Θεωρι α Γραφημα των 7η Δια λεξη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρι α Γραφημα των 7η Δια λεξη"

Transcript

1 Θεωρι α Γραφημα των 7η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

2 Hamiltonian γραφη ματα κύκλος Hamilton: Έστω γρα φημα G. Ένας κυ κλος του G ο οποι ος διε ρχεται απο ο λες τις κορυφε ς του G ονομα ζεται κύκλος Hamilton Hamilton γράφημα: Ένα γρα φημα το οποι ο περιε χει κυ κλο Hamilton ονομα ζεται Hamiltonian γράφημα μονοπάτι Hamilton: Έστω γρα φημα G. Ένα μονοπα τι του G το οποι ο διε ρχεται απο ο λες τις κορυφε ς του G ονομα ζεται μονοπάτι Hamilton Sir William Rowan Hamilton[1857] Δωδεκα εδρο 20 κορυφε ς 3-κανονικο Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

3 Παρα δειγμα: Το γρα φημα Herschel 11 κορυφε ς Διμερε ς Το γρα φημα Herschel δεν ει ναι Ηamiltonian Απόδειξη : Εα ν η ταν Hamiltonian, ο κυ κλος Hamilton θα ει χε 11 ακμε ς. Αυτο ο μως ει ναι αδυ νατο γιατι οι κυ κλοι σε κα θε διμερε ς γρα φημα ε χουν α ρτιο αριθμο ακμω ν. Παρα δειγμα: Ο υπερκυ βος r-διαστα σεων H r, r 2 ει ναι Hamiltonian H 2 H 3 H r Αναδρομικη κατασκευη Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

4 Θεώρημα 7.1: Έστω συνεκτικο γρα φημα G. Εα ν το G ει ναι Hamiltonian, το τε για κα θε μη-κενο υποσυ νολο S του V(G) ισχυ ει ο τι cc(g S) S, ο που cc( ) συμβολι ζει τον αριθμο των συνεκτικω ν συνιστωσω ν ενο ς γραφη ματος. Απόδειξη : Έστω C ε νας Hamiltonian κυ κλος του G Για κα θε μη-κενο S V(G) ισχυ ει ο τι: cc(c S) S (1) Η ισο τητα ισχυ ει για κα ποιο συ νολο S, στην παρακα τω περι πτωση: Έστω S = {v 0, v 1,..., v k } ο που οι κορυφε ς του S δεν ει ναι διαδοχικε ς στον κυ κλο C Έστω C i, 0 i k το τμη μα του κυ κλου C ανα μεσα στις κορυφε ς v i και v i+1 mod k+1 Δεν υπα ρχει ακμη του G η οποι α ενω νει δυ ο διαφορετικα τμη ματα C i και C j του κυ κλου C. Το C S ει ναι παραγο μενο υπογρα φημα του G S cc(g S) cc(c S) Απο (1) cc(g S) S Το Θεω ρημα 7.1 περιγρα φει μια ΑΝΑΓΚΑΙΑ συνθη κη για να ει ναι ε να γρα φημα Hamiltonian. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

5 Παρα δειγμα: Το παρακα τω γρα φημα δεν ει ναι Hamiltonian a b c a c G : d e f S={b,c,f,h} G S e g h i g i Συ μφωνα με το Θεω ρημα 7.1, για το S = {b, c, f, h} πρε πει να ισχυ ει cc(g S) S = 4 Αλλα cc(g S) = 5 Ο G δεν ει ναι Hamiltonian. Θεώρημα 7.2[Dirac-1952]: Έστω G ε να απλο γρα φημα με V(G) 3 και δ(g) V(G) 2. Το τε το G ει ναι Hamiltonian Απόδειξη [Απαγωγή σε άτοπο]: Έστω G ε να μεγιστοτικο (maximal) μη-hamiltonian απλο γρα φημα με V(G) 3 και δ(g) V(G) 2. Το G δεν ει ναι πλη ρες [γιατι V(G) 3] Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

6 Έστω u, v δυ ο μη γειτονικε ς κορυφε ς του G G {u, v} ει ναι Hamiltonian γιατι το G ει ναι μεγιστοτικο μη-hamiltonian γρα φημα Λο γω του ο τι το G ει ναι μη-hamiltonian, κα θε Hamiltonian κυ κλος του G {u, v} περιε χει την ακμη (u, v) Έστω u = v 1, v 2,..., v n = v, n = V(G) ε νας Hamiltonian κυ κλος του G {u, v} Ο G ε χει Hamiltonian μονοπα τι P : u = v 1, v 2,..., v n = v με α κρα τις κορυφε ς u και v Όλοι οι γει τονες των u και v ανη κουν στο P u = v 1 v 2 v i 1 v i v i+1 v n 1 v n = v Υπα ρχει κορυφη v i, i 3: (u, v i ) E(G) (v i+1, v) E(G) [Εα ν δεν υπη ρχε, το τε για κα θε γει τονα του u θα υπη ρχε μια διακριτη κορυφη με την οποι α ο v δεν ει ναι ενωμε νος. Λο γω του ο τι d(u) n 2 ο v θα ει χε βαθμο d(v) (n 1) d(u) (n 1) n 2 = n 2 1. άτοπο γιατι d(v) n 2 ] Ο κυ κλος v 1 v 2... v i 1 v n v n 1... v i+1 v i v 1 ει ναι Hamiltonian κυ κλος του G άτοπο, γιατι ο G ει ναι μη Hamiltonian απο την υπο θεση Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

7 Θεώρημα 7.3[Ore-1960]: Έστω G ε να απλο γρα φημα με V(G) 3 και για κα θε ζευ γος u, v V(G) μη γειτονικω ν κορυφω ν ισχυ ει ο τι d(u) + d(v) V(G). Το τε το G ει ναι Hamiltonian Απόδειξη [Ίδια με αυτή του Θεωρήματος Dirac]: Το G ει ναι συνεκτικο [Εα ν δεν η ταν, ε στω v 1 και v 2 δυ ο κορυφε ς σε διαφορετικε ς συνιστω σες του. Το τε d(v 1 ) + d(v 2 ) V(G) 2 άτοπο] Έστω G ε να μεγιστοτικο μη-hamiltonian γρα φημα για το οποι ο ισχυ ει ο τι V(G) 3 και u, v : (u, v) / E(G), d(u) + d(v) V(G) V(G) 3 Το G δεν ει ναι πλη ρες γρα φημα Υπα ρχουν u, v V(G) : (u, v) / E(G) G {u, v} ει ναι Hamiltonian Υπα ρχει Hamiltonian μονοπα τι u = v 1, v 2,..., v n = v, n = V(G) στον G d(u) + d(v) V(G) max {d(u), d(v)} V(G). Έστω d(u) V(G) 2 2 Όλοι οι γει τονες των u και v ανη κουν στο μονοπα τι u = v 1 v 2 v i 1 v i v i+1 v n 1 v n = v Υπα ρχει κορυφη v i, i 3: (u, v i ) E(G) (v i 1, v) E(G) [Εα ν δεν υπη ρχε, το τε για κα θε γει τονα του u θα υπη ρχε μια κορυφη με την οποι α δεν γειτονευ ει ο v. Το τε d(v) (n 1) d(u) d(v) + d(u) n 1. άτοπο] Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

8 Ο κυ κλος v 1 v 2... v i 1 v n v n 1... v i+1 v i v 1 ει ναι hamiltonian κλυ κλος στο G. άτοπο γιατι υποθε σαμε ο τι ο G ει ναι μη-hamiltonian. Θεώρημα 7.4[Bondy, Chvatal-1974]: Σημείωση: Το Θεω ρημα του Dirac μπορει να εξαχθει ως α μεση συνε πεια του Θεωρη ματος του Ore. Έστω απλο γρα φημα G με V(G) 3 και ε στω u, v μη γειτονικε ς κορυφε ς του με d(u) + d(v) V(G). Το τε το G ει ναι Hamiltonian ανν το G (u, v) ει ναι Hamiltonian Απόδειξη : Προφανε ς Έστω ο τι το G (u, v) ει ναι Hamiltonian αλλα το G ο χι. Το τε η ι δια απο δειξη με το θεω ρημα του Dirac [η του Ore] κατασκευα ζει Hamiltonian κυ κλο για το G και οδηγει σε άτοπο Σημείωση: Το Θεω ρημα του Ore μπορει να εξαχθει ως συνε πεια του Θεωρη ματος των Bondy-Chvatal. Εα ν ο λες οι μη γειτονικε ς κορυφε ς ε χουν α θροισμα βαθμω ν V(G) θα καταλη ξουμε στο ο τι G ει ναι Hamiltonian K V(G) ει ναι Hamiltonian το οποι ο ισχυ ει Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

9 Επέκταση (closure) ως προς το άθροισμα βαθμών: Παρα δειγμα: Έστω το γρα φημα G. Το γρα φημα c(g) που σχηματι ζεται ο ταν ενω σουμε αναδρομικα ζευ γη μη γειτονικω ν κορυφω ν που ε χουν α θροισμα βαθμω ν V(G) ε ως ο του δεν υπα ρχουν τε τοια ζευ γη κορυφω ν, ονομα ζεται επέκταση του ως προς το άθροισμα βαθμών c(g) = K 6 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

10 Θεώρημα 7.5: Έστω γρα φημα G. Η επε κταση c(g) (ως προς το α θροισμα βαθμω ν) του G ει ναι καλω ς ορισμε νη. Απόδειξη : Έστω G 1 και G 2 δυ ο γραφη ματα που προκυ πτουν προσθε τοντας αναδρομικα ακμε ς μεταξυ μη γειτονικω ν κορυφω ν με α θροισμα βαθμω ν V(G) Θα δει ξουμε ο τι G 1 = G 2 Έστω S 1 = e 1 1 e e1 k η ακολουθι α ακμω ν που παρα γει απο το G το G 1 Έστω S 2 = e 2 1 e2 2 {... e2 l η ακολουθι α ακμω ν που παρα γει απο το G το G 2 Θα δει ξουμε ο τι e 1 1, e1 2 k} {,..., e1 E(G2 ) και e 2 1, e2 2 l},..., e2 E(G1 ) Έστω e 1 i η πρω τη ακμη της S 1 που δεν { ανη κει στο} E(G 2 ) Σχηματι ζουμε το γρα φημα H = G e 1 1,..., e1 i 1 H G 1 d H (u) + d H (v) V(G) [απο τον ορισμο του G 1 ] H G 2 [γιατι ο λες οι ακμε ς e 1 1, e1 2,..., e1 i 1 ανη κουν στο G 2] d G2 (u) + d G2 (v) < n [γιατι e 1 i = (u, v) / E(G 2 )] άτοπο Άρα, κα θε ακμη της S 1 ανη κει στο G 2 και, ο μοια, κα θε ακμη της S 2 ανη κει στο G 1 Άρα G 1 = G 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

11 Θεώρημα 7.6: Έστω απλο γρα φημα G. Το G ει ναι Hamiltonian ανν η επε κταση c(g) ως προς το α θροισμα βαθμω ν του G ει ναι Hamiltonian. Απόδειξη [Προκύπτει από το Θεώρημα 7.4 [Bondy-Chvatal]]: Έστω S = e 1 e 2... e k η ακολουθι α ακμω ν που δημιουργει την επε κταση c(g) απο το G Στο i-οστο βη μα προσθε τουμε την ακμη e i ε ως ο του σχηματιστει η επε κταση c(g) Πόρισμα 7.7: Εα ν η επε κταση c(g) ως προς το α θροισμα βαθμω ν ενο ς γραφη ματος G ει ναι πλη ρες γρα φημα, το τε το G ει ναι Hamiltonian. Απόδειξη : Προκυ πτει απο το Θεω ρημα 7.6 και το γεγονο ς ο τι το πλη ρες γρα φημα K n, n 3 ει ναι Hamiltonian. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

12 Θεώρημα 7.8[Chvatal, 1972]: Έστω απλο γρα φημα G με ακολουθι α βαθμω ν (d 1, d 2,..., d n ) ο που n = V(G) 3 και d 1 d 2 d n. Έστω ο τι δεν υπα ρχει m n 2 τε τοιο ω στε dm m και d n m < n m Το τε το G ει ναι Hamiltonian. Σημείωση: Η ακολουθι α βαθμω ν στο Θεω ρημα 7.8 ει ναι αυ ξουσα, σε αντι θεση με τη συ μβαση που ακολουθη σαμε στο Κεφα λαιο Βαθμοι κορυφω ν, δηλαδη φθι νουσες γραφικε ς ακολουθι ες Παρα δειγμα u 1 G : H = {v 1, v 2, v 3 }, H = 3 v 1 cc(g H) = 4 > 3 = H Θ. 7.1 == Ο G δεν ει ναι Hamiltonian w 1 ( ) m n 2 = 4 w 2 w 3 v 2 v 3 u 2 u 3 d 3 = 3 3 d 9 3 = d 6 = 5 < 6 Δεν μπορου με vα ισχυριστου με ο τι ει ναι Hamitonian Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

13 Παρα δειγμα (Συνε χεια) G 1 = (G (u 1, v 1 )) (u 1, w 1 ) u 1 Ακολουθι α βαθμω ν: ( ) v 1 w 1 w 2 w 3 v 2 v 3 u 2 u < 5 6 < 6 7 < 7 8 < 8 m = 1 m = 2 m = 3 m = 4 Δεν υπα ρχει m, 1 m n 2 : d m m και d n m < n m Ο G ει ναι Hamiltonian. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

14 Απόδειξη [Θεώρημα 7.8[Chvatal 1972]]: Έστω γρα φημα G που ικανοποιει την υπο θεση. Απο Πο ρισμα 7.7 αρκει να δει ξω ο τι η επε κταση c(g) ει ναι πλη ρες γρα φημα Συμβολι ζουμε με d (V), v V(G), το βαθμο της v στο c(g) Έστω ο τι η επε κταση c(g) δεν ει ναι πλη ρες γρα φημα Έστω u, v δυ ο μη γειτονικε ς στο c(g) κορυφε ς τε τοιες ω στε: d (u) d (v) (1) και d (u) + d (v) με γιστο ως προς ο λα τα ζευ γη μη γειτονικω ν κορυφω ν του c(g) d (u) + d (v) < n (2) [Εξ ορισμου της επε κτασης c(g), κα θε ζευ γος μη γειτονικω ν κορυφω ν του c(g) ε χει α θροισμα βαθμω ν < n] (1), (2) d (u) < n (3) 2 Έστω S v το συ νολο των κορυφω ν του c(g) που δεν ει ναι γειτονικε ς με την v (στο c(g)) Το τε S(v) = n 1 d (v) (4) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

15 V (G) = V (c(g)) v N c(g) (v) {v} S v u N c(g) (u) {u} S u v S v = n 1 d (v) S u = n 1 d (u) Έστω S u το συ νολο κορυφω ν του c(g) που δεν ει ναι γειτονικε ς με την u (στο c(g)). Το τε S(u) = n 1 d (u) (5) Κα θε κορυφη του S v ε χει βαθμο d (u) [Εα ν υπη ρχε κορυφη w S v με d (w) > d (u) το τε, για το ζευ γος μη γειτονικω ν v, w θα ει χαμε: d (v) + d(w) > d (u) + d(w). άτοπο γιατι διαλε ξαμε τα u, v ε τσι ω στε το d (u) + d (v) να ει ναι το μεγαλυ τερο δυνατο ] Κα θε κορυφη του S u {u} ε χει βαθμο d (v) [ο μοια αιτιολο γηση με προηγου μενο ισχυρισμο ] Θε τουμε d (u) = m (6) Οι κορυφε ς του S v ε χουν βαθμο m Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

16 Πλη θος κορυφω ν του S v : (4): S v = n 1 d (v) (2): d (v) = n d (u) (6): d (u) = m S(v) > m 1 S(v) m S v < n 1 (n m) = n 1 n + m = m 1 Υπα ρχουν τουλα χιστον m κορυφε ς με βαθμο m (7) Οι κορυφε ς του S u {u} ε χουν βαθμο d (v) (2) < n d (v) (6) = n m Οι κορυφε ς του S u {u} ε χουν βαθμο < n m Πλη θος των κορυφω ν του S u {u}: S u {u} = 1 + S u (5) = 1 + n 1 d (u) (6) = n m Υπα ρχουν τουλα χιστον n m κορυφε ς με βαθμο < n m (8) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

17 { Το G ει ναι παραγο μενο υπογρα φημα του c(g) === (7)(8) Στο G υπα ρχουν m κορυφε ς με βαθμο m Στο G υπα ρχουν n m κορυφε ς με βαθμο < n m } d m m και d n m < n m. άτοπο γιατι απο (3)(6) ε χουμε ο τι m < n 2 Άρα, το c(g) ει ναι πλη ρες γρα φημα Το G ει ναι Hamiltonian [απο το Πο ρισμα 7.7] Σημείωση: Η συνθη κη του Θεωρη ματος 7.8 δεν ει ναι αναγκαι α συνθη κη για Hamiltonian γραφη ματα. Ακολουθι α βαθμω ν: ( ) d 1 = 2 1 d 2 = 2 2 d 5 2 = d 3 = 3 < 3 Το G ει ναι Hamiltonian Το G δεν ικανοποιει τη συνθη κη του Θεωρη ματος 7.8 Η επε κταση c(g) του G ει ναι πλη ρης (το K 5 )! d 5 1 = d 4 = 3 < 4 m = 1 m = 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

18 Έστω δυ ο ακολουθι ες n πραγματικω ν αριθμω ν P = (p 1,..., p n) και Q = (q 1,..., q n). Λε με ο τι η ακολουθι α Q καλύπτει (ή φράσει από πάνω) την ακολουθι α P αν ισχυ ει ο τι p i q i, 1 i n Έστω γραφη ματα G και H με αυ ξουσες ακολουθι ες βαθμω ν S G και S H αντι στοιχα. Λε με ο τι το γράφημα H καλύπτει βαθμιαία το G αν V(G) = V(H) και η ακολουθι α βαθμω ν S H καλυ πτει την ακολουθι α βαθμω ν S G Παρα δειγμα: G : H : S G : (1, 1, 2, 3, 3) S H = (3, 3, 3, 3, 4) Το H καλυ πτει βαθμιαι α το G Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

19 Το γρα φημα C m,n C m,n = K m ( K m + K n 2m ) 1 m < n 2 : Συ νδεση διακεκριμε νων γραφημα των + : Ένωση διακεκριμε νων γραφημα των Παρα δειγμα: n = 6 m = 1 η m = 2 m = 1 η m = 2 K 1 K 1 K 4 K 2 K 2 K 2 η K 2 K 2 K 2 Λήμμα 7.9: i. V(C m,n) = ( n ) n m ii. E(C m,n ) = 2 + m 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

