Προβλήματα Βελτιστοποίησης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προβλήματα Βελτιστοποίησης"

Transcript

1 Κεφάλαιο 1 Προβλήματα Βελτιστοποίησης Τα περισσότερα πρακτικά προβλήματα μπορούν να μειωθούν σε προβλήματα μεγαλύτερης και μικρότερης σημασίας... και μόνο λύνοντας αυτά τα προβλήματα μπορούμε να ικανοποιήσουμε τις; απαιτήσεις της πράξης η οποία πάντοτε ψάχνει το καλύτερο, το πιο βολικό. P. L. C e b y s e v Η ακριβής μοντελοποίηση επιστημονικών προβλημάτων συχνά οδηγεί στη μορφοποίηση προβλημάτων βελτιστοποίησης που περιλαμβάνουν συνεχείς και / ή διακριτές μεταβλητές. Τα τελευταία χρόνια η βελτιστοποίηση παρουσίασε μία δραματική αύξηση σε δραστηριότητες. Αυτό είναι μια φυσική συνέπεια των νέων αλγοριόμικών εξελίξεων και της αυξημένης δύναμης των υπολογιστών. Πολλά από αυτά τα προβλήματα μπορεί να είναι πολύ μεγάλα, αν και ότι είναι μεγάλο στη βελτιστοποίηση, αντανακλά όχι μόνο το μέγεθος αλλά επίσης και την ενυπάρχουσα πολυπλοκότητα του προβλήματος. Το κυρίως αντικείμενο που μελετάται σε αυτό το βιβλίο είναι η μαθηματική θεωρία της μη γραμμικής βελτιστοποίησης. Αρχικά μελετούμε μερικά παραδείγματα. Αυτά τα παραδείγματα θα μας πουν ότι οι τεχνικές της μη γραμμικής βελτιστοποίησης είναι πολύ χρήσιμες στην επίλυση προβλημάτων βελτιστοποίησης στον πραγματικό κόσμο, κυρίως σε συνδυασμό με τις πρόσφατες τεχνολογικές 17

2 18 Μαθηματική Θεωρία Βελτιστοποίησης εξελίξεις. Η μη γραμμική βελτιστοποίηση είναι επίσης πολύ σημαντική στην ανάπτυξη νέων τεχνικών για την επίλυση προβλημάτων συνδυαστικής βελτιστοποίησης, συμπεριλαμβανομένου του γραμμικού προγραμματισμού. 1.1 Εισαγωγή Παρατηρήσατε ποτέ πώς μια αράχνη πιάνει μια μύγα ή ένα κουνούπι; Συνήθως, η αράχνη κρύβεται στην άκρη του ιστού της. Όταν μια μύγα ή ένα κουνούπι χτυπήσει στον ιστό, η αράχνη θα πιάσει κάθε γραμμή στον ιστό, έτσι ώστε να διαλέξει αυτή που είναι τεντωμένη και μετά πηγαίνει γρήγορα κατά μήκος της γραμμής στο Φύμα της. Γιατί η αράχνη επιλέγει την τεντωμένη γραμμή; Μερικοί βιολόγοι εξηγούν ότι η γραμμή αυτή δίνει το συντομότερο μονοπάτι από την αράχνη μέχρι το θύμα της. Ακούσατε την ακόλουθη ιστορία για ένα σοφό στρατηγό; Έ χει καθήκον να κυριεύσει μια πόλη πίσω από ένα βουνό. Όταν αυτός και οι στρατιώτες του έφθασαν στην κορυφή του βουνού, ανακάλυψε ότι ο εχθρός του έχει ήδη πλησιάσει την πόλη πολύ κοντά από μία άλλη κατεύθυνση. Το δίλημμα του ήταν πώς να φθάσει στην πόλη πριν ο εχθρός πλησιάσει. Ήταν ένα προκλητικό πρόβλημα για το στρατηγό. Ο στρατηγός έλυσε το πρόβλημα ζητώντας από κάθε στρατιώτη να κυλιστεί στο βουνό προς τα κάτω μέσα σε μία κουβέρτα. Γιατί είναι αυτό ταχύτερο; Οι φυσικοί μας λένε ότι μια μπάλα που κυλιέται ελεύθερα προς τα κάτω σε ένα βουνό πάντα επιλέγει τον πιο γρήγορο δρόμο. Ξέρετε την ιστορία ενός αγώνα αλόγου του Tian Gi; Είναι μια ιστορία που τοποθετείται στα προ Χριστού έτη. Ο Tian Gi ήταν ένας στρατηγός σε κάποια από τις πολλές μικρές επαρχίες της Κίνας, που ονομαζόταν Qi. Ο βασιλιάς της Qi ήξερε ότι ο T ian Gi είχε πολλά καλά άλογα και διέταξε τον Tian Gi να συμμετέχει σε αγώνα με άλογα μαζί του. Ο αγώνας αποτελούταν από τρεις γύρους. Σ ε κάθε γύρο, κάθε πλευρά επέλεγε ένα άλογο για να αγωνιστεί με την άλλη πλευρά. Ο Tian Gi ήξερε ότι το καλύτερο άλογο του δεν μπορούσε να αγωνιστεί με το καλύτερο του βασιλιά, το δεύτερο καλύτερο του δεν μπορούσε να αγωνιστεί με το δεύτερο καλύτερο του βασιλιά, και το τρίτο καλύτερο του δεν μπορούσε να αγωνιστεί με το τρίτο καλύτερο του βασιλιά. Έ τσι, δεν χρησιμοποίησε το καλύτερο άλογο του εναντίον του καλύτερου αλόγου του βασιλιά. Αντιθέτως, έβαλε το τρίτο καλύτερο άλογο του στον πρώτο γύρο εναντίον του καλύτερου αλόγου του βασιλιά, το καλύτερο άλογο του στο δεύτερο γύρο εναντίον του δεύτερου καλύτερου αλόγου του βασιλιά, και το δεύτερο καλύτερο

