+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:"

Transcript

1 ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών Χ, Χ. Πίνακας Α Πίνακας Β i i Θεωρώντας ότι μοντέλο είναι = β + β + β + ε, ε ~ Ν(0,σ I ), 0 n i) Εκτιμήστε τα β 0, β, β, σ και υπολογίστε τους συντελεστές προσδιορισμού, R, R (adj). ii) Βρείτε τον πίνακα συσχέτισης και τον πίνακα διασποράς των β ˆ ˆ, β. iii) Βρείτε 95% διάστημα εμπιστοσύνης για κάθε ένα από τα β 0, β, β. Βρείτε από κοινού δ.ε. 95% για τα β, β, με τη μέθοδο Bonferroni. iv) Να κάνετε τους ελέγχους Η 0 :β =0 με H :β 0, Η 0 :β =0 με H :β 0 και Η 0 :β =β =0 με H :β 0 ή β 0 σε ε.σ. %. v) Βρείτε 95% δ.ε. για τη μέση και ατομική πρόβλεψη του Υ όταν Χ =50, Χ =60. vi) Κάνετε τον έλεγχο Η 0 : β =β με Η : β β σε ε.σ. α = 5%. Βρείτε δ.ε. 95% για το β β. vii) Ποιές παρατηρήσεις επηρεάζουν περισσότερο το μοντέλο ( ii > /n) και ποιες θεωρούνται ασυνήθιστες ( e ˆ * i > ); Να γίνει έλεγχος κανονικότητας των παρατηρήσεων (K - S για τα κατάλοιπα). viii) Το μοντέλο = β0 + β + β + β + ε βελτιώνει ουσιαστικά το προηγούμενο (β = 0;). Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

2 = β0 + β + ε, = β0 + β + ε, = β0 + β + β + ε είναι το καλύτερο, με βάση το R, το R SSE (adj), και το C = ( n ). MSE Παρατηρούμε ότι τα εκτιμημένα β i δεν αλλάζουν σημαντικά στα τρία μοντέλα. Αυτό συμβαίνει πάντοτε; Εξετάστε γιατί δεν ισχύει κάτι ανάλογο εφαρμόζοντας τα δεδομένα του πίνακα B. Άσκηση 9. Δίνονται οι παρακάτω 54 παρατηρήσεις με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω κάποιας ή κάποιων από τις ανεξάρτητες μεταβλητές Χ, Χ, Χ, 4. i

3 i) Να βρεθεί ο πίνακας συσχέτισης μεταξύ των,,, 4, = log 0. ii) Να εξεταστούν όλα τα δυνατά γραμμικά μοντέλα που περιέχουν τις,,, 4 και την = log 0. Να βρεθεί το καλύτερο με βάση: a) το R, β) το R SSE (adj), γ) το MSE και δ) το C = ( n ). MSE iii) Να βρεθεί το καλύτερο μοντέλο με βάση τη διαδικασία Stewise regression και να περιγραφούν όλα τα ενδιάμεσα βήματα. iv) Να γίνει το ίδιο χρησιμοποιώντας τις διαδικασίες Forward selection και Backward elimination. Άσκηση 0. Δίνονται οι ετήσιοι μισθοί, σε χιλιάδες ευρώ 5 υπαλλήλων που επιλέχτηκαν τυχαία. Επίσης δίνονται τα χρόνια υπηρεσίας Χ, η ηλικία Χ και το φύλο τους Φ. i Φ Γ Α Γ Γ Α Α Α Α Α Γ Γ Γ Α Γ Α Το μοντέλο για τους άνδρες και τις γυναίκες είναι Υ = β 0 + β Χ + β Χ + ε και Υ = c 0 + β Χ + β Χ + ε αντίστοιχα. Αν υποθέσουμε ότι οι διασπορές των σφαλμάτων είναι ίσες, εξετάστε αν β 0 = c 0 σε ε.σ. α = Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις:

4 ) Να βρεθεί ο πίνακας συσχέτισης μεταξύ των,,, 4. Ποιά ζεύγη μεταβλητών παρουσιάζουν υψηλή συσχέτιση; ) i) Να εξεταστούν όλα τα δυνατά γραμμικά μοντέλα που περιέχουν τις,,, 4 και την. Να βρεθεί το καλύτερο με βάση: a) το R, β) το R (adj), γ) το MSE και δ) το C. ii) Να βρεθεί το καλύτερο μοντέλο με βάση τις διαδικασίες Stewise regression και Backward elimination και να περιγραφούν όλα τα ενδιάμεσα βήματα. ) Στο πλήρες μοντέλο: i) Εκτιμήστε τα β i, σ και υπολογίστε τους συντελεστές προσδιορισμού, R, R (adj). ii) Βρείτε 95% διάστημα εμπιστοσύνης για κάθε ένα από τα β i. Βρείτε από κοινού δ.ε. 95% για τα β, β, β, β 4 με τη μέθοδο Bonferroni. iii) Να κάνετε τους ελέγχους Η 0 :β i =0 με H :β i 0, i=,,,4 και Η 0 : β = β = β = β 4 = 0 με H :β 0 ή β 0 ή β 0 ή β 4 0 σε ε.σ. %. iv) Βρείτε 95% δ.ε. για τη μέση και ατομική πρόβλεψη του Υ όταν Χ = Χ = Χ = Χ 4 = 0. v) Κάνετε τον έλεγχο Η 0 : β = β με Η 0 : β β σε ε.σ. α = 5%. Βρείτε δ.ε. 95% για το β +β. 4

5 Απαντήσεις. Άσκηση 8. Θεωρούμε το μοντέλο = β0 + β + β + ε, ε ~ Ν(0,σ In), i) Εκτελούμε τη διαδικασία /Analyze/Regression/Linear με Deendent:, Indeendent:, (Method: Enter για να εισαχθούν και οι δύο μεταβλητές Χ, Χ στο μοντέλο). Επίσης επιλέγουμε στα /Statistics και τα εξής: Confidence intervals (δ.ε. για τις εκτιμήσεις των β i ), Covariance Matrix (πίνακας διασποράς των β ˆ ˆ, β ), Descritives (για να εμφανιστούν οι (δειγματικές) μέσες τιμές, τυπικές αποκλίσεις, και συντελεστές συσχέτισης των,, ). Τα αποτελέσματα από το SPSS είναι: Correlations Descritive Statistics Mean Std. Deviation N,5667 4, ,7667 9, ,000 0,06 0 Pearson Correlation Sig. (-tailed) N,000,9,88,9,000 -,00,88 -,00,000,,06,000,06,,494,000,494, Variables Entered/Removed b Variables Variables Entered Removed Method, a, Enter a. All requested variables entered. b. Deendent Variable: Summary Adjusted Std. Error of R R Square R Square the Estimate,966 a,94,99 7,7795 a. Predictors:,, Regression Residual Total a. Predictors:,, b. Deendent Variable: ANOVA b Sum of Squares df Mean Square F Sig ,5 7085,4 9,,000 a 856, , ,4 9 a. Deendent Variable: Unstandardized Coefficients Coefficients a Standardi zed Coefficien ts 95% Confidence Interval for B t Sig. Lower Bound Uer Bound B Std. Error Beta 4,88 9,69,49,805-4,94 44,570,90,8,95 8,00,000,45,90 4,65,,88 7,87,000,687 4,644 5

6 Coefficient Correlations a Correlations Covariances a. Deendent Variable:,000,00,00,000 5,4E-0,66E-04,66E-04 5,65E-0 i) Συνεπώς, οι εκτιμήσεις των β 0, β, β, σ είναι ˆ ˆ ˆ SSE β = 4.88, β0 =.90, β = 4.65, σˆ = = MSE = s = 47.9, σˆ n Οι συντελεστές προσδιορισμού είναι R = 0.94, R (adj) = = ii) Ο πίνακας συσχέτισης και ο πίνακας διασποράς των β ˆ ˆ, β αντίστοιχα είναι: Coefficient Correlations Correlations Covariances iii) Τα διαστήματα εμπιστοσύνης 95% για τα β 0, β, β είναι: β 0 : (-4.94, ), β : (.45,.90), β : (.687, 4.644) Για την εύρεση από κοινού δ.ε. 95% για τα β, β με τη μέθοδο Bonferroni εργαζόμαστε ως εξής: Αναζητούμε μία περιοχή (τετράγωνο) εμπιστοσύνης (L,U ) (L,U ) μέσα στο οποίο βρίσκεται το (β, β ) με πιθανότητα τουλάχιστον α = 95%. Πιο συγκεκριμένα, αναζητούμε δύο διαστήματα Ι =(L,U ), Ι =(L,U ) για τα οποία να ισχύει ότι P(( β, β ) I I ) a Αρκεί να πάρουμε ως Ι ένα δ.ε. για το β συντελεστού α/ και ως Ι ένα δ.ε. για το β συντελεστού α/. Αρκεί διότι C C P(( β, β ) I I ) = P( β I, β I ) = P( A A ) = P( A A ) C C P( A ) P( A ) = P( β I ) P( β I ) = a / a / = a Ένα δ.ε. για το β συντελεστού α/ = 97.5% είναι: βˆ ± s( βˆ ) t (0.05/ ) =.90 ± 0.8 (0.05) = (.4,.466) βˆ n t7 ± s( βˆ ) t (0.05/ ) = 4.65 ± 0. (0.05) = (.6, 4.77) n t7 ( t7(0.05) = IDF.T(0.9875,7)=.7). Άρα η περιοχή εμπιστοσύνης 95% για το (β, β ) θα είναι η (.4,.466) (.6, 4.77). iv) Για τον έλεγχο Η 0 :β =0 με H :β 0, το πακέτο δίνει -value (T * = 8,00) άρα σε ε.σ. % α- πορρίπτουμε ότι β =0. Επίσης, για τον έλεγχο Η 0 :β =0 με H :β 0, το πακέτο δίνει και πάλι -value (T * = 7,87) άρα σε ε.σ. % απορρίπτουμε και ότι β =0. Τέλος, για τον έλεγχο της υπόθεσης Η 0 :β =β =0 με H :β 0 ή β 0 θα χρησιμοποιήσουμε το F-test του πίνακα ANOVA. Επειδή -value= (F * = 9,) απορρίπτουμε την Η 0 σε ε.σ. %. 6

7 v) Για να βρούμε 95% δ.ε. για τη μέση και ατομική πρόβλεψη του Υ στο SPSS όταν Χ =50, Χ =60, προσθέτουμε στην η γραμμή των δεδομένων και στις στήλες των Χ, Χ τους αριθμούς 50 και 60 (η η γραμμή στην στήλη του Υ αφήνεται κενή). Στη συνέχεια εκτελούμε τη διαδικασία της παλινδρόμησης /Analyze/Regression/Linear επιλέγοντας στο save τα Unstandardized redicted values, Prediction Intervals. Στην η γραμμή λαμβάνονται τα αποτελέσματα: Αναμενόμενο Υ: 49,8760 Δ.ε. 95% για την μέση πρόβλεψη: (4,95, 65,54) Δ.ε. 95% για την μέση πρόβλεψη: (70,795, 48,9584) vi) Για να κάνουμε τον έλεγχο Η 0 : β =β με Η 0 : β β και να βρούμε δ.ε. 95% για το β β αρκεί να δημιουργήσουμε ένα νέο μοντέλο το οποίο θα περιέχει ως συντελεστή το γ = β β. Συγκεκριμένα, παίρνουμε τον μετασχηματισμό: από όπου προκύπτει το μοντέλο β 0 β 0, β β, β β γ = β 0 + β Χ + (β γ)χ + ε = β 0 + β (Χ + Χ ) + γ( Χ ) + ε Δημιουργούμε (Transform/comute) δύο νέες μεταβλητές Χ := Χ + Χ, Χ 4 := Χ. Στη συνέχεια ε- κτελούμε τη διαδικασία /Analyze/Regression/Linear με Deendent:, Indeendent:, 4 λαμβάνοντας τον πίνακα 4 a. Deendent Variable: Unstandardized Coefficients Coefficients a Standardi zed Coefficien ts 95% Confidence Interval for B t Sig. Lower Bound Uer Bound B Std. Error Beta 4,88 9,69,49,805-4,94 44,570,90,8,897 8,00,000,45,90 -,6,59 -,076 -,68,50 -,446,75 από όπου δεν μπορούμε να απορρίψουμε σε ε.σ. 5% ή 0% ότι Η 0 : γ = 0 ή ισοδύναμα ότι Η 0 : β = β διότι το αντίστοιχο -value του ελέγχου είναι 0.50 (T * = 0.68). Το δ.ε. για το γ = β β είναι ίσο με (.446, 0.75). vii) Εκτελώντας τη διαδικασία /Analyze/Regression/Linear με Deendent:, Indeendent:, επιλέγουμε στο save τα leverage values και τα studentized residuals. Στον πίνακα των δεδομένων λαμβάνουμε τις στήλες: i studentized leverage residuals 0, ,0455-0,46 0,05 -,4976 0,0779 4,6070 0, ,868 0, ,46 0, ,094 0, ,0500 0, ,0777 0, ,09 0,059,799 0,047-0,9666 0,06 -,7440 0, ,6770 0, ,84 0, , ,0066 7

8 7 0,560 0, ,6 0, ,07 0,7 0-0, ,06-0,664 0, ,4445 0, ,747 0,78 4 0,498 0,5 5 -,059 0, ,6699 0, ,087 0, , , ,066 0, , ,058 Παρατηρούμε ότι όλα τα leverages είναι μικρότερα του /n = 0. οπότε δεν υπάρχει κάποια παρατήρηση που να έχει μεγάλη επιρροή στο μοντέλο (αν υπάρχει κάποια τέτοια παρατήρηση, εκτελούμε παλινδρόμηση χωρίς αυτήν για να δούμε αν αλλάζουν σημαντικά οι εκτιμώμενες τιμές των παραμέτρων). Επίσης παρατηρούμε ότι η 8 η παρατήρηση παρουσιάζει μεγάλο studentized residual οπότε μπορεί να θεωρηθεί ως έκτροπη παρατήρηση. Όσον αφορά τις έκτροπες παρατηρήσεις ή τις παρατηρήσεις με μεγάλη επιρροή, βεβαιωνόμαστε ότι έχουν καταγραφεί και περαστεί σωστά στα δεδομένα. Αν δεν είμαστε απολύτως βέβαιοι για κάτι τέτοιο, μία συντηρητική απόφαση θα ήταν να εξαιρεθούν από το μοντέλο.,00 Normal P-P Plot of Studentized Residual,75,50 Exected Cum Prob,5 0,00 0,00,5,50,75,00 (unusual residual) Observed Cum Prob Για τον έλεγχο κανονικότητας των παρατηρήσεων πραγματοποιούμε ένα τεστ Kolmogorov - Smirnov για τα κατάλοιπα (Analyse/non-arametric tests/k-s test) από όπου λαμβάνουμε τον πίνακα: One-Samle Kolmogorov-Smirnov Test N Normal Parameters a,b Most Extreme Differences Kolmogorov-Smirnov Z Asym. Sig. (-tailed) a. Test distribution is Normal. b. Calculated from data. Mean Std. Deviation Absolute Positive Negative Studentized Residual 0 5,754E-0,0950,090,070 -,090,494,968 8

9 To -value είναι πολύ υψηλό (0.968) οπότε μπορούμε να δεχτούμε ότι τα κατάλοιπα προέρχονται από κανονική κατανομή (για να θεωρηθεί αξιόπιστο το τεστ υποθέτουμε ότι η συσχέτιση μεταξύ των καταλοίπων είναι αμελητέα). viii) Ένας τρόπος να εξετάσουμε αν το μοντέλο = β0 + β + β + β + ε βελτιώνει ουσιαστικά το προηγούμενο είναι να κάνουμε τον έλεγχο β = 0 (επίσης, θα μπορούσαμε να δούμε αν προκύπτει σημαντική αύξηση του R ή του R (adj) κ.τ.λ.). Από την εφαρμογή του μοντέλου αυτού λαμβάνουμε: a. Deendent Variable: Unstandardized Coefficients Coefficients a Standardi zed Coefficien ts B Std. Error Beta t Sig. -4,0,954 -,75,459,40,50,499 4,790,000 4,688,57,994 9,070,000-9,E-0,008 -,6 -,,68 (Χ = Χ *Χ ) απ όπου συμπεραίνουμε ότι η συνεισφορά δεν είναι σημαντική (-value = 0.68 > 0.05).. Για να εξετάσουμε ποιο από τα παρακάτω τρία μοντέλα = β + β +, = β + β +, β + β + β + ε 0 ε 0 ε = 0 είναι το καλύτερο, με βάση το R, το R SSE (adj), και το C = ( n ) μπορούμε να εκτελέσουμε MSE την διαδικασία της παλινδρόμησης φορές, μία για κάθε μοντέλο. Εναλλακτικά μπορούμε να δούμε και τα τρία μοντέλα μαζί αν εργαστούμε ως εξής: ) Ανοίγουμε την διαδικασία Analyze/regression/linear θέτοντας Deendent: και indeendent με Method: Enter (Block : = β0 + β + ε ) ) Στη συνέχεια, επιλέγουμε Next για να πάμε στο Block όπου και θέτουμε Deendent: και indeendent με Method: Enter (προστίθεται και η Χ στο μοντέλο του Block οπότε προκύπτει το = β0 + β + β + ε στο Block ) ) Τέλος, επιλέγουμε και πάλι Next για να πάμε στο Block όπου και θέτουμε Deendent: και indeendent με Method: Remove (αφαιρείται η Χ από το μοντέλο του Block οπότε προκύπτει το = β0 + β + ε στο Block ). Πατώντας ΟΚ λαμβάνουμε τα αποτελέσματα: Variables Entered/Removed c Summary Variables Variables Entered Removed Method a, Enter a, Enter, a b Remove a. All requested variables entered. b. All requested variables removed. c. Deendent Variable: Adjusted Std. Error of R R Square R Square the Estimate,9 a,54,4,895,966 b,94,99 7,7795,88 c,778,770 68,4 a. Predictors:, b. Predictors:,, c. Predictors:, 9

10 Regression Residual Total Regression Residual Total Regression Residual Total a. Predictors:, b. Predictors:,, c. Predictors:, d. Deendent Variable: ANOVA d Sum of Squares df Mean Square F Sig. 9008, ,59 5,08,0 a , , , ,5 7085,4 9,,000 b 856, , , , ,67 97,996,000 c 998, , ,4 9 a. Deendent Variable: Unstandardized Coefficients Coefficients a Standardi zed Coefficien ts B Std. Error Beta t Sig. 0,50 54,806,84,00,890,86,9,60,0 4,88 9,69,49,805,90,8,95 8,00,000 4,65,,88 7,87,000 6,895 4,8 4,845,000 4,60,40,88 9,899,000 Άρα για τα τρία μοντέλα παίρνουμε τον παρακάτω πίνακα: R R (adj) SSE SSE C = ( n ) MSE = = = 6 (MSE (πλήρους μοντέλου) = 47.9) Οπότε, με βάση και τα τρία κριτήρια, το καλύτερο μοντέλο είναι το πλήρες μοντέλο Υ, Χ, Χ (μοντέλο ). Υπενθυμίζεται ότι σύμφωνα με το R, καλύτερο θεωρείται το μοντέλο στο οποίο δεν αυξάνεται σημαντικά το R με την πρόσθεση νέων ανεξάρτητων μεταβλητών (μοντέλο που «σταθεροποιεί» το R ). Σύμφωνα με το R (adj) καλύτερο είναι το μοντέλο με το μεγαλύτερο R (adj) (ισοδύναμα μπορούμε να δούμε ποιο μοντέλο έχει το μικρότερο MSE διότι R (adj) = (n )MSE /SST). Tέλος, σύμφωνα με τον δείκτη C του Mallows s καλύτερο είναι το μοντέλο με το μικρότερο C που βρίσκεται κοντά στο (C ). Παρατηρούμε στους παραπάνω πίνακες ότι τα εκτιμημένα β,β δεν αλλάζουν σημαντικά στα τρία μοντέλα: ˆβ Υ = β 0 + β Χ + ε,890 Υ = β 0 + β Χ + β Χ + ε,90 4,65 Υ = β 0 + β Χ + ε 4,60 0

11 Αυτό συμβαίνει όταν οι ανεξάρτητες (ή ερμηνευτικές) μεταβλητές Χ,Χ είναι σχεδόν ασυσχέτιστες (δειγματικός συντελεστής συσχέτισης κοντά στο 0). Πράγματι, σε παραπάνω πίνακα είχαμε δει ότι το Pearson Correlation μεταξύ του Χ και του Χ είναι Αν οι ανεξάρτητες μεταβλητές έχουν ι- σχυρή συσχέτιση (π.χ. Pearson Correlation κοντά στο ή στο -) τότε παρουσιάζεται το φαινόμενο της πολυσυγγραμμικότητας (multicollinearity). Αυτό το φαινόμενο παρουσιάζεται στα δεδομένα του πίνακα B. Συγκεκριμένα παίρνοντας τα παραπάνω μοντέλα αυτή τη φορά με τα δεδομένα του πίνακα B λαμβάνουμε: Correlations Pearson Correlation Sig. (-tailed) N,000,84,878,84,000,94,878,94,000,,000,000,000,,000,000,000, (παρατηρούμε υψηλή θετική συσχέτιση 0.94 μεταξύ του Χ και του Χ ) Variables Entered/Removed c Variables Variables Entered Removed Method a, Enter a, Enter, a b Remove a. All requested variables entered. b. All requested variables removed. c. Deendent Variable: Summary Adjusted Std. Error of R R Square R Square the Estimate,84 a,7,695,898,88 b,778,75,54,878 c,77,758,50 a. Predictors:, b. Predictors:,, c. Predictors:, a. Deendent Variable: Unstandardized Coefficients Coefficients a Standardi zed Coefficien ts B Std. Error Beta t Sig. -,496,9 -,45,658,857,9,84 6,656,000-9,74 8,6 -,9,05,,0,9,7,474,659,9,676,65,07 -,64 5,657-4,78,00,857,0,878 7,786,000 Παρατηρούμε στους παραπάνω πίνακες ότι τα εκτιμημένα β,β αλλάζουν σημαντικά στα τρία μοντέλα: ˆβ Υ = β 0 + β Χ + ε 0,857 Υ = β 0 + β Χ + β Χ + ε 0, 0,659 Υ = β 0 + β Χ + ε Μάλιστα παρατηρούμε ότι ενώ στο πρώτο μοντέλο Υ = β 0 + β Χ + ε η Χ είναι σημαντική, όταν στο μοντέλο προστίθεται η Χ (Υ = β 0 + β Χ + β Χ + ε) η Χ γίνεται μη-σημαντική ενώ τη θέση της παίρ-

12 νει η Χ. Μάλιστα, καλύτερο μοντέλο σύμφωνα με το R (adj) φαίνεται να είναι το Υ = β 0 + β Χ + ε. Εδώ μπορούμε π.χ. να δώσουμε την εξής ερμηνεία: Η Χ είναι πράγματι αυτή που επηρεάζει την Υ αλλά όταν εφαρμόζουμε το μοντέλο Υ = β 0 + β Χ + ε, η Χ φαίνεται σημαντική διότι είναι πολύ «κοντά» στην Χ (το t-test για το β στο μοντέλο στην ουσία ελέγχει αν η είσοδος του Χ στο μοντέλο Υ = β 0 + ε είναι σημαντική). Αν όμως υπάρχει και η Χ στο μοντέλο τότε το αντίστοιχο t-test για το β στο μοντέλο ελέγχει αν η είσοδος της Χ στο μοντέλο Υ = β 0 + β Χ + ε είναι σημαντική. Είναι φυσικό να μην φαίνεται τώρα σημαντική η Χ διότι δεν συνεισφέρει τίποτε νέο στο μοντέλο αφού υπάρχει ήδη η Χ η οποία ερμηνεύει ικανοποιητικά τη μεταβλητότητα του Υ. Στις περιπτώσεις όπου παρουσιάζεται υψηλή πολυσυγγραμμικότητα (μπορεί να εντοπισθεί και μέσω του δείκτη VIF (variance inflation factor) π.χ. όταν VIF > 0: o δείκτης VIF i που δίνεται στο πα- i ) i κέτο είναι ίσος με ( R όπου R είναι ο συντελεστής προσδιορισμού όταν κάνουμε παλινδρόμηση της Χ i (ως deendent) με τις υπόλοιπες Χ (ως indeendent)), εντοπίζουμε τις ομάδες των ερμηνευτικών μεταβλητών με υψηλή συσχέτιση και συνήθως παραμένει μόνο μία μεταβλητή από κάθε ομάδα. Σε αρκετές περιπτώσεις αυτό δεν είναι εύκολο οπότε είναι ανάγκη να χρησιμοποιήσουμε άλλες μεθόδους (π.χ. rincial comonents regression ή ridge regression). Σημειώνεται ότι η ύπαρξη πολυσυγγραμμικότητας μπορεί να οδηγήσει και σε μία σχεδόν μηδενική ορίζουσα του Χ Χ, με αποτέλεσμα να υπάρχει κίνδυνος εμφάνισης σοβαρών σφαλμάτων στρογγύλευσης στην διαδικασία υπολογισμού των εκτιμήσεων των β i. Για το λόγο αυτό προτείνεται η κανονικοποίηση των Υ,Χ,Χ πριν την εφαρμογή της παλινδρόμησης στο πακέτο ώστε να παίρνουν τιμές στο (,) με σκοπό να μειωθούν τα σφάλματα στρογγύλευσης (συνήθως η κανονικοποίηση αυτή γίνεται αυτόματα από το πακέτο).

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις: Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Πολλαπλή Παλινδρόμηση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης

Διαβάστε περισσότερα

Άσκηση 2. i β. 1 ου έτους (Υ i )

Άσκηση 2. i β. 1 ου έτους (Υ i ) Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.

Διαβάστε περισσότερα

Λυμένες Ασκήσεις για το μάθημα:

Λυμένες Ασκήσεις για το μάθημα: Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Απλή Ευθύγραµµη Συµµεταβολή

Απλή Ευθύγραµµη Συµµεταβολή Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή

Διαβάστε περισσότερα

Lampiran 1 Output SPSS MODEL I

Lampiran 1 Output SPSS MODEL I 67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά 1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs

Διαβάστε περισσότερα

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΠΟΤΕ ΚΑΙ ΓΙΑΤΙ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ ΜΟΝΤΕΛΟ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΕΚΤΙΜΗΤΩΝ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΥΠΟΘΕΣΕΙΣ ΠΙΝΑΚΑΣ ΑΝΑ ΙΑ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΓΙΑ ΤΙΣ ΠΑΡΑΜΕΤΡΟΥΣ

Διαβάστε περισσότερα

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Δεκέμβριος 2011 Στόχος Έρευνας H βιτρίνα των καταστημάτων αποτελεί

Διαβάστε περισσότερα

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται Κεφάλαιο 10 Η Ανάλυση Παλινδρόμησης Η Ανάλυση Παλινδρόμησης Το στατιστικό κριτήριο που μας επιτρέπει να προβλέψουμε τις τιμές μιας μεταβλητής από τις τιμές μιας ή πολλών άλλων γνωστών μεταβλητών Η σχέση

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ-ΠΕΜΠΤΟ ΘΕΩΡΙΑΣ- ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Σηµειώσεις: Θωµόπουλος Γιώργος Ρογκάκος Γιώργος Καθηγητής: Κουνετάς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ. Παιεάο Δπζηξάηηνο

ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ. Παιεάο Δπζηξάηηνο ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ Παιεάο Δπζηξάηηνο ΑΘΗΝΑ 2014 1 ΠΔΡΙΔΥΟΜΔΝΑ 1) Δηζαγσγή 2) Πεξηγξαθηθή Αλάιπζε 3) ρέζεηο Μεηαβιεηώλ αλά 2 4) Πξνβιεπηηθά / Δξκελεπηηθά Μνληέια

Διαβάστε περισσότερα

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11 ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο]

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο] Ενότητα 2 ιαφάνειες Μαθήµατος: 2- Ενότητα 2 ιαφάνειες Μαθήµατος: 2-2 ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο.6. είκτες µερικής συσχέτισης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει

Διαβάστε περισσότερα

Μοντέλα Πολλαπλής Παλινδρόμησης

Μοντέλα Πολλαπλής Παλινδρόμησης Μοντέλα Πολλαπλής Παλινδρόμησης Πέτρος Ρούσσος Πρόγραμμα Ψυχολογίας, ΦΠΨ, ΕΚΠΑ ΕΙΣΑΓΩΓΙΚΑ 1 Ορολογία Προβλεπτικές μεταβλητές ή παράγοντες (predictors) Μεταβλητή κριτήριο (criterion) Απλή και πολλαπλή παλινδρόμηση

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 10 ο 10.1 Πολλαπλή Γραµµική Παλινδρόµηση 10.2 Η εφαρµογή της Πολλαπλής Γραµµικής Παλινδρόµησης 10.3 Παράδειγµα

Διαβάστε περισσότερα

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 6: Συσχέτιση και παλινδρόμηση εμπειρική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Γραμμική παλινδρόμηση Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΟΓΔΟΟ Γραμμική παλινδρόμηση Σε προηγούμενο κεφάλαιο είδαμε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΑΝΑΓΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΤΗΣ ΕΡΕΥΝΑΣ Μελέτη ποιοτικών χαρακτηριστικών ξενοδοχείων Συμβουλευτικές υπηρεσίες από εσωτερικούς

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ

ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ Η συγγραμμικότητα (collinearity) ή πολυσυγγραμμικότητα (multicollinearity) είναι εκείνη η ανεπιθύμητη κατάσταση (εμφανίζεται στην πολυμεταβλητή παλινδρόμηση) όπου μία ανεξάρτητη

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Διακύμανσης

Εισαγωγή στην Ανάλυση Διακύμανσης Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία

Διαβάστε περισσότερα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... v

Περιεχόμενα. Πρόλογος... v Περιεχόμενα Πρόλογος... v 1 Χρήση της έκδοσης 10 του SPSS για Windows και καταχώριση δεδομένων... 1 2 Περιγραφή μεταβλητών: πίνακες και γραφήματα... 19 3 Περιγραφή μεταβλητών αριθμητικά: μέσοι όροι, διακύμανση,

Διαβάστε περισσότερα

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα

Διαβάστε περισσότερα

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Smple Lear Regresso) Να κατανοηθεί η έννοια της παλινδρόµησης Ποιες οι προϋποθέσεις για να εφαρµοσθεί η γραµµική παλινδρόµηση; Τι είναι το γραµµικό µοντέλο και πως εκτιµούνται

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

1991 US Social Survey.sav

1991 US Social Survey.sav Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 6. Συσχέτιση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 6. Συσχέτιση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 6. Συσχέτιση Γενικά Υπάρχει σχέση ανάµεσα σε δύο (ή περισσότερες) µεταβλητές; Αν υπάρχει σχέση ποια η φύση της σχέσης αυτής; Συσχέτιση: µέτρο σχέσης ανάµεσα σε µεταβλητές Θετικά συσχετισµένες

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης ιαστήµατα εµπιστοσύνης και έλεγχοι υποθέσεων για τη µέση τιµή Για µια ποσοτική µεταβλητή

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Το Γενικευμένο Γραμμικό Υπόδειγμα (Α) ΔΙΑΛΕΞΗ 05 Μαρί-Νοέλ Ντυκέν,

Διαβάστε περισσότερα

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΚΕΦΑΛΑΙΟ 13 ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Στις προηγούμενες ενότητες ασχοληθήκαμε με μεθόδους που οδηγούν σε εκτιμήτριες των τιμών μιας ή και περισσοτέρων αγνώστων παραμέτρων. Αυτό έγινε με την κατασκευή

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΕΚΤΟ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ -3 Ακαδημαϊκό Έτος -3 . ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ..... Καταγραφή δεδομένων και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ 6.1 Εισαγωγή Σε πολλές στατιστικές εφαρµογές συναντάται το πρόβληµα της µελέτης της σχέσης δυο ή περισσότερων τυχαίων µεταβλητών. Η σχέση

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Κωνσταντίνος Ζαφειρόπουλος Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Ονοματεπώνυμο: Όνομα Πατρός:... Σ ΑΜ:. Ημερομηνία: Παρακαλώ μη γράφετε στα παρακάτω

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 11 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση)

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 11 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) Ενότητα ιαφάνειες Μαθήµατος: - Ενότητα ιαφάνειες Μαθήµατος: - ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 006-007, 3ο εξάµηνο.. Γενίκευση του µοντέλου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Άσκηση 1: Μια τράπεζα ενδιαφέρεται να μελετήσει την αποταμιευτική συμπεριφορά των πελατών της. Θεωρείται ως δεδομένο ότι η ετήσια αποταμίευση των πελατών της

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΟΔΗΓΙΕΣ: Απαντήστε σε όλα τα θέματα. Απαντήστε με ακρίβεια

Διαβάστε περισσότερα

Εισαγωγή στη Βιοστατιστική

Εισαγωγή στη Βιοστατιστική Εισαγωγή στη Βιοστατιστική Π.Μ.Σ.: Έρευνα στη Γυναικεία Αναπαραγωγή Οκτώβριος Νοέµβριος 2013 Αλέξανδρος Γρυπάρης, PhD Αλέξανδρος Γρυπάρης, PhD 3 Περιεχόµενα o Ορισµός της Στατιστικής o Περιγραφική στατιστική

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION)

ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION) 4. ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION) Η μέθοδος της βηματικής παλινδρόμησης (stepwise regression) είναι μιά άλλη μέθοδος επιλογής ενός "καλού" υποσυνόλου ανεξαρτήτων μεταβλητών.

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Πρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή

Πρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή Πρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή Ονοματεπώνυμο : Ευανθία Καρακατσάνη Σειρά: 9 Επιβλέπων Καθηγητής: Ο. Κυριακίδου Δεκέμβριος 2012 ΣΤΟΧΟΣ/ ΣΚΟΠΟΣ

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Έλεγχος κανονικότητας P-P Plot και Q-Q Plot Τεστ Κανονικότητας Τεστ Κανονικότητας

Διαβάστε περισσότερα

$ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η.

$ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η. η &, 7!# v # $ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η. - ι% ιι* ι' F ι ι ι% MS F MS between within MS MS

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

Λογιστική Παλινδρόµηση

Λογιστική Παλινδρόµηση Κεφάλαιο 10 Λογιστική Παλινδρόµηση Στο κεφάλαιο αυτό ϑα δούµε την µέθοδο της λογιστικής παλινδρόµησης η οποία χρησιµεύει στο να αναπτύξουµε σχέση µίας δίτιµης ανεξάρτητης τυχαίας µετα- ϐλητής και συνεχών

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Κεφάλαιο 3: Ανάλυση μιας μεταβλητής

Κεφάλαιο 3: Ανάλυση μιας μεταβλητής Κεφάλαιο 3: Ανάλυση μιας μεταβλητής Γενικά Στο Κεφάλαιο αυτό θα παρουσιάσουμε κάποιες μεθόδους της Περιγραφικής Στατιστικής και της Στατιστικής Συμπερασματολογίας που αφορούν στην ανάλυση μιας μεταβλητής.

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 Μαρί-Νοέλ Ντυκέν Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ (Analyss of Varance for two factor Experments) (Two-Way Analyss of Varance) Ο πειραματικός σχεδιασμός για τον οποίο θα μιλήσουμε είναι μια επέκταση της μεθοδολογίας

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 7 η : Ανάλυση

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows

Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φιλοσοφίας, Παιδαγωγικής και Ψυχολογίας Τομέας Ψυχολογίας Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows Επιμέλεια: Λέκτορας Βασίλης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ο. 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES. Daily calorie intake

ΚΕΦΑΛΑΙΟ 5 ο. 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES. Daily calorie intake ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 5 ο 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES 5000 Daily calorie

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

Ανάλυση εδοµένων - Χρήση του στατιστικού πακέτου SPSS. 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ

Ανάλυση εδοµένων - Χρήση του στατιστικού πακέτου SPSS. 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ Ανάλυση εδοµένων - Χρήση του στατιστικού πακέτου SPSS η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ (Α) Καταγραφή δεδοµένων και επιλογή κατάλληλων ρυθµίσεων των µεταβλητών Η βασική οθόνη του στατιστικού

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

Σύγκριση Συνδυασµένων Παραγόντων

Σύγκριση Συνδυασµένων Παραγόντων Σύγκριση Συνδυασµένων Παραγόντων Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Παραγοντικά Πειράµατα (Factorial Experiments)

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA

ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA Στις ασκήσεις που ακολουθούν χρησιμοποιούμε δεδομένα για 3010 εργαζόμενους άνδρες ηλικίας 24 έως 34 από έρευνα που πραγματοποιήθηκε το

Διαβάστε περισσότερα

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση!

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! ΘΕΜΑ ο [Μονάδες 20] Ερώτημα i (4 μονάδες). Για να κάνουμε τους υπολογισμούς που χρειάζονται

Διαβάστε περισσότερα

Y Y ... y nx1. nx1

Y Y ... y nx1. nx1 6 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΠΙΚΑΚΩΝ Η χρησιμοποίηση και ο συμβολισμός πινάκων απλοποιεί σημαντικά τα αποτελέσματα της γραμμικής παλινδρόμησης, ιδίως στην περίπτωση της πολλαπλής παλινδρόμησης Γενικά,

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

και τυπική απόκλιση σ = 40mg ανά μπανάνα. α) Ποια είναι η πιθανότητα μια μπανάνα να περιέχει i)

και τυπική απόκλιση σ = 40mg ανά μπανάνα. α) Ποια είναι η πιθανότητα μια μπανάνα να περιέχει i) Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Γραπτή Εξέταση Περιόδου Ιανουαρίου 8 στο Μάθημα Στατιστική 7..8. [] Ο ανθρώπινος οργανισμός χρειάζεται καθημερινά από έως 6 mg (mllgrams) καλίου. Η ποσότητα καλίου που περιέχεται στα τρόφιμα

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συνδιακύμανσης (Analysis of Covariance, ANCOVA)

Εισαγωγή στην Ανάλυση Συνδιακύμανσης (Analysis of Covariance, ANCOVA) Εισαγωγή στην Ανάλυση Συνδιακύμανσης (nalysis of Covariance, NCOV) Βασίλης Παυλόπουλος Λέκτορας Διαπολιτισμικής Ψυχολογίας Τομέας Ψυχολογίας, Πανεπιστήμιο Αθηνών vpavlop@psych.uoa.gr http://www.psych.uoa.gr/~vpavlop

Διαβάστε περισσότερα