20 Λήμμα 7.10: Το γρα φημα C m,n ει ναι μη-hamiltonian Απόδειξη : Έστω V 1 το συ νολο κορυφω ν του πλη ρους γραφη ματος K m το οποι ο συνδε εται με το ( K n + K n 2m ) C m,n V 1 = K m + K n 2m cc(c m,n V 1 ) = m + 1 > V 1 Το C m,n δεν πληρει την αναγκαι α συνθη κη του Θεωρη ματος 7.1 ω στε να ει ναι Hamiltonian Θεώρημα 7.11[Chvatal-1972]: Έστω απλο μη-hamiltonian γρα φημα G με V(G) = n 3. Το τε το G καλυ πτεται βαθμιαι α απο κα ποιο C m,n Απόδειξη : Έστω G ε να απλο, μη-hamiltonian γρα φημα και ε στω S G + (d 1,..., d n) η αυ ξουσα ακολουθι α βαθμω ν του. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

21 Θ. 7.8 G μη-hamiltonian == m < n 2 : d m m καιd n m < n m S G = (d 1,..., d m m,..., d n m < n m,..., d n) Η ακολουθι α S G καλυ πτεται βαθμιαι α απο την ακολουθι α S = (m,..., m, n m 1,..., n m 1, n 1,..., n 1) }{{}}{{}}{{} m ο ροι (n 2m) ο ροι m ο ροι Η ακολουθι α S ει ναι ακολουθι α βαθμω ν του C m,n C m,n : K m K n 2m βαθμός κορυφών: K m m m 1 +m +n 2m n 1 n 2m 1 +m n m 1 Σημείωση: Η κλα ση γραφημα των C m,n μπορει να θεωρηθει ως η κλα ση των μεγιστοτικω ν (ως προς τη βαθμιαι α κα λυψη) μη-hamiltonian γραφημα των, δηλαδη, των μη-hamiltonian γραφημα των τα οποι α δεν καλυ πτονται βαθμιαι α απο κα ποιο μη-hamiltonian γρα φημα. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

22 Θεώρημα 7.12[Ore-1961, Bondy-1972]: ( ) n 1 Έστω απλο γρα φημα G με V(G) = n 3 και E(G) > 2 + ( 1 ακμε ς. Το τε το G ει ναι ) n 1 Hamiltonian. Επιπλε ον, τα μο να μη-hamiltonian γραφη ματα με ακμε ς ει ναι τα C 1,n και το C 2,5. Απόδειξη [με άτοπο]: Έστω G απλο, μη-hamiltonian γρα φημα με V(G) = n 3 Το G καλυ πτεται βαθμιαι α ( απο το C m,n [Θεω ρημα 7.11] Λ. 7.9 ) n m E(G) E(C m,n) = ( 2 + m 2 Λ ) n 1 = ( (m 1)(2n 3m 4) 2 n 1) E(G) E(C m,n ) + 1 (1) ( 2 ) n 1 άτοπο γιατι E(G) > το G ει ναι Hamiltonian Στην (1) η ισο τητα ισχυ ει ο ταν (m 1)(2n 3m 4) = 0 m = 1 η (n = 5 και m = 2) ( ) n 1 Τα μο να μη-hamiltonian γραφη ματα με ακμε ς ει ναι τα C1,n, C 2,5 C 1,n : C 2,5 : K n 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

23 Λήμμα 7.13: ( n m 2 ) + m 2 = ( n 1 2 Απόδειξη : ) (m 1)(2n 3m 4) G 1 : G 2 : K m n n 2m K m n n 2m m m m ( n m) E(G 1 ) = + m 2 2 ( m 1) K m 1 E(G 2 ) = E(G 1 ) + 2 (1) (2) G 3 : K m n n 2m m K m 1 E(G 3 ) = E(G 2 ) + (n 2m)(m 1) (3) K ( n 1 n 1) m E(G 3 ) = (m 1) (4) 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

24 ( ) ( m 1 (3) ) m 1 (2) E(G 1 ) = E(G ( 2 ) = E(G 2 3 ) (n 2m)(m 1) 2 (4) ) n 1 (m 1)(m 2) = ( (m 1) (m 1)(n 2m) 2 ) n 1 (m 2) = ( (m 1)( 1 + (n 2m) + ) 2 ) n 1 = ( (m 1)( 2 + 2n 4m + m 2) 2 n 1) 1 E(G 1 ) = + 1 (m 1)(2n 3m 4) (5) ( 2 2 ) ( ) n m (1),(5) 2 + m 2 n 1 = (m 1)(2n 3m 4) 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

25 Λήμμα 7.14: Το γρα φημα Petersen δεν ει ναι Hamiltonian Απόδειξη : v 1 v 2 e 2 w 2 w 1 e 1 w 4 e 3 w 3 e 4 Έστω ο τι υπα ρχει Hamiltonian κυ κλος v 5 w 5 e 5 Άρτιος αριθμο ς ακμω ν απο τις e 1, e 2, e 3, e 4, e 5 πρε πει να χρησιμοποιηθει (διαφορετικα, ο κυ κλος ξεκινα απο το {v 1,..., v 5 } και τελειω νει στο {w 1,..., w 5 } v 3 v 4 Εα ν επιλεγου ν 2 ακμε ς, τα α κρα τους πρε πει να ει ναι γειτονικα στον εσωτερικο και τον εξωτερικο κυ κλο αδύνατο Εα ν επιλεγου ν 4 ακμε ς Έστω ο τι δεν επιλε γεται η e 1 Επιλε γεται η (v 1, v 2 ) και η (v 1, v 5 ) Δεν επιλε γεται η (v 2, v 3 ) και η (v 4, v 5 ) Επιλε γεται η (v 3, v 4 ) Επι σης επιλε γονται οι (w 1, w 3 ) και (w 1, w 4 ) (γιατι δεν επιλε χθηκε η e 1 ) Άρα, οι w 1, w 3, v 3, v 4, w 4 σχηματι ζουν κυ κλο που δεν καλυ πτει ο λες τις κορυφε ς άτοπο Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος / 167

Θεωρία Γραφημάτων 7η Διάλεξη

Θεωρία Γραφημάτων 7η Διάλεξη Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 10η Δια λεξη

Θεωρι α Γραφημα των 10η Δια λεξη Θεωρι α Γραφημα των 0η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 05 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 0η Δια λεξη Φεβρουα ριος 05 99 / 0 Χρωματισμο ς Ακμω ν k-χρωματισμός ακμών: Η ανα

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 9η Δια λεξη

Θεωρι α Γραφημα των 9η Δια λεξη Θεωρι α Γραφημα των 9η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 183 / 198 Ταιρια σματα (Matchings) Ταίριασμα: Ένα

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 5η Δια λεξη

Θεωρι α Γραφημα των 5η Δια λεξη Θεωρι α Γραφημα των 5η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος 2015 107 / 122 Δε νδρα Δένδρο: Ένα γρα φημα το οποι ο

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 8η Δια λεξη

Θεωρι α Γραφημα των 8η Δια λεξη Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 2η Δια λεξη

Θεωρι α Γραφημα των 2η Δια λεξη Θεωρι α Γραφημα των 2η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος 2015 23 / 47 Βαθμοι Κορυφω ν Βαθμός κορυφής: d G (v) =

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 11η Δια λεξη

Θεωρι α Γραφημα των 11η Δια λεξη Θεωρι α Γραφημα των 11η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος 2015 211 / 228 απεικόνιση γραφήματος στο επίπεδο (Embedding):

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 1η Δια λεξη

Θεωρι α Γραφημα των 1η Δια λεξη Θεωρι α Γραφημα των η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 205 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των η Δια λεξη Φεβρουα ριος 205 / 22 Εισαγωγη Διδα σκων: Αντω νιος Συμβω νης ΣΕΜΦΕ, κτι

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 3η Δια λεξη

Θεωρι α Γραφημα των 3η Δια λεξη Θεωρι α Γραφημα των 3η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος 2015 48 / 71 Μονοπα τια-κυ κλοι και Αποστα σεις Έστω ε

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο Ἐκλογή ἀργοσύντοµος εἰς τὴν Ἁγίν Κυρικήν, κὶ εἰς ἑτέρς Γυνίκς Μάρτυρς. Μέλος Ἰωάννου Ἀ. Νέγρη. Ἦχος Νη ε Κ ι δυ υ υ υ ν µι ις Α λ λη λου ου ου ι ι ι ι ο Θε ος η η µων κ τ φυ γη η κι δυ υ υ ν µις βο η θο

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,

Διαβάστε περισσότερα

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΙΔΑ: «ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ, ΜΙΑ ΕΜΠΕΙΡΙΑ ΖΩΗΣ» ΣΤΡΑΤΗ ΣΤΑΜΑΤΙΑ Επιβλέπων Καθηγητής: ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΚΑΡΛΟΒΑΣΙ, ΜΑΪΟΣ 2012 ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων

Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων Β. Μεταφτση ς 15 Δεκεμβρι ου 2016 1 Παραστάσεις Ομάδων Έστω a, b, c,... ε να συ νολο απο διακριτα συ μβολα και a 1, b 1, c 1,... νε α συ μβολα. Μια λέξη W στα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 9η Διάλεξη

Θεωρία Γραφημάτων 9η Διάλεξη Θεωρία Γραφημάτων 9η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 9η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 8η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα

Διαβάστε περισσότερα

d(v) = 3 S. q(g \ S) S

d(v) = 3 S. q(g \ S) S Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε S υποσύνολο

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 4η Διάλεξη

Θεωρία Γραφημάτων 4η Διάλεξη Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ Στό χος του Ο λο κλη ρω μέ νου Προ γράμ μα τος για τη βιώ σι μη α νά πτυ ξη της Πίν δου εί ναι η δια μόρ φω ση συν θη κών α ει φό ρου α νά πτυ ξης της ο ρει νής πε ριο χής, με τη δη

Διαβάστε περισσότερα

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε Ἦχος Νη α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε στη η και ε πι κα α θε ε ε ε δρα α λοι οι µων ου ουκ ε ε κα θι ι σε ε ε

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αξιόλογη προσπάθεια,

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 10η Διάλεξη

Θεωρία Γραφημάτων 10η Διάλεξη Θεωρία Γραφημάτων 0η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 07 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 0η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 11η Διάλεξη

Θεωρία Γραφημάτων 11η Διάλεξη Θεωρία Γραφημάτων 11η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains

The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains The Probabilistic Method - Probabilistic Techniques Lecture 8: Markov Chains Sotiris Nikoletseas Chistoforos Raptopoulos Computer Engineering and Informatics Department 205-206 Chistoforos Raptopoulos

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων 2η Διάλεξη Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκήσεις στους Γράφους 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκηση 1 η Να αποδείξετε ότι κάθε γράφημα περιέχει μια διαδρομή από μια κορυφή u σε μια κορυφή w αν και

Διαβάστε περισσότερα

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από Διάλεξη 3: 19.10.2016 Θεωρία Γραφημάτων Γραφέας: Βασίλης Λίβανος Διδάσκων: Σταύρος Κολλιόπουλος 3.1 Ακμοδιαχωριστές, Τομές, Δεσμοί Ορισμός 3.1 Ακμοδιαχωριστής (Edge-eparator) ενός γραφήματος G = (V, E)

Διαβάστε περισσότερα

ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA

ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA Α. Γενικά Η VOLTERRA, ως Προμηθευτη ς Ηλεκτρικη ς Ενε ργειας και ε χοντας ως αντικειμενικο στο

Διαβάστε περισσότερα

Lecture 8: Random Walks

Lecture 8: Random Walks Randomized Algorithms Lecture 8: Random Walks Sotiris Nikoletseas Associate Professor CEID - ETY Course 2016-2017 Sotiris Nikoletseas, Associate Professor Randomized Algorithms - Lecture 8 1 / 33 Overview

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Πολύ ενθαρρυντική εικόνα. Σαφώς καλύτερη

Διαβάστε περισσότερα

Δομές Ελέγχου και Επανάληψης

Δομές Ελέγχου και Επανάληψης Εργαστήριο 3 ο Δομές Ελέγχου και Επανάληψης Εισαγωγή Σκοπο ς του εργαστηρι ου αυτου ει ναι η εισαγωγη στην εκτε λεση εντολω ν υπο συνθη κη και στις δομές επανάληψης. Δομές Ελέγχου Η ικανότητα να μπορεί

Διαβάστε περισσότερα

ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα.

ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΔΣ6. Δίνονταί οί πίνακες Σ1(Κ, Κ) καί Π1(Κ, Κ) που περίέχουν τα αποτελέσματα των

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο

Διαβάστε περισσότερα

d u d dt u e u d dt e u d u 1 u dt e 0 2 e

d u d dt u e u d dt e u d u 1 u dt e 0 2 e Ρ ΤΟ Θ ΜΑ Μ. Α ΑΠΟ ε ΞεΤε ΤΙ ΑΝΑΓΚΑ Α ΚΑΙ ΙΚΑΝ ΣΥΝΘ ΚΗ ΣΤε ΝΑ Ι ΝΥΣΜΑ u t 0 ΝΑ ΠΑΡΑΜ ΝεΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ΜΙΑ ε ΟΜ ΝΗ ευθε Α ε ΝΑΙ u t u 0 Π ειξη Α ΑΠΟ ε ΞΟΥΜε ΤΟ ΙΚΑΝ ΗΛΑ ΑΝ ε ΝΑΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ε ΟΜ ΝΗ ευθε

Διαβάστε περισσότερα

S A : N G (S) N G (S) + d S d + d = S

S A : N G (S) N G (S) + d S d + d = S Διάλεξη 7: 2.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Μαργώνης 7.1 Εφαρμογές του Θεωρήματος του Hall Πόρισμα 7.1 (Ελλειματική εκδοχή Θεωρήματος Hall) Εάν σε διμερές γράφημα

Διαβάστε περισσότερα

E(G) 2(k 1) = 2k 3.

E(G) 2(k 1) = 2k 3. Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Ιο νιο Πανεπιστη μιο, Κε ρκυρα 17-5-2012 Παύλος Σταμπουλι δης, Με λος ΔΣ Hellenic Startup

Διαβάστε περισσότερα

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ ΤΥΙΚΑ & ΜΑΚΑΡΙΣΜΟΙ Ἦχος Νη Μ Α Ν µην Ευ λο γει η ψυ χη µου τον Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ λο γει η ψυ χη µου τον Κυ ρι ον και πα αν τα τα εν τος µου το ο νο µα το α γι ον αυ του Ευ λο γει η ψυ

Διαβάστε περισσότερα

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕ Φ Α Λ ΑΙΟ ΤΟ ΙΚΑΙΟ ΤΗΣ ΑΛΙΕΙΑΣ... 21 ΚΕ Φ Α Λ ΑΙΟ 1 o Η ΑΛΙΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ 1.1 Η Α λιεί α ως Οι κο νο μι κή ρα στη ριό τη τα...25 1.2 Η Κοι νο τι κή Α λιευ τι κή Πο λι τι κή...28

Διαβάστε περισσότερα

Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση

Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση Εισαγωγή Η επι λο γή ενό ς co m p a ct συ στή µ α το ς β ι ολο γι κο ύ κα θ α ρι σµ ο ύ θ α πρέπει να πραγµ α τοπο ι είτα ι β ά σει τη ς α

Διαβάστε περισσότερα

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A δ ` 3kς 3qz 3{9 ` ]l 3 # ~-?1 [ve 3 3*~ /[ [ ` ο `` ο ~ ο ```` ξα ~ ``` Πα```` α ` τρι ```ι ``` ι ` ι ~ και ``αι [D # ` 4K / [ [D`3k δδ 13` 4K[ \v~-?3[ve

Διαβάστε περισσότερα

Βασικά Χαρακτηριστικά Αριθμητικών εδομένων

Βασικά Χαρακτηριστικά Αριθμητικών εδομένων ΚΕΦΑΛΑΙΟ 3 Βασικά Χαρακτηριστικά Αριθμητικών εδομένων Α ντι κείμε νο του κε φα λαί ου εί ναι: Να κα τα νο ή σου με τα βα σι κά χαρα κτη ρι στι κά των α ριθ μη τι κών δεδο μέ νων (τά ση, δια σπο ρά, α συμ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΙΓΑΔΙΚΟΤ-ΟΡΙΑ-ΤΝΕΧΕΙΑ

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΙΓΑΔΙΚΟΤ-ΟΡΙΑ-ΤΝΕΧΕΙΑ (ΠΕΡΙΕΧΕΙ ΑΚΗΕΙ ΚΑΙ ΑΠΟ ΣΗΝ ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ ΣΗ Ε.Μ.Ε) ΑΚΗΗ 1 Έςτω ςυνεήσ ςυνάρτηςη :RR, με (0)=2 η οποία ικανοποιεί τη ςέςη ( ) 4 = 6 ια κά ε R α) Να βρείτε τισ τιμέσ (2) και (-2) β) Να απο είξετε τι υπάρει

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων 2η Διάλεξη Θεωρία Γραφημάτων 2η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη

Διαβάστε περισσότερα

2 ) d i = 2e 28, i=1. a b c

2 ) d i = 2e 28, i=1. a b c ΑΣΚΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ (1) Εστω G απλός γράφος, που έχει 9 κορυφές και άθροισμα βαθμών κορυφών μεγαλύτερο του 7. Αποδείξτε ότι υπάρχει μια κορυφή του G με βαθμό μεγαλύτερο ή ίσο του 4. () Αποδείξτε ότι

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ

Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ Διάλεξη 3: 25..26 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Καλλιόπη Πατερομιχελάκη 3. Εναγόμενοι κύκλοι Ορισμός 3. Ενας κύκλος του γραφήματος G = (V, E), καλείται εναγόμενος αν = G[V ()].

Διαβάστε περισσότερα

ε πι λο γές & σχέ σεις στην οι κο γέ νεια

ε πι λο γές & σχέ σεις στην οι κο γέ νεια ε πι λο γές & σχέ σεις στην οι κο γέ νεια ΚΕΙΜΕΝΟ: Υπτγος ε.α Άρης Διαμαντόπουλος, Διδάκτορας Φιλοσοφίας - Ψυχολόγος ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση Α ξί α Οι κο γέ νειας Ό,τι εί ναι το κύτ τα ρο

Διαβάστε περισσότερα

Αρ χές Ηγε σί ας κα τά Πλά τω να

Αρ χές Ηγε σί ας κα τά Πλά τω να . Αρ χές Ηγε σί ας κα τά Πλά τω να ΚΕΙΜΕΝΟ: Υπτγος ε.α. Ά ρης Δια μα ντό που λος, Ψυχο λό γος, Δι δά κτω ρ Φι λο σο φί ας χή, στο σώ μα και στο πνεύ μα, 84 ΣΤΡΑΤΙΩΤΙΚΗ ΕΠΙΘΕΩΡΗΣΗ ΝΟΕΜΒΡΙΟΣ - ΔΕΚΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

Αποτελεσματικός Προπονητής

Αποτελεσματικός Προπονητής ÐÝñêïò Ι. ÓôÝ öá íïò & Χριστόπουλος Β. Γιάννης Αποτελεσματικός Προπονητής Ένας οδηγός για προπονητές όλων των ομαδικών αθλημάτων Θεσσαλονίκη 2011 Ðå ñéå ü ìå íá Ðñü ëï ãïò...6 Åé óá ãù ãþ...11 Êå öü ëáéï

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 207 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

καιρο, αυτο ς πε θανε απ ο,τι φαι νεται πολυ αργο τερα. Για ποιον λο γο συνε βη αυτο, Φαι δωνα;

καιρο, αυτο ς πε θανε απ ο,τι φαι νεται πολυ αργο τερα. Για ποιον λο γο συνε βη αυτο, Φαι δωνα; ΠΛΑΤΩΝΟΣ ΦΑΙΔΩΝ ΕΧΕΚΡΑΤΗΣ: Εσυ ο ι διος, Φαι δωνα, βρε θηκες στο πλευρο του Σωκρα τη εκει νη την ημε ρα, που η πιε το δηλητη ριο στη φυλακη, η τα α κουσες απο κα ποιον α λλο; ΦΑΙΔΩΝ: Η μουν ο ι διος εκει,

Διαβάστε περισσότερα

Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες

Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Η εταιρεία Kiefer ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Πηγε ς Ενε ργειας στην Ελλα δα. Αναλαμβα νει ε ργα ως EPC

Διαβάστε περισσότερα

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ Γιάννης Θεοδωράκης Πανεπιστήμιο Θεσσαλίας ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΘΕΣΣΑΛΟΝΙΚΗ 2010 ΠΕΡΙΕΧΟΜΕΝΑ Πρό λο γος...6 1. Ά σκη ση και ψυ χική υ γεί α Ει σα γω γή...9 Η ψυ χο λο γί α της ά σκη σης...11

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ (1999/65/ΕΚ)

ΑΠΟΦΑΣΗ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ (1999/65/ΕΚ) L 26/46 EL Επίσηµη Εφηµερίδα των Ευρωπαϊκω ν Κοινοτη των 1.2.1999 ΑΠΟΦΑΣΗ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ της 22ας εκεµβρίου 1998 σχετικά µε τους καν νες συµµετοχη ς επιχειρη σεων, κε ντρων ερευνω ν και πανεπιστηµίων και

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ ΠΕΡΙEΧΟΜΕΝΑ Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ Ει σα γω γή 1 ου Μέ ρους...16 1 ο Κε φά λαιο: Ε ΛΕΥ ΘΕ ΡΟΣ ΧΡΟ ΝΟΣ & Α ΝΑ ΨΥ ΧΗ 1.1 Οι έν νοιες του ε λεύ θε ρου χρό νου και της ανα ψυ χής...17

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΕΡ ΓΑ ΤO ΤΕ ΧΝΙ ΤΩΩΝ ΕΡ ΓO ΣΤΑ ΣΙ ΩΩΝ ΤΣΙ ΜΕ ΝΤO ΛΙ ΘΩΩΝ, ΤΣΙ

Διαβάστε περισσότερα

Πρώϊος Μιλτιάδης. Αθαναηλίδης Γιάννης. Ηθική στα Σπορ. Θεωρία και οδηγίες για ηθική συμπεριφορά

Πρώϊος Μιλτιάδης. Αθαναηλίδης Γιάννης. Ηθική στα Σπορ. Θεωρία και οδηγίες για ηθική συμπεριφορά Πρώϊος Μιλτιάδης Αθαναηλίδης Γιάννης Ηθική στα Σπορ Θεωρία και οδηγίες για ηθική συμπεριφορά ΘΕΣΣΑΛΟΝΙΚΗ 2004 1 ΗΘΙΚΗ ΣΤΑ ΣΠΟΡ ΘΕΩΡΙΑ ΚΑΙ ΟΔΗΓΙΕΣ ΓΙΑ ΗΘΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ : Εκδόσεις Χριστοδουλίδη Α. & Π.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11

Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11 Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ, Ν.Π.Δ.Δ. ΚΑΙ O.Τ.Α. Α. ΓΙΑ ΤΗΝ ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ Ε ΛΗ ΦΘΗ ΣΑΝ Υ ΠO ΨΗ 1. H 15/1981

Διαβάστε περισσότερα

ΔΕΛΤΙΟ ΤΥΠΟΥ. Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras

ΔΕΛΤΙΟ ΤΥΠΟΥ. Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras ΔΕΛΤΙΟ ΤΥΠΟΥ Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras Στο πλαι룱綟σιο της Παγκο룱綟 σμιας Εβδομα룱綟 δας Επιχειρηματικο룱綟 τητας*, o ΕΣΥΝΕΔΕ και η Ομοσπονδι룱綟α ΕΣΥΝΕ, σε συνεργασι룱綟α

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ

H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ Ο Ό μη ρος και ο Η σί ο δος έ χουν δη μιουρ γή σει κα τά τον Η ρό δο το 1, τους ελ λη νι κούς θε ούς. Ο Ό μη ρος στη θε ο γο νί α του έ χει ιε ραρ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση 1. Να δείξετε ότι η εξίσωση 7 3 + + + 3= (1) έχει ακριβώς μία πραγματική

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Ενθαρρυντική εικόνα, σαφώς καλύτερη από

Διαβάστε περισσότερα

Φ. 12 / 620 / /Γ Ισ : Τη : &

Φ. 12 / 620 / /Γ Ισ :  Τη : & Να δ ι α τ η ρ η θ ε ί µ έ χ ρ ι Β α θ µ ό ς α σ φ α λ ε ί α ς Ο Υ Υ Β Υ Μ Θ Μ Σ Σ Μ Β Μ Β Μ Σ Θ Υ Σ Υ Β Μ Σ κ α ι χ σ η π α ν δ ρ έ ο υ λ η Μ α ρ ο ύ σ ι τ ο σ ε λ ί δ α η ρ ο φ ο ρ ί ε ς π α χ ρ ή σ

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα Ασκήσεις στους Γράφους 2 ο Σετ Ασκήσεων Δέντρα Ασκηση 1 η Ένας γράφος G είναι δέντρο αν και μόνο αν κάθε δυο κορυφές του συνδέονται με ένα μοναδικό μονοπάτι. Υποθέτουμε ότι ο γράφος G είναι δέντρο. Έστω

Διαβάστε περισσότερα

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ.

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ. σελ. 13 σελ. 17 σελ. 21 σελ. 49 σελ. 79 σελ. 185 σελ. 263 σελ. 323 σελ. 393 σελ. 453 σελ. 483 σελ. 509 σελ. 517 Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει

Διαβάστε περισσότερα

Μέγιστη Ροή Ελάχιστη Τομή

Μέγιστη Ροή Ελάχιστη Τομή Μέγιστη Ροή Ελάχιστη Τομή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή, προορισμός, χωρητικότητα ακμής b e. ροή μεγέθους

Διαβάστε περισσότερα

ΝΟΕΜ ΒΡΙΟΣ ΝΟΕΜ ΒΡΙΟΣ ΙΣΤΟΡΙΚΕΣ ΜΝΗΜΕΣ. 333 π.χ. Η ΜΑΧΗ ΤΗΣ ΙΣ ΣΟΥ

ΝΟΕΜ ΒΡΙΟΣ ΝΟΕΜ ΒΡΙΟΣ ΙΣΤΟΡΙΚΕΣ ΜΝΗΜΕΣ. 333 π.χ. Η ΜΑΧΗ ΤΗΣ ΙΣ ΣΟΥ ΙΣΤΟΡΙΚΕΣ ΜΝΗΜΕΣ ΝΟΕΜ ΒΡΙΟΣ ΝΟΕΜ ΒΡΙΟΣ 333 π.χ. Η ΜΑΧΗ ΤΗΣ ΙΣ ΣΟΥ Στην πε διά δα της Ισ σού, τον Νο έμ βριο του έτους 333 π.χ., έ λα βε χώ ρα μία από τις ση μα ντι κό τε ρες μά χες του έν δο ξου Έλληνα

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η <Αλγόριθµοι, Θεωρία Γραφηµάτων>

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η <Αλγόριθµοι, Θεωρία Γραφηµάτων> ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις σηµαντικότερες µεθόδους και ιδέες της Θεωρίας Γραφηµάτων

Διαβάστε περισσότερα

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να

Διαβάστε περισσότερα

1 ο Κεφά λαιο. Πώς λειτουργεί η σπονδυλική στήλη;...29

1 ο Κεφά λαιο. Πώς λειτουργεί η σπονδυλική στήλη;...29 ΠΕΡΙEΧΟΜΕΝΑ Οδηγός χρησιμοποίησης του βιβλίου και των τριών ψηφιακών δίσκων (DVD)...11 Σκο πός του βι βλί ου και των 3 ψηφιακών δί σκων...15 Λί γα λό για α πό το Σχο λι κό Σύμ βου λο Φυ σι κής Α γω γής...17

Διαβάστε περισσότερα

Ε ΓΚΛΗ ΜΑ ΤΑ ΚΑΙ ΔΗ Ω ΣΕΙΣ ΚΑΤΟ ΧΙ ΚΗΣ ΠΕ ΡΙΟ ΔΟΥ ΣΤΗ ΔΙΑΡ ΚΕΙΑ ΤΗΣ ΣΤΟ ΝΟ ΜΟ Α ΧΑ Ϊ ΑΣ ΜΕ ΒΑ ΣΗ ΤΟ ΑΡ ΧΕΙΟ ΤΗΣ ΔΙΣ

Ε ΓΚΛΗ ΜΑ ΤΑ ΚΑΙ ΔΗ Ω ΣΕΙΣ ΚΑΤΟ ΧΙ ΚΗΣ ΠΕ ΡΙΟ ΔΟΥ ΣΤΗ ΔΙΑΡ ΚΕΙΑ ΤΗΣ ΣΤΟ ΝΟ ΜΟ Α ΧΑ Ϊ ΑΣ ΜΕ ΒΑ ΣΗ ΤΟ ΑΡ ΧΕΙΟ ΤΗΣ ΔΙΣ ΓΚΛΗ ΜΑ ΤΑ ΔΗ Ω ΣΕΙΣ 1941-1944 Ε ΓΚΛΗ ΜΑ ΤΑ ΔΗ Ω ΣΕΙΣ 19 Ε ΓΚΛΗ ΜΑ ΤΑ ΚΑΙ ΔΗ Ω ΣΕΙΣ ΣΤΗ ΔΙΑΡ ΚΕΙΑ ΤΗΣ ΚΑΤΟ ΧΙ ΚΗΣ ΠΕ ΡΙΟ ΔΟΥ 1941-1944 ΣΤΟ ΝΟ ΜΟ Α ΧΑ Ϊ ΑΣ ΜΕ ΒΑ ΣΗ ΤΟ ΑΡ ΧΕΙΟ ΤΗΣ ΔΙΣ ΚΕΙΜΕΝΟ-ΦΩΤΟΓΡΑΦΙΕΣ:

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

Joseph A. Luxbacher. Μετάφραση - Επιμέλεια: Πέτρος Νάτσης, Αστέριος Πατσιαούρας. ΠοΔΟΣΦΑΙΡΟ. Βήματα για την επιτυχία

Joseph A. Luxbacher. Μετάφραση - Επιμέλεια: Πέτρος Νάτσης, Αστέριος Πατσιαούρας. ΠοΔΟΣΦΑΙΡΟ. Βήματα για την επιτυχία Joseph A. Luxbacher Μετάφραση - Επιμέλεια: Πέτρος Νάτσης, Αστέριος Πατσιαούρας ΠοΔΟΣΦΑΙΡΟ Βήματα για την επιτυχία ΘΕΣΣΑΛΟΝΙΚΗ 2008 ΠΟΔΟΣΦΑΙΡΟ. Βήματα για την επιτυχία. Joseph A. Luxbacher Μετάφραση - Επιμέλεια:

Διαβάστε περισσότερα

Λειτουργία Μ. Βασιλείου Ἦχος υ5 Δι. Κς πι ε ε ε λε η ζον Κς ς πι ε ε ε λε η ζον. Κς πι ε ε λε ε ε η η ζον Κς πι ε ε ε λε η ζον

Λειτουργία Μ. Βασιλείου Ἦχος υ5 Δι. Κς πι ε ε ε λε η ζον Κς ς πι ε ε ε λε η ζον. Κς πι ε ε λε ε ε η η ζον Κς πι ε ε ε λε η ζον d Ἀρχιμ. Ἀριστοβούλου Κυριαζῆ, Μαθήματα Ἐκκλ. Μουσικῆς 1 Μέρος 6 ο, Λειτουργικά, Θ. Λειτουργία Μ. Βασιλείου Λειτουργία Μ. Βασιλείου Ἦχος υ5 Δι msdja0dagixad Dad.zaQdd]d0agIxaqd Daz.' Κς πι ε ε ε λε η ζον

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 11ς (Π, (-ά) ) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 11ς (Π, (-ά) ) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Αλγόριθμοι Γραφημάτων Τοπολογική Διάταξη

Διαβάστε περισσότερα