3 Προβλήματα Βελτιστοποίησης 19 άλογο του στον τρίτο γύρο εναντίον του τρίτου καλύτερου αλόγου του βασιλιά. Το τελικό αποτέλεσμα ήταν ότι αν και έχασε τον πρώτο γύρο του αγώνα, κέρδισε τους δύο τελευταίους γύρους. Η στρατηγική του T ian Gi ήταν η καλύτερη για να κερδίσει αυτόν τον αγώνα. Σήμερα, οι οικονομολόγοι μας λένε ότι πολλά οικονομικά συστήματα και κοινωνικά συστήματα μπορούν να μοντελοποιηθούν σαν παιχνίδια. Κάθε διαγωνιζόμενος στο παιχνίδι προσπαθεί να μεγιστοποιήσει συγκεκριμένα οφέλη. Η βελτιστότητα είναι μια θεμελιώδης αρχή, που επαληθεύει φυσικούς νόμους, κυβερνά βιολογικές συμπεριφορές και καθοδηγεί κοινωνικές συμπεριφορές. Έ τσι, η βελτιστοποίηση ξεκίνησε από τα πρώτα χρόνια του ανθρώπινου πολιτισμού. Φυσικά, πριν τα μαθηματικά θεμελιωθούν καλά, η βελτιστοποίηση μπορούσε να γίνει μόνο με προσομοίωση. Πολλές ιστορίες σοφών ανθρώπων μπορούν να βρεθούν στην ανθρώπινη ιστορία σχετικά με αυτό. Για παράδειγμα, για να βρει τον καλύτερο δρόμο για να φύγει από ένα βουνό, κάποιος ακολουθούσε ένα ποτάμι και για να βρει τον καλύτερο δρόμο για να φύγει από μια έρημο, κάποιος άφηνε ελεύθερο ένα άλογο και ακολουθούσε το ίχνος του αλόγου. Τον προηγούμενο αιώνα αλλά ακόμα και σήμερα, η προσομοίωση χρησιμοποιείται ακόμα για να βελτιστοποιηθεί κάτι. Για παράδειγμα, για να βρεθεί το συντομότερο μονοπάτι σε ένα δίκτυοηκάποιος μπορεί να φτιάξει ένα δίκτυ με ένα σκοινί σε ανάλογο μέγεθος και να τραβήξει το δίκτυ δυνατά μεταξύ των δύο κατευθύνσεων. Το τεντωμένο σχοινί δείχνει το συντομότερο μονοπάτι. Για να βρεθεί η βέλτιστη τοποθεσία ενός σχολείου για τρία χωριά, κάποιος ίσως ανοίξει τρεις οπές σε ένα τραπέζι και βάλει ένα κομμάτι σκοινιού σε κάθε οπή. Μετά δένει τις τρεις άκρες των σχοινιών μαζί πάνω από το τραπέζι και κρεμάει ένα κιλό βάρους σε κάθε άκρη των σχοινιών κάτω από το τραπέζι. Όταν αυτό το μηχανικό σύστημα έχει εξισορροπηθεί, ο κόμπος των τριών κομματιών σχοινιού δείχνει την τοποθεσία του σχολείου. Η ιστορία της βελτιστοποίησης στα μαθηματικά μπορεί να διαιρεθεί σε τρεις περιόδους. Την πρώτη περίοδο, δεν ήταν γνωστή κάποια γενική μέθοδος για να βρεθεί ένα μέγιστο/ελάχιστο σημείο μιας συνάρτησης. Μόνο ειδικές τεχνικές είχαν βρεθεί για να μεγιστοποιηθούν/ελαχιστοποιηθούν κάποιες ειδικές συναρτήσεις. Μια τυπική συνάρτηση είναι η τετραγωνική συνάρτηση μιας μεταβλητής y αχ2 + bx + c.

4 20 Μαθηματική Θεωρία Βελτιστοποίησης Η μελέτη των τετραγωνικών συναρτήσεων σχετιζόταν στενά με τη μελέτη της σταθερώς επιταχυνόμενης κίνησης. Ποιο είναι το υψηλότερο σημείο που μια πέτρα πετιέται με συγκεκριμένη αρχική ταχύτητα και συγκεκριμένη γωνία; Ποιο είναι το μακρύτερο σημείο όπου μια πέτρα που πετιέται με συγκεκριμένη αρχική ταχύτητα μπορεί να φθάσει όταν η γο^νία που πετιέται αλλάζει;. Αυτές ήταν ερωτήσεις που λαμβάνονταν υπόψη από κάποιους φυσικούς και στρατηγούς. Στην πραγματικότητα, το μηχάνημα που πετούσε πέτρες ήταν ένα σημαντικό όπλο στο στρατό. Σήμερα, ο υπολογισμός σημείων μέγιστου/ελάχιστου μιας τετραγωνικής συνάρτησης είναι ακόμα, μια σημαντική τεχνική της βελτιστοποίησης, που υπάρχει στα στοιχειώδη βιβλία μαθηματικών. Η τεχνική έχει επεκταθεί και σε άλλες συναρτήσεις όπως την χ 2 + χ + 1 Γ χ 2 + 2χ + 3' Στην πραγματικότητα, πολλαπλασιάζοντας και τις δύο πλευρές με χ 2 + 2χ + 3 και απλοποιώντας, παίρνουμε (y - 1)χ2 + (2y - 1)χ + (3y - 1) = 0. Καθώς το χ είναι πραγματικός αριθμός, πρέπει να έχουμε (2?/ - I )2-4(2/ - l)(3 y 1) > 0. Έτσι, - 8 y2 + 12y - 3 > 0, δηλαδή, Είναι ενδιαφέρον να παρατηρήσουμε ότι με αυτή την τεχνική υπολογίσαμε το ολικό μέγιστο και ελάχιστο της y.

5 Προβλήματα Βελτιστοποίησης 21.1 νέα περίοδος ξεκίνησε το 1646 από τον Pierre de Ferm at. Πρότεινε, στο ατ co του Πραγματείες για τα Μέγιστα και Ελάχιστα, μια γενική προσέγγιση -.2 να υπολογιστούν μέγιστα/ελάχιστα σημεία μιας διαφορίσιμης συνάρτησης, 'λαδή. θέτοντας την παράγωγο της συνάρτησης ίση με μηδέν. Σήμερα, αυτή - -ροσέγγιση ακόμα περιλαμβάνεται σχεδόν σε όλα τα εγχειρίδια της Μαθηματικής Ανάλυσης σαν εφαρμογή της διαφόρισης. Σ ε αυτή την περίοδο, η : -' τ.στο-οίηση υπήρχε σκόρπια και ατάκτως στα μαθηματικά. Επειδή η βελτιττ -οίηση δεν είχε γίνει σημαντικός κλάδος των εφαρμοσμένων μαθηματικών, ±ζζ:/ο\ μαθηματικοί δεν έδωσαν τόσο μεγάλη προσοχή στα αποτελέσματα της βελτιστοποίησης και μερικές συνεισφορές ούτε που δημοσιεύθηκαν. Αυτό ί ^τπζ πολλά μυστήρια στην ιστορία της βελτιστοποίησης. 7 ι παράδειγμα, ποιο είναι το πρώτο πρόσωπο που πρότεινε το δέντρο Steiner; Ηταν ένα από αυτά τα μυστήρια. Για να αποκτήσουμε μια καλύτερη εικόνα, ας - εξηγήσουμε με κάποια λεπτομέρεια. Σ τ : ίδιο άρθρο που αναφέρεται προηγούμενα, ο Ferm at μελέτησε, επίσης, ένα τ ; : ;λημα εύρεσης ενός σημείου για να ελαχιστοποιήσει τη συνολική απόσταση : - αυτό σε τρία δεδομένα σημεία στο Ευκλείδειο επίπεδο. Έστω τρία δεδομένα - τ -ε α (x 2,V2), και (a?3,?/3) Τότε η συνολική απόσταση ενός σημείου γ. y από αυτά τα τρία σημεία είναι 3 /( > y) = Σ Vix - χί)2 + (y - Vi)2 τη γενική μέθοδο του Ferm at, το ελάχιστο σημείο της f ( x, y ) πρέπει να.κανοποιεί τις ακόλουθες εξισώσεις 3 >ιως. ο υπολογισμός των χ και y από αυτό το σύστημα των εξισώσεων φαίνεται '.νατο να γίνει. Επομένως, ο Ferm at ανέφερε αυτό το πρόβλημα ξανά σε ένα

6 22 Μαθηματική Θεωρία Βελτιστοποίησης γράμμα στον A. Mersenne λέγοντας ότι θα ήταν καλό, αν μία ξεκάθαρη λύση μπορούσε να βρεθεί για αυτό το πρόβλημα. Ο Torricelli, μαθητής του Galilei, πρότεινε μια έξυπνη λύση με μία γεωμετρική μέθοδο. Έδειξε ότι αν τρία δεδομένα σημεία σχηματίζουν ένα τρίγωνο χωρίς κάποια γωνία να είναι τουλάχιστον 120, τότε η λύση είναι ένα σημείο στο οποίο τα τρία τμήματα από αυτό στα τρία δεδομένα σημεία παράγουν τρεις γωνίες των 120. Αλλιώς, η λύση είναι το δεδομένο σημείο στο οποίο το τρίγωνο που σχηματίζεται από τα τρία δεδομένα σημεία έχει μία γωνία τουλάχιστον 120. Αυτό το αποτέλεσμα μπορεί επίσης να αποδειχθεί από το μηχανικό σύστημα που περιγράφηκε στην αρχή αυτού του άρθρου. Στην πρώτη περίπτωση, ο κόμπος των τριών κομματιών του σχοινιού δεν σταματάει σε οποιοδήποτε δεδομένο σημείο και έτσι η συνθήκη ισορροπίας των τριών δυνάμεων ίσου μεγέθους οδηγεί στη συνθήκη των γωνιών. Στη δεύτερη περίπτωση, ο κόμπος πέφτει σε μία από τις τρεις οπές, και η συνθήκη της γωνίας εγγυάται, ότι ο κόμπος δεν θα κινηθεί μακριά από την οπή. Το πρόβλημα του Ferm at μελετήθηκε εκτενώς αργότερα και γενικεύθηκε στα τέσσερα σημεία από τον J. Fr. Fagano το 1775 και στα η σημεία από τον Tedenat και τον L Huiller το Ο Fagano απέδειξε ότι είναι πολύ εύκολο να βρεις τη λύση στο πρόβλημα του Ferm at για τα τέσσερα σημεία. Όταν τέσσερα δεδομένα σημεία σχηματίζουν ένα κυρτό τετράπλευρο, η λύση στο πρόβλημα του Ferm at είναι η διατομή δύο διαγωνίων, δηλαδή, η διατομή δύο διαγωνίων ελαχιστοποιεί την συνολική απόσταση από ένα σημείο σε τέσσερα δεδομένα σημεία. Αλλιώς, πρέπει να είναι ένα από τα δεδομένα σημεία που βρίσκεται μέσα στο τρίγωνο που σχηματίζεται από τα άλλα τρία δεδομένα σημεία αυτό το δεδομένο σημείο είναι η λύση. Στις 19 Μαρτίου 1836, ο Schumacher έγραψε ένα γράμμα στον G auss. Σε αυτό το γράμμα, ανέφερε ένα παράδοξο για το πρόβλημα του Ferm at: Έστω ένα κυρτό τετράπλευρο A B C D. Ήταν γνωστό ότι η λύση στο πρόβλημα του Ferm at για τέσσερα σημεία A,B,C και D είναι η διατομή Ε των διαγωνίων A C και B D. Τποθέτουμε ότι επεκτείνοντας την D A και C B μπορούμε να βρούμε μια διατομή F. Τώρα, μετακινούμε τα Α και Β στο F. Τότε το Ε θα μετακινηθεί επίσης στο F. Όμως, όταν η γωνία στο F είναι μικρότερη από 120, το σημείο F δεν μπορεί να είναι η λύση στο πρόβλημα του Ferm at για τρία δεδομένα σημεία F, D, και C. Τ ι συμβαίνει; (Σχήμα 1.1. )

7 Προβλήματα Βελτιστοποίησης 23 F Σχήμα 1.1: Το παράδοξο του Schumacher. Στις 21 Μαρτίου 1836, ο G auss έγραψε ένα γράμμα στον Schumacher στο οποίο εξηγούσε ότι το λάθος στο παράδοξο του Schumacher συμβαίνει στο σημείο όπου το πρόβλημα του Ferm at για τα τέσσερα σημεία A,B,C και D αλλάζει στο πρόβλημα του Ferm at για τα τρία σημεία F,C και D. Όταν τα.4. και Β είναι πανομοιότυπα με το F, η συνολική απόσταση από το Ε στα τέσσερα σημεία Α, Β, C και D είναι ίση με 2EF + EC + ED, και όχι EF + EC + ED. Έ τσι, το σημείο Ε ίσως να μην είναι η λύση στο πρόβλημα του Ferm at για τα σημεία F.C και D. Ο G auss πρότεινε ένα νέο, σημαντικότερο, πρόβλημα. Είπε ότι είναι πιο ενδιαφέρον να βρεθεί ένα συντομότερο δίκτυο παρά ένα σημείο. Ο G auss επίσης πρότεινε διάφορες πιθανές συνδέσεις του συντομότερου μονοπατιού για τέσσερα δεδομένα σημεία. Δυστυχώς, το γράμμα του G auss ανακαλύφθηκε μόνο το Από το 1941 έως το 1986, πολλές δημοσιεύσεις ακολούθησαν τους R. Courant και Η. R obbins, οι οποίοι στο δημοφιλές βιβλίο τους Τι eivai Μαθηματικά; (δημοσιευμένο το 1941) αποκαλούσαν το πρόβλημα του G auss σαν το πρόβλημα δέντρου του Steiner. Το δέντρο Steiner έχει γίνει ένα δημοφιλής και σημαντικό όνομα. Αν ψάξεις δέντρο-steiner στο yahoo.com στο διαδίκτυο, θα λάβεις περισσότερες από 1000 ιστοσελίδες για τα δέντρα Steiner. Δ εν υπάρχει κανένας τρόπος να αλλάξουμε το όνομα από δέντρα Steiner σε δέντρα Gauss. Ίσως αξίζει να αναφέρουμε ότι ο Jakob Steiner, ένας γεωμέτρης του δεκάτου ένατου αιώνα το όνομα του οποίου χρησιμοποιείται για τα συντομότατα δίκτυα, δεν έχει βρεθεί

8 24 Μαθηματική Θεωρία Βελτιστοποίησης ως τώρα να έχει κάποια σημαντική συνεισφορά στα δέντρα Steiner. Ο George Β. Dantzig που πρώτος πρότεινε τη μέθοδο sim plex για την επίλυση προβλημάτων γραμμικού προγραμματισμού στο 1947 δήλωσε στο άρθρο του Γραμμικός Προγραμματισμός: Η Ιστορία του Πως Ξεκίνησε. Αυτό που φαίνεται να χαρακτηρίζει την προ-1947 εποχή ήταν η έλλειψη οποιουδήποτε ενδιαφέροντος για προσπάθεια βελτιστοποίησης. Λόγω της έλλειψης ενδιαφέροντος για τη βελτιστοποίηση, πολλές σημαντικές δουλειές που εμφανίστηκαν πριν το 1947 αγνοήθηκαν. Αυτό συνέβη όχι μόνο για τα δέντρα Steiner αλλά επίσης και για άλλες περιοχές της βελτιστοποίησηςμσυμπεριλαμβανομένου μερικών σημαντικών συνεισφορών στο γραμμικό και μη γραμμικό προγραμματισμό. Η ανακάλυψη του γραμμικού προγραμματισμού ξεκίνησε μια καινούρια εποχή για τη βελτιστοποίηση. Όμως, στο ίδιο άρθρο που αναφέρθηκε προηγούμενα, ο Dantzig έκανε τα ακόλουθα σχόλια: Ο Γραμμικός Προγραμματισμός ήταν άγνωστος πριν από το Αυτό δεν είναι εντελώς σωστό- υπήρχαν κάποιες καθυστερημένες εξαιρέσεις. Ο Fourier (γνωστός από τις σειρές Fourier) το 1823 και ο πολύ γνωστός Βέλγος μαθηματικός de la Vallee Poussin το 1911 έγραψαν καθένας τους ένα άρθρο για αυτό. Η δουλειά τους είχε τέτοια επίδραση στις μετά-1947 εξελίξεις, όσο θα είχε η εύρεση σε ένα Αιγυπτιακό τάφο ενός ηλεκτρονικού υπολογιστή κατασκευασμένου το 3000 π.χ. Η αξιόλογη μονογραφία του Leonid Kantorovich του 1939 πάνω στο ιίέμα επίσης αγνοήθηκε για ιδεολογικούς λόγους στην Σοβιετική Ένωση. Αναβίωσε δύο δεκαετίες αργότερα μετά που σημαντικές εξελίξεις είχαν ήδη πραγματοποιηθεί στη Δύση. Ένα σημαντικό άρθρο από τον Hitchcock το 1941 στο πρόβλημα μεταφοράς επίσης παραβλέφθηκε μέχρι που άλλοι προς το τέλος της δεκαετίας του 1940 και στις αρχές της δεκαετίας του 1950 ανεξάρτητα ξαναανακάλυψαν τις ιδιότητές του. Θυμήθηκε, επίσης, πως έκανε την ανακάλυψη του. Ή δική μου συνεισφορά προέκυψε από την εμπειρία μου κατά τον Δεύτερο Παγκόσμιο Πόλεμο στο Πεντάγωνο. Κατά τη διάρκεια του πολέμου, είχα γίνει ειδικός στις μεθόδους προγραμματισμού-σχεδιασμού χρησιμοποιώντας υπολογιστές γραφείου. Το 1946 ήμουν μαθηματικός σύμβουλος στην Αμερικανική Αεροπορική Δύναμη Ελέγχου στο Πεντάγωνο. Μόλις είχα πάρει το διδακτορικό μου (για έρευνα που είχα κάνει κυρίως πριν από τον πόλεμο) και έψαχνα για ακαδημαϊκή θέση που θα πλήρωνε καλύτερα από μια χαμηλή προσφορά που είχα λάβει από το Berkeley. Για να με σαγηνεύσουν και να μην αναλάβω μια άλλη δουλειά, οι συνάδελφοι

9 Προβλήματα Βελτιστοποίησης 25 μου στο Πεντάγωνο, D. Hitchcook και Μ. Wood, με προκάλεσαν να δω τι θα μπορούσα να κάνω για να μηχανοποιήσω τη διαδικασία σχεδιασμού. Μου ζητήθηκε να βρω έναν τρόπο να αναπτύξω και να δοκιμάσω ένα ταχύτερο πρόγραμμα για επίλυση προβλημάτο^ν εφοδιαστικής με χρονικά- στάδια. Εκείνες τις μέρες η μηχανοποίηση του σχεδιασμού σήμαινε χρήση αναλογικών μηχανών ή μηχανισμού με διάτρητες κάρτες. Δ εν υπήρχαν ηλεκτρονικοί υπολογιστές. Αυτό το προκλητικό πρόβλημα έκανε τον Dantzig να ανακαλύψει τη σημαντική δουλειά του στον γραμμικό προγραμματισμό χωρίς τη χρήση ηλεκτρονικών υ πολογιστών. Αλλά, πρέπει να επισημάνουμε ότι λόγω της ραγδαίας ανάπτυξης της τεχνολογίας των υπολογιστών οι εφαρμογές του γραμμικού προγραμματισμού μπορεί να γίνουν τόσο ευρείς και τόσο σπουδαίες, και οι περιοχές της βελτιστοποίησης μπορούν να έχουν τόσο γρήγορη ανάπτυξη. Το 1951, ο Albert Tucker και ο φοιτητής του Harold Kuhn δημοσίευσαν τις συνθήκες Kuhn-Tucker. Αυτό θεωρείται σαν το αρχικό σημείο του μη γραμμικού προγραμματισμού. Όμως, ο A. Takayam a στο βιβλίο του Μαϋη}ΐατικά Οικονομικά έχει ένα ενδιαφέρον σχόλιο για αυτές τις συνθήκες: Ό γραμμικός προγραμματισμός ξεκίνησε να ενδιαφέρεται για τους περιορισμούς στη μορφή ανισοτήτων και στη θεωρία των γραμμικών ανισοτήτων και των κυρτών συνόλων. Η μελέτη των Kuhn-Tucker εμφανίστηκε στη μέση αυτού του ενδιαφέροντος με την πλήρη αναγνώριση τέτοιων εξελίξεων. Όμως, η θεωρία του μη γραμμικού προγραμματισμού όταν οι περιορισμοί είναι όλοι στη μορφή ισοτήτων ήταν γνωστή για πολύ καιρό - στην πραγματικότητα, από τον Euler και τον Lagrange. Τους περιορισμούς ανισότητας χειρίστηκε με ένα σαφώς ικανοποιητικό τρόπο ήδη από το 1939 ο K arush. Η εργασία του K aru sh είναι προφανώς κάτω από την επίδραση μιας παρόμοιας δουλειάς στην ανάλυση διαφορών από τον Valentine. Δυστυχώς, η δουλειά του K arush αγνοήθηκε σημαντικά. Αυτή είναι άλλη μια ακόμα δουλειά που πρωτοεμφανίστηκε πριν το 1947 και αγνοήθηκε. Τη δεκαετία του 1960, οι G. Zoutendijk, J. Β. Rosen, P. Wolfe, Μ. J. Powell, και άλλοι δημοσίευσαν ένα αριθμό αλγορίθμων για την επίλυση μη γραμμικών προβλημάτων βελτιστοποίησης. Αυτοί οι αλγόριθμοι σχηματίζουν το κυρίως σώμα του μη γραμμικού προγραμματισμού. Σήμερα, η βελτιστοποίηση έχει γίνει μια πολύ μεγάλη περιοχή που περιλαμβάνει διαφορετικές αρχές μεταξύ των μαθηματικών, της επιστήμης των υπολογιστών, της επιστήμης της βιομηχανικής μηχανολογίας και της διοικητικής επιστήμης. Οι τεχνικές στη μη γραμμική βελτιστοποίηση χρησιμοποιούνται όχι

10 26 Μαθηματική Θεωρία Βελτιστοποίησης μόνο για την επίλυση προβλημάτων μη γραμμικής βελτιστοποίησης αλλά επίσης και για την επίλυση άλλων προβλημάτων, όπως προβλημάτων συνδυαστικής βελτιστοποίησης. Στην πραγματικότητα, από την παρελθούσα και την τωρινή γρήγορη ανάπτυξη της τεχνολογίας υπολογιστών, η βελτιστοποίηση αναμένεται να συνεχίσει να εξελίσσεται με μεγάλη ταχύτητα και στο μέλλον. Αυτές οι εξελίξεις ίσως περιέχουν βαθιά κατανόηση των επιτυχημένων ευρετικών αλγορίθμων για τα προβλήματα συνδυαστικής βελτιστοποίησης με προσεγγίσεις μη γραμμικού προγραμματισμού. Όσο υπάρχουν ακόμα πολλά μυστήρια και ανοιχτά προβλήματα, θα είναι μια περιοχή που θα λαμβάνει μεγάλη προσοχή. Τα δύο προβλήματα που παρουσιάζονται στα επόμενα δύο υποκεφάλαια είναι διακριτά προβλήματα στη φύση. Δείχνουμε πως να τα επιλύσουμε με προσεγγίσεις μη γραμμικής βελτιστοποίησης.

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα.

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Ακολουθίες ΔΙΑΝΥΣΜΑΤΑ Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Να ορίζουμε τις σχέσεις μεταξύ διανυσμάτων (παράλληλα, ομόρροπα, αντίρροπα, ίσα και αντίθετα διανύσματα). Να προσθέτουμε και

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

6 η Δραστηριότητα στο MicroWorlds Pro (1)

6 η Δραστηριότητα στο MicroWorlds Pro (1) 6 η Δραστηριότητα στο MicroWorlds Pro (1) Προχωρημένος Προγραμματισμός με Logo Δομή επιλογής Αν & ΑνΔιαφορετικά Στην δραστηριότητα που ακολουθεί, θα προσπαθήσουμε να βρούμε την απόλυτη τιμή ενός αριθμού,

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο: Όνοµα: Όνοµα πατέρα: e-mail: ιεύθυνση: Τηλέφωνο: Εξεταστικό Κέντρο: Σχολείο προέλευσης: Τάξη: Θέµατα Καγκουρό 007 Επίπεδο: (για µαθητές της ' και ' τάξης

Διαβάστε περισσότερα

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη Σχολείο Δεύτερης Ευκαιρίας Ιωαννίνων Αριθμητικός Γραμματισμός Εισηγήτρια : Σεντελέ Καίτη ΘΕΜΑ ΕΙΣΗΓΗΣΗΣ «Προγραμματισμός-Οργάνωση και υλοποίηση μιας διδακτικής ενότητας στον Αριθμητικό Γραμματισμό» ΠΡΟΣΘΕΣΗ

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Προσδιορισμός ενός επίπεδου απλού αρμονικού κύματος από τις ταλαντώσεις σημείων του

Προσδιορισμός ενός επίπεδου απλού αρμονικού κύματος από τις ταλαντώσεις σημείων του A A N A B P Y T A ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΙΠΕΔΑ ΑΠΛΑ ΑΡΜΟΝΙΚΑ ΚΥΜΑΤΑ 9 5 0 Προσδιορισμός ενός επίπεδου απλού αρμονικού κύματος από τις ταλαντώσεις σημείων του Περιεχόμενα Εισαγωγή και παραδείγματα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Περιεχόμενα. Δημιουργία σύνδεσης... 27 5. ΤΙ ΕΙΝΑΙ ΙΣΤΟΣΕΛΙΔΕΣ ΚΑΙ ΤΙ ΤΟΠΟΘΕΣΙΕΣ ΙΣΤΟΥ... 37. Γνωριμία με μια ιστοσελίδα:... 38

Περιεχόμενα. Δημιουργία σύνδεσης... 27 5. ΤΙ ΕΙΝΑΙ ΙΣΤΟΣΕΛΙΔΕΣ ΚΑΙ ΤΙ ΤΟΠΟΘΕΣΙΕΣ ΙΣΤΟΥ... 37. Γνωριμία με μια ιστοσελίδα:... 38 Περιεχόμενα ΠΡΟΛΟΓΟΣ... 11 ΔΙΑΔΙΚΤΥΟ... 13 1. ΙΣΤΟΡΙΑ ΤΟΥ ΔΙΑΔΙΚΤΥΟΥ... 15 2. ΤΙ ΕΙΝΑΙ ΤΟ ΔΙΑΔΙΚΤΥΟ INTERNET;... 16 3. ΤΙ ΠΡΟΣΦΕΡΕΙ ΤΟ ΔΙΑΔΙΚΤΥΟ, ΤΙ ΜΠΟΡΕΙ ΝΑ ΒΡΕΙ ΚΑΝΕΙΣ... 19 4. ΤΙ ΑΠΑΙΤΕΙΤΑΙ ΓΙΑ ΝΑ

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Άλυτα προβλήματα μαθηματικών 1. Υπόθεση (Εικασία) του Πουανκαρέ

Άλυτα προβλήματα μαθηματικών 1. Υπόθεση (Εικασία) του Πουανκαρέ Άλυτα προβλήματα μαθηματικών 1. Υπόθεση (Εικασία) του Πουανκαρέ Το πρόβλημα που διατύπωσε το 1904 ο Γάλλος επιστήμονας Ανρί Πουανκαρέ αφορά την Τοπολογία, ένα κλάδο των Μαθηματικών που δεν ενδιαφέρεται

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο Φυσική Β Γυμνασίου Βασίλης Γαργανουράκης http://users.sch.gr/vgargan Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις κινήσεις των σωμάτων. Το επόμενο βήμα είναι να αναζητήσουμε

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

Το Jungle Speed είναι ένα παιχνίδι για 2 έως 10 παίκτες (ή και ακόμη περισσότερους!) ηλικίας 7 και άνω.

Το Jungle Speed είναι ένα παιχνίδι για 2 έως 10 παίκτες (ή και ακόμη περισσότερους!) ηλικίας 7 και άνω. Το Jungle Speed είναι ένα παιχνίδι για 2 έως 10 παίκτες (ή και ακόμη περισσότερους!) ηλικίας 7 και άνω. Σκοπός σας είναι να είστε ο πρώτος παίκτης που θα ξεφωρτωθεί όλες του τις κάρτες. Το τοτέμ τοποθετείται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ B' ΛΥΚΕΙΟΥ 16/11/2014

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ B' ΛΥΚΕΙΟΥ 16/11/2014 ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... www.syghrono.gr ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ B' ΛΥΚΕΙΟΥ 16/11/2014

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7. Ασκήσεις στο IP Fragmentation

Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7. Ασκήσεις στο IP Fragmentation Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7 Οι σημειώσεις που ακολουθούν περιγράφουν τις ασκήσεις που θα συναντήσετε στο κεφάλαιο 7. Η πιο συνηθισμένη και βασική άσκηση αναφέρεται στο IP Fragmentation,

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

Τίτλος προγράμματος: «Παιχνίδια στο χθες, παιχνίδια στο σήμερα, παιχνίδια δίχως σύνορα» Υπεύθυνη προγράμματος: Μπότη Ευαγγελή Εκπαιδευτικός που

Τίτλος προγράμματος: «Παιχνίδια στο χθες, παιχνίδια στο σήμερα, παιχνίδια δίχως σύνορα» Υπεύθυνη προγράμματος: Μπότη Ευαγγελή Εκπαιδευτικός που Τίτλος προγράμματος: «Παιχνίδια στο χθες, παιχνίδια στο σήμερα, παιχνίδια δίχως σύνορα» Υπεύθυνη προγράμματος: Μπότη Ευαγγελή Εκπαιδευτικός που συμμετέχει: Κακάρη Κωνσταντίνα Παρακολουθώντας τα παιδιά

Διαβάστε περισσότερα

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους Ποια είναι τα χαρακτηριστικά των μαθηματικών των αρχαίων Αιγυπτίων? Υπάρχει διαχωρισμός ανάμεσα στις ακριβείς τιμές ποσοτήτων και στις προσεγγίσεις? Όλοι αυτοί

Διαβάστε περισσότερα

ΦΟΙΤΗΤΡΙΑ: ΠΑΤΣΑΤΖΑΚΗ ΕΛΕΝΗ, ΑΕΜ:3196 ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ : ΥΕ258 ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΓΛΩΣΣΙΚΩΝ ΔΕΞΙΟΤΗΤΩΝ

ΦΟΙΤΗΤΡΙΑ: ΠΑΤΣΑΤΖΑΚΗ ΕΛΕΝΗ, ΑΕΜ:3196 ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ : ΥΕ258 ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΓΛΩΣΣΙΚΩΝ ΔΕΞΙΟΤΗΤΩΝ 2015 ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ : ΥΕ258 ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΓΛΩΣΣΙΚΩΝ ΔΕΞΙΟΤΗΤΩΝ ΦΟΙΤΗΤΡΙΑ: ΠΑΤΣΑΤΖΑΚΗ ΕΛΕΝΗ, ΑΕΜ:3196 ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ: ΓΡΙΒΑ ΕΛΕΝΗ 5/2/2015 ΕΙΣΑΓΩΓΗ Αυτό το portfolio φτιάχτηκε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις : ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/0/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

ΒΛΑΣΤΗΣΗ (ΜΑΤΘΑΙΟΥ) !"Τίτλος διερεύνησης: Ποιοι παράγοντες επηρεάζουν το πόσο γρήγορα θα βλαστήσουν τα σπέρματα των οσπρίων.

ΒΛΑΣΤΗΣΗ (ΜΑΤΘΑΙΟΥ) !Τίτλος διερεύνησης: Ποιοι παράγοντες επηρεάζουν το πόσο γρήγορα θα βλαστήσουν τα σπέρματα των οσπρίων. ΒΛΑΣΤΗΣΗ (ΜΑΤΘΑΙΟΥ)!"Τίτλος διερεύνησης: Ποιοι παράγοντες επηρεάζουν το πόσο γρήγορα θα βλαστήσουν τα σπέρματα των οσπρίων.!"σύντομη περιγραφή διερεύνησης: Στη διερεύνησή μας μετρήθηκε ο χρόνος που χρειάστηκαν

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 ΑΝΔΡΕΑΣ Λ. ΠΕΤΡΑΚΗΣ ΑΡΙΣΤΟΥΧΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΔΑΚΤΩΡ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y = x ΔΕΥΤΕΡΗ

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή Φυσική Β Λυκειου, Γενικής Παιδείας - Οριζόντια Βολή Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com 1 Εισαγωγικές Εννοιες - Α Λυκείου Στην Φυσική της Α Λυκείου κυριάρχησαν

Διαβάστε περισσότερα

Τριγωνοψαρούλη, μην εμπιστεύεσαι ΠΟΤΕ... αχινό! Εκπαιδευτικός σχεδιασμός παιχνιδιού: Βαγγέλης Ηλιόπουλος, Βασιλική Νίκα.

Τριγωνοψαρούλη, μην εμπιστεύεσαι ΠΟΤΕ... αχινό! Εκπαιδευτικός σχεδιασμός παιχνιδιού: Βαγγέλης Ηλιόπουλος, Βασιλική Νίκα. Ήρθε ένας νέος μαθητής στην τάξη. Όλοι τον αποκαλούν ο «καινούριος». Συμφωνείς; 1 Δεν είναι σωστό να μη φωνάζουμε κάποιον με το όνομά του. Είναι σαν να μην τον αναγνωρίζουμε. Σωστά. Έχει όνομα και με αυτό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y)

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y) 11.7. Aκρότατα και σαγματικά σημεία 903 39. Εκτίμηση μέγιστου σφάλματος Έστω ότι u e sin και ότι τα,, και μπορούν να μετρηθούν με μέγιστα δυνατά σφάλματα 0,, 0,6, και / 180, αντίστοιχα. Εκτιμήστε το μέγιστο

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz 1 Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz Σκοποί της τέταρτης διάλεξης: 25.10.2011 Να κατανοηθούν οι αρχές με τις οποίες ο Albert Einstein θεμελίωσε την ειδική θεωρία

Διαβάστε περισσότερα

ΣΕΡΒΙΣ ΒΑΤΣΑΚΛΗΣ ΧΡΗΣΤΟΣ

ΣΕΡΒΙΣ ΒΑΤΣΑΚΛΗΣ ΧΡΗΣΤΟΣ ΣΧΟΛΗ ΠΡΟΠΟΝΗΤΩΝ Γ ΚΑΤΗΓΟΡΙΑΣ ΣΕΡΒΙΣ ΕΙΣΑΓΩΓΗ Ένα καλό σέρβις είναι ένα από τα πιο σημαντικά χτυπήματα επειδή μπορεί να δώσει ένα μεγάλο πλεονέκτημα στην αρχή του πόντου. Το σέρβις είναι το πιο σημαντικό

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ 3 ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ 3.1 Εισαγωγη ΣΥΣΤΗΜΑΤΩΝ Τα συστηματα εφαρμοζονται σε αναπτυξιακα προγραμματα, σε μελετες σχεδιασμου εργων, σε προγραμματα διατηρησης ή προστασιας περιβαλλοντος και υδατικων πορων και

Διαβάστε περισσότερα

Κεφάλαιο 2: Ο Νεύτωνας παίζει μπάλα

Κεφάλαιο 2: Ο Νεύτωνας παίζει μπάλα Κεφάλαιο : Ο Νεύτωνας παίζει μπάλα Το ποδόσφαιρο κατέχει αδιαμφισβήτητα τη θέση του βασιλιά όλων των αθλημάτων. Είναι το μέσο εκείνο που ενώνει εκατομμύρια ανθρώπους σε όλον τον κόσμο επηρεάζοντας ακόμα

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Το βιβλίο που κρατάς στα χέρια σου, μοναδικό στην ελληνική βιβλιογραφία,

Το βιβλίο που κρατάς στα χέρια σου, μοναδικό στην ελληνική βιβλιογραφία, www.ziti.gr Πρόλογος Το βιβλίο που κρατάς στα χέρια σου, μοναδικό στην ελληνική βιβλιογραφία, θα σου φανεί χρήσιμο τις τελευταίες ημέρες της προετοιμασίας σου για τις πανελλαδικές εξετάσεις. Τα περιεχόμενά

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ 184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Β ΤΟΜΟΣ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα και τη σφραγίδα του εκδότη ISBN SET: 960-56-026-9

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

ΗΜΕΡΟΜΗΝΙΑ : 11 Ιουνίου 2007 (πρωί)

ΗΜΕΡΟΜΗΝΙΑ : 11 Ιουνίου 2007 (πρωί) ΕΥΡΩΠΑΪΚΟ ΑΠΟΛΥΤΗΡΙΟ 2007 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ : 11 Ιουνίου 2007 (πρωί) ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ : 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΥΛΙΚΑ : Ευρωπαϊκό τυπολόγιο Υπολογιστής τσέπης απλός (χωρίς δυνατότητα

Διαβάστε περισσότερα

Κάπως έτσι ονειρεύτηκα την Γραμμική Αρμονική Ταλάντωση!!! Μπορεί όμως και να ήταν.

Κάπως έτσι ονειρεύτηκα την Γραμμική Αρμονική Ταλάντωση!!! Μπορεί όμως και να ήταν. Ένα όνειρο που ονειρεύεσαι μόνος είναι απλά ένα όνειρο. Ένα όνειρο που ονειρεύεσαι με άλλους μαζί είναι πραγματικότητα. John Lennon Κάπως έτσι ονειρεύτηκα την Γραμμική Αρμονική Ταλάντωση!!! Μπορεί όμως

Διαβάστε περισσότερα

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) Γράφημα της συνάρτησης f( x), αν p x< 0 F( x) = f( x), αν 0 x p και F( x+ 2 p) = F( x), x R (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται στους

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Ιωάννης Λιακόπουλος 1, Χαράλαμπος Λυπηρίδης 2 1 Μαθητής B Λυκείου, Εκπαιδευτήρια «Ο Απόστολος Παύλος» liakopoulosjohn0@gmail.com, 2 Μαθητής

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται:

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται: 4.4 Ερωτήσεις διάταξης Στις ερωτήσεις διάταξης δίνονται:! µία σειρά από διάφορα στοιχεία και! µία πρόταση / κανόνας ή οδηγία και ζητείται να διαταχθούν τα στοιχεία µε βάση την πρόταση αυτή. Οι ερωτήσεις

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα