KLASIFIKACIJA PRIRODNIH NAUKA

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "KLASIFIKACIJA PRIRODNIH NAUKA"

Transcript

1 KLASIFIKACIJA PRIRODNIH NAUKA BIOFIZIKA BIOLOGIJA BIOHEMIJA FIZIKA HEMIJA FIZIČKA HEMIJA

2 VODIČ KROZ MODERNU NAUKU 1. Ako je zeleno ili mrda, to je biologija 2. Ako smrdi, to je hemija 3. Ako ne funkcioniše, to je fizika 4. Ako je neshvatljivo, to je matematika 5. Ako je besmisleno, to je ekonomija

3 -BIOLOGIJAproučava SVE ŠTO JE ŽIVO (od virusa do čoveka) - FIZIKA proučava ENERGETSKE PROMENE MATERIJE (bez promene hemijskog sastava) Fizička svojstva supstanci: m - izgled, boja, opip, gustina ( ρ = V ), tvrdoća, kovnost, - temperatura (tačka) topljenja - temperatura na kojoj supstanca prelazi iz čvrstog u tečno stanje (T m, T f ), - temperatura (tačka) ključanja - temperatura na kojoj supstanca prelazi iz tečnog u gasovito stanje (T b ), - napon pare, - rastvorljivost, - toplotna i električna provodnost...

4 B o j a Pare joda - Rastvor CuSO 4 - Rastvor KMnO 4 - ljubičaste plav ljubičast Boja supstanci potiče od njihove selektivne apsorpcije zračenja iz vidljive oblasti elektromagnetnog spektra ( nm).

5 -HEMIJAproučava HEMIJSKA SVOJSTVA SUPSTANCI I PROCESE KOD KOJIH DOLAZI DO PROMENE HEMIJSKOG SASTAVA (HEMIJSKE REAKCIJE) elementi jedinjenja jedinjenja(1) jedinjenja(2) aa + bb cc + dd Hemijska svojstva supstanci: građa atoma, građa molekula (tip veze, energija veze, geometrija), reaktivnost, termička stabilnost (temperatura razlaganja i paljenja), kiselo-bazna i redoks svojstva...

6 VEZA FIZIKE I HEMIJE Hemijska svojstva Fizička svojstva Hemijske promene Fizičke promene H 2 O(s) H 2 O(l) H 2 O(g) H 2 O Na + Cl - (s) Na + (aq) + Cl - (aq) s čvrsto l tečno g gasovito aq vodeni rastvor c - kristalno

7 Fizička i hemijska svojstva vode T m =0 o C T b =100 o C Rastvara CuSO 4 Burno reaguje sa Na

8 PRIMENJENA, INDUSTRIJSKA HEMIJA: dobijanje hemijskih elemenata i jedinjenja polazeći od prirodnih sirovina HEMIJSKA TEHNOLOGIJA: kako se hemijski procesi izvode u industriji (praksi) 2 Fe 2 O 3 (s) + 3 C(s) 4 Fe(l) + 3 CO 2 (g) FILTRIRANJE (CEĐENJE) u hemiji u tehnologiji (industriji)

9 MATERIJALNI SISTEMI MATERIJA - sve što nas okružuje; ima masu i oblik, možemo je osetiti svojim čulima; FIZIČKO POLJE - električno, magnetno, gravitaciono vek - materija je sve što ima masu i zauzima zapreminu - nedostatak - zanemarena je energija, neraskidivo povezana sa masom - Ajnštajn: E = mc 2, pretvaranje mase u energiju i obrnuto potvrđeno nuklearnim reakcijama - svi oblici energije (energija zračenja, toplotna energija, električna energija itd.) su vidovi materije - masa i energija su dva glavna, najviše proučavana oblika materije

10 MATERIJA postoji u tri agregatna stanja: ČVRSTO TEČNO GASOVITO PLAZMA! Čvrsto (s) - ima stalnu zapreminu i definisan oblik Tečno (l) - ima stalnu zapreminu, promenljiv oblik i obično zauzima oblik suda u kojem se nalazi Gasovito (g) - nema ni stalnu zapreminu, ni stalan oblik - zauzima i zapreminu, i oblik suda u kojem se nalazi

11 KLASIFIKACIJA MATERIJALNIH SISTEMA MATERIJA Supstance Smeše Elementi Jedinjenja Homogene (rastvori) Heterogene HOMOGENI SISTEMI Koloidi

12 Dva kriterijuma za podelu: - stepen čistoće, tj. sastav - homogenost, odnosno heterogenost sistema. SUPSTANCE (elementi i jedinjenja) imaju konstantan hemijski sastav i tačno određena fizička i hemijska svojstva. SMEŠE se sastoje od dve ili više supstanci, a njihova svojstva zavise od sastava udela komponenata; komponente zadržavaju svoja hemijska svojstva. Stepen čistoće: 98 %, 99,5 %, 99,99 %, 99,9999 %, >98,5 %, 99+, tehnički, purum, puriss, p.a., za hromatografiju, itd.

13 SUPSTANCE HEMIJSKI ELEMENT - oblik materije koji ne može da se dalje razloži na dve ili više supstanci - MAKROSKOPSKI definisano: supstanca koje se sastoji od atoma iste vrste (istog atomskog broja, Z) - MIKROSKOPSKI definisano: gradivna jedinka su najčešće atomi (npr. metali, plemeniti gasovi), mada mogu biti i molekuli (npr. O 2, Cl 2, N 2, P 4, S 8, C ) - do danas je poznato 118 elemenata Bakar Živa Vodonik

14 SUPSTANCE HEMIJSKO JEDINJENJE - MAKROSKOPSKI definisano: složena supstanca koja sadrži više elemenata povezanih hemijskim vezama - MIKROSKOPSKI definisano: molekuli (H 2 O), joni (Na + Cl - ) formulska jedinica, atomi (intermetalna jedinjenja, Al 12 Mo) - uvek sadrže elemente u istom masenom odnosu H 2 O 88,81 mas. % kiseonik 11,19 mas. % vodonik

15 - svojstva HEMIJSKIH JEDINJENJA se veoma razlikuju od svojstava elemenata od kojih su izgrađena 39,34 mas. % natrijum NaCl 60,66 mas. % hlor veoma reaktivan metal bela kristalna (kuhinjska) so otrovan, žutozeleni gas

16 1990. око 15 miliona poznatih jedinjenja око 89 miliona poznatih jedinjenja

17 SMEŠE HOMOGENE - jedna faza - uniformna raspodela komponenata - molekulska disperzija, čestice < 1 nm (homogena smeša = rastvor) HETEROGENE - više faza (postoji fazna granica) - neuniformna raspodela komponenata - gruba disperzija, čestice > 100 nm Faza je prostor jasno definisanih granica i uniformnih svojstava (u sva tri agregatna stanja).

18 Primeri HOMOGENIH smeša tečno-tečno čvrsto-čvrsto (legure) bakar Voda i alkohol tečno-čvrsto tečno-gas mesing cink Mesing (legura Cu i Zn) Vazduh - smeša gasova (u vol. %): 78 N 2, 21 O 2, 1 Ar i 0,03 CO 2 Morska voda (rastvor NaCl i drugih soli u vodi) Kisela voda (rastvor CO 2 u vodi) Benzin smeša ugljovodonika

19 Primeri HETEROGENIH smeša Voda i ulje CuSO 4 5H 2 O i pesak Puter Majonez Mleko

20

21 METODE ZA RAZDVAJANJE SMEŠA MATERIJA Supstance Smeše Elementi Jedinjenja Homogene (rastvori) Heterogene HOMOGENI SISTEMI Koloidi HEMIJSKE METODE FIZIČKE METODE

22 METODE ZA RAZDVAJANJE SMEŠA - rastvaranje (čvrsto-čvrsto, rastvorljivo-nerastvorljivo) - sedimentacija i plivanje (čvrsto-tečno i čvrsto-čvrsto, gustina) - filtriranje (čvrsto-tečno, veličina čestica) - centrifugiranje (čvrsto-tečno, veličina čestica) - uparavanje (čvrsto-tečno, t. ključanja) - dijaliza (koloid-pravi rastvor, veličina čestica) - flotacija (čvrsto-čvrsto, hidrofilno-hidrofobno) - magnetna separacija (čvrsto-čvrsto, magnetno-nemagnetno) - destilacija i frakciona destilacija (tečno-tečno, t. ključanja) - sublimacija (čvrsto-čvrsto, t. sublimacije) - kristalizacija, prekristalizacija i frakciona kristalizacija (čvrsto-čvrsto, rastvorljivost) - efuzija i frakciona difuzija (gas-gas, veličina čestica) - hromatografija, gasna i tečna (sva agregatna stanja, rastvorljivost, međumolekulske sile...) -...

23 FILTRACIJA (čvrsto-tečno, veličina čestica) CENTRIFUGIRANJE (čvrsto-tečno, veličina čestica) DESTILACIJA (tečno-tečno, temperatura ključanja)

24 Magnetna separacija smeše Fe i S SUBLIMACIJA (čvrsto-čvrsto, temperatura sublimacije) direktan prelaz supstance iz čvrstog u gasovito stanje Zagrevanje Kristali joda MAGNETNA SEPARACIJA (čvrsto-čvrsto, magnetnonemagnetno) Hlađenje para

25 SVOJSTVA SUPSTANCI Svaka čista supstanca ima jedinstvena svojstva po kojima se razlikuje od ostalih supstanci. FIZIČKA SVOJSTVA SUPSTANCI INTENZIVNA (ne zavise od količine) HEMIJSKA EKSTENZIVNA (zavise od količine) masa, zapremina, pritisak, itd.

26 OSNOVNI HEMIJSKI POJMOVI KOLIČINA SUPSTANCE n (mera za brojnost čestica) JEDINICA: mol 12 broj elementarnih čestica jednak broju atoma u 12 g 6 C N A = 6, mol -1 ma m(o) = 2, m A r = 1 g M m( 12 r = C) m( u (a.j.m. a.m.u.) = m( 6 C) = 1,66 10 kg 12 u unificirana jedinica atomske mase (ili Da dalton) m Relativna atomska masa (A r ) je broj koji pokazuje koliko je puta prosečna masa atoma prisutnih u prirodnoj smeši izotopa neke elementarne supstance veća od 1/12 mase atoma izotopa ugljenika 12 C. A r nekog elementa je količnik prosečne mase atoma ( ma) i unificirane jedinice atomske mase. C)

27 OSNOVNI HEMIJSKI POJMOVI IZOTOPI - atomi koji sadrže isti broj protona, a različit broj neutrona - razlikuju se po masi, ali imaju ista hemijska svojstva. 1 stabilan izotop: Be, F, Na, Al 10 stabilnih izotopa: Sn M - molarna masa atoma, molekula,... (čestica) - masa Avogadrovog broja čestica jedinice: kg/mol (kg mol -1 ), g/mol (g mol -1 ) M r (H 2 O) = 18,02 M(H 2 O) = 18,02 g mol -1 A r (C) = 12,01 M(C) = 12,01 g mol -1

28 MERENJA, TAČNOST I PRECIZNOST, ZNAČAJNE AJNE CIFRE Hemija, fizika, biologija i ostale prirodne nauke su eksperimentalne nauke!!! Šta to znači? Skoro nikada ne znamo tačnu vrednost neke veličine (uvek imamo neku grešku)! Avogadrov broj: N A = mol -1 (osnоvna škоlа) N A = 6, mol -1 (srednja školа) N A = 6, mol -1 (fakultet) N A = 6,022137(4) mol -1 (najprecizniji еksperiment) Relativna atomska masa kiseonika: А r (О) = 15,9994(3) А r (О) = 16,00 Vrednosti konstanti i relativnih atomskih masa zaokružuju se na 4 značajne cifre.

29 MERENJA Rezultati merenja se izražavaju metričkim sistemom (decimalnim). Decimalni sistem se koristi i u Međunarodnom sistemu mernih jedinica (SI, fr. Système International d'unités). Prefiksi u metričkom sistemu Faktor Prefiks Oznaka Faktor Prefiks Oznaka 10 6 mega M 10-3 mili m 10 3 kilo k 10-6 mikro μ 10-1 deci d 10-9 nano n 10-2 centi c piko p

30 Loša preciznost i tačnost Dobra preciznost i tačnost Dobra preciznost i loša tačnost TAČNOST I PRECIZNOST Primeri: Jedan sat dva sata; tehnička vaga analitička vaga; - merenja bliska korektnim (ili očekivanim) vrednostima su tačna merenja (tačnost pokazuje slaganje) -međusobno bliska merenja jesu precizna merenja (preciznost pokazuje reproduktivnost)

31 Statistika i verovatnoća (grane matematike) - teorija grešaka, standardna devijacija, raspodele grešaka itd. Greške se dela na: -slučajne (moraju postojati u eksperimentu), - grube ili omaške (ljudski faktor), - sistematske (ugrađene u metodu, pokvaren instrument, pitanje kalibracije i baždarenja itd). Približni brojevi i značajne ajne cifre N A = 6,022137(4) mol -1 Pravila računanja sa približnim brojevima i pravila njihovog zaokruživanja: Zbirka, vežbe, zadaci Inženjer mora stalno imati na umu da radi sa eksperimentalnim podacima!!!

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Tačno merenje Precizno Tačno i precizno

Tačno merenje Precizno Tačno i precizno MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA Izmeriti neku veličinu u fizici znači naći brojni odnos merene fizičke veličine prema vrednosti iste fizičke veličine, koja je dogovorno izabrana za jedinicu.

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas

entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: S čvrsto < S tečno << S gas ,4,4, Odreñivanje promene entropije,4,4,, romena entropije pri promeni faza Molekular ularna interpretacija entropije Entropija raste ako se krećemo od čvrstog preko tečnog do gasovitog stanja: čvrsto

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA 1 Merenje Svaki eksperimentalni rad u fizici praćen je merenjem neke fizičke veličine. Izmeriti neku fizičku veličinu znači uporediti je sa standardnom

Διαβάστε περισσότερα

TERMODINAMIKA osnovni pojmovi energija, rad, toplota

TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA TERMO TOPLO nauka o kretanju toplote DINAMO SILA Termodinamika-nauka odnosno naučna disciplina koja ispituje odnose između promena u sistemima

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA III RAČUNSE VEŽBE RAVNOTEŽE U RASTVORIMA ISELINA I BAZA U izračunavanju karakterističnih veličina u kiselinsko-baznim sistemima mogu se slediti Arenijusova (Arrhenius, 1888) teorija elektrolitičke disocijacije

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA. Elektronska konfiguracija ns 2 np 1 B 4

13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA. Elektronska konfiguracija ns 2 np 1 B 4 13. GRUPA PERIODNOG SISTEMA 13. GRUPA PERIODNOG SISTEMA Bor redak element, najčešće u obliku minerala boraksa, Na 2 B 4 O 7 10H 2 O. Aluminijum najrasprostranjeniji metal u Zemljinoj kori (8,3 mas.%) i

Διαβάστε περισσότερα

Termofizika. Glava Temperatura

Termofizika. Glava Temperatura Glava 7 Termofizika Toplota je jedan od oblika energije sa čijim transferom sa tela na telo se svakodnevno srećemo. Tako nas na primer, leti Sunce zagreva tokom dana dok su vedre letnje noći često prilično

Διαβάστε περισσότερα

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema.

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema. TERMODINAMIKA U svakodnevnom govoru, često dolazi greškom do koriščenja termina temperatura i toplota u istom značenju. U fizici, ova dva termina imaju potpuno različito značenje. Razmatračemo kako se

Διαβάστε περισσότερα

Rastvor predstavlja homogenu smešu dve ili više komponenti. Uslovna podela komponenata na rastvorak i rastvarač:

Rastvor predstavlja homogenu smešu dve ili više komponenti. Uslovna podela komponenata na rastvorak i rastvarač: RASTVORI 1 Rastvor predstavlja homogenu smešu dve ili više komponenti. Uslovna podela komponenata na rastvorak i rastvarač: Rastvarač je komponenta koja ima isto agregatno stanje kao i dobijeni rastvor.

Διαβάστε περισσότερα

Φυσικές και χημικές ιδιότητες

Φυσικές και χημικές ιδιότητες Φυσικές και χημικές ιδιότητες Φυσικές ιδιότητες Οι ιδιότητες που προσδιορίζονται χωρίς αλλοίωση της χημικής σύστασης της ουσίας (π.χ. σ. τήξεως, σ. ζέσεως, πυκνότητα, χρώμα, γεύση, σκληρότητα). Χημικές

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΜΑΘΗΜΑ ΚΟΡΜΟΥ «ΥΔΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΥΔΑΤΙΚΑ ΟΙΚΟΣΥΣΤΗΜΑΤΑ Σημειώσεις

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 4 ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ: 1. Τι είναι ατομικό και τί μοριακό βάρος; Ατομικό βάρος είναι ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη η μάζα του ατόμου από το 1/12 της

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr . Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται

Διαβάστε περισσότερα

SAZNANJA O MATERIJI OD STAROG DO XIX VEKA

SAZNANJA O MATERIJI OD STAROG DO XIX VEKA SAZNANJA O MATERIJI OD STAROG DO XIX VEKA U najstarija vremena, čovek je svoja poimanja sveta iskazivao mitovima. MIT (mitos) reč, priča, kazivanje (grč.); MITOLOGIJA od, priča i (logos), reč, učenje.

Διαβάστε περισσότερα

2. OSNOVNI POJMOVI. 2.1 Fizika i termodinamika

2. OSNOVNI POJMOVI. 2.1 Fizika i termodinamika 2. OSNOVNI POJMOVI 2.1 Fizika i termodinamika Fizika nauka koja se bavi izučavanjem procesa kretanja materije u svim njenim pojavnim oblicima. Kako je osnovna kvantitativna mera kretanja materije energija

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

ΙΑΦΑ Φ ΝΕΙ Ε ΕΣ Ε ΧΗΜΕ Μ Ι Ε ΑΣ ΓΥΜΝ Μ ΑΣΙΟΥ H

ΙΑΦΑ Φ ΝΕΙ Ε ΕΣ Ε ΧΗΜΕ Μ Ι Ε ΑΣ ΓΥΜΝ Μ ΑΣΙΟΥ H Hταξινόµηση των στοιχείων τάξη Γ γυµνασίου Αναγκαιότητα ταξινόµησης των στοιχείων Μέχρι το 1700 µ.χ. ο άνθρωπος είχε ανακαλύψει µόνο 15 στοιχείακαι το 1860 µ.χ. περίπου 60στοιχεία. Σηµαντικοί Χηµικοί της

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

OSNOVNA ŠKOLA HEMIJA

OSNOVNA ŠKOLA HEMIJA OSNOVNA ŠKOLA HEMIJA UPUTSTVO TAKMIČARIMA Zadatak br. Bodovi 1. 10 2. 10 3. 10 4. 10 5. 1o 6. 10 7. 10 8. 10 9. 10 10. 10 Ukupno: 100 bodova - Za izradu testa planirano je 120 minuta. - U toku izrade

Διαβάστε περισσότερα

PRSKALICA - LELA 12 L / LELA16 L

PRSKALICA - LELA 12 L / LELA16 L PRSKALICA - LELA 12 L / LELA16 L UPUTSTVO ZA UPOTREBU 1 Prskalica je pogodna za raspršivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Uredjaj je namenjen za kućnu,

Διαβάστε περισσότερα

PRERADA NAFTE PRIMARNA PRERADA NAFTE

PRERADA NAFTE PRIMARNA PRERADA NAFTE RUDARSKI ODSEK-Eksploatacija tečnih i gasovitih mineralnih sirovina i gasna tehnika PREDMET: HEMIJA I PRERADA NAFTE I GASA (za studente VI semestra) Prof. dr AleksandraKostic-Pulek ( 09.05.2008) PRERADA

Διαβάστε περισσότερα

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ Τι είναι ο αριθμός οξείδωσης Αριθμό οξείδωσης ενός ιόντος σε μια ετεροπολική ένωση ονομάζουμε το πραγματικό φορτίο του ιόντος. Αριθμό οξείδωσης ενός

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A4 και δίπλα

Διαβάστε περισσότερα

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE MJEŠOVITA SREDNJA TEHNIČKA ŠKOLA TRAVNIK AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE Električna kola Profesor: mr. Selmir Gajip, dipl. ing. el. Travnik, februar 2014. Osnovni pojmovi- naizmjenična

Διαβάστε περισσότερα

KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU

KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU ИНФОРМАТОР 29 UNIVERZITET U BEOGRADU jun 2005. godine KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU Šifra zadatka: 51501 Test ima 20 pitanja. Netačan odgovor donosi

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

MIKRO-NANO FLUIDIKA 8. UVOD U ELEKTROHEMIJU

MIKRO-NANO FLUIDIKA 8. UVOD U ELEKTROHEMIJU MIKRO-NANO FLUIDIKA Handout 4 2012/2013 8. UVOD U ELEKTROHEMIJU Elektrohemija je grana hemije koja proučava hemijske reakcije koje se dešavaju na granici izmeďu električnog provodnika (metalne, poluprovodničke

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ. Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014

ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ. Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014 ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014 Άγιος Γερμανός, Φεβρουάριος 2015 Ομάδα συγγραφής Βαλεντίνη Μάλιακα

Διαβάστε περισσότερα

4. ΤΑ ΑΛΑΤΑ. Επιμέλεια παρουσίασης Παναγιώτης Αθανασόπουλος Δρ - Χημικός

4. ΤΑ ΑΛΑΤΑ. Επιμέλεια παρουσίασης Παναγιώτης Αθανασόπουλος Δρ - Χημικός 4. ΤΑ ΑΛΑΤΑ Επιμέλεια παρουσίασης Παναγιώτης Αθανασόπουλος Δρ - Χημικός Σκοπός του μαθήματος: Να κατανοήσουμε πως παράγονται εργαστηριακά τα άλατα χλωριούχο νάτριο και θειικό βάριο. Να γράφουμε τις ιοντικές

Διαβάστε περισσότερα

Otkriće prirodne radioaktivnosti

Otkriće prirodne radioaktivnosti Otkriće prirodne radioaktivnosti Kruksove cevi Rentgen [Wilhem Konrad Rontgen, 1845-1923] Sir Wiliam Crookes 1832-1919 Iz Kruksovih cevi se emituje prodorno zračenje Otkriće Xzraka X-zraka - 1895 Prva

Διαβάστε περισσότερα

Hemijske komponente prirodnih voda. Sedmo predavanje

Hemijske komponente prirodnih voda. Sedmo predavanje Hemijske komponente prirodnih voda. Sedmo predavanje 1 Sadržaj 12. predavanja Ciljevi predavanja 1. Klasifikacija voda prema Vernadskom i Alekinu. 2. Glavni joni u vodama i njihovo poreklo. 3. Gasovi u

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

Ομογενής και Ετερογενής Ισορροπία

Ομογενής και Ετερογενής Ισορροπία Ομογενής και Ετερογενής Ισορροπία Ομογενής ισορροπία : N 2(g) + O 2(g) 2NO (g) Ετερογενής ισορροπία : Zn (s) + 2H (aq) + Zn (aq) ++ + H 2(g) Σταθερά χηµικής ισορροπίας Kc: Για την αµφίδροµη χηµική αντίδραση:

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

OBOJENI METALI I LEGURE

OBOJENI METALI I LEGURE OBOJENI METALI I LEGURE Najvažniji obojeni metali za mašinsku tehniku su Cu, Al, Ni, Ti, Mg, Zn, legure za klizne ležajeve. Osim njih, koriste se i tvrdi metali. BAKAR I NJEGOVE LEGURE Bakar Kao čist metal,

Διαβάστε περισσότερα

Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής

Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής Φυσικά Μεγέθη Φυσικά μεγέθη είναι έννοιες που μπορούν να μετρηθούν και χρησιμοποιούνται για την περιγραφή των φαινομένων. Διεθνές σύστημα μονάδων S. I Το διεθνές

Διαβάστε περισσότερα

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h.

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h. 1 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 1. Ποια είναι η συχνότητα και το μήκος κύματος του φωτός που εκπέμπεται όταν ένα e του ατόμου του υδρογόνου μεταπίπτει από το επίπεδο ενέργειας με: α) n=4 σε n=2 b) n=3 σε n=1 c)

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ) ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Κεφάλαιο 1ο-ΟΞΕΙΔΩΑΝΑΓΩΓΗ 1 ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Ορισμοί : -Αριθμός οξείδωσης: I)Σε μία ιοντική ένωση ο αριθμός οξείδωσης κάθε στοιχείου είναι ίσος με το ηλεκτρικό φορτίο που έχει το

Διαβάστε περισσότερα

SMART 3 Serija GAS DETEKTORA

SMART 3 Serija GAS DETEKTORA SMART 3 Serija GAS DETEKTORA SMART3 serija gas detektora ( trgovaèko ime NET/x ATEX detektori) koji se koriste za detekciju bilo kog zapaljivog gasa ili jedinjenja (u % LEL), toksiènih gasova i jedinjenja

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Univerzitet u Nišu Građevinsko-arhitektonski fakultet Informatika 2 Mathematica Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Mathematica Programski paket Mathematica

Διαβάστε περισσότερα

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.

Διαβάστε περισσότερα

Ερωηήζεις Πολλαπλής Επιλογής

Ερωηήζεις Πολλαπλής Επιλογής Ερωηήζεις Θεωρίας 1. Ππθλφηεηα: α) δηαηχπσζε νξηζκνχ, β) ηχπνο, γ) είλαη ζεκειηψδεο ή παξάγσγν κέγεζνο;, δ) πνηα ε κνλάδα κέηξεζήο ηεο ζην Γηεζλέο Σχζηεκα (S.I.); ε) πνηα ε ρξεζηκφηεηά ηεο; 2. Γηαιπηφηεηα:

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις. Επαναληπτικές ασκήσεις Β Λυκείου Θετικής Κατεύθυνσης.

Επαναληπτικές ασκήσεις. Επαναληπτικές ασκήσεις Β Λυκείου Θετικής Κατεύθυνσης. Επαναληπτικές ασκήσεις Θετικής Κατεύθυνσης. Θεόδωρος Ζήκας 1. Μια ποσότητα χαλκού αντιδρά πλήρως µε πυκνό διάλυµα H SO 4 και το αέριο που εκλύεται, χωρίζεται σε δύο ίσα µέρη. Το πρώτο µέρος αποχρωµατίζει

Διαβάστε περισσότερα

αριθμός δοχείου #1# control (-)

αριθμός δοχείου #1# control (-) Μόνο απιονισμένο νερό #1# control (-) Μακροστοχεία: Ν, P, K, Ca, S, Εάν κάποια έλλειψη μετά 1 μήνα έχει σημαντικές επιπτώσεις προσθέτουμε σε δόσεις την έλλειψη έως ότου ανάπτυξη ΟΚ #2# control (+) Μακροστοχεία:

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ. 6.1. Γενικά

6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ. 6.1. Γενικά 6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ 6.1. Γενικά Είναι γεγονός ότι ανέκαθεν ο τελικός αποδέκτης των υπολειµµάτων της κατανάλωσης και των καταλοίπων της παραγωγικής διαδικασίας υπήρξε το περιβάλλον. Στις παλιότερες κοινωνίες

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ Όλες οι αντιδράσεις που ζητούνται στη τράπεζα θεµάτων πραγµατοποιούνται. Στην πλειοψηφία των περιπτώσεων απαιτείται αιτιολόγηση της πραγµατοποίησης των αντιδράσεων.

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Υ ΑΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Κ. Π. ΧΑΛΒΑ ΑΚΗΣ ΜΥΤΙΛΗΝΗ 2004. Καθηγητής Περ.

Υ ΑΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Κ. Π. ΧΑΛΒΑ ΑΚΗΣ ΜΥΤΙΛΗΝΗ 2004. Καθηγητής Περ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Υ ΑΤΙΚΗ ΧΗΜΕΙΑ ΤΜΗΜΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΥΤΙΛΗΝΗ 2004 Κ. Π. ΧΑΛΒΑ ΑΚΗΣ Καθηγητής Περ. Μηχανικής ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ...1 1 ΕΙΣΑΓΩΓΗ...3

Διαβάστε περισσότερα

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015.

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Matematika Viša razina Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Autor: Marina Ninković, prof. Vesna Ovčina, prof. Naslov: Matematika Viša razina Izdanje: 4. izdanje Urednica: Ana Belin,

Διαβάστε περισσότερα

Chi-kvadrat test. Chi-kvadrat (χ2) test

Chi-kvadrat test. Chi-kvadrat (χ2) test 1 Chi-kvadrat test Chi-kvadrat (χ2) test Test za proporcije, porede se frekvence Neparametarski test Koriste se dihotomne varijable Proverava se veza između dva faktora Npr. tretmana i bolesti pola i smrtnosti

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ (Επιλέγετε δέκα από τα δεκατρία θέματα) ΘΕΜΑΤΑ 1. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος; Γιατί; (α) Από τα στοιχεία Mg, Al, Cl, Xe, C και Ρ, τον μεγαλύτερο

Διαβάστε περισσότερα

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12 GRAFOVI Ljubo Nedović 21. februar 2013 Sadržaj 1 Osnovni pojmovi 2 2 Bipartitni grafovi 8 3 Stabla 9 4 Binarna stabla 11 5 Planarni grafovi 12 6 Zadaci 13 1 2 1 Osnovni pojmovi Iz Vikipedije, slobodne

Διαβάστε περισσότερα

STRUKTURA I VEZE UVOD

STRUKTURA I VEZE UVOD UVOD Šta je organska hemija i zašto je vi treba da proučavate? Odgovori su svuda oko nas. Svaki živi organizam je sačinjen od organskih hemikalija. Proteini koji izgrađuju našu kosu, kožu i mišiće su organske

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΓΕΩΠΟΝΙΚΗΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΟΛΟΓΙΑΣ ΚΑΙ ΜΟΡΦΟΛΟΓΙΑΣ ΦΥΤΩΝ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΓΕΩΠΟΝΙΚΗΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΟΛΟΓΙΑΣ ΚΑΙ ΜΟΡΦΟΛΟΓΙΑΣ ΦΥΤΩΝ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΓΕΩΠΟΝΙΚΗΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΟΛΟΓΙΑΣ ΚΑΙ ΜΟΡΦΟΛΟΓΙΑΣ ΦΥΤΩΝ ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΥΠΑΡΞΗΣ ΣΥΣΤΑΤΙΚΩΝ ΔΟΜΗΣ ΟΡΘΟ-ΔΙ- ΦΑΙΝΟΛΗΣ ΣΤΑ ΚΥΤΤΑΡΙΚΑ ΤΟΙΧΩΜΑΤΑ ΚΑΙ ΤΗΣ ΣΥΜΜΕΤΟΧΗΣ

Διαβάστε περισσότερα

PROCESI PRERADE I DORADE VODE

PROCESI PRERADE I DORADE VODE Univerzitet u Beogradu Hemijski fakultet PROCESI PRERADE I DORADE VODE B e o g r a d, 2010 1 SADRŽAJ: Univerzitet u Beogradu... 1 PROCESI OBRADE I PRERADE VODE... 1 1 OPŠTI DEO... 4 2 PROCESI PREDHODNE

Διαβάστε περισσότερα

1. ΧΗΜΙΚΟΙ ΕΣΜΟΙ ΣΤΑ ΣΤΕΡΕΑ

1. ΧΗΜΙΚΟΙ ΕΣΜΟΙ ΣΤΑ ΣΤΕΡΕΑ 1. ΧΗΜΙΚΟΙ ΕΣΜΟΙ ΣΤΑ ΣΤΕΡΕΑ ΓΕΝΙΚΑ Η στερεά, η υγρή και η αέρια κατάσταση αποτελούν τις τρεις, συνήθεις στο γήινο περιβάλλον, καταστάσεις της ύλης. ιαφέρουν η µία από την άλλη σε κάποια απλά γνωρίσµατα:

Διαβάστε περισσότερα

Φροντιστήριο ΕΠΙΓΝΩΣΗ Αγ. Δημητρίου Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Α Λυκείου. ΘΕΜΑ 1 ο

Φροντιστήριο ΕΠΙΓΝΩΣΗ Αγ. Δημητρίου Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Α Λυκείου. ΘΕΜΑ 1 ο Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Α Λυκείου ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1 έως 1.4 να επιλέξετε τη σωστή απάντηση: 1.1 Δίνεται το χημικό στοιχείο 15 Χ. Για το στοιχείο αυτό ισχύει: α. όταν ενώνεται

Διαβάστε περισσότερα

d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa)

d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa) PRELAZNI ELEMENTI d-elemeti su su elementi koji se nalaze u PS između 2. i 13.grupe (od IIa do IIIa podgrupe ili glavnih grupa) Prelazni elementi d-elementi Lantanoidi i aktinoidi II-b-grupa cinka U prelazne

Διαβάστε περισσότερα

XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΜΑΡΑΓΚΟΥ ΝΙΚΗ

XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΜΑΡΑΓΚΟΥ ΝΙΚΗ ΜΑΘΗΜΑ: ΘΕΜΑΤΑ: XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΗΜΕΡΟΜΗΝΙΑ: 26/05/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΜΑΡΑΓΚΟΥ ΝΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Θέµα 2ο 2.1 Α) Να υπολογιστεί ο αριθµός οξείδωσης του αζώτου στις παρακάτω χηµικές ενώσεις:

Διαβάστε περισσότερα

Str

Str Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće

Διαβάστε περισσότερα

Τμήμα Γεωτεχνολογίας & Περιβάλλοντος

Τμήμα Γεωτεχνολογίας & Περιβάλλοντος Τμήμα Γεωτεχνολογίας & Περιβάλλοντος Ολιβινικά βιομηχανικά πετρώματα στο Βούρινο της υτικής Μακεδονίας Σπουδάστρια : Κουζέλη Ευλαμπία Επιβλέπων : Επίκ. Καθ. Ανδρέας Ιορδανίδης Γενικά χαρακτηριστικά του

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

Μεταβολή ορισμένων περιοδικών ιδιοτήτων

Μεταβολή ορισμένων περιοδικών ιδιοτήτων Μεταβολή ορισμένων περιοδικών ιδιοτήτων 1. Ερώτηση: Ποια θεωρούνται θεμελιώδη χαρακτηριστικά του ατόμου και γιατί; Θεμελιώδη χαρακτηριστικά του ατόμου είναι: η ατομική ακτίνα, η ενέργεια ιοντισμού και

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

MAKRO-, MIKRO- I POLUMIKROMETODE

MAKRO-, MIKRO- I POLUMIKROMETODE Analiza namirnica 6 MAKRO-, MIKRO- I POLUMIKROMETODE Atributi makro, mikro- i polumikro- doslovce proističu iz veličine probe koja se uzima za analizu. Iako u analitičkoj hemiji postoji gruba podela na

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ - ΔΕΣΜΟΙ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ - ΔΕΣΜΟΙ 2 ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ - ΔΕΣΜΟΙ ΠΕΡΙΕΧΟΜΕΝΑ 2.1 Ηλεκτρονική δομή των ατόμων 2.2 Κατάταξη των στοιχείων (Περιοδικός Πίνακας). Χρησιμότητα του Περιοδικού Πίνακα 2.3 Γενικά για το χημικό δεσμό- Παράγοντες που

Διαβάστε περισσότερα

Κεφάλαιο 1. Έννοιες και παράγοντες αντιδράσεων

Κεφάλαιο 1. Έννοιες και παράγοντες αντιδράσεων Κεφάλαιο 1 Έννοιες και παράγοντες αντιδράσεων Σύνοψη Το κεφάλαιο αυτό είναι εισαγωγικό του επιστημονικού κλάδου της Οργανικής Χημείας και περιλαμβάνει αναφορές στους πυλώνες της. Ειδικότερα, εδώ παρουσιάζεται

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Snimanje karakteristika dioda

Snimanje karakteristika dioda FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα