α /40 (Α1)Να απαντήςετε αν είναι ςωςτή ή λάθοσ καθεμία από τισ παρακάτω προτάςεισ, μεταφζροντασ ςτο απαντητικό ςασ φφλλο τον αριθμό τησ ερώτηςησ ακολουθοφμενη από το γράμμα (ωςτή) ή το γράμμα Λ (Λάθοσ). 1. Οι πίνακεσ δεν μποροφν να ζχουν περιςςότερεσ από δφο διαςτάςεισ. 2. Οι δομζσ δεδομζνων διακρίνονται ςε τρεισ μεγάλεσ κατθγορίεσ: τισ ςτατικζσ, τισ δυναμικζσ και τισ θμιδομθμζνεσ. 3. Ο πίνακασ είναι μία δομι που μπορεί να περιζχει ςτοιχεία διαφορετικοφ τφπου. 4. Μόνο θ δυαδικι αναηιτθςθ μπορεί να εφαρμοςτεί ςε ταξινομθμζνουσ πίνακεσ. 5. Μόνο ςε ταξινομθμζνουσ πίνακεσ μπορεί να εφαρμοςτεί θ δυαδικι αναηιτθςθ. 6. Πταν αναφερόμαςτε ςε ςτοιχείο εκτόσ του πίνακα (πχ ςτο Ρ*0+) τότε λζμε ότι ο αλγόρικμοσ παραβιάηει το κριτιριο τθσ κακοριςτικότθτασ (Α2) Να απαντήςετε ςτισ παρακάτω ερωτήςεισ 1. Να αναφζρετε τισ τυπικζσ επεξεργαςίεσ επί των πινάκων. 2. Ροια είναι τα μειονεκτιματα από τθ χριςθ των πινάκων; 3. Ροιεσ είναι οι διαφορζσ μεταξφ ςτατικϊν και δυναμικϊν δομϊν δεδομζνων; (6 Μονάδεσ) (3+3+4=10 Μονάδεσ) (Α3) Δίνεται ο πίνακασ Α*10+, ςτον οποίο επικυμοφμε να αποκθκεφςουμε όλουσ τουσ ακεραίουσ αρικμοφσ από το 10 μζχρι το 1 με φκίνουςα ςειρά. Στον πίνακα ζχουν ειςαχκεί οριςμζνοι αρικμοί, οι οποίοι εμφανίηονται ςτο παρακάτω ςχιμα: Να ςυμπλθρϊςετε τισ επόμενεσ εντολζσ εκχϊρθςθσ, ϊςτε τα κενά κελιά του πίνακα να αποκτιςουν τισ επικυμθτζσ τιμζσ. Α* Α*...+ Α*9+ Α* Α*8+ Α* Α* Α*...+ Α*5+ (Α* Α*7+) div 2 (5 Μονάδεσ) Σελίδα 1 από 5

2 (Α4) Ζςτω ζνασ μονοδιάςτατοσ ταξινομθμζνοσ πίνακασ 100 κζςεων που περιζχει αρικμθτικζσ τιμζσ. Να ελζγξετε, χωρίσ τθ χριςθ δομισ επανάλθψθσ αλλά μόνο με μια δομι επιλογισ, αν όλα τα ςτοιχεία του πίνακα είναι ίςα. 1 (4 Μονάδεσ) (Α5) Να ξαναγράψετε ςτο τετράδιό ςασ το παρακάτω τμιμα αλγορίκμου, χρθςιμοποιϊντασ μόνο μία δομι επανάλθψθσ Για... Από... Μζχρι και χωρίσ τθ χριςθ δομισ επιλογισ Για i από 1 μζχρι 100 Για j από 1 μζχρι 100 Αν i = 50 τότε Εμφάνιςε Α*i, j+ (3Μονάδεσ) (Α6) Δίνονται τα 4 παρακάτω τμήματα αλγορίθμων και μια πρόταςη που περιγράφει τη λειτουργία του κάθε τμήματοσ (ΠΡ1,ΠΡ2,ΠΡ3,ΠΡ4). Να απαντήςετε αν είναι ςωςτή ή λάθοσ καθεμία από τισ προτάςεισ, μεταφζροντασ ςτο απαντητικό ςασ φφλλο τον αριθμό τησ πρόταςησ ακολουθοφμενη από το γράμμα (ωςτή) ή το γράμμα Λ (Λάθοσ). Δεδομζνα //Ν,Ρ// Για i από 2 μζχρι Ν Για j από N μζχρι i με_βιμα 1 Αν table*j+ > table*j-1] τότε T table[j-1] table[j-1] table[j] table[j] T Τελοσ_αν Τελοσ_επαναλθψθσ Τελοσ_επαναλθψθσ Δεδομζνα //Α// Για i από 1 μζχρι 10 k (100+i)mod 101 B[k] A[i] Αποτελζςματα //Β,k// ΠΡ1. Το παραπάνω αλγορικμικό τμιμα ταξινομεί τον πίνακα Ρ*Ν+ ςε αφξουςα ςειρά Εμφάνιςε ϋδϊςε τθν τιμι που αναηθτάσ : Διάβαςε key Ι 1 pos 0 Πςο (pos=0) και (Ι<=Ν) επανάλαβε Αν Ρ*Ι+=key τότε ΒΕΘΘΚΕ ΑΛΘΘΘΣ pos Ι Ι Ι+1 Αν pos<>0 τότε Εμφάνιςε ϋtoϋ,key,ϋβρζκθκε ςτθ κζςθϋ,pos Αλλιϊσ Εμφάνιςε ϋtoϋ,key,ϋδε βρζκθκε ΠΡ3. Το παραπάνω αλγορικμικό τμιμα εμφανίηει τθν πρϊτθ ι τθ μοναδικι κζςθ του ηθτοφμενου ςτοιχείου (key) ςτον πίνακα Ρ*Ν+, ι κατάλλθλο μινυμα αν το ςτοιχείο δε υπάρχει ΠΡ2. Δίνεται το παραπάνω αλγορικμικό τμιμα το οποίο δζχεται τον μονοδιάςτατο πίνακα Α*10+ και επιςτρζφει τον επίςθσ μονοδιάςτατο πίνακα Β*10+. Ζτςι όπωσ είναι γραμμζνο παραβιάηει τθν κακοριςτικότθτα Για I από 1 μζχρι 100 Αρχι_επανάλθψθσ Διάβαςε Χ*Ι+ Μζχρισ_ότου Χ*Ι+>0 και Χ*Ι+<20 Για Ι από 1 μζχρι 20 Α*Ι+ 0 Για Ι από 1 μζχρι 100 Α*Χ*Ι++ Α*Χ*Ι+++1 ΠΡ4. Το παραπάνω αλγορικμικό τμιμα παραβιάηει τθν κακοριςτικότθτα. Ο πίνακασ Χ*100+ περιζχει ακζραιουσ αρικμοφσ. (4x3=12 Μονάδεσ) 1 ΟΕΦΕ 2015/Α3 Σελίδα 2 από 5

3 ΘΕΜΑ Β /20 (Β1) Να απαντήςτε ςτισ παρακάτω ερωτήςεισ 1. Ρότε επιτρζπεται θ χριςθ τθσ δυαδικισ αναηιτθςθσ ςε ζνα πίνακα; Δίνεται το παρακάτω τμιμα προγράμματοσ που υλοποιεί τθ δυαδικι αναηιτθςθ. 2. Ρόςεσ φορζσ κα εκτελεςτεί θ παρακάτω επανάλθψθ αν ωσ είςοδο είχε τον πίνακα Γ* Ρόςεσ φορζσ κα εκτελοφνταν θ αντίςτοιχθ επανάλθψθ ςτον παρακάτω πίνακα αν αντί τθσ δυαδικισ χρθςιμοποιοφςαμε ςειριακι αναηιτθςθ για τον ίδιο ςκοπό (αναηθτϊντασ το Τ) ΓΡ*24+ Α Β Γ Δ Ε Η Θ Θ Ι Κ Λ Μ Ν Ξ Ο Ρ Σ Τ Υ Φ Χ Ψ Ω πλ 0 key T Αριςτερα 1 Δεξιά 24 flag ΨΕΥΔΘΣ ΟΣΟ Αριςτερα<=Δεξιά και flag=ψευδθσ ΕΡΑΝΑΛΑΒΕ πλ πλ+1 Μεςθ (Αριςτερα+Δεξια)div2 ΑΝ Γ*Μεςθ+= key ΤΟΤΕ flag ΑΛΘΘΘΣ ΑΝ key<γ*μεςθ+ ΤΟΤΕ Δεξιά Μεςθ-1 Αριςτερά Μεςθ+1 ΓΑΨΕ Ρλικοσ επαναλιψεων, πλ (3x3=9 Μονάδεσ) (Β2) το παρακάτω τμήμα προγράμματοσ να ςυμπληρώςετε τα κενά (4,5,6,7,10,11), ζτςι ώςτε ζνα μονοδιάςτατοσ πίνακασ Ν θζςεων να ταξινομείται ςε αφξουςα ςειρά με τη μζθοδο ευθείασ επιλογήσ. Να μεταφζρετε ςτο απαντητικό τετράδιο τον αριθμό τησ γραμμήσ με το κενό, ςυμπληρώνοντασ το κενό ή να μεταφζρετε ολόκληρο το τμήμα προγράμματοσ ςυμπληρωμζνο 1 ΓΙΑ Ι ΑΡΟ 1 ΜΕΧΙ Ν-1 2 Θ I 3 TEMP A[I] 4 ΓΙΑ J ΑΡΟ ΜΕΧΙ Ν 5 ΑΝ TEMP A[J] TOTE 6 Θ 7 ΤEMP (6 Μονάδεσ) Σελίδα 3 από 5

4 (Β3) Δίνεται το παρακάτω τμήμα πρόγραμμα ΡΟΓΑΜΜΑ ΡΙΣΩ_ΑΡΟ ΤΙΣ _ΛΕΞΕΙΣ_ΚΥΒΕΤΑΙ _Ο ΑΛΕΞΘΣ ΜΕΤΑΒΛΘΤΕΣ ΑΚΕΑΙΕΣ:Ι, POS, ΡΛ,Κ ΧΑΑΚΤΘΕΣ: Κ*100+, Λ*10+ ΛΟΓΙΚΕΣ:FLAG ΑΧΘ ΓΙΑ Ι ΑΡΟ 1 ΜΕΧΙ 100 ΔΙΑΒΑΣΕ Κ*Ι+ ΓΙΑ Ι ΑΡΟ 1 ΜΕΧΙ 10 ΔΙΑΒΑΣΕ Λ*Ι+ FLAG ΨΕΥΔΘΣ POS 0 I 1 ΟΣΟ I<=91 ΚΑΙ FLAG= ΨΕΥΔΘΣ ΕΡΑΝΑΛΑΒΕ ΑΝ Κ*I]=Λ*1+ΤΟΤΕ FLAG ΑΛΘΘΘΣ POS I I I+1 ΑΝ FLAG=ΨΕΥΔΘΣ ΤΟΤΕ ΕΜΦΑΝΙΣΕ ΔΕ ΒΕΘΘΚΕ ΡΛ 0 ΓΙΑ Κ ΑΡΟ 1 ΜΕΧΙ 10 ΑΝ Λ*Κ+=Κ*I-1+Κ+ ΤΟΤΕ ΡΛ ΡΛ+1 ΑΝ ΡΛ=10 ΤΟΤΕ ΕΜΦΑΝΙΣΕ ΒΕΘΘΚΕ ΣΤΘ ΘΕΣΘ,POS ΕΜΦΑΝΙΣΕ ΤΕΛΙΚΑ, ΔΕ ΒΕΘΘΚΕ ΤΕΛΟΣ_ΡΟΓΑΜΜΑΤΟΣ Επιλζξτε μια πρόταςη από τισ παρακάτω που περιγράφει τη λειτουργία του προγράμματοσ 1. Αναηθτά και εμφανίηει πόςεσ φορζσ υπάρχει θ λζξθ Λ*10+, μζςα ςτο κείμενο Κ*100+ και αν δεν υπάρχει θ λζξθ ςτο κείμενο εμφανίηει κατάλλθλα μθνφματα 2. Αναηθτά τθ λζξθ Λ*10+ μζςα ςτο κείμενο Κ*100+, και εμφανίηει τθ κζςθ του πρϊτου γράμματοσ τθσ λζξθσ ςε περίπτωςθ που βρεκεί θ λζξθ μζςα ςτο κείμενο, διαφορετικά εμφανίηει κατάλλθλα μθνφματα 3. Αναηθτά και εμφανίηει πόςεσ φορζσ υπάρχει το πρϊτο γράμμα τθσ λζξθσ Λ*10+ μζςα ςτο κείμενο Κ*100+ και κατάλλθλο μινυμα ςε περίπτωςθ που δε βρεκεί το πρϊτο ράμμα τθσ λζξθσ πουκενά. 4. Τίποτα απ0ο τα παραπάνω (5 Μονάδεσ) Σελίδα 4 από 5

5 ΘΕΜΑ Γ /20 Ερευνθτζσ που αςχολοφνται με μοντζλα προςομοίωςθσ εξάπλωςθσ επιδθμιϊν χρθςιμοποιοφν για τισ μελζτεσ τουσ ζνα αρικμθτικό πίνακα Μ* Κάκε κελί του πίνακα αυτοφ αντιπροςωπεφει ζνα άτομο ςε μια περιοχι κατοίκων ςτθν οποία υπάρχουν εςτίεσ μιασ ςυγκεκριμζνθσ μολυςματικισ αςκζνειασ (επιδθμίασ). Από ςφμβαςθ θ τιμι μθδζν 0 ςε ζνα κελί αντιπροςωπεφει ζνα υγιζσ άτομο, ενϊ θ τιμι -1 αντιπροςωπεφει ζνα άτομο που ζχει τθ ςυγκεκριμζνθ αςκζνεια (μολυςμζνο άτομο). Κάκε άτομο ζρχεται ςε επαφι με τα γειτονικά του και θ αςκζνεια μπορεί να μεταδοκεί από τον ζνα ςτον άλλο. (Γειτονικά χαρακτθρίηονται δφο άτομα, όταν τα κελιά του πίνακα που τα αντιπροςωπεφουν ζχουν μια κοινι πλευρά). Να υλοποιιςετε πρόγραμμα το οποίο: Γ1. Θα διαβάηει τα περιεχόμενα του πίνακα Μ*5000+, κάνοντασ ζλεγχο εγκυρότθτασ ϊςτε να περιζχει μόνο τισ τιμζσ 0 και -1 Μονάδεσ 3 Γ2. Υπολογίηει και εμφανίηει με κατάλλθλο μινυμα τον ςυνολικό αρικμό των μολυςμζνων ατόμων που υπάρχουν ςτο ςφνολο του πλθκυςμοφ. Μονάδεσ 4 Γ3. Αποκθκεφει ςε κάκε κελί του πίνακα Μ που αντιπροςωπεφει ζνα υγιζσ άτομο ζναν αρικμό ο οποίοσ δείχνει με πόςα μολυςμζνα άτομα γειτονεφει το υγιζσ. Μονάδεσ 8 Γ4. Βρίςκει αν υπάρχει ζςτω και μία «ςθμαντικι» εςτία μόλυνςθσ. Αν υπάρχει, εμφανίηει το μινυμα «Υπάρχει ςθμαντικι εςτία μόλυνςθσ» μαηί με τθ κζςθ του πρϊτου κελιοφ τθσ εςτίασ. Αν δεν υπάρχει, εμφανίηει το μινυμα «Δεν υπάρχει ςθμαντικι εςτία μόλυνςθσ». (Μια εςτία μόλυνςθσ χαρακτθρίηεται ςθμαντικι, όταν δφο ι περιςςότερα μολυςμζνα άτομα βρίςκονται ςε ςυνεχόμενα γειτονικά κελιά). Μονάδεσ 5 ΘΕΜΑ Δ /20 Στισ γενικζσ εξετάςεισ, κάκε γραπτό βακμολογείται από δφο βακμολογθτζσ ςτθν κλίμακα Πταν θ διαφορά των δφο βακμϊν είναι μεγαλφτερθ από δϊδεκα μονάδεσ, το γραπτό αναβακμολογείται, δθλαδι βακμολογείται και από τρίτο βακμολογθτι. Στα γραπτά που δεν ζχουν αναβακμολογθκεί, ο τελικόσ βακμόσ προκφπτει από το πθλίκο τθσ διαίρεςθσ του ακροίςματοσ των βακμϊν των δφο βακμολογθτϊν διά δζκα. Στα γραπτά που ζχουν αναβακμολογθκεί, ο τελικόσ βακμόσ προκφπτει με τον ίδιο τρόπο, αλλά λαμβάνονται υπόψθ οι δφο μεγαλφτεροι βακμοί. Για ςτατιςτικοφσ λόγουσ, οι τελικοί βακμοί (ΤΒ) κατανζμονται ςτισ παρακάτω βακμολογικζσ κατθγορίεσ: 1 η 2 η 3 η 4 η 5 η 6 η 0 ΤΒ<5 5 ΤΒ<10 10 TΒ<12 12 ΤΒ<15 15 ΤΒ<18 18 ΤΒ 20 Σ ζνα βακμολογικό κζντρο υπάρχουν 780 γραπτά ςτο μάκθμα «Ανάπτυξθ Εφαρμογϊν ςε Ρρογραμματιςτικό Ρεριβάλλον». Οι βακμοί των δφο βακμολογθτϊν καταχωροφνται ςτισ δφο πρϊτεσ ςτιλεσ ενόσ πίνακα Β*780,3+ και ο τρίτοσ βακμόσ ςτθν τρίτθ ςτιλθ Να γραφεί πρόγραμμα το οποίο: Δ1. Να διαβάηει τισ βακμολογίεσ των 2 πρϊτων βακμολογθτϊν και αν χρειάηεται να διαβάηει τθ βακμολογία του τρίτου βακμολογθτι, διαφορετικά να τοποκετεί ςτθ κζςθ του τρίτου βακμολογθτι ςτον πίνακα Β τθν τιμι -1. Θ ειςαγωγι των βακμϊν να γίνεται με κατάλλθλο ζλεγχο εγκυρότθτασ Μονάδεσ 5 Δ3. Να υπολογίηει τον τελικό βακμό κάκε γραπτοφ και να τον καταχωρίηει ςτθν αντίςτοιχθ κζςθ ενόσ πίνακα Τ*780+. Δ4. Να εμφανίηει τθ βακμολογικι κατθγορία (ι τισ κατθγορίεσ) με το μεγαλφτερο πλικοσ γραπτϊν. Μονάδεσ 7 Μονάδεσ 8 Σελίδα 5 από 5

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Γραπτι Εξζταςθ ςτο μάκθμα Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Όνομα: Επϊνυμο: Τμιμα: Ημερομθνία: 20/02/11 Θζμα 1 ο Α. Να χαρακτθρίςετε κακεμιά από τισ παρακάτω προτάςεισ ωσ Σωςτι (Σ) ι Λάκοσ

Διαβάστε περισσότερα

(Α3 1 ) Σασ δίνεται το παρακάτω αλγορικμικό τμιμα

(Α3 1 ) Σασ δίνεται το παρακάτω αλγορικμικό τμιμα Μάθημα: Ανάπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβάλλον Τάξη Γ Λυκείου, Πληροφορική Οικονομικών Καθηγητής : Σιαφάκασ Γιώργοσ Ημερομηνία : 28/12/2015 Διάρκεια: 3 ώρεσ ΘΕΜΑ Α /40 (Α1) Να γράψετε ςτο τετράδιό

Διαβάστε περισσότερα

Δομζσ Δεδομζνων. Αναηιτθςθ και Ταξινόμθςθ Διάλεξθ 3

Δομζσ Δεδομζνων. Αναηιτθςθ και Ταξινόμθςθ Διάλεξθ 3 Δομζσ Δεδομζνων Αναηιτθςθ και Ταξινόμθςθ Διάλεξθ 3 Περιεχόμενα Αλγόρικμοι αναηιτθςθσ Σειριακι αναηιτθςθ Αναηιτθςθ κατά ομάδεσ Δυαδικι Αναηιτθςθ Ταξινόμθςθ Ταξινόμθςθ με παρεμβολι (insertion sort) Ταξινόμθςθ

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

Ιδιότθτεσ πεδίων Γενικζσ.

Ιδιότθτεσ πεδίων Γενικζσ. Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)

Διαβάστε περισσότερα

Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 15. Πίνακεσ ΙI. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων

Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 15. Πίνακεσ ΙI. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 15. Πίνακεσ ΙI Ιωάννθσ Κατάκθσ Σιμερα o Ειςαγωγι o Διλωςθ o Αρχικοποίθςθ o Πρόςβαςθ o Παραδείγματα Πίνακεσ - Επανάλθψθ o Στθν προθγοφμενθ διάλεξθ κάναμε μια

Διαβάστε περισσότερα

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα:

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 ο Σετ Ασκήσεων Δομές Δεδομένων - Πίνακες Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8

Διαβάστε περισσότερα

Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον

Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον Ο ν ο μ α τ ε π ώ ν υ μ ο : _ Θ Ε Μ Α 1 ο Α. Ν α χ α ρ α κ τ θ ρ ι ς τ ο φ ν ο ι α κ ό λ ο υ κ ε σ π ρ ο τ ά ς ε ι σ μ ε τ ο

Διαβάστε περισσότερα

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9 Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:

Διαβάστε περισσότερα

Δζντρα. Δομζσ Δεδομζνων

Δζντρα. Δομζσ Δεδομζνων Δζντρα Δομζσ Δεδομζνων Περιεχόμενα Δζντρα Γενικζσ ζννοιεσ Κόμβοσ ενόσ δζντρου Δυαδικά δζντρα αναηιτθςθσ Αναηιτθςθ Κόμβου Ειςαγωγι ι δθμιουργία κόμβου Δζντρα Γενικζσ ζννοιεσ Οι προθγοφμενεσ δομζσ που εξετάςτθκαν

Διαβάστε περισσότερα

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο

Διαβάστε περισσότερα

1 ο Διαγώνιςμα για το Α.Ε.Π.Π.

1 ο Διαγώνιςμα για το Α.Ε.Π.Π. 1 ο Διαγώνιςμα για το Α.Ε.Π.Π. Θ Ε Μ Α Α Α 1. Ν α γ ρ ά ψ ε τ ε ς τ ο τ ε τ ρ ά δ ι ό ς α σ τ ο ν α ρ ι κ μ ό κ α κ ε μ ι ά σ α π ό τ ι σ π α ρ α κ ά τ ω π ρ ο τ ά ς ε ι σ 1-8 κ α ι δ ί π λ α τ θ λ ζ ξ

Διαβάστε περισσότερα

= = 124

= = 124 Λζξεισ Κάκε μακθτισ μζςα ςτθν ομάδα κα πρζπει να ζχει μια αρικμομθχανι. Ζνασ μακθτισ κα διαβάηει φωναχτά τουσ αρικμοφσ. Οι υπόλοιποι μακθτζσ κα τουσ γράφουν ςτθν αρικμομθχανι πατϊντασ κάκε φορά το πλικτρο

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Ραραμετροποίθςθ ειςαγωγισ δεδομζνων περιόδων

Ραραμετροποίθςθ ειςαγωγισ δεδομζνων περιόδων Παραμετροποίηςη ειςαγωγήσ δεδομζνων περιόδων 1 1 Περίληψη Το παρόν εγχειρίδιο παρουςιάηει αναλυτικά τθν παραμετροποίθςθ τθσ ειςαγωγισ αποτελεςμάτων μιςκοδοτικϊν περιόδων. 2 2 Περιεχόμενα 1 Ρερίλθψθ...2

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

Ζρευνα ικανοποίθςθσ τουριςτϊν

Ζρευνα ικανοποίθςθσ τουριςτϊν Ζρευνα ικανοποίθςθσ τουριςτϊν Ammon Ovis_Ζρευνα ικανοποίθςθσ τουριςτϊν_ Ραδιοςτακμόσ Flash 96 1 ΣΤΟΙΧΕΙΑ ΔΕΙΓΜΑΤΟΣ Σο δείγμα περιλαμβάνει 332 τουρίςτεσ από 5 διαφορετικζσ θπείρουσ. Οι περιςςότεροι εξ αυτϊν

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ:

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: 1. Ομάδα Ανκρωπιςτικών Σπουδών 2. Ομάδα Οικονομικών, Πολιτικών, Κοινωνικών & Παιδαγωγικών Σπουδών 3. Ομάδα Θετικών

Διαβάστε περισσότερα

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι.

Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι. 1 ο Σετ Ασκήσεων Δομή Επιλογής - Επανάληψης Άςκθςθ 1θ: Ζνα παιχνίδι με ηάρια παίηεται ωσ εξισ: Α. Ο παίκτθσ αρχικά ποντάρει κάποιο ποςό και ρίχνει δφο ηάρια. Β. Ο παίκτθσ κερδίηει (το ποςό που ζχει ποντάρει)

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 4 1. Επιμελητήριο... Error! Bookmark not defined. 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου...

Διαβάστε περισσότερα

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while )

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) 3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) Στα πιο πολλά προγράμματα απαιτείται κάποια ι κάποιεσ εντολζσ να εκτελοφνται πολλζσ φορζσ για όςο ιςχφει κάποια ςυνκικθ. Ο αρικμόσ των επαναλιψεων μπορεί να είναι

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΟΔΘΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ

ΓΕΝΙΚΕΣ ΟΔΘΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΔΛΛΗΝΙΚΗ ΓΗΜΟΚΡΑΣΙΑ ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ, ΔΡΔΤΝΑ ΚΑΙ ΘΡΗΚΔΤΜΑΣΩΝ ----- Βαζκόο Αζθαιείαο: Να δηαηεξεζεί κέρξη: Βαζ. Πξνηεξαηόηεηαο: ΓΔΝΙΚΗ ΓΙΔΤΘΤΝΗ ΠΟΤΓΩΝ Π/ΘΜΙΑ ΚΑΙ Γ/ΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΓΙΔΤΘΤΝΗ ΠΟΤΓΩΝ, ΠΡΟΓΡΑΜΜΑΣΩΝ

Διαβάστε περισσότερα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ Οδηγός Χρήσης Εφαρμογής Ελέγχου Προσφορών Αφοφ πιςτοποιθκεί ο λογαριαςμόσ που δθμιουργιςατε ςτο πρόγραμμα ωσ Πάροχοσ Προςφορϊν, κα λάβετε ζνα e-mail με

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ

3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 1 2 3 4 5 6 7 Παραπάνω φαίνεται θ χαρακτθριςτικι καμπφλθ μετάβαςθσ δυναμικοφ (voltage transfer characteristic) για ζναν αντιςτροφζα,

Διαβάστε περισσότερα

Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7)

Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7) Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων (v.1.0.7) 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ ςτθλών βιβλίου Εςόδων - Εξόδων.

Διαβάστε περισσότερα

Επαναλθπτικζσ Αςκιςεισ

Επαναλθπτικζσ Αςκιςεισ Επαναλθπτικζσ Αςκιςεισ Αςκιςεισ Ρίνακεσ Τιμϊν Άσκηση 1 η Γίλεηαη o παξαθάησ αιγόξηζκνο, ζηνλ νπνίν έρνπλ αξηζκεζεί νη εληνιέο εθρώξεζεο: Αιγόξηζκνο Πνιιαπιαζηαζκόο Γεδνκέλα //α,β// Αλ α > β ηόηε αληηκεηάζεζε

Διαβάστε περισσότερα

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v )

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v ) Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών (v.1. 0.7) 1 Περίλθψθ Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ Εκτφπωςθσ

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Διδάςκων: Κωνςταντίνοσ τεφανίδθσ

Διδάςκων: Κωνςταντίνοσ τεφανίδθσ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΧΟΛΗ ΘΕΣΙΚΩΝ ΕΠΙΣΗΜΩΝ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΤΠΟΛΟΓΙΣΩΝ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗ ΗΤ-564 ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΣΑ ΕΠΙΚΟΙΝΩΝΙΑ ΑΝΘΡΩΠΟΤ - ΜΗΧΑΝΗ Διδάςκων: Κωνςταντίνοσ τεφανίδθσ τόχοσ τθσ ςυγκεκριμζνθσ εργαςίασ

Διαβάστε περισσότερα

1 θ διάλεξθ Παρουςίαςθ του μακιματοσ

1 θ διάλεξθ Παρουςίαςθ του μακιματοσ 1 θ διάλεξθ Παρουςίαςθ του μακιματοσ 1 2 3 4 5 6 7 Παραπάνω φαίνεται θ χαρακτθριςτικι καμπφλθ μετάβαςθσ δυναμικοφ (voltage transfer characteristic) για ζναν αντιςτροφζα, και φαίνεται θ διαδικαςία εξαγωγισ

Διαβάστε περισσότερα

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3)

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Το όνομα ενόσ πίνακα, όπωσ και κάκε άλλου αντικειμζνου, μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Το όνομα ενόσ πεδίου μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Κάκε

Διαβάστε περισσότερα

Βάρειπ Δεδξμέμωμ. Επγαστήπιο ΙΙ. Τμήμα Πλεπουοπικήρ ΑΠΘ

Βάρειπ Δεδξμέμωμ. Επγαστήπιο ΙΙ. Τμήμα Πλεπουοπικήρ ΑΠΘ Βάρειπ Δεδξμέμωμ Επγαστήπιο ΙΙ Τμήμα Πλεπουοπικήρ ΑΠΘ 2016-2017 2 Σκξπόπ ςξσ 2 ξσ εογαρςηοίξσ Σκοπόρ αςτού τος επγαστεπίος είναι: Η μελέτε επωτεμάτων σε μία μόνο σσέσε. Εξετάδοςμε τοςρ τελεστέρ επιλογήρ

Διαβάστε περισσότερα

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1 Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΧΑΜΗΛΩΝ ΕΡΑΝΑΛΗΨΕΩΝ: ΕΡΙΛΕΞΤΕ ΜΙΑ ΑΝΤΙΣΤΑΣΗ, ΕΤΣΙ ΩΣΤΕ ΝΑ ΕΘΕΤΕ ΣΕ ΕΞΑΝΤΛΗΣΗ ΣΕ 8-10 ΕΡΑΝΑΛΗΨΕΙΣ

ΑΣΚΗΣΕΙΣ ΧΑΜΗΛΩΝ ΕΡΑΝΑΛΗΨΕΩΝ: ΕΡΙΛΕΞΤΕ ΜΙΑ ΑΝΤΙΣΤΑΣΗ, ΕΤΣΙ ΩΣΤΕ ΝΑ ΕΘΕΤΕ ΣΕ ΕΞΑΝΤΛΗΣΗ ΣΕ 8-10 ΕΡΑΝΑΛΗΨΕΙΣ (ΔΕΙΤΕ ΡΩΤΑ ΤΙΣ ΑΣΚΗΣΕΙΣ ΡΟΥ ΡΟΤΕΙΝΟΝΤΑΙ ΑΚΙΒΩΣ ΑΡΟ ΚΑΤΩ, ΚΑΙ ΣΤΗ ΣΥΝΕΧΕΙΑ -ΚΑΤΩ ΑΡΟ ΤΟΥΣ ΡΙΝΑΚΕΣ, ΔΕΙΤΕ ΤΟΝ ΤΟΡΟ ΕΚΤΕΛΕΣΗΣ ΤΟΥΣ ΣΕ ΕΙΚΟΝΕΣ. ΑΡΟ ΚΑΤΩ ΣΤΟ ΤΕΛΟΣ, ΑΚΟΛΟΥΘΟΥΝ ΧΗΣΙΜΕΣ ΟΔΗΓΙΕΣ ΚΑΙ ΜΕΘΟΔΟΙ).

Διαβάστε περισσότερα

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO Το Micro Worlds Pro είναι ζνα ολοκλθρωμζνο περιβάλλον προγραμματιςμοφ. Χρθςιμοποιεί τθ γλϊςςα προγραμματιςμοφ Logo (εξελλθνιςμζνθ) Το Micro Worlds Pro περιλαμβάνει

Διαβάστε περισσότερα

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα, Ενδεικτική Οργάνωςη Ενοτήτων Α Σάξη Α/ Μαθηματικό περιεχόμενο Δείκτεσ Επιτυχίασ Ώρεσ Α Διδ. 1 ΕΝΟΣΗΣΑ 1 Αλ1.1 υγκρίνουν και ταξινομοφν αντικείμενα ςφμφωνα με κάποιο χαρακτθριςτικό/κριτιριο/ιδιότθτά Ομαδοποίθςθ,

Διαβάστε περισσότερα

Εύρεςη Διαμέςου ςε κατανεμημένα δεδομένα με ΜΡΙ

Εύρεςη Διαμέςου ςε κατανεμημένα δεδομένα με ΜΡΙ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Τ ΑΠΘ ΣΟΜΕΑ ΗΛΕΚΣΡΟΝΙΚΗ ΚΑΙ Η/Τ Εύρεςη Διαμέςου ςε κατανεμημένα δεδομένα με ΜΡΙ Παράλλθλα και Διανεμθμζνα υςτιματα 2θ Εργαςία Μόςχογλου τυλιανόσ(697) - Καηά

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν Παράλλθλεσ Διεργαςίεσ (1/5) Δφο διεργαςίεσ λζγονται «παράλλθλεσ» (concurrent) όταν υπάρχει ταυτοχρονιςμόσ, δθλαδι οι εκτελζςεισ τουσ επικαλφπτονται

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

Πωσ δθμιουργώ φακζλουσ;

Πωσ δθμιουργώ φακζλουσ; Πωσ δθμιουργώ φακζλουσ; Για να μπορζςετε να δθμιουργιςετε φακζλουσ ςτο χαρτοφυλάκιό ςασ ςτο Mahara κα πρζπει να μπείτε ςτο ςφςτθμα αφοφ πατιςετε πάνω ςτο ςφνδεςμο Mahara profiles από οποιοδιποτε ςελίδα

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ

Διαχείριςθ του φακζλου public_html ςτο ΠΣΔ Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ Οι παρακάτω οδθγίεσ αφοροφν το χριςτθ webdipe. Για διαφορετικό λογαριαςμό χρθςιμοποιιςτε κάκε φορά το αντίςτοιχο όνομα χριςτθ. = πατάμε αριςτερό κλικ ςτο Επιςκεφκείτε

Διαβάστε περισσότερα

DIOSCOURIDES VERSION

DIOSCOURIDES VERSION DIOSCOURIDES VERSION 2.15.29 ΑΛΛΑΓΗ ΥΠΑ ΚΑΙ & ΕΠΑΝΤΠΟΛΟΓΙΜΟ ΛΙΑΝΙΚΗ ΣΙΜΗ ΠΑΡΑΥΑΡΜΑΚΩΝ Για τθν τροποποίθςθ των παραπάνω ςτοιχείων ςτθ νζα ζκδοςθ ςασ δίνουμε τθ δυνατότθτα να αλλάξετε το ΦΠΑ και τθ λιανικι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την

Διαβάστε περισσότερα

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων) 1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΓΩΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Όνομα. Ημερομηνία. Ζήτημα Α : Να βάλετε ςε κφκλο τθ ςωςτι απάντθςθ 1. Κυτταρικόσ κφκλοσ είναι το χρονικό διάςτθμα που μεςολαβεί: α. μεταξφ δφο μιτωτικϊν

Διαβάστε περισσότερα

Αναφορά Εργαςίασ Nim Game

Αναφορά Εργαςίασ Nim Game Αναφορά Εργαςίασ Nim Game Αυτόνομοι Πράκτορεσ (ΠΛΗ 513) Βαγενάσ Σωτιριοσ 2010030034 Ειςαγωγή Για τθν εργαςία του μακιματοσ αςχολικθκα με το board game Nim. Ρρόκειται για ζνα παιχνίδι δφο παιχτϊν (2-player

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Εφαρμογές σε ταξινομήσεις και αναζήτηση στοιχείων Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα

Διαβάστε περισσότερα

Δυαδικοσ πολλαπλαςιαςμοσ και διαιρεςη ακεραιων

Δυαδικοσ πολλαπλαςιαςμοσ και διαιρεςη ακεραιων Δυαδικοσ πολλαπλαςιαςμοσ και διαιρεςη ακεραιων Δρ. Χρήστος Ηλιούδης Πολλαπλαςιαςμόσ μη προςημαςμζνων ακεραίων βρίςκουμε ζνα άκροιςμα το οποίο αποτελείται από μετατοπιςμζνα γινόμενα, τα οποία προζκυψαν

Διαβάστε περισσότερα

Ενδεικτικζσ Λφςεισ Θεμάτων

Ενδεικτικζσ Λφςεισ Θεμάτων c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.

Διαβάστε περισσότερα

Βαςεις δεδομενων 1. Δρ. Αλζξανδροσ Βακαλουδθσ

Βαςεις δεδομενων 1. Δρ. Αλζξανδροσ Βακαλουδθσ Βαςεις δεδομενων 1 Δρ. Αλζξανδροσ Βακαλουδθσ επικοινωνια Email: avakaloudis@hotmail.com Website: http://teiser.alvak.gr Ερωτιςεισ Στο ΤΕΙ Σερρϊν Δευτζρα, Τριτθ (κατοπιν ςυννενόθςθσ) Σιμερα Μοντζλο οντοτιτων

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ Φιλιοποφλου Ειρινθ Βάςθ Δεδομζνων Βάζη δεδομένων είναι μια οπγανωμένη ζςλλογή πληποθοπιών οι οποίερ πποζδιοπίζοςν ένα ζςγκεκπιμένο θέμα.χπηζιμεύοςν ζηην Σςλλογή

Διαβάστε περισσότερα

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά Τα νύλιμα! ΧΟΡΗΓΟΣ Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά τα ξφλινα! 1. Γιατί τα λζμε ξφλινα πνευςτά; Πνευςτά ονομάηονται τα όργανα ςτα οποία ο ιχοσ παράγεται μζςα ςε ζνα ςωλινα απ όπου περνάει ο

Διαβάστε περισσότερα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΔΕΤΣΕΡΑ 8 ΜΑΪΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΣΙΚΑ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ ΤΝΟΛΟ ΕΛΙΔΩΝ: ΣΕΕΡΙ A. Ζςτω μια ςυνάρτθςθ f θ

Διαβάστε περισσότερα

Ο ήχοσ ωσ φυςικό φαινόμενο

Ο ήχοσ ωσ φυςικό φαινόμενο Ο ήχοσ ωσ φυςικό φαινόμενο Φφλλο Εργαςίασ Ονοματεπώνυμο. Παραγωγή και διάδοςη του ήχου Ήχοσ παράγεται όταν τα ςωματίδια κάποιου υλικοφ μζςου αναγκαςκοφν να εκτελζςουν ταλάντωςθ. Για να διαδοκεί ο ιχοσ

Διαβάστε περισσότερα

Εργαςτιριο Πικανοτιτων Σθμειϊςεισ προγραμματιςμοφ: βαςικζσ γνϊςεισ ανάπτυξθσ εφαρμογϊν. Κϊςτασ Αρβανιτάκθσ

Εργαςτιριο Πικανοτιτων Σθμειϊςεισ προγραμματιςμοφ: βαςικζσ γνϊςεισ ανάπτυξθσ εφαρμογϊν. Κϊςτασ Αρβανιτάκθσ Εργαςτιριο Πικανοτιτων Σθμειϊςεισ προγραμματιςμοφ: βαςικζσ γνϊςεισ ανάπτυξθσ εφαρμογϊν Κϊςτασ Αρβανιτάκθσ Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του

Διαβάστε περισσότερα

assessment.gr USER S MANUAL (users)

assessment.gr USER S MANUAL (users) assessment.gr USER S MANUAL (users) Human Factor January 2010 Περιεχόμενα 1. Γενικζσ οδθγίεσ ςυςτιματοσ... 3 1.1 Αρχικι ςελίδα... 3 1.2 Ερωτθματολόγια... 6 1.2.1 Τεςτ Γνϊςεων Γενικοφ Ρεριεχομζνου... 6

Διαβάστε περισσότερα

groupsms Interface: Εργαλείο μαζικών αποζηολών SMS

groupsms Interface: Εργαλείο μαζικών αποζηολών SMS groupsms Interface: Εργαλείο μαζικών αποζηολών SMS Έκδοζη: 27 Μαρηίου 2012 Τποδομι groupsms: Γενικά Πλεονεκτιματα Βελτιςτοποιθμζνθ διαδικαςία SMS αποςτολϊν Μαηικζσ αποςτολζσ μζςω πολλαπλϊν γραμμϊν που

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Αντώνησ Κ Μαώργιώτησ

Εισαγωγικές έννοιες. Αντώνησ Κ Μαώργιώτησ Εισαγωγικές έννοιες Αντώνησ Κ Μαώργιώτησ Έννοιεσ που πρϋπει να επιβεβαιώςουμε ότι τισ ξϋρουμε (1) - αναζότηςη Ιςτοςελίδα Αρχείο που περιζχει πλθροφορίεσ προοριςμζνεσ για δθμοςίευςθ ςτο Παγκόςμιο Ιςτό (www).

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων

Διαβάστε περισσότερα

3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ

3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 1) Τίτλοσ τθσ ζρευνασ: «Ποια είναι θ επίδραςθ τθσ κερμοκραςίασ ςτθ διαλυτότθτα των ςτερεϊν ςτο νερό;» 2) Περιγραφι του ςκοποφ τθσ ζρευνασ: Η ζρευνα

Διαβάστε περισσότερα

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox 03 05 ΙΛΤΔΑ ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε. αρμά Ιηαμπζλλα Βαρλάμθσ Νίκοσ Ειςαγωγι... 1 Σι είναι το Databox...... 1 Πότε ανανεϊνεται...... 1 Μπορεί να εφαρμοςτεί

Διαβάστε περισσότερα

Διαγώνισμα χημείας Κεφ. 1 ο & 2 Ο. Ον/μο:.. Ημ/νια:.. Θέμα1

Διαγώνισμα χημείας Κεφ. 1 ο & 2 Ο. Ον/μο:.. Ημ/νια:.. Θέμα1 Διαγώνισμα χημείας Κεφ. 1 ο & 2 Ο Ον/μο:.. Ημ/νια:.. Θέμα1 Α) Να χαπακηηπίζεηε ηιρ πποηάζειρ ωρ ζωζηέρ ή λάθορ και να δικαιολογήζεηε ηην επιλογή ζαρ: a. Όταν πρόκειται να ενωκοφν δυο άτομα, τα θλεκτρόνια

Διαβάστε περισσότερα

Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects

Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects Ειςαγωγή κοπόσ αυτοφ του κειμζνου είναι να δϊςει ςφντομεσ οδθγίεσ για τθν επεξεργαςία των ςελίδων του wiki τθσ ερευνθτικισ εργαςίασ. Πλιρθσ οδθγόσ για

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Ιούνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Περιφζρεια... 3 1.1 Διαχειριςτήσ Αιτήςεων Περιφζρειασ... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική

Διαβάστε περισσότερα

ΡΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΧΕΣ ΟΓΑΝΩΣΗΣ & ΔΙΟΙΚΗΣΗΣ ΕΡΙΧΕΙΗΣΕΩΝ & ΥΡΗΕΣΙΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΡΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΧΕΣ ΟΓΑΝΩΣΗΣ & ΔΙΟΙΚΗΣΗΣ ΕΡΙΧΕΙΗΣΕΩΝ & ΥΡΗΕΣΙΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΡΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΧΕΣ ΟΓΑΝΩΣΗΣ & ΔΙΟΙΚΗΣΗΣ ΕΡΙΧΕΙΗΣΕΩΝ & ΥΡΗΕΣΙΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Α1. Να χαρακτηρίςετε τισ προτάςεισ που ακολουθοφν, γράφοντασ ςτο τετράδιό ςασ, δίπλα

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Παραςκευι 11-13

Διαβάστε περισσότερα

ΟΜΑΔΑ: ΘΕΟΚΛΗΣΩ-ΑΝΣΡΕΑ-ΝΕΦΕΛΗ

ΟΜΑΔΑ: ΘΕΟΚΛΗΣΩ-ΑΝΣΡΕΑ-ΝΕΦΕΛΗ 29/9/2014 το μάκθμα τθσ ευζλικτθσ ηϊνθσ,τα παιδιά χωρίςτθκαν ςε ομάδεσ και ζφτιαξαν τθν δικι τουσ ηωγραφιά χρθςιμοποιϊντασ γεωμετρικά ςχιματα. ΟΜΑΔΑ: ΘΕΟΚΛΗΣΩ-ΑΝΣΡΕΑ-ΝΕΦΕΛΗ ΤΜΜΕΣΡΙΑ: 10 ΚΑΙ 13 ΟΚΣΩΒΡΙΟΤ

Διαβάστε περισσότερα

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f. .. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται

Διαβάστε περισσότερα

Αυτόματη δημιουργία στηλών Αντιστοίχηση νέων λογαριασμών ΦΠΑ

Αυτόματη δημιουργία στηλών Αντιστοίχηση νέων λογαριασμών ΦΠΑ Αυτόματη δημιουργία στηλών Αντιστοίχηση νέων λογαριασμών ΦΠΑ 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δημιουργήθηκε για να βοηθήςει την κατανόηςη τησ διαδικαςίασ αυτόματησ δημιουργίασ ςτηλών και αντιςτοίχιςησ

Διαβάστε περισσότερα

Διορκώνω τισ εργαςίεσ των ςυμφοιτθτών μου

Διορκώνω τισ εργαςίεσ των ςυμφοιτθτών μου Διορκώνω τισ εργαςίεσ των ςυμφοιτθτών μου Ένασ φοιτητήσ έγραψε ςτην αναφορά του το παρακάτω: Κατά τθ γνώμθ μου θ πλθροφορία για τισ επιχειριςεισ λαμβάνει πολφ ςθμαντικό ρόλο. Κατά τθ γνώμθ μου, ο ρόλοσ

Διαβάστε περισσότερα

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί

Διαβάστε περισσότερα

Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε:

Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε: ΔΟΜΗ ΑΠΟΦΑΗ Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε: Όταν το if που χρθςιμοποιοφμε παρζχει μόνο μία εναλλακτικι διαδρομι εκτζλεςθ, ο τφποσ δομισ

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου) ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου) 19 Μαρτίου 011 10:00-11:15 3 point/μονάδες 1) Μια διάβαςθ πεηϊν ζχει άςπρεσ και μαφρεσ λωρίδεσ, πλάτουσ 50 cm. ε ζνα δρόμο θ διάβαςθ ξεκινά και τελειϊνει με άςπρεσ

Διαβάστε περισσότερα

TIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ

TIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ www.timproject.eu www.tim.project-platform.eu TIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ This project has been founded with support form the European Commission. This presentation reflects the

Διαβάστε περισσότερα

Οδηγίες Πρόζβαζης ζηο EndNote Web. Πρόζβαζη ζηο EndNote Web

Οδηγίες Πρόζβαζης ζηο EndNote Web. Πρόζβαζη ζηο EndNote Web Οδηγίες Πρόζβαζης ζηο EndNote Web Το EndNote Web είναι εργαλείο διαχείριςθσ βιβλιογραφικϊν αναφορϊν, ενςωματωμζνο ςτθ βάςθ Web of Science. Απαιτείται εγγραφι και δθμιουργία password (Sign in / Register)

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ Ειρινθ Φιλιοποφλου Ειςαγωγι Ο Παγκόςμιοσ Ιςτόσ (World Wide Web - WWW) ι πιο απλά Ιςτόσ (Web) είναι μία αρχιτεκτονικι για τθν προςπζλαςθ διαςυνδεδεμζνων εγγράφων

Διαβάστε περισσότερα

Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ

Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ Δεκζμβριοσ 2016 Άςκθςθ 1 Θεωρείςτε ότι κζλουμε να διαγράψουμε τθν τιμι 43 ςτο Β+ δζντρο τθσ Εικόνασ 1. Η διαγραφι αυτι προκαλεί

Διαβάστε περισσότερα

NH 2 R COOH. Σο R είναι το τμιμα του αμινοξζοσ που διαφζρει από αμινοξφ ςε αμινοξφ. 1 Πρωτεΐνες

NH 2 R COOH. Σο R είναι το τμιμα του αμινοξζοσ που διαφζρει από αμινοξφ ςε αμινοξφ. 1 Πρωτεΐνες 1 Πρωτεΐνες Πρωτεΐνεσ : Οι πρωτεΐνεσ είναι ουςίεσ «πρώτθσ» γραμμισ για τουσ οργανιςμοφσ (άρα και για τον άνκρωπο). Σα κφτταρα και οι ιςτοί αποτελοφνται κατά κφριο λόγο από πρωτεΐνεσ. Ο ςθμαντικότεροσ όμωσ

Διαβάστε περισσότερα

Σθλεςκόπιο. Ιςτορία. Σο τθλεςκόπιο εφευρζκθκε το 1608 ςτθν Ολλανδία και θ αρχικι

Σθλεςκόπιο. Ιςτορία. Σο τθλεςκόπιο εφευρζκθκε το 1608 ςτθν Ολλανδία και θ αρχικι Σθλεςκόπιο Σο τθλεςκόπιο είναι ζνα όργανο ςχεδιαςμζνο για τθν παρατιρθςθ μακρινϊν αντικειμζνων μζςω τθσ ςυλλογισ θλεκτρομαγνθτικισ ακτινοβολίασ. Σα πρϊτα γνωςτά ςχεδόν λειτουργικά τθλεςκόπια ανακαλφφκθκαν

Διαβάστε περισσότερα

16. Πίνακεσ και Συναρτήςεισ

16. Πίνακεσ και Συναρτήςεισ Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 16. Πίνακεσ και Συναρτήςεισ Ιωάννθσ Κατάκθσ Σιμερα o Κλιςθ με τιμι o Κλιςθ με αναφορά o Πίνακεσ και ςυναρτιςεισ o Παραδείγματα Ειςαγωγι o Στισ προθγοφμενεσ

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Επανάληψη σε συναρτήσεις Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο

Διαβάστε περισσότερα

Το γλωςςικό μάθημα. διδαςκαλία τησ γλώςςασ με τη βοήθεια του υπολογιςτή. 1. Ειςαγωγικά ςτοιχεία

Το γλωςςικό μάθημα. διδαςκαλία τησ γλώςςασ με τη βοήθεια του υπολογιςτή. 1. Ειςαγωγικά ςτοιχεία Το γλωςςικό μάθημα διδαςκαλία τησ γλώςςασ με τη βοήθεια του υπολογιςτή 1. Ειςαγωγικά ςτοιχεία Στα όςα ακολουκοφν δίνονται οριςμζνεσ ενδεικτικζσ περιπτϊςεισ γλωςςικισ διδαςκαλίασ (ςυγκεκριμζνα: διδαςκαλία

Διαβάστε περισσότερα

Virtualization. Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format.

Virtualization. Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format. Virtualization Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format. Το virtualization πρόκειται για μια τεχνολογία, θ οποία επιτρζπει το διαχωριςμό

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Θ: διάλεξη (θεωρία)

Διαβάστε περισσότερα