4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ"

Transcript

1 4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ Μετρούμε με το μέτρο και με άλλα όργανα «ÔÏÏ ÊÔÚ Ï ˆ fiùè fiù Ó ÌappleÔÚÂ Ó ÌÂÙÚ ÛÂÈ ÂΠÓÔ ÁÈ ÙÔ ÔappleÔ Ô ÌÈÏ Î È Ó ÙÔ ÂÎÊÚ ÛÂÈ Ì ÚÈıÌÔ, Í ÚÂÈ Î ÙÈ ÁÈ' Ùfi. ŸÙ Ó fiìˆ ÂÓ ÌappleÔÚÂ Ó ÙÔ ÂÎÊÚ ÛÂÈ Ì ÚÈıÌÔ, Ë ÁÓÒÛË ÛÔ Â Ó È ÊÙˆ Î È ÂÏÏÈapple». W. Thomson (Kelvin) ( ), μúâù ÓÓfi º ÛÈÎfi Για να μελετήσουμε ένα φυσικό φαινόμενο πρέπει να μετρήσουμε με ακρίβεια όλα όσα μεταβάλλονται κατά τη διάρκεια του φαινομένου. Με ακρίβεια σημαίνει χωρίς σφάλματα ή ακριβέστερα με όσο γίνεται μικρότερο σφάλμα. Η ακριβής μέτρηση είναι απαραίτητο στοιχείο της εργασίας όχι μόνο του φυσικού και του χημικού, αλλά και πολλών άλλων επιστημόνων και τεχνητών. Άσκηση 1 Να συγκρίνετε το μήκος της πάνω πλευράς του βιβλίου σας με το μήκος μιας οδοντογλυφίδας. Να μη βρείτε απλώς ποιο είναι μεγαλύτερο, αλλά πόσες φορές μεγαλύτερο είναι το ένα μήκος από το άλλο. Ποια ήταν η μονάδα μήκους;... Ποιο ήταν το όργανο μετρήσεως;... Μπορείτε με την οδοντογλυφίδα να μετρήσετε το μήκος ενός σώματος με ακρίβεια;... Άσκηση 2 Με τη βοήθεια ενός κανόνα, να φτιάξετε μια λωρίδα από χαρτόνι μήκους 10 cm. Με αυτή τη λωρίδα, να εκτιμήσετε το μήκος της πάνω πλευράς του βιβλίου. Με τη βοήθεια του κανόνα, να σημειώσετε πάνω στη λωρίδα των 10 cm υποδιαιρέσεις ανά 1 cm και με τη βαθμολογημένη λωρίδα να μετρήσετε και πάλι το ίδιο μήκος. Τέλος, να χρησιμοποιήσετε τον κανόνα για μια τελική μέτρηση του ίδιου μήκους. Να συγκρίνετε τα αποτελέσματα των τριών μετρήσεών σας. Σε ποια περίπτωση είχατε μεγαλύτερη ακρίβεια στη μέτρησή σας; 29

2 Μέτρηση του μήκους ενός σώματος ονομάζεται η σύγκρισή του με το μήκος άλλου σώματος που το παίρνουμε αυθαίρετα ως μονάδα μετρήσεως. Σε μια μέτρηση δεν βρίσκουμε απλώς ποιο σώμα έχει μεγαλύτερο μήκος, αλλά πόσες φορές μεγαλύτερο είναι το μήκος του ενός σώματος από το μήκος του άλλου, που το παίρνουμε ως μονάδα. Το ίδιο κάνουμε και κατά τη μέτρηση οποιουδήποτε άλλου μέγεθος: το συγκρίνουμε με κάποιο ομοειδές μέγεθος που το παίρνουμε αυθαίρετα ίσο με τη μονάδα. Ο αριθμός που βρίσκουμε κατά τη μέτρηση λέγεται αριθμητική τιμή και μαζί με τη μονάδα αποτελεί το μέτρο (ή την τιμή) του μεγέθους. Μονάδες μήκους Για να μην παίρνει ο καθένας όποια μονάδα θέλει για το μήκος και προκαλείται σύγχυση, οι επιστήμονες συμφώνησαν πριν από 200 περίπου χρόνια να ορίσουν την ίδια μονάδα, που την ονόμασαν μέτρο (στα αγγλικά metre), και της έδωσαν το σύμβολο m. Πρότυπο μέτρο Συχνά συμβαίνει η μονάδα που χρησιμοποιούμε για να μετρήσουμε ένα μέγεθος να είναι αρκετά μεγαλύτερη ή αρκετά μικρότερη από το μέγεθος αυτό. Σ αυτές τις περιπτώσεις χρησιμοποιούμε πολλαπλάσια ή υποπολλαπλάσια (υποδιαιρέσεις) της μονάδας. Υποδιαιρέσεις και πολλαπλάσια του μέτρου Όνομα Σύμβολο Σχέση Μικρόμετρο (micrometre) μm 1 μm=1/ m Χιλιοστόμετρο (millimetre) mm 1 mm=1/1000 m Εκατοστόμετρο (centimetre) cm 1 cm=1/100 m Δεκατόμετρο (decimetre) dm 1 dm=1/10 m Χιλιόμετρο (kilometre) km 1 km=1000 m Άσκηση 3 Μέτρησε με τον κανόνα σου το μήκος των δύο πλευρών του εξωφύλλου του βιβλίου σου καθώς και το πάχος του βιβλίου. Σημείωσε: μήκος μεγάλης πλευράς:...cm μήκος μικρής πλευράς:...cm πάχος βιβλίου:...cm 30

3 Αν το άκρο του μήκους που μέτρησες πέφτει ανάμεσα σε δυό διαδοχικές υποδιαιρέσεις (χαραγές) του κανόνα, είσαι σίγουρος για το αποτέλεσμα της μέτρησής σου;... Αν το άκρο του μήκους που μέτρησες πέφτει ακριβώς πάνω σε μια υποδιαίρεση, είσαι πιο σίγουρος;... Βρήκαν οι συμμαθητές σου τα ίδια αποτελέσματα με σένα;... Πού μπορεί να οφείλονται τυχόν διαφορές;... Είναι ο κανόνας ακριβέστερο όργανο μετρήσεως του μήκους από την οδοντογλυφίδα; Αν σου πούμε ότι υπάρχουν ακριβέστερα όργανα μετρήσεως του μήκους από τον κανόνα (π.χ. διαστημόμετρο με βερνιέρο), τότε μήπως μπορούμε να είμαστε ακόμη πιο σίγουροι για τη μέτρησή μας από ό,τι με τον κανόνα (είτε πέσαμε πάνω σε υποδιαίρεση είτε ανάμεσα σε υποδιαιρέσεις του κανόνα);... Από τα παραπάνω, μπορείς να φθάσεις σε έναν ορισμό τού τι εννοούμε με τον όρο σφάλμα (που κάνουμε) σε μια μέτρηση; Πόσο σφάλμα νομίζεις ότι έκανες στην παραπάνω μέτρηση; (Να βάλεις σε κύκλο τη σωστή απάντηση.) 1 έως 2 mm, 0,5 έως 1 mm, 0,05 mm, 0,05 έως 0,1 mm. Άσκηση 4 Πάρε ένα οποιοδήποτε κυλινδρικό δοχείο και μέτρησε τη διάμετρο και το ύψος του κυλίνδρου. διάμετρος κυλίνδρου:...cm ύψος κυλίνδρου:...cm ΤΟ ΜΑΘΗΜΑ ΣΕ ΕΡΩΤΗΣΕΙΣ 1. Τι κάνουμε όταν μετράμε το μήκος ενός σώματος; 2. Τι ονομάζεται μέτρηση ενός μεγέθους; 3. Ποια είναι η μονάδα μήκους που συμφωνήθηκε διεθνώς; 4. Μπορούμε να χρησιμοποιήσουμε το μήκος του χεριού ως μονάδα μήκους (ναι ή όχι, γιατί). Τι δυσκολίες θα προκαλούσε μια τέτοια μονάδα; 5. Τι ονομάζεται αριθμητική τιμή και τι μέτρο ενός μεγέθους; 6. Ποιες είναι οι υποδιαιρέσεις και τα πολλαπλάσια του μέτρου, και ποια η σχέση τους με το μέτρο; 7. Με ποιους τρόπους μπορούμε να περιορίσουμε τα σφάλματα κατά τη μέτρηση του μήκους ενός σώματος; 8. Η λέξη μέτρο χρησιμοποιείται με διάφορες έννοιες στο μάθημα. Ποιες είναι αυτές; 31

4 Για να γνωρίσεις περισσότερα, να σκεφθείς και να καταλάβεις γιατί 1. Ποια όργανα γνωρίζεις για τη μέτρηση του μήκους; 2. Μέτρησε με τον κανόνα σου το πάχος ενός φύλλου του βιβλίου σου (πάχος φύλλου σε mm). Mπορείς; Σκέψου κάτι για να βελτιώσεις τη μέθοδο (π.χ. μέτρησε το πάχος πολλών φύλλων μαζί). 3. Μέτρησε το πάχος, τη διάμετρο και την περίμετρο ενός κέρματος. Πάχος κέρματος...mm Διάμετρος... mm Περίμετρος Επινόησε ένα τρόπο ώστε να μειωθούν τα σφάλματα μετρήσεως του πάχους και της διαμέτρου του κέρματος. Διάμετρος κέρματος...mm Πάχος κέρματος...mm 5. Αν το σχολείο σας διαθέτει ή έχεις στο σπίτι διαστημόμετρο, μέτρησε τα προηγούμενα και σύγκρινε τα αποτελέσματα. Παρατηρούνται διαφορές; (Θα διαπιστώσεις ότι και στις απλές ακόμα μετρήσεις υπάρχουν δυσκολίες, όταν ζητάμε ακρίβεια.) Διαστημόμετρο με βερνιέρο για ακρίβεια μέχρι 0,1 mm 6. Μέτρησε τη διάμετρο της βάσης ενός κυλινδρικού κουτιού. Διάμετρος βάσης...mm Μήκος περιμέτρου...mm 7. Mε βάση τις τιμές που βρήκες στις εργασίες 3-6, να βρείς τον λόγο της περιμέτρου προς τη διάμετρο: για το κέρμα :... για το κυλινδρικό δοχείο :... 32

5 Είναι παραπλήσιοι οι λόγοι αυτοί;... Ποια είναι η ακριβέστερη τιμή που γνωρίζεις για τον λόγο αυτό; Ποιες μονάδες μήκους είναι πιο κατάλληλες για να εκφραστούν τα παρακάτω: - Το μήκος, το πλάτος και το ύψος ενός τούβλου. - Το πάχος μιας λεπτής κλωστής. - Το μήκος, το πλάτος και το ύψος ενός κτιρίου. - Το μήκος ενός τοίχου. - Το μήκος ενός ποταμού. - Η απόσταση δύο πόλεων. n Θέμα 1 για προαιρετική μελέτη: ΣΦΑΛΜΑΤΑ ΤΥΧΑΙΑ ΚΑΙ ΣΥΣΤΗΜΑΤΙΚΑ Ποιος φταίει γι' αυτά; Ας θεωρήσουμε έναν σκοπευτή που βάλλει εναντίον ενός στόχου. Το σχήμα δείχνει ότι όλες οι βολές του πέφτουν μακρυά από τον στόχο. Είναι φανερό ότι γίνεται κάποιο σφάλμα που μπορεί να οφείλεται στο όπλο, στον ίδιο τον σκοπευτή ή και σε κάποιο άλλο αίτιο, π.χ. σε άνεμο που φυσά. Ένα τέτοιο σφάλμα λέγεται συστηματικό. Είναι φανερό ότι τα συστηματικά σφάλματα μπορεί και πρέπει να διορθώνονται, αρκεί να βρίσκουμε τον λόγο που τα προκαλεί. Ανεξάρτητα όμως από το αν υπάρχει συστηματικό σφάλμα ή όχι, παρατηρούμε ότι όλες οι βολές δεν πέφτουν ακριβώς στο ίδιο σημείο, αλλά είναι σκορπισμένες γύρω από ένα σημείο. Το σημείο αυτό είναι ο στόχος αν δεν υπάρχει συστηματικό σφάλμα. Γενικά, αν επαναλαμβάνει κανείς πολλές φορές την ίδια μέτρηση, παρατηρεί ότι τα αποτελέσματα δεν είναι πάντοτε ακριβώς τα ίδια. Τέτοια σφάλματα μπορεί να οφείλονται στον άνθρωπο που κάνει τις μετρήσεις, αλλά και στο όργανο με το οποίο γίνονται οι μετρήσεις. Τα σφάλματα αυτού του είδους λέγονται τυχαία. Αυτά ούτε εύκολο ούτε εντελώς απαραίτητο είναι να διορθώνονται. Τα περιορίζουμε όμως αν κάνουμε τις μετρήσεις προσεκτικά. 33

6 34 Θέμα 2 για προαιρετική μελέτη: ΤΑ ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ Στις φυσικές επιστήμες έχει σημασία με πόσα ψηφία γράφουμε την αριθμητική τιμή ενός μεγέθους Μέτρησε με τον κανόνα σου το μήκος της παρακάτω γραμμής με όσο μεγαλύτερη ακρίβεια μπορείς και σημείωσέ το:... cm Να σημειώσεις και τις τιμές για το ίδιο μήκος αρκετών άλλων συμμαθητών σου. α)... cm β)... cm γ)... cm δ)... cm ε)... cm στ)... cm ζ)... cm η)... cm Τι παρατηρείς; Να συζητήσετε στην τάξη πιθανές αιτίες των παρατηρήσεών σας Στις φυσικές επιστήμες είναι πολύ σημαντικό να δίνουμε στις αριθμητικές τιμές των φυσικών μεγεθών όλα τα ψηφία για τα οποία είμαστε σίγουροι. Επιπλέον χρήσιμο είναι να δίνουμε και το πρώτο ψηφίο για το οποίο δεν είμαστε σίγουροι. Να σημειώσεις πώς πρέπει να δοθεί το μήκος της παραπάνω γραμμής ώστε να λάβει υπόψη όλα τα ψηφία για τα οποία είμαστε σίγουροι συν το πρώτο ψηφίο για το οποίο δεν είμαστε σίγουροι... cm Όταν εκφράζουμε λοιπόν την αριθμητική τιμή ενός φυσικού μεγέθους, πρέπει να δίνουμε τον αριθμό με τόσα ψηφία όσα είναι τα ψηφία για τα οποία είμαστε σίγουροι, συν ένα ακόμη ψηφίο για το οποίο υπάρχει σφάλμα ή αβεβαιότητα, για το οποίο δεν είμαστε σίγουροι. Μόνον αυτά τα ψηφία έχουν σημασία, γι' αυτό τα ονομάζουμε σημαντικά ψηφία. Να μετρήσεις τώρα τον αριθμό των σημαντικών ψηφίων που πρέπει να έχει η τιμή του μήκους της παραπάνω γραμμής... Να έχεις υπόψη σου Τα σημαντικά ψηφία δεν είναι το ίδιο με τα δεκαδικά ψηφία. Το πόσο αβέβαιο είναι το τελευταίο ψηφίο εξαρτάται από το τυχαίο σφάλμα. Στις επιστημονικές εργασίες, δίδεται και το σφάλμα αυτό, π. χ. 3,40 ± 0,05 cm. Βλέπουμε λοιπόν ότι ενώ στα μαθηματικά 3,40 = 3,4, στις φυσικές επιστήμες το 3,40 δεν είναι ίδιο με το 3,4. Το 3,40 έχει τρία σημαντικά ψηφία, ενώ το 3,4 έχει δύο σημαντικά ψηφία. Να έχεις υπόψη σου Χωρίς να το εξηγήσουμε εδώ, θα πρέπει να ξέρουμε ότι μηδενικά που είναι στην αρχή ενός δεκαδικού αριθμού δεν πρέπει να λογαριάζονται ως σημαντικά ψηφία. Έτσι ο αριθμός 0,0035 έχει δύο σημαντικά ψηφία. Ο αριθμός όμως 5,005 έχει τέσσερα σημαντικά ψηφία. Τέλος, επαναλαμβάνουμε ότι τα μηδενικά στο τέλος ενός δεκαδικού αριθμού είναι σημαντικά, π.χ. ο αριθμός 5,0500 έχει πέντε σημαντικά ψηφία.

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ ΕΚΦΕ Αν. Αττικής Υπεύθυνος: Κ. Παπαμιχάλης ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ Κεντρική επιδίωξη των εργαστηριακών ασκήσεων φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας

Διαβάστε περισσότερα

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα.

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα. Σημαντικά ψηφία Η ταχύτητα διάδοσης του φωτός είναι 2.99792458 x 10 8 m/s. Η τιμή αυτή είναι δοσμένη σε 9 σημαντικά ψηφία. Τα 9 σημαντικά ψηφία είναι 299792458. Η τιμή αυτή μπορεί να δοθεί και με 5 σημαντικά

Διαβάστε περισσότερα

9ο Μάθημα ΔΥΝΑΜΕΙΣ. Μια κοινή αιτία για αλλαγές της κίνησης και για παραμορφώσεις

9ο Μάθημα ΔΥΝΑΜΕΙΣ. Μια κοινή αιτία για αλλαγές της κίνησης και για παραμορφώσεις 9ο Μάθημα ΔΥΝΑΜΕΙΣ Μια κοινή αιτία για αλλαγές της κίνησης και για παραμορφώσεις Με την έννοια της δύναμης είμαστε εξοικειωμένοι από την καθημερινή μας ζωή. Λέμε βάλε περισσότερη δύναμη, τράβηξε δυνατά,

Διαβάστε περισσότερα

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος Περιεχόμενα ΦΕ1 ΤΑ ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΚΑΙ Η ΜΕΤΡΗΣΗ ΤΟΥΣ ΤΟ ΜΗΚΟΣ 2015-16 6 ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Τα φυσικά μεγέθη Η Μέτρηση των φυσικών μεγεθών Μια μονάδα μέτρησης για όλους Το φυσικό μέγεθος Μήκος Όργανα μέτρησης

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ Α. ΣΤΟΧΟΙ Η συνειδητή χρήση των κανόνων ασφαλείας στο εργαστήριο. Η εξοικείωση στη χρήση του υποδεκάμετρου και του διαστημόμετρου

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση)

ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) Όταν το πρωτοείδα, κι εγώ δεν το συμπάθησα. Είναι, όμως, λάθος μας, καθώς πρόκειται για κάτι πολύ απλό και σίγουρο ως μέθοδος υπολογισμού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Συμπληρωματικό Φύλλο Εργασίας 1+ ( * ) Μετρήσεις Μήκους Η Μέση Τιμή

Συμπληρωματικό Φύλλο Εργασίας 1+ ( * ) Μετρήσεις Μήκους Η Μέση Τιμή Συμπληρωματικό Φύλλο Εργασίας 1+ ( * ) Μετρήσεις Μήκους Η Μέση Τιμή ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Πώς νομίζεις ότι ξέρουμε το

Διαβάστε περισσότερα

11ο Μάθημα ΒΑΡΟΣ - ΒΑΡΥΤΗΤΑ - ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ

11ο Μάθημα ΒΑΡΟΣ - ΒΑΡΥΤΗΤΑ - ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ 11ο Μάθημα ΒΑΡΟΣ - ΒΑΡΥΤΗΤΑ - ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ Το βάρος ενός σώματος: Μια εξ αποστάσεως ή εξ επαφής δύναμη που ασκεί η γη στο σώμα Το βάρος ενός σώματος είναι δύναμη και μετρείται κι αυτό σε νιούτον. Είναι

Διαβάστε περισσότερα

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών Φυσική Α Γενικού Λυκείου Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών (Μετρήσεις, αβεβαιότητα, επεξεργασία δεδομένων) Υποστηρικτικό υλικό 20 Οκτωβρίου 2016 Μαρίνα Στέλλα, Υπεύθυνη ΕΚΦΕ Σχολικό Εργαστήριο

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ 3 ο ΜΕΤΡΗΣΕΙΣ

ΦΥΛΛΑΔΙΟ 3 ο ΜΕΤΡΗΣΕΙΣ 1. ΕΡΩΤΗΣΕΙΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΟΥ. ΦΥΛΛΑΔΙΟ 3 ο ΜΕΤΡΗΣΕΙΣ Στις παρακάτω προτάσεις συμπληρώστε τις λέξεις που λείπουν. 1. Η μονάδα μέτρησης του μήκους είναι το. από την Ελληνική λέξη μετρώ το οποίο παριστάνεται

Διαβάστε περισσότερα

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος Χρήση διαστημόμετρου για εύρεση πυκνότητας στερεών σωμάτων γεωμετρικού σχήματος Προκειμένου να υπολογιστεί η πυκνότητα σε στερεά σώματα γεωμετρικού σχήματος πραγματοποιούνται μετρήσεις α) της μάζας τους

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α.

ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α. ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΝΟΜΑΣΙΕΣ Σημείο Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α. Ευθύγραμμο τμήμα Το ευθύγραμμο τμήμα, το ονομάζουμε με δύο κεφαλαία γράμματα (των σημείων που

Διαβάστε περισσότερα

13ο Μάθημα ΠΙΕΣΗ ΠΟΥ ΑΣΚΟΥΝ ΤΑ ΣΤΕΡΕΑ

13ο Μάθημα ΠΙΕΣΗ ΠΟΥ ΑΣΚΟΥΝ ΤΑ ΣΤΕΡΕΑ 13ο Μάθημα ΠΙΕΣΗ ΠΟΥ ΑΣΚΟΥΝ ΤΑ ΣΤΕΡΕΑ Η δύναμη μπορεί να είναι μεγάλη, αλλά η πίεση μικρή Με το μάθημα αυτό, αρχίζουμε τη μελέτη μιας σημαντικής έννοιας, της πίεσης, που υπεισέρχεται σε πάρα πολλές περιπτώσεις

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο

Διαβάστε περισσότερα

ÌÂ ÌÂ Ù Ê ÛÈÎ Ê ÈÓfiÌÂÓ

ÌÂ ÌÂ Ù Ê ÛÈÎ Ê ÈÓfiÌÂÓ Εισαγωγικό Μάθημα 1 ΜΕΤΑΒΟΛΕΣ ΣΤΗ ΦΥΣΗ Ύλη και ενέργεια Σ αυτό και στο επόμενο μάθημα, θα κάνουμε μια γενική αναφορά στα αντικείμενα μελέτης δύο βασικών φυσικών επιστημών, της φυσικής και της χημείας.

Διαβάστε περισσότερα

1.5 Γνωριμία με το εργαστήριο Μετρήσεις

1.5 Γνωριμία με το εργαστήριο Μετρήσεις 1.5 Γνωριμία με το εργαστήριο Μετρήσεις 1. Το μήκος, ο χρόνος, η μάζα, η θερμοκρασία κτλ. είναι ποσότητες που τις χρησιμοποιούμε για να περιγράφουμε τα φαινόμενα. Οι ποσότητες αυτές ονομάζονται φυσικά

Διαβάστε περισσότερα

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Συγγραφείς:. Τμήμα, Σχολή Εφαρμοσμένων Επιστημών, ΤΕΙ Κρήτης Περίληψη Στην παρούσα εργαστηριακή άσκηση μετρήσαμε τη διάμετρο

Διαβάστε περισσότερα

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ 7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ Συμβαίνει κι αυτό: ο όγκος ενός σώματος να 'ναι μεγάλος, αλλά η μάζα του να 'ναι μικρή Από την καθημερινή μας ζωή, ξέρουμε τι σημαίνει πυκνό και αραιό: πυκνό δάσος, αραιά

Διαβάστε περισσότερα

6ο Μάθημα ΜΑΖΑ ΤΩΝ ΣΩΜΑΤΩΝ

6ο Μάθημα ΜΑΖΑ ΤΩΝ ΣΩΜΑΤΩΝ 6ο Μάθημα ΜΑΖΑ ΤΩΝ ΣΩΜΑΤΩΝ Μετράει την ποσότητα της ύλης Μια μεγάλη σοκολάτα έχει περισσότερη σοκολάτα από μια μικρή σοκολάτα. Διαφέρουν στην ποσότητα της σοκολάτας. Στις φυσικές επιστήμες αυτό το εκφράζουμε

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα - &. ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

gr/ Μιχαήλ Μιχαήλ, Φυσικός

gr/ Μιχαήλ Μιχαήλ, Φυσικός 1. ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ Όργανα µέτρησης µήκους Όταν πρόκειται να µετρήσουµε ένα µήκος, πρέπει να επιλέξουµε εκείνο το όργανο µέτρησης το οποίο είναι κατάλληλο για να µετρήσει το µήκος αυτό και να δώσει την απαιτούµενη

Διαβάστε περισσότερα

16ο Μάθημα ΔΙΑΣΤΟΛΗ ΚΑΙ ΣΥΣΤΟΛΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ. Μια ιδιότητα με σημαντικές συνέπειες και τεχνικές εφαρμογές

16ο Μάθημα ΔΙΑΣΤΟΛΗ ΚΑΙ ΣΥΣΤΟΛΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ. Μια ιδιότητα με σημαντικές συνέπειες και τεχνικές εφαρμογές 16ο Μάθημα ΔΙΑΣΤΟΛΗ ΚΑΙ ΣΥΣΤΟΛΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Μια ιδιότητα με σημαντικές συνέπειες και τεχνικές εφαρμογές Θα έχεις ίσως προσέξει ότι στους δρόμους και στα δάπεδα, όταν τα στρώνουν με τσιμέντο, αφήνουν

Διαβάστε περισσότερα

ΤΑ ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΚΑΙ Η ΜΕΤΡΗΣΗ ΤΟΥΣ H ΜΑΖΑ ΚΑΙ ΤΟ ΒΑΡΟΣ ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ

ΤΑ ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΚΑΙ Η ΜΕΤΡΗΣΗ ΤΟΥΣ H ΜΑΖΑ ΚΑΙ ΤΟ ΒΑΡΟΣ ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ ΦΕ3 ΤΑ ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΚΑΙ Η ΜΕΤΡΗΣΗ ΤΟΥΣ H ΜΑΖΑ ΚΑΙ ΤΟ ΒΑΡΟΣ 2015-16 6 ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ 6 ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Περιεχόμενα Η εμπειρία από την καθημερινότητα Το φυσικό μέγεθος μάζα Μέτρηση μάζας - Όργανα μέτρησης

Διαβάστε περισσότερα

ΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ

ΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ 941205 ΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ 2 Εισαγωγή Ευχαριστούμε που χρησιμοποιείτε την ενότητα για την έρευνα της μέτρησης. Ελπίζουμε πως το πακέτο και τα βιβλία εργασίας θα σας ικανοποιήσουν. Αν έχετε οποιεσδήποτε

Διαβάστε περισσότερα

Η αβεβαιότητα στη μέτρηση.

Η αβεβαιότητα στη μέτρηση. Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ ΦΥΣ 114 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ Φθινόπωρο 2014 Διδάσκων/Υπεύθυνος: Φώτης Πτωχός e-mail: fotis@ucy.ac.cy Τηλ: 22.89.2837 Γραφείο: B235 web-page: http://www2.ucy.ac.cy/~fotis/phy114/phy114.htm ΦΥΣ

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ

ΣΤΟΙΧΕΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΣΥΝΟΠΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΠΡΟΤΑΣΗΣ ΣΤΟΙΧΕΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΓΓΕΛΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ ΕΙΔΙΚΟΤΗΤΑ ΠΕ1204 1. ΠΕΡΙΓΡΑΦΗ 1.1 ΤΙΤΛΟΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Μέτρηση μήκους,

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 1: ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ, ΧΡΟΝΟΥ, ΜΑΖΑΣ ΚΑΙ ΥΝΑΜΗΣ

Εργαστηριακή άσκηση 1: ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ, ΧΡΟΝΟΥ, ΜΑΖΑΣ ΚΑΙ ΥΝΑΜΗΣ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΤΟΧΟΙ Εργαστηριακή άσκηση 1: ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ, ΧΡΟΝΟΥ, ΜΑΖΑΣ ΚΑΙ ΥΝΑΜΗΣ Τροποποίηση του εργαστηριακού οδηγού (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) Στόχοι αυτής της εργαστηριακής άσκησης

Διαβάστε περισσότερα

ÓfiÙËÙ 1. ÚÈıÌÔ Î È appleú ÍÂÈ

ÓfiÙËÙ 1. ÚÈıÌÔ Î È appleú ÍÂÈ ÓfiÙËÙ ÚÈıÌÔ Î È appleú ÍÂÈ ª ı Óˆ: ÚÈıÌÔ Î È appleú ÍÂÈ º ÛÈÎÔ ÚÈıÌÔ È ÚÈıÌÔ 0,, 2, 3, 4, 5, 6, 7, 8, 9,... ÔÓÔÌ ÔÓÙ È Ê ÛÈÎÔ. ıâ Ê ÛÈÎfi ÚÈıÌfi, ÂÎÙfi applefi ÙÔ 0, appleúôî appleùâè applefi ÙÔÓ appleúôëáô

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

12ο Μάθημα ΣΧΕΣΗ ΒΑΡΟΥΣ ΚΑΙ ΜΑΖΑΣ

12ο Μάθημα ΣΧΕΣΗ ΒΑΡΟΥΣ ΚΑΙ ΜΑΖΑΣ 12ο Μάθημα ΣΧΕΣΗ ΒΑΡΟΥΣ ΚΑΙ ΜΑΖΑΣ Είναι διαφορετικά μεγέθη, αλλά σχετίζονται μεταξύ τους Στην καθημερινή ζωή, κάνουμε σύγχυση ανάμεσα στο βάρος και στη μάζα. Το βάρος όμως και η μάζα ενός σώματος είναι

Διαβάστε περισσότερα

Έλεγξε τις γνώσεις σου

Έλεγξε τις γνώσεις σου Έλεγξε τις γνώσεις σου ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ. (α) Να μετατρέψεις το χρόνο των 45 min που σου δόθηκε για να απαντήσεις σε αυτό το διαγώνισμα σε s. (β) Να αναφέρεις όλα τα θεμελιώδη μεγέθη του S.I. και τις

Διαβάστε περισσότερα

34ο Μάθημα ΜΙΑ ΠΡΩΤΗ ΕΞΗΓΗΣΗ ΤΟΥ ΗΛΕΚΤΡΙΣΜΟΥ - ΑΓΩΓΟΙ ΚΑΙ ΜΟΝΩΤΕΣ

34ο Μάθημα ΜΙΑ ΠΡΩΤΗ ΕΞΗΓΗΣΗ ΤΟΥ ΗΛΕΚΤΡΙΣΜΟΥ - ΑΓΩΓΟΙ ΚΑΙ ΜΟΝΩΤΕΣ 34ο Μάθημα ΜΙΑ ΠΡΩΤΗ ΕΞΗΓΗΣΗ ΤΟΥ ΗΛΕΚΤΡΙΣΜΟΥ - ΑΓΩΓΟΙ ΚΑΙ ΜΟΝΩΤΕΣ Αρνητικά ηλεκτρικά φορτία μπορεί να κινούνται εύκολα και γρήγορα μέσα στους αγωγούς Τι συμβαίνει στα σώματα όταν ηλεκτρίζονται; Οι επιστήμονες

Διαβάστε περισσότερα

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΕΙΙΣΑΓΩΓΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. ) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει ιςς (σελ. 4) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.

Διαβάστε περισσότερα

Πειράματα Φυσικής Β Γυμνασίου

Πειράματα Φυσικής Β Γυμνασίου ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β - Εισαγωγή ΕΙΣΑΓΩΓΗ 1. Πείραμα και θεωρία Πειράματα Φυσικής Β Γυμνασίου Η Φυσική είναι η επιστήμη που διαμόρφωσε και συνεχίζει

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ (A) ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ (B) ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (Γ) ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων Σκοπός Σκοπός είναι να κατανοηθεί η έννοια των σφαλμάτων, η σπουδαιότητά τους και η αναγκαιότητα υπολογισμού τους. Δίνονται επίσης οι βασικοί μαθηματικοί τύποι που επιτρέπουν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

Μετρήσεις. Απόστασης ( μήκος, πλάτος, ύψος )

Μετρήσεις. Απόστασης ( μήκος, πλάτος, ύψος ) Μετρήσεις Απόστασης ( μήκος, πλάτος, ύψος ) Την απόσταση την μετράμε με το μέτρο και μπορούμε να την εκφράζουμε και σε δέκατα, εκατοστά, χιλιοστά και για μεγάλες αποστάσεις χρησιμοποιούμε το χιλιόμετρο.

Διαβάστε περισσότερα

32ο Μάθημα MΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ - ΜΕΤΑΦΟΡΑ ΚΑΙ ΜΕΤΑΤΡΟΠΕΣ ΤΗΣ ΕΝΕΡΓΕΙΑΣ

32ο Μάθημα MΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ - ΜΕΤΑΦΟΡΑ ΚΑΙ ΜΕΤΑΤΡΟΠΕΣ ΤΗΣ ΕΝΕΡΓΕΙΑΣ 32ο Μάθημα MΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ - ΜΕΤΑΦΟΡΑ ΚΑΙ ΜΕΤΑΤΡΟΠΕΣ ΤΗΣ ΕΝΕΡΓΕΙΑΣ Χημική, εσωτερική, κινητική, δυναμική, φωτεινή, ηλεκτρική Η ενέργεια αποθηκεύεται στα υλικά σώματα σε διάφορες μορφές, ως χημική, εσωτερική,

Διαβάστε περισσότερα

Φυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις

Φυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις Φυσική για Επιστήμονες και Μηχανικούς Εισαγωγή Φυσική και μετρήσεις Φυσική Χωρίζεται σε έξι βασικούς κλάδους: Κλασική μηχανική Θερμοδυναμική Ηλεκτρομαγνητισμός Οπτική Σχετικότητα Κβαντική μηχανική είναι

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου

Μαθηματικά Α Γυμνασίου Μαθηματικά Α Γυμνασίου A/A Σελίδα Αντί Να γραφεί 1 11, 1 η Δραστηριότητα Βρε του έξι διαφορετικού τριψήφιου αριθμού που. Βρε όλου του διαφορετικού τριψήφιου αριθμού που. 2 11, Θυμόμαστε Η δυνατότητα αυτή

Διαβάστε περισσότερα

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος)

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος) Άσκηση Μ1 Θεωρητικό μέρος Μήκος και μάζα (βάρος) Όργανα μέτρησης μήκους Διαστημόμετρο Με το διαστημόμετρο μετράμε μήκη μέχρι και μερικά μέτρα, σε χαμηλές απαιτήσεις ως προς την ακρίβεια. Το κύριο μέρος

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015

ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 014-015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 015 ΤΑΞΗ : Α ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ: ΗΜΕΡΟΜΗΝΙΑ : 05/06/015 ΔΙΑΡΚΕΙΑ : ώρες ΒΑΘΜΟΣ ΟΛΟΓΡΑΦΩΣ:. ΩΡΑ : 07:45 09:45 ΥΠΟΓΡΑΦΗ

Διαβάστε περισσότερα

Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού

Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός της πυκνότητας του υλικού ενός ομογενούς σώματος. Είναι μια έμμεση μέτρηση και θα γίνει με

Διαβάστε περισσότερα

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι:

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: Μετρήσεις-Αβεβαιότητα-Σφάλματα. Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Στην άμεση μέτρηση το μέγεθος μετράται με κάποιο όργανο. Στην έμμεση μέτρηση το μέγεθος υπολογίζεται

Διαβάστε περισσότερα

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου Μ7 Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου A. Προσδιορισµός της πυκνότητας στερεού σώµατος B. Εύρεση της εστιακής απόστασης συγκλίνοντα φακού. Σκοπός Σκοπός

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων

ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων 1. Θα λέμε ότι Ν μετρήσεις ενός μεγέθους παρουσιάζουν μεγάλη ακρίβεια (accuracy), αν η μέση τιμή των μετρήσεων είναι κοντά στην αληθινή τιμή του μεγέθους.

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Εισαγωγή... 2 Έννοια του σφάλματος...3 Συστηματικά και τυχαία σφάλματα...4 Εκτίμηση του σφάλματος κατά την ανάγνωση κλίμακας...8 Πολλαπλές μετρήσεις... 10 Περί του αριθμού των σημαντικών

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία 2. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΧΑΡΑΞΗΣ 2.1 Μετρητικές ταινίες Οι μετρητικές ταινίες, πτυσσόμενες (αρθρωτές) ή περιελισσόμενες σε θήκη, είναι κατασκευασμένες από χάλυβα ή άλλο ελαφρύ κράμα και έχουν χαραγμένες υποδιαιρέσεις

Διαβάστε περισσότερα

Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις Η Φύση της Επιστήµης Ενότητες Κεφαλαίου 1 Μοντέλα Θεωρίες και Νόµοι Μετρήσεις και αβεβαιότητα (σφάλµατα); Σηµαντικά ψηφία Μονάδες, Πρότυπα, και το Διεθνές Σύστηµα

Διαβάστε περισσότερα

Φίλε μαθητή, Το βιβλίο αυτό, που κρατάς στα χέρια σου προέκυψε τελικά μέσα από την εμπειρία και διδακτική διαδικασία πολλών χρόνων στον Εκπαιδευτικό Όμιλο Άλφα. Είναι το αποτέλεσμα συγγραφής πολλών καθηγητών

Διαβάστε περισσότερα

Τι μάθαμε μέχρι τώρα:

Τι μάθαμε μέχρι τώρα: Τι μάθαμε μέχρι τώρα: Η μέτρηση μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Κάθε μέτρηση έχει ΑΒΕΒΑΙΟΤΗΤΑ. Παρουσιάζοντας τη μέτρηση σύμφωνα με τη θεωρία σφαλμάτων γράφω δυο αριθμούς: x ± δx ή x ± Σσχ ή x ± %Σσχ όπου

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. A Γυμνασίου 29 Μαρτίου 2014 Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:... Σχολείο:... Τάξη/Τμήμα:. Εξεταστικό Κέντρο:. Πειραματικό Μέρος Θέμα 1 ο H μέτρηση του μήκους γίνεται, συνήθως, με μετροταινία

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια.

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια. ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά * Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια. * Ο βαθμός για την κάθε

Διαβάστε περισσότερα

Γενικό Εργαστήριο Φυσικής

Γενικό Εργαστήριο Φυσικής http://users.auth.gr/agelaker Γενικό Εργαστήριο Φυσικής Γενικό Εργαστήριο Φυσικής Σφάλματα Μελέτη φυσικού φαινομένου Ποσοτική σχέση παραμέτρων Πείραμα Επαλήθευση Καθιέρωση ποσοτικής σχέσης Εύρεση τιμής

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ. Θέματα: - Μονάδες μέτρησης (μήκος, μάζα, χωρητικότητα, θερμοκρασία) - Κλίμακα - Έννοιες χρόνου - Εκτίμηση - Περίμετρος, εμβαδόν, όγκος

ΜΕΤΡΗΣΗ. Θέματα: - Μονάδες μέτρησης (μήκος, μάζα, χωρητικότητα, θερμοκρασία) - Κλίμακα - Έννοιες χρόνου - Εκτίμηση - Περίμετρος, εμβαδόν, όγκος ΜΕΤΡΗΣΗ Θέματα: - Μονάδες μέτρησης (μήκος, μάζα, χωρητικότητα, θερμοκρασία) - Κλίμακα - Έννοιες χρόνου - Εκτίμηση - Περίμετρος, εμβαδόν, όγκος 1 Μονάδες μέτρησης (μήκος, μάζα, χωρητικότητα, θερμοκρασία)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί

Διαβάστε περισσότερα

1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος

1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος 7η ΗΜΕΡΙΔΑ ΠΕΙΡΑΜΑΤΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΒΙΟΛΟΓΙΑΣ ΟΜΑΔΑ... ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ/ΤΡΙΩΝ: 1. 2. 3. 1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος Ο Σκοπός της άσκησης Ο σκοπός

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.)

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Ε.Κ.Π. (Ελάχιστο Κοινό Πολλαπλάσιο) Κοινό όταν δύο άτομα έχουν ένα κοινό

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Το ελικόπτερο Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται στην οθόνη

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια

Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Ένας σημαντικός χρόνος περιορισμένης

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 10 ΜΕΤΡΗΣΗ-ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΕΝΟΤΗΤΑ 10 ΜΕΤΡΗΣΗ-ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ-ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα και δεκαδικούς αριθμούς, χρησιμοποιώντας κατάλληλο υλικό όπως επιφάνειες,

Διαβάστε περισσότερα

Εισαγωγή ΚΕΦΑΛΑΙΟ 1 Β ΓΥΜΝΑΣΙΟΥ

Εισαγωγή ΚΕΦΑΛΑΙΟ 1 Β ΓΥΜΝΑΣΙΟΥ Εισαγωγή ΚΕΦΑΛΑΙΟ Β ΓΥΜΝΑΣΙΟΥ . Οι Φυσικές επιστήμες και η μεθοδολογία τους. Τι ονομάζουμε φαινόμενα; Φαινόμενα ονομάζουμε τις μεταβολές που συμβαίνουν γύρω μας, π.χ. το λιώσιμο των πάγων, η βροχή, ο κεραυνός

Διαβάστε περισσότερα

Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου

Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου Σύνοψη Αυτή είναι μια από τις πρώτες ασκήσεις που κάνεις στο εργαστήριο Φυσικής Ι, γι αυτό καλό είναι να μάθεις ότι

Διαβάστε περισσότερα

Τίτλος: GPS Βρες το δρόμο σου

Τίτλος: GPS Βρες το δρόμο σου Τίτλος: GPS Βρες το δρόμο σου Θέματα: διασταύρωση σφαιρών, συστήματα με συντεταγμένες, απόσταση, ταχύτητα και χρόνος, μετάδοση σήματος Διάρκεια: 90 λεπτά Ηλικία: 16+ Διαφοροποίηση: Πιο ψηλό επίπεδο: μπορεί

Διαβάστε περισσότερα

24ο Μάθημα ΑΤΜΟΣΦΑΙΡΙΚΗ ΠΙΕΣΗ

24ο Μάθημα ΑΤΜΟΣΦΑΙΡΙΚΗ ΠΙΕΣΗ 24ο Μάθημα ΑΤΜΟΣΦΑΙΡΙΚΗ ΠΙΕΣΗ Ο αέρας, όπως και κάθε αέριο, ασκεί δυνάμεις, ασκεί πιέσεις Μέχρι τώρα διαπιστώσαμε ότι πιέσεις μπορεί να ασκηθούν στην επιφάνεια στερεών και υγρών σώματων. Τι συμβαίνει στην

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 4 ο, Τμήμα Α Τι συμβαίνει όταν η περίοδος δεν ξεκινάει αμέσως μετά το κόμμα όπως συμβαίνει με τον αριθμό 3,4555 και θέλουμε να γραφεί σαν κλάσμα; 345 Υπήρχαν πολλές

Διαβάστε περισσότερα

Ποιος είναι ο 66ος όρος στην ακολουθία γραμμάτων ΑΒΒΓΓΓΔΔΔΔΕΕΕΕΕ, όπου Α, Β, Γ, Δ, Ε είναι γράμματα του ελληνικού αλφαβήτου;

Ποιος είναι ο 66ος όρος στην ακολουθία γραμμάτων ΑΒΒΓΓΓΔΔΔΔΕΕΕΕΕ, όπου Α, Β, Γ, Δ, Ε είναι γράμματα του ελληνικού αλφαβήτου; Πρόβλημα 214 Τα θρανία στην τάξη του Γιάννη είναι τοποθετημένα σε γραμμές και στήλες. Το θρανίο του Γιάννη είναι στην τρίτη γραμμή από την αρχή και στην τέταρτη από το τέλος. Είναι επίσης στην τρίτη στήλη

Διαβάστε περισσότερα

! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C

Διαβάστε περισσότερα

Συμπληρωματικό Φύλλο Εργασίας 4+ ( * ) Μετρήσεις Θερμοκρασίας Η Βαθμονόμηση

Συμπληρωματικό Φύλλο Εργασίας 4+ ( * ) Μετρήσεις Θερμοκρασίας Η Βαθμονόμηση Συμπληρωματικό Φύλλο Εργασίας 4+ ( * ) Μετρήσεις Θερμοκρασίας Η Βαθμονόμηση ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Μια προσεκτική μέτρηση

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ ΠΕΡΙΕΧΟΜΕΝΑ. ΕΙΣΑΓΩΓΗ.. ΜΟΝΟΜΕΤΡΑ ΚΑΙ ΔΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ.. ΤΟ ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ SI.3. ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ ΜΗΚΟΥΣ, ΕΜΒΑΔΟΥ, ΟΓΚΟΥ ΚΑΙ ΠΥΚΝΟΤΗΤΑΣ..4. ΜΕΤΑΒΟΛΗ ΚΑΙ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ 3. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

Διαβάστε περισσότερα

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2 ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ Περιεχόμενα 1. Στρογγυλοποίηση.... 2 1.1 Γενικά.... 2 1.2 Κανόνες Στρογγυλοποίησης.... 2 2. Σημαντικά ψηφία.... 2 2.1 Γενικά.... 2 2.2 Κανόνες για την

Διαβάστε περισσότερα

Ενδεικτικές απαντήσεις θα αναρτηθούν μετά την παραλαβή των γραπτών από όλα τα εξεταστικά κέντρα.

Ενδεικτικές απαντήσεις θα αναρτηθούν μετά την παραλαβή των γραπτών από όλα τα εξεταστικά κέντρα. Ενδεικτικές απαντήσεις θα αναρτηθούν μετά την παραλαβή των γραπτών από όλα τα εξεταστικά κέντρα. Ε Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:.. Δημοτικό Σχολείο:.. Τάξη/Τμήμα:.. Εξεταστικό Κέντρο:....

Διαβάστε περισσότερα

Άσκηση 9 Μελέτη στροφικής κίνησης στερεού σώματος

Άσκηση 9 Μελέτη στροφικής κίνησης στερεού σώματος Άσκηση 9 Μελέτη στροφικής κίνησης στερεού σώματος Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι: ο πειραματικός υπολογισμός της ροπής αδράνειας ενός στερεού και η σύγκριση της πειραματικής τιμής με τη

Διαβάστε περισσότερα

EÈÛ ÁˆÁ È ÙÔ ÛÎ ÏÔ Î È ÙÔ ÁÔÓÂ

EÈÛ ÁˆÁ È ÙÔ ÛÎ ÏÔ Î È ÙÔ ÁÔÓ EÈÛ ÁˆÁ È ÙÔ ÛÎ ÏÔ Î È ÙÔ ÁÔÓ H σειρά Προβλήµατα µαθηµατικών για όλους αποτελείται από πέντε βιβλία τα οποία απευθύνονται σε παιδιά που φοιτούν από τη Β ως την ΣT τάξη. Κάθε βιβλίο περιλαµβάνει προβλήµατα

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

ΕΝΤΑΣΗ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ (Ε.Χαραλάμπους)

ΕΝΤΑΣΗ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ (Ε.Χαραλάμπους) ΕΝΤΑΣΗ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ (Ε.Χαραλάμπους) Όνομα Παιδιού: Ναταλία Ασιήκαλη ΤΙΤΛΟΣ ΔΙΕΡΕΥΝΗΣΗΣ: Πως οι παράγοντες υλικό, μήκος και πάχος υλικού επηρεάζουν την αντίσταση και κατ επέκταση την ένταση του ρεύματος

Διαβάστε περισσότερα

ΜΕΡΟΣ Α 2 Ô. º π. Πραγματικοί αριθμοί

ΜΕΡΟΣ Α 2 Ô. º π. Πραγματικοί αριθμοί ΜΕΡΟΣ Α º π Ô Πραγματικοί αριθμοί ΕΙΣΑΩΙΚΟ ΣΗΜΕΙΩΜΑ ª ÚÈ ÙÒÚ Ô ÌÂ Û Ó ÓÙ ÛÂÈ Ê ÛÈÎÔ, Î Ú ÈÔ Î È ÚËÙÔ ÚÈıÌÔ. ÙÔ ÙÂÏÂ Ù Ô Â ÌÂ ÂÍÂÙ ÛÂÈ ÙË ÂÎ ÈÎ ÙÔ apple Ú ÛÙ ÛË, Ë ÔappleÔ Ù Ó ÁÓˆÛÙ ÛÂ appleï appleâúèô

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ - ΑΞΙΟΛΟΓΗΣΗ

ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ - ΑΞΙΟΛΟΓΗΣΗ ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ - ΑΞΙΟΛΟΓΗΣΗ 1 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιδιώκεται οι μαθητές: 1. Να συζητούν και να προβληματίζονται για τα μετρήσιμα και τα μη μετρήσιμα μεγέθη. 2. Να πειραματιστούν και να καταλήξουν σε

Διαβάστε περισσότερα

ΒΛΑΣΤΗΣΗ (ΜΑΤΘΑΙΟΥ) !"Τίτλος διερεύνησης: Ποιοι παράγοντες επηρεάζουν το πόσο γρήγορα θα βλαστήσουν τα σπέρματα των οσπρίων.

ΒΛΑΣΤΗΣΗ (ΜΑΤΘΑΙΟΥ) !Τίτλος διερεύνησης: Ποιοι παράγοντες επηρεάζουν το πόσο γρήγορα θα βλαστήσουν τα σπέρματα των οσπρίων. ΒΛΑΣΤΗΣΗ (ΜΑΤΘΑΙΟΥ)!"Τίτλος διερεύνησης: Ποιοι παράγοντες επηρεάζουν το πόσο γρήγορα θα βλαστήσουν τα σπέρματα των οσπρίων.!"σύντομη περιγραφή διερεύνησης: Στη διερεύνησή μας μετρήθηκε ο χρόνος που χρειάστηκαν

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1. Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση Περιέχει: 1. Αναλυτική Θεωρία 2. Ερωτήσεις Θεωρίας 3. Ερωτήσεις Πολλαπλής Επιλογής 4.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩ ΟΥΣ

ΑΣΚΗΣΗ 8 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩ ΟΥΣ ΑΣΚΗΣΗ 8 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩ ΟΥΣ Η αντίσταση που δέχεται ένα σώµα όταν κινείται µέσα σ ένα ρευστό εξαρτάται απο το σχήµα του σώµατος. Παρατηρούµε οτι η µικρότερη αντίσταση εµφανίζεται στο ατρακτοειδές

Διαβάστε περισσότερα

Το ελικόπτερο. Γνωστικό Αντικείμενο: Φυσική (Κίνηση - Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

Το ελικόπτερο. Γνωστικό Αντικείμενο: Φυσική (Κίνηση - Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Το ελικόπτερο Γνωστικό Αντικείμενο: Φυσική (Κίνηση - Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι

Διαβάστε περισσότερα

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα

Διαβάστε περισσότερα