Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές"

Transcript

1 Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές Σύνοψη Προσδιορισμός της έντασης του γήινου βαρυτικού πεδίου μέσω μέτρησης της περιόδου απλών αρμονικών ταλαντώσεων ενός απλού εκκρεμούς. Προαπαιτούμενη γνώση Κεφάλαια 1& Βασικές έννοιες Ως απλό εκκρεμές (βλ. Εικόνα 11.1) χαρακτηρίζεται ένα εξιδανικευμένο προσομοίωμα αιωρουμένου σώματος, το οποίο αποτελείται από σημειακή μάζα m κρεμασμένη μέσω αβαρούς, μη εκτατού νήματος μήκους l, εντός ομογενούς βαρυτικού πεδίου. Εικόνα 11.1 Απλό εκκρεμές. Στην πράξη αρκεί οι διαστάσεις του σώματος να είναι πολύ μικρότερες από το μήκος l του νήματος, η μάζα του νήματος να είναι πολύ μικρότερη από εκείνη του σώματος και το πλάτος αιώρησης τόσο μικρό, ώστε η ένταση του γήινου βαρυτικού πεδίου να μη μεταβάλλεται αισθητά. Αν εκτρέψουμε το εκκρεμές κατά γωνία θ και το αφήσουμε ελεύθερο, τότε αυτό θα εκτελέσει μια παλινδρομική κίνηση γύρω από τη θέση ισορροπίας, η οποία χαρακτηρίζεται (βλ. κεφ. 3.1) ως ταλάντωση. Τα ιδιαίτερα χαρακτηριστικά της εν λόγω ταλάντωσης καθορίζονται προφανώς από τη συνισταμένη δύναμη, η οποία ασκείται επί του σώματος. Η συνισταμένη αυτή δύναμη ισούται με το (διανυσματικό) άθροισμα του βάρους Β = mg του σώματος, το οποίο έχει πάντα κατακόρυφο διεύθυνση και φορά προς τα κάτω, και της τάσης T του νήματος. Όταν το νήμα σχηματίζει την τυχαία γωνία θ με την κατακόρυφο, το βάρος του μπορεί να αναλυθεί σε μια κάθετη και μία παράλληλη ως προς το νήμα συνιστώσα (βλ. Εικόνα 11.1), των οποίων τα μέτρα είναι Β π = mgcosθ και Β κ = mgsinθ {1} Η παράλληλη προς το νήμα συνιστώσα εξουδετερώνεται προφανώς (με την προϋπόθεση ότι το νήμα είναι μη εκτατό!) από την τάση του νήματος, μια και δεν έχουμε κίνηση κατά τη διεύθυνσή του. Αυτό σημαίνει, ότι η μορφή της κίνησης καθορίζεται από την κάθετη προς το νήμα συνιστώσα του βάρους του σώματος Β κ. Όπως δε φαίνεται από τη σχέση {1}, η Β κ δεν είναι ανάλογη προς την απομάκρυνση από τη θέση ισορροπίας, οπότε η κίνηση του απλού εκκρεμούς δεν είναι εν γένει απλή αρμονική (βλ. κεφ. 3.1 και 3.3). Το sinθ μπορεί να αναπτυχθεί κατά Taylor (βλέπε π.χ. Bronstein, Semendjaiew, Taschenbuch der Mathematik): 1

2 sinθ = θ θ3 + θ5 θ7 + (Εξίσωση 11.1) 3! 5! 7! Για γωνίες (πάντα σε rad!) μικρότερες των 0,1 rad ( 6 ) πρώτος προσθετέος υπερισχύει συντριπτικά έναντι των άλλων. Π.χ. για θ = 0,1 rad παίρνουμε sinθ = 0,0998: διαφορά 0,%. Για θ = 0,09 rad παίρνουμε sinθ = 0,0899: διαφορά 0,1%. Στην περίπτωση λοιπόν αυτή οι υπόλοιποι προσθετέοι μπορούν να παραληφθούν, οπότε έχουμε: Τότε η κινούσα το σώμα δύναμη Β κ γίνεται: Β κ = mgθ (Εξίσωση 11.) θ 0,1 rad ( 6 ) sinθ θ {} [Το αρνητικό πρόσημο υποδηλώνει, ότι η δύναμη Β κ έχει φορά αντίθετη προς τη φορά εκτροπής του σώματος, ότι δηλαδή τείνει να επαναφέρει το σώμα στη θέση ισορροπίας («δύναμη επαναφοράς»)]. Σύμφωνα με την Εικόνα 11.1 το σώμα κινείται επί κυκλικής τροχιάς ακτίνας l. Αν λοιπόν παραστήσουμε με x το μήκος του τόξου, το οποίο αντιστοιχεί στη γωνία θ, τότε θα ισχύει: θ = x l {3} Η δύναμη επαναφοράς θα είναι κατά συνέπεια F Β κ = mg x l kx (Εξίσωση 11.3) k = mg l (Εξίσωση 11.4) («σταθερή επαναφοράς») Βλέπουμε λοιπόν ότι για μικρές εκτροπές από τη θέση ισορροπίας (θ 0,1 rad ( 6 )) η δύναμη είναι ανάλογη προς τη μετατόπιση x και η κίνηση του απλού εκκρεμούς είναι απλή αρμονική ταλάντωση με τα ακόλουθα χαρακτηριστικά (βλ. κεφ. 3.1 και 3.3): στιγμιαία απομάκρυνση από τη θέση ισορροπίας κατά την τυχαία χρονική στιγμή t: x = x 0 sin(ωt + φ 0 ) (Εξίσωση 11.5) x 0 : πλάτος ταλάντωσης = μέγιστη απομάκρυνση από τη θέση ισορροπίας. φ = ωt + φ 0 φάση (της ταλάντωσης). φ 0 : αρχική φάση. Ισούται με την τιμή της φάσης φ κατά τη χρονική στιγμή t = 0. Αν η αρχική φάση είναι διάφορη του μηδενός, αυτό σημαίνει ότι κατά τη χρονική στιγμή t = 0 το κινητό δεν βρισκόταν στη θέση ισορροπίας x = 0, αλλά στη θέση x = x 0 sinφ 0. κυκλική συχνότητα: (11.4) ω = k m = g l (Εξίσωση 11.6) συχνότητα (= αριθμός των πλήρων ταλαντώσεων στη μονάδα του χρόνου): ν = ω π = 1 π g l (Εξίσωση 11.7)

3 περίοδος (= χρονική διάρκεια μιας πλήρους ταλάντωσης): T = 1 ν = π l g (Εξίσωση 11.8) Βλέπουμε λοιπόν ότι για μικρές εκτροπές η περίοδος του εκκρεμούς αυξάνεται με αυξανόμενο μήκος, ενώ είναι ανεξάρτητη από τη μάζα του και το πλάτος ταλάντωσης. Στην ανεξαρτησία της περιόδου από το πλάτος ταλάντωσης οφείλεται η χρησιμότητα του εκκρεμούς στην κατασκευή ωρολογίων ικανοποιητικής ακρίβειας. 11. Προσδιορισμός της επιτάχυνσης της βαρύτητας Όπως φαίνεται από τη σχέση (11.8), μετρώντας την περίοδο ταλάντωσης και το μήκος του εκκρεμούς (γεγονός το οποίο μπορεί να γίνει με σχετικά μεγάλη ακρίβεια) μπορούμε να προσδιορίσουμε την επιτάχυνση της βαρύτητας g. Πιο συγκεκριμένα και για μεγαλύτερη ακρίβεια ακολουθείται συνήθως η εξής μέθοδος (Χασάπης Δ.Δ., Εργαστηριακές Ασκήσεις Φυσικής): Στην πράξη η αιωρούμενη μάζα έχει κάποιες διαστάσεις, με αποτέλεσμα να είναι δύσκολο να προσδιορισθεί ακριβώς το μήκος l, το οποίο ισούται με την απόσταση του κέντρου μάζας από το σημείο ανάρτησης. Για τον λόγο αυτό προσδιορίζουμε το μήκος l από το σημείο ανάρτησης μέχρι κάποιο γνωστό σημείο (π.χ. έναν κόμβο στο νήμα) πλησίον του κέντρου μάζας, το οποίο απέχει (άγνωστη με ακρίβεια) απόσταση c από το κέντρο μάζας. (Η απόσταση c παίζει τον ρόλο πειραματικά προσδιοριστέας παραμέτρου.) Αντικαθιστώντας στην (11.8) το l μέσω του (l + c) παίρνουμε: T = π l+c g l = g 4π T c (Εξίσωση 11.9) Η παραπάνω σχέση παριστάνει ευθεία της μορφής y = ax + b (βλ. κεφ ) με κλίση a και σημείο τομής b με τον άξονα y: a κλίση = g 4π (Εξίσωση 11.10) b = c (Εξίσωση 11.11) Επομένως από τη γραφική παράσταση της συνάρτησης l(t ) μπορούμε να υπολογίσουμε τόσο την επιτάχυνση της βαρύτητας g όσο και την παράμετρο c: g = 4π κλίση (Εξίσωση 11.1) c = σημείο τομής με τον άξονα l (Εξίσωση 11.13) Υπολογισμός σφαλμάτων της επιτάχυνσης της βαρύτητας και της απόστασης του κόμβου από το κέντρο μάζας Σύμφωνα με τα παραπάνω, ο προσδιορισμός της επιτάχυνσης της βαρύτητας g και της απόστασης c του κόμβου από το ΚΜ του σφαιριδίου, γίνονται με τη βοήθεια της κλίσης a και του σημείου τομής b με τον άξονα y, αντίστοιχα, μιας ευθείας της μορφής y = ax + b. Τα δύο αυτά μεγέθη προσδιορίζονται με τη Μέθοδο των Ελαχίστων Τετραγώνων (βλ. π.χ. Taylor J.R., An introduction to error analysis) από τις μετρημένες τιμές της περιόδου Τ και του μήκους l του εκκρεμούς (βλ. κεφ. 11.4). Τα σφάλματα επομένως υπολογίζονται με τη βοήθεια των σχέσεων της ενότητας 1.5.1: (μέσο) σφάλμα y: 3

4 1 Δy = ± (y n i i b ax i ) + (aδx) {1} εδώ αμελητέο! [Δx: (μέσο) σφάλμα των τιμών x i. Στην περίπτωσή μας το x αντιστοιχεί στο τετράγωνο T της περιόδου και μπορεί να θεωρηθεί αμελητέο, επειδή η περίοδος προσδιορίζεται μέσω χρονομέτρησης είκοσι πλήρων ταλαντώσεων (βλ. κεφ. 11.4).] μέσο σφάλμα της κλίσης a: Δa = Δy n n x i i ( x i i ) {} μέσο σφάλμα του σημείου τομής b: Δb = Δy x i i n x i i ( x i i ) {3} Υπολογισμός του μέσου σφάλματος της επιτάχυνσης της βαρύτητας g: Εικόνα 11. Για τον υπολογισμό του σφάλματος του g. Σύμφωνα με τις σχέσεις της ενότητας 11., η επιτάχυνση της βαρύτητας g υπολογίζεται [βλ. εξίσωση (11.1)] από την κλίση μιας ευθείας της μορφής y = ax + b, το σφάλμα της οποίας υπολογίζεται από την {} και {1}, θέτοντας y l, x Τ και b = l 0 : κλίση a {} (11.1): g = 4π κλίση 4π a Δg = 4π Δa = 4π Δy n n x i i ( i x i ) Εικόνα 11.: y l,x Τ Δg = 4π Δl n n T 4 i i ( T i i ) (Εξίσωση 11.14) όπου y = ax + b= l(t )= g 4π T +l 0 Δl = ± 1 n (l i l 0 κλίση T i ) i {4} Υπολογισμός του μέσου σφάλματος της απόστασης c: 4

5 Σύμφωνα με τις σχέσεις της ενότητας 11., η σταθερή c [βλ. εξίσωση (11.13)] είναι ίση και αντίθετη με το σημείο τομής μιας ευθείας της μορφής y = ax + b, το σφάλμα της οποίας υπολογίζεται από την {3} και {1}, θέτοντας y l, x Τ Εικόνα 11. (11.13): c = (σημείο τομής με τον άξονα l ) c = b Δc = Δb = {} = Δy x i i n i x i ( x i y l,x Τ = Δl i ) T 4 i (11.14) i n T 4 i i ( T i i ) Δc = Δg 4π T 4 i i n (Εξίσωση 11.15) 11.3 Πειραματική διαδικασία Animation 11.1 Διαδραστική περιγραφή της πειραματικής διαδικασίας. (Είναι διαθέσιμη από τον Ελληνικό Συσσωρευτή Ακαδημαϊκών Ηλεκτρονικών Βιβλίων.) Η πειραματική διαδικασία στοχεύει στη μέτρηση (μέσω ψηφιακού χρονομέτρου) της περιόδου ταλάντωσης απλού μαθηματικού εκκρεμούς συναρτήσει του μήκους του. Απαιτούμενα όργανα: 1. Απλό εκκρεμές με κατάλληλη βάση ανάρτησης (Εικόνα 10.3). Εικόνα 11.3 Απλό εκκρεμές.. Ψηφιακό χρονόμετρο (Εικόνα 11.4) 5

6 Εικόνα 11.4 Ψηφιακό χρονόμετρο. Το ξεκινάμε και σταματάμε πιέζοντας το Α. Το μηδενίζουμε πιέζοντας το Β. 3. Μετροταινία Διεξαγωγή Μετρήσεων: 1. Χαλαρώνουμε τη βίδα (Εικόνα 11.3), η οποία σφίγγει την οριζόντια ράβδο, στην οποία είναι τυλιγμένο το περίσσιο σχοινί του εκκρεμούς, ξετυλίγουμε περιστρέφοντας τη ράβδο τόσο σχοινί, ώστε το μήκος l (από το σημείο ανάρτησης ως τον κόμβο) να γίνει ίσο με 1m και ξανασφίγγουμε τη βίδα. 1. Εκτρέπουμε το εκκρεμές κατά γωνία μικρότερη των 3, το αφήνουμε ξεκινώντας ταυτόχρονα το χρονόμετρο, χρονομετρούμε τον χρόνο t 0 είκοσι πλήρων ταλαντώσεων και τον σημειώνουμε στον Πίνακα 1.. Επαναλαμβάνουμε τα βήματα 1 και ελαττώνοντας κάθε φορά το μήκος l κατά 10cm για όλα τα μήκη του Πίνακα Επεξεργασία των μετρήσεων Η επεξεργασία των μετρήσεων στοχεύει: 1. Στην κατασκευή της γραφικής παράστασης του μήκους l του εκκρεμούς συναρτήσει του τετραγώνου T της περιόδου του, τον υπολογισμό της κλίσης της και του σημείου τομής l 0 με τον άξονα l σύμφωνα με τη μέθοδο των ελαχίστων τετραγώνων.. Στον προσδιορισμό της επιτάχυνσης της βαρύτητας από την παραπάνω προσδιορισθείσα κλίση σύμφωνα με τη σχέση g = 4π κλίση και της απόστασης του κόμβου από το κέντρο μάζας του σώματος από τη σχέση c = l 0. Προς τον σκοπό αυτό: 1. Κάνουμε όσους υπολογισμούς απαιτεί ο Πίνακας 1.. Σε χιλιοστομετρικό χαρτί (DIN A4) κάνουμε γραφική παράσταση του μήκους l συναρτήσει του τετραγώνου T της περιόδου, σύμφωνα με τις οδηγίες του κεφαλαίου 1.5. Προς τον σκοπό δε αυτό συμπληρώνουμε τον Πίνακα. 3. Υπολογίζουμε την επιτάχυνση της βαρύτητας g προσέχοντας τις μονάδες! (Σημειωτέον, ότι η αποδεκτή τιμή για γεωγραφικό πλάτος 45 και υψόμετρο 0 είναι g = 9,81 m/s ). 4. Συμπληρώνουμε τον Πίνακα. 5. Τέλος σχολιάζουμε τα αποτελέσματά μας και τα παρουσιάζουμε με μορφή εργασίας, η οποία θα έχει τα κύρια χαρακτηριστικά, τα οποία περιγράφονται στην Εισαγωγή. 6

7 Εικόνα 11.5 Ενδεικτικός Πίνακας 1. Εικόνα 11.6 Ενδεικτικός Πίνακας. Βιβλιογραφία/Αναφορές Bronstein, Semendjaiew, Taschenbuch der Mathematik, Harri Deutsch, 17η έκδοση, Zuerich - Frankfurt Thun,

8 Taylor J.R., An introduction to error analysis, University Science Books, η έκδοση, 1997 Χασάπης Δ.Δ., Εργαστηριακές Ασκήσεις Φυσικής, Αθήνα, Β. Γκιούρδας Εκδοτική, 004 Κριτήρια αξιολόγησης Ερώτηση 1 Ποια είναι τα χαρακτηριστικά ενός απλού εκκρεμούς θεωρητικά και πρακτικά; Θεωρητικά το νήμα πρέπει να είναι απόλυτα αβαρές και μη εκτατό και η μάζα σημειακή. Στην πράξη αρκεί η μάζα του νήματος να είναι πολύ πολύ μικρότερη από εκείνη του σώματος, οι διατάσεις του σώματος πολύ πολύ μικρότερες από το μήκος του νήματος και το πλάτος αιώρησης τόσο μικρό, ώστε η ένταση του γήινου βαρυτικού πεδίου να μη μεταβάλλεται αισθητά. Ερώτηση Πότε η κίνηση του εκκρεμούς είναι απλή αρμονική ταλάντωση; Για γωνία εκτροπής μικρότερη των 6. Ερώτηση 3 Σε ποια ιδιότητα του εκκρεμούς στηρίζεται η χρησιμότητά του στην κατασκευή ωρολογίων ικανοποιητικής ακρίβειας; Στο γεγονός ότι για μικρές εκτροπές η περίοδος του εκκρεμούς είναι ανεξάρτητη από τη μάζα του και το πλάτος ταλάντωσης. Ερώτηση 4 Είναι κατάλληλο το εκκρεμές για τον προσδιορισμό της επιτάχυνσης της βαρύτητας; Για τον προσδιορισμό του g απαιτείται η μέτρηση της περιόδου ταλάντωσης και του μήκους του εκκρεμούς, γεγονός το οποίο μπορεί να γίνει απλά και με σχετικά μεγάλη ακρίβεια. Ερώτηση 5 Τι ρόλο παίζει ο κόμβος στο νήμα του εκκρεμούς; Επειδή η αιωρούμενη μάζα έχει κάποιες διαστάσεις, είναι δύσκολο να προσδιορισθεί ακριβώς το μήκος του εκκρεμούς, το οποίο ισούται με την απόσταση του κέντρου μάζας από το σημείο ανάρτησης. Για τον λόγο αυτό προσδιορίζουμε το μήκος από το σημείο ανάρτησης μέχρι τον κόμβο και στη συνέχεια την απόσταση c του κόμβου από το κέντρο μάζας, από την γραφική παράσταση l = g 4π T c, σαν σημείο τομής με τον κατακόρυφο άξονα. 8

Κεφάλαιο 4: Θεμελιώδης εξίσωση της Μηχανικής

Κεφάλαιο 4: Θεμελιώδης εξίσωση της Μηχανικής Κεφάλαιο 4: Θεμελιώδης εξίσωση της Μηχανικής Σύνοψη Διερεύνηση με τη βοήθεια της μηχανής του Atwood της σχέσης μεταξύ δύναμης και επιτάχυνσης, καθώς και προσδιορισμός της επιτάχυνσης της βαρύτητας. Προαπαιτούμενη

Διαβάστε περισσότερα

Κεφάλαιο 10: Νόμος του Hooke-Αρμονική ταλάντωση σπειρoειδούς ελατηρίου

Κεφάλαιο 10: Νόμος του Hooke-Αρμονική ταλάντωση σπειρoειδούς ελατηρίου Κεφάλαιο 1: Νόμος του Hooke-Αρμονική ταλάντωση σπειρoειδούς ελατηρίου Σύνοψη Πειραματική επαλήθευση του νόμου του Hooke, προσδιορισμός της σταθερής k του ελατηρίου μέσω μέτρησης της περιόδου αρμονικών

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

Κεφάλαιο 2: Μέτρηση των συντελεστών στατικής και κινητικής τριβής

Κεφάλαιο 2: Μέτρηση των συντελεστών στατικής και κινητικής τριβής Κεφάλαιο 2: Μέτρηση των συντελεστών στατικής και κινητικής τριβής Σύνοψη Προσδιορισμός των συντελεστών στατικής και δυναμικής τριβής με τη βοήθεια του κεκλιμένου επιπέδου. Προαπαιτούμενη γνώση Κεφάλαιο

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς Εργαστηριακή Άσκηση 5 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του απλού εκκρεμούς Βαρσάμης Χρήστος Στόχος: Μέτρηση της επιτάχυνσης της βαρύτητας, g. Πειραματική διάταξη: Χρήση απλού εκκρεμούς.

Διαβάστε περισσότερα

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ Α. ΣΤΟΧΟΙ Η εξοικείωση με τη χρήση απλών πειραματικών διατάξεων. Η εξοικείωση με

Διαβάστε περισσότερα

Κεφάλαιο 6: Σύνθεση ομοεπιπέδων δυνάμεων

Κεφάλαιο 6: Σύνθεση ομοεπιπέδων δυνάμεων Κεφάλαιο 6: Σύνθεση ομοεπιπέδων δυνάμεων Σύνοψη Πειραματικός προσδιορισμός της δύναμης, η οποία εξισορροπεί δύο ομοεπίπεδες δυνάμεις και σύγκρισή της με τη συνισταμένη τους που υπολογίζεται αριθμητικά

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου 1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου

Διαβάστε περισσότερα

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του.

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο

Διαβάστε περισσότερα

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012 1 Τοπικός Μαθητικός Διαγωνισμός 11η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2013 11Η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΕΚΦΕ Τρικάλων Πειραματική Δοκιμασία στη Φυσική Τοπικός Μαθητικός Διαγωνισμός Τρίκαλα,

Διαβάστε περισσότερα

Κεφάλαιο 3: Σύνθεση αρμονικών ταλαντώσεων

Κεφάλαιο 3: Σύνθεση αρμονικών ταλαντώσεων Κεφάλαιο 3: Σύνθεση αρμονικών ταλαντώσεων Σύνοψη Μελέτη της σύνθεσης δύο (ηλεκτρικών) αρμονικών ταλαντώσεων της ίδιας ή κάθετης μεταξύ τους διεύθυνσης με τη βοήθεια του παλμογράφου. Προαπαιτούμενη γνώση

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

Κεφάλαιο 9: Προσδιορισμός της ροπής αδράνειας με τη μέθοδο των στροφικών ταλαντώσεων

Κεφάλαιο 9: Προσδιορισμός της ροπής αδράνειας με τη μέθοδο των στροφικών ταλαντώσεων Κεφάλαιο 9: Προσδιορισμός της ροπής αδράνειας με τη μέθοδο των στροφικών ταλαντώσεων Σύνοψη Πειραματικός προσδιορισμός της ροπής αδράνειας μέσω μέτρησης της περιόδου στροφικών ταλαντώσεων. Προαπαιτούμενη

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 9/0/06 ΘΕΜΑ Α Στις ερωτήσεις 7 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Mια μικρή σφαίρα προσκρούει

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Γκύζη 14-Αθήνα Τηλ :

Γκύζη 14-Αθήνα Τηλ : Γκύζη 14-Αθήνα Τηλ : 10.64.5.777 ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 10 ΙΟΥΝΙΟΥ 014 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

Κεφάλαιο 7: Ευθύγραμμη oμαλά επιταχυνόμενη κίνηση

Κεφάλαιο 7: Ευθύγραμμη oμαλά επιταχυνόμενη κίνηση Κεφάλαιο 7: Ευθύγραμμη oμαλά επιταχυνόμενη κίνηση Σύνοψη Πειραματικός προσδιορισμός της μέσης και στιγμιαίας ταχύτητας στην ευθύγραμμη ομαλά επιταχυνόμενη κίνηση και επαλήθευση της σχέσης που ισχύει θεωρητικά

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

mu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός

mu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Μαθηματικό εκκρεμές ονομάζεται μια σημειακή μάζα, η οποία είναι αναρτημένη σε νήμα. Το ίδιο το νήμα δεν έχει δική του μάζα και το οποίο εξάλλου δεν μπορεί να επιμηκυνθεί.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου] ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

Θέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: Ε.Κ.Φ.Ε Κέρκυρας -1-

Θέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: Ε.Κ.Φ.Ε Κέρκυρας -1- Θέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: 1) 2) 3) 4) Ε.Κ.Φ.Ε Κέρκυρας -1- ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ Α. Θεωρητική εισαγωγή Το απλό εκκρεμές είναι μια διάταξη που

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Ταλαντώσεις Θέμα Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Α1. Αν μεταβληθεί η ολική ενέργεια της ταλάντωσης

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ)

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ) α (cm/s ) ΚΕΦΑΛΑΙΟ 3 Κατηγορία Α ΤΑΛΑΝΤΩΣΕΙΣ (3 ΠΕΡΙΟΔΟΙ) 1. Να προσδιορίσετε ποια από τα πιο κάτω φυσικά μεγέθη μπορεί να έχουν την ίδια κατεύθυνση για ένα απλό αρμονικό ταλαντωτή: α. θέση και ταχύτητα,

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ (A) ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ (B) ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (Γ) ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 7 Ιανουαρίου, Ώρα:.. Οδηγίες: ) Το δοκίμιο αποτελείται από έξι (6) σελίδες και πέντε (5) θέματα. ) Να απαντήσετε τα ερωτήματα όλων των θεμάτων.

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου

Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Ζήτημα 1 ον 1.. Ένα σημειακό αντικείμενο εκτελεί απλή αρμονική ταλάντωση. Τις χρονικές στιγμές που το μέτρο της ταχύτητας του αντικειμένου είναι μέγιστο, το μέτρο

Διαβάστε περισσότερα

, g 10 m / s, / 2, / 2, Απάντηση

, g 10 m / s, / 2, / 2, Απάντηση Φυσική κατεύθυνσης Στη διάταξη του διπλανού σχήματος η ράβδος Σ 1 είναι ομογενής, έχει μάζα 1 =0,3kg, μήκος (ΑΓ) = l = 0,8 και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα κάθετο

Διαβάστε περισσότερα

A4. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί

A4. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς 1. Δύο σώματα ίδιας μάζας εκτελούν Α.Α.Τ. Στο διάγραμμα του σχήματος παριστάνεται η συνισταμένη δύναμη που ασκείται σε κάθε σώμα σε συνάρτηση

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ ΗΜΕΡΟΜΗΝΙΑ: 06/0/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα

Διαβάστε περισσότερα

Προκριματικός διαγωνισμός για την 13 η EUSO 2015 στην Φυσική Σάββατο 6/12/2014

Προκριματικός διαγωνισμός για την 13 η EUSO 2015 στην Φυσική Σάββατο 6/12/2014 ΕΚΦΕ ΑΙΓΑΛΕΩ ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ Προκριματικός διαγωνισμός για την 13 η EUSO 015 στην Φυσική Σάββατο 6/1/014 Ονοματεπώνυμα μελών ομάδας 1) ) 3) Σχολείο: ΜΕΤΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΗ

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 11/09/2016 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας µε απάντηση Φυσικής Γ Γυµνασίου (ταλαντώσεις)

Ερωτήσεις θεωρίας µε απάντηση Φυσικής Γ Γυµνασίου (ταλαντώσεις) Ερωτήσεις θεωρίας µε απάντηση Φυσικής Γ Γυµνασίου (ταλαντώσεις) Πότε µια κίνηση λέγεται περιοδική; Να γράψετε τρία παραδείγµατα. Μια κίνηση λέγεται περιοδική όταν επαναλαµβάνεται σε ίσα χρονικά διαστήµατα.

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα.

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα. Γενικές ασκήσεις Θέματα εξετάσεων από το 1ο κεφάλαιο ΚΕΦΑΛΑΙΟ 1 1 Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα α Να βρείτε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε το φυσικό εκκρεµές και θα µετρήσουµε την επιτάχυνση της βαρύτητας. Θα εξετάσουµε λοιπόν πειραµατικά τα εξής: Την ταλάντωση

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Γ Λυκείου 1 Μαρτίου 11 Θέμα 1 ο Α. Η οκτάκωπος είναι μια μακρόστενη λέμβος κωπηλασίας με μήκος 18 m. Στα κωπηλατοδρόμια, κάποιες φορές, κύματα τα οποία δεν έχουν μεγάλο πλάτος μπορεί να

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

ÁÎÉÁ ÅÊÐÁÉÄÅÕÔÉÊÏÓ ÏÌÉËÏÓ

ÁÎÉÁ ÅÊÐÁÉÄÅÕÔÉÊÏÓ ÏÌÉËÏÓ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΙΜΟΥ

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΙΜΟΥ ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΙΜΟΥ ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 015 ΦΥΣΙΚΗ 6 -Δεκεμβρίου - 014 Στογιάννος Χριστόφορος Φυσικός 1 6 Αυγούστου 014 Μετά από ένα μακρύ δεκαετές ταξίδι κυνηγώντας το στόχο

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό

Διαβάστε περισσότερα

Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο

Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο Το πρόβλημά μας είναι να προσδιορίσουμε την περίοδο των ταλαντώσεων του εκκρεμούς στο πρόβλημα που απεικονίζεται στο παραπάνω σχήμα υπό την προϋπόθεση ότι η δύναμη

Διαβάστε περισσότερα

Κεφάλαιο 13: Ο πυκνωτής σε κύκλωμα συνεχούς ρεύματος (Κύκλωμα RC συνεχούς)

Κεφάλαιο 13: Ο πυκνωτής σε κύκλωμα συνεχούς ρεύματος (Κύκλωμα RC συνεχούς) Κεφάλαιο 13: Ο πυκνωτής σε κύκλωμα συνεχούς ρεύματος (Κύκλωμα RC συνεχούς) Σύνοψη Καταγραφή της καμπύλης φόρτισης του πυκνωτή κυκλώματος, κύκλωμα RC σε σειρά, προσδιορισμός της χωρητικότητας του πυκνωτή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/09/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

F Στεφάνου Μ. 1 Φυσικός

F Στεφάνου Μ. 1 Φυσικός F 1 ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά

Διαβάστε περισσότερα

1 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ

1 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ 1 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ Αβαρές και μη εκτατό νήμα είναι δεμένο στο ένα άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k = 100 N/m, το άλλο άκρο του οποίου είναι στερεωμένο στο έδαφος. Το ελεύθερο άκρο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΕ ΑΡΜΟΝΙΚΟΥΣ ΤΑΛΑΝΤΩΤΕΣ

ΑΣΚΗΣΕΙΣ ΜΕ ΑΡΜΟΝΙΚΟΥΣ ΤΑΛΑΝΤΩΤΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΑΡΜΟΝΙΚΟΥΣ ΤΑΛΑΝΤΩΤΕΣ ΑΣΚΗΣΗ 1: Ένα αντικείμενο με μάζα m=500 g είναι προσαρμοσμένο μεταξύ δυο αβαρών ελατηρίων των οποίων τα φυσικά μήκη είναι L 0 και των οποίων οι σταερές είναι k 1 =10,

Διαβάστε περισσότερα

ΜΕΡΟΣ Α : Αποτελείται από 6 ερωτήσεις των 5 μονάδων η κάθε μια.

ΜΕΡΟΣ Α : Αποτελείται από 6 ερωτήσεις των 5 μονάδων η κάθε μια. ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ Ημερομηνία και ώρα εξέτασης: 6

Διαβάστε περισσότερα

ΑΠΛΟ ΑΡΜΟΝΙΚΟ ΣΑΛΑΝΣΩΣΗ - ΤΣΗΜΑ ΕΛΑΣΗΡΙΟΤ ΩΜΑΣΟ

ΑΠΛΟ ΑΡΜΟΝΙΚΟ ΣΑΛΑΝΣΩΣΗ - ΤΣΗΜΑ ΕΛΑΣΗΡΙΟΤ ΩΜΑΣΟ ΑΠΛΟ ΑΡΜΟΝΙΚΟ ΣΑΛΑΝΣΩΣΗ - ΤΣΗΜΑ ΕΛΑΣΗΡΙΟΤ ΩΜΑΣΟ α) Ένα σώμα που μπορεί να εκτελεί απλή αρμονική ταλάντωση ονομάζεται απλός αρμονικός ταλαντωτής. Το σύστημα ελατήριο-μάζα είναι απλός αρμονικός ταλαντωτής,

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ ΒΑΛΑΤΣΟΣ ΦΥΣΙΚΟΣ Msc

ΓΙΩΡΓΟΣ ΒΑΛΑΤΣΟΣ ΦΥΣΙΚΟΣ Msc ΤΑΛΑΝΤΩΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 1 Να συμπληρώσετε τα κενά στις επόμενες προτάσεις: α. Το χρονικό διάστημα μέσα στο οποίο πραγματοποιείται μία πλήρης ταλάντωση ονομάζεται.. και το πηλίκο του αριθμού των ταλαντώσεων

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 10 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Μαΐου, 01 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: 1) Είναι πολύ σημαντικό να

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

α.- β. γ. δ. Μονάδες 5

α.- β. γ. δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 13/11/2016 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Ένα σώμα εκτελεί φθίνουσα αρμονική ταλάντωση με δύναμη απόσβεσης

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ Ηµεροµηνία και

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓ. ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ Ημερομηνία: 31 /05 / 2011 Διάρκεια:

ΛΥΚΕΙΟ ΑΓ. ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ Ημερομηνία: 31 /05 / 2011 Διάρκεια: ΛΥΚΕΙΟ ΑΓ. ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ Ημερομηνία: 31 /05 / 2011 Διάρκεια: 10.30-13.00 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 10

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίου, 2013 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από πέντε (5) σελίδες και πέντε (5) θέματα. 2) Να απαντήσετε σε

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 10 η Ομαλή κυκλική κίνηση Δθ = ω = σταθερό Δt X = Rσυν (ωt) => X 2 +Υ 2 = R 2 Υ = Rημ(ωt) Οι προβολές της κίνησης στους άξονες των x και y είναι αρμονικές ταλαντώσεις

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

Α3. Ιδανικό κύκλωμα LC εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις συχνότητας f. (Μονάδες 5)

Α3. Ιδανικό κύκλωμα LC εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις συχνότητας f. (Μονάδες 5) ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ /04/04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΤΙΚΗΣ KAI ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) Θέμα Α Στις ερωτήσεις Α-Α4

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. Φροντιστήριο «ΕΠΙΛΟΓΗ» Ιατροπούλου 12 & σιδ. Σταθμού - Καλαμάτα τηλ.: & 96390

ΘΕΜΑ 1 ο. Φροντιστήριο «ΕΠΙΛΟΓΗ» Ιατροπούλου 12 & σιδ. Σταθμού - Καλαμάτα τηλ.: & 96390 ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 1 ΙΟΥΝΙΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Θέμα 1 ο ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Στα ερωτήματα 1 5 του πρώτου θέματος, να μεταφέρετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα της απάντησης που θεωρείτε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Αν η

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΛΑ Β) ΕΥΤΕΡΑ 3 ΜΑΙΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) Θέμα Α Στις ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

δ. Ο χρόνος ανάμεσα σε δυο διαδοχικούς μηδενισμούς του πλάτους είναι Τ =

δ. Ο χρόνος ανάμεσα σε δυο διαδοχικούς μηδενισμούς του πλάτους είναι Τ = ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 01/11/2015 ΘΕΜΑ 1 Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5ο: ΚΡΟΥΣΕΙΣ -ΦΑΙΝΟΜΕΝΟ DOPPLER ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 5ο: ΚΡΟΥΣΕΙΣ -ΦΑΙΝΟΜΕΝΟ DOPPLER ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Κυκλική Κίνηση - Οριζόντια βολή

Κυκλική Κίνηση - Οριζόντια βολή Μάθημα/Τάξη: Κεφάλαιο: Φυσική Προσανατολισμού Β Λυκείου Κυκλική Κίνηση - Οριζόντια βολή Ονοματεπώνυμο Μαθητή: Ημερομηνία: 24-10-2016 Επιδιωκόμενος Στόχος: 85/100 Θέμα 1 ο Στις ερωτήσεις Α.1 Α.4 επιλέξτε

Διαβάστε περισσότερα

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1: Α. Στις ερωτήσεις 1-3 να σημειώσετε το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα μάζας m

Διαβάστε περισσότερα

γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης

γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης η εξεταστική περίοδος από 4/0/5 έως 08//5 γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α A Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα