ΠΙΘΑΝΟΤΗΤΕΣ. Κλινική ή ερευνητική παρατήρηση Πόσο αληθινή είναι; Τι θα συζητηθεί σε αυτό το µάθηµα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΙΘΑΝΟΤΗΤΕΣ. Κλινική ή ερευνητική παρατήρηση Πόσο αληθινή είναι; Τι θα συζητηθεί σε αυτό το µάθηµα"

Transcript

1 ΠΙΘΑΝΟΤΗΤΕΣ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΗΝ ΚΛΙΝΙΚΗ ΙΑΤΡΙΚΗ Κλινική ή ερευνητική παρατήρηση Πόσο αληθινή είναι; VS. Chance Bias Τι θα συζητηθεί σε αυτό το µάθηµα Η θεωρία των πιθανοτήτων Σφάλµατα προκατάληψης (biases) Τι είναι η p-value Τι είναι ισχύς (power) µελέτης Πολλά από τα παραδείγµατα θα αφορούν κλινικές µελέτες επειδή σε αυτές είναι πιο εύκολο να καταδειχτεί η σηµασία των πιθανοτήτων και των σφαλµάτων που υπεισέρχονται στην στατιστική ανάλυση 1

2 ΙΑΚΥΜΑΝΣΗ (Variation) Κλινικές µετρήσεις του ίδιου φαινοµένου µπορεί να πάρουν διαφορετικές τιµές λόγω των καταστάσεων κάτω από τις οποίες πραγµατοποιούνται Ο καθορισµός της πιθανότητας η µέτρηση ή εκτίµηση µιας κατάστασης να µη είναι σωστή για τυχαίους λόγους είναι απαραίτητος. Το σφάλµα τυχαίο ή συστηµατικό που έχει υπεισέλθει σε κάθε µελέτη πρέπει να προσµετράτε και να λαµβάνεται υπόψη στην συζήτηση των αποτελεσµάτων µιας µελέτης Τυχαία διακύµανση βιολογικού φαινοµένου ΤΥΧΑΙΑ ΙΑΚΥΜΑΝΣΗ ΜΕΤΡΗΣΕΩΝ ΒΙΟΛΟΓΙΚΟΙ ΛΟΓΟΙ ΕΡΓΑΣΗΡΙΟ ΜΗΧΑΝΗΜΑ ΚΑΛΙΜΠΡΑΡΙΣΜΑ ΠΡΩΤΟΚΟΛΟ ΕΞΕΤΑΣΗΣ ΕΞΕΤΑΣΤΗΣ ΕΜΠΕΙΡΙΑ ΚΑΤΑΡΤΙΣΗ ΕΦΑΡΜΟΓΗ ΠΡΩΤΟΚΟΛΟΥ ΕΞΕΤΑΖΟΜΕΝΟΣ ΙΑΦΟΡΕΤΙΚΟΣ ΧΡΟΝΟΣ ΙΑΦΟΡΕΤΙΚΗ ΚΑΤΑΣΤΑΣΗ (within individuals) ΒΙΟΛΟΓΙΚΕΣ ΙΑΦΟΡΕΣ ΕΞΕΤΑΖΟΜΕΝΩΝ (among individuals) ΑΘΡΟΙΣΤΙΚΗ ΙΑΚΥΜΑΝΣΗ Κατάσταση Κατανοµή µετρήσεων Ένας ασθενής- Ένας εξεταστής ιαδοχικές µετρήσεις - Ίδιος χρόνος Α Ένας ασθενής Πολλοί εξεταστές Ίδιος χρόνος Β Ένας ασθενής - Πολλοί εξεταστές Πολλές φορές Γ Πολλοί ασθενείς - Πολλοί εξεταστές - Πολλές φορές ιαστολική αρτηριακή πίεση (mm( Hg) 2

3 Τυχαίο σφάλµα (Random error) Η διακύµανση τιµών της διαστολικής πίεσης που περιγράφηκε προηγουµένως λέγεται τυχαίο σφάλµα Το τυχαίο σφάλµα διέπει όλα τα βιολογικά φαινόµενα και συνεπώς όλες τις ερευνητικές και κλινικές µελέτες Λέγεται τυχαίο σφάλµα επειδή υπάρχει πιθανότητα να είναι προς την µια πλευρά ή την άλλη (στο προηγούµενο παράδειγµα η διαστολική πίεση κυµάνθηκε εξίσου πάνω και κάτω από τα 90 mm Hg) Η πιθανότητα λάθους των αποτελεσµάτων µιας µελέτης πηγάζει από το γεγονός ότι η µικρή οµάδα ασθενών που µελετάτε παρόλα τα µέτρα που µπορεί να ληφθούν µπορεί να είναι διαφορετική από τον γενικό πληθυσµό στην ολότητα του Σφάλµα τύπου Ι ή α (Type I ή (α) error) Σφάλµα τύπου ΙΙ ή β (Type ΙΙ ή (β) error) TRUE DIFFERENCE ΠΑΡΟΥΣΑ ΑΠΟΥΣΑ Συµπέρασµα Στατιστικής ανάλυσης Στατιστικώς σηµαντικό Στατιστικώς Type ΙΙ Μη σηµαντικό (β) error Type I (α) error Τι αντιπροσωπεύει η p value TRUE DIFFERENCE ΠΑΡΟΥΣΑ ΑΠΟΥΣΑ Συµπέρασµα Στατιστικής ανάλυσης Στατιστικώς σηµαντικό Στατιστικώς Type II Μη σηµαντικό (β) error Type I (α) error p value 3

4 Hypothesis testing vs. Estimation approaches Vs. Null hypothesis Estimation x(95%ci) Null Hypothesis Έστω ότι διεξάγεται κλινική µελέτη ή οποία διερευνά το ενδεχόµενο η δοκιµαζόµενη θεραπεία να είναι δραστική ή όχι. Μελετήθηκαν 2 οµάδες ασθενών Α και Β. Στην Α δόθηκε η νέα θεραπεία στην Β δόθηκε η συνήθης θεραπεία. Η µηδενική υπόθεση συνεπώς είναι: η νέα θεραπεία δεν απέδωσε σηµαντική βελτίωση σε σχέση µε την συνήθη.. Η στατιστική ανάλυση που έγινε ανάλυσε τα δεδοµένα κατά όµοιο διχοτόµο τρόπο δηλ. απαντά αν τα δεδοµένα διαφέρουν σηµαντικά ή όχι µεταξύ των οµάδων Α & Β Ποια η πηγή της αβεβαιότητας για την στατιστική ανάλυση Τυχαίο σφάλµα Random variation (διαφορετικές τιµές του ίδιου βιολογικού φαινοµένου όπως αναλύθηκαν σε προηγούµενες διαφάνειες) ιάφορα σφάλµατα προκατάληψης (bias) που συστηµατικά παρεµβαίνουν στον σχεδιασµό της µελέτης, στην επιλογή ασθενών στη µελέτη, στις µετρήσεις και τελικά στην ίδια την ανάλυση 4

5 Εκφράσεις της p value - ιχοτόµος ή ακριβής έκφραση; Είναι γενικώς αποδεκτό ότι p values µικρότερες του 0.05 αποτελούν ικανοποιητικό όριο να συµπεράνουµε ότι θεµελιώνεται στατιστική σηµαντικότητα Η έκφραση p<0.05 (στατιστικώς σηµαντικό) ή p>0.05 ( στατιστικώς µη σηµαντικό) αποτελεί ένα καθιερωµένο τρόπο έκφρασης αλλά σχετικώς ανακριβή Πολλοί προτιµούν να παραθέτουν τον ακριβή υπολογισµό του p π.χ p=0.003 και να αφήνουν τους αναγνώστες να εξάγουν τα συµπεράσµατα τους Κλινική σηµασία της p value Η στατιστικώς σηµαντική p value: εν σχετίζεται µε την πραγµατική κλινική σηµασία της µελέτης Η αριθµητική της αξία δεν είναι ανάλογη της κλινικής της σηµασίας, δηλ. πολύ µικρή p value π.χ. p= δεν σηµαίνει αντίστοιχα ότι η κλινική σηµασία είναι µεγάλη Αντίθετα λιγότερο εντυπωσιακή p value µπορεί να κρύβει πολύ σηµαντικά κλινικά συµπεράσµατα Τι παριστά το σφάλµα τύπου ΙΙ η β Type II (β) error TRUE DIFFERENCE Συµπέρασµα Στατιστικής ανάλυσης Στατιστικώς σηµαντικό Στατιστικώς Μη σηµαντικό ΠΑΡΟΥΣΑ w y Type ΙΙ (β) error ΑΠΟΥΣΑ Type I (α) error x z w=1-β Statistical Power (Ισχύς)( 0,80! 5

6 Statistical Power (ισχύς) µελέτης Η ισχύς της µελέτης παριστάνει: Την αριθµητική αξία το β-error (όσο µεγαλύτερο το β-error τόσο µικρότερη η ισχύς [power] της µελέτης) την στατιστικώς σηµαντική διαφορά όταν η διαφορά όντως υπάρχει Μια µελέτη έχει µεγάλη στατιστική ισχύ (power) όταν έχει πολύ υψηλή πιθανότητα να ανιχνεύσει διαφορά µεταξύ των δύο υπό µελέτη οµάδων, διαφορά που αληθινά υπάρχει Power analysis Στην έρευνα τα στοιχεία που συλλέγονται αναλύονται στατιστικώς µε µ σκοπό τον υπολογισµό της p-value,, η οποία µε την γνωστή µεθοδολογία (p<0.05/p>0.05) εξετάζει την αξιοπιστία της απόρριψης της µηδενικής υπόθεσης Η p-value η οποία υπολογίζεται µε την χρήση της κατάλληλης στατιστικής δοκιµασίας καθορίζεται από 3 παράγοντες: α)την διαφορά ( ) µεταξύ των συγκρινόµενων οµάδων, β)τον αριθµό των ασθενών (Ν) & γ) Το επίπεδο στατιστικής σηµαντικότητας που τίθεται (p)( Η ανάλυση και ο υπολογισµός της ισχύος (power) της µελέτης γίνεται πριν την µελέτη µε σκοπό να προβλεφθεί η δυνατότητα της µελέτης να οδηγηθεί σε στατιστικώς σηµαντικό εύρηµα. Η ανάλυση ισχύος (power( analysis) εξαρτάται από τους ίδιους παράγοντες όπως και η ανάλυση της στατιστικής σηµαντικότητας:, Ν & p Τι παριστά το σφάλµα τύπου ΙΙ η β Type II (β) error TRUE DIFFERENCE Συµπέρασµα Στατιστικής ανάλυσης Στατιστικώς σηµαντικό Στατιστικώς Μη σηµαντικό ΠΑΡΟΥΣΑ w y Type ΙΙ (β) error ΑΠΟΥΣΑ Type I (α) error x z w=1-β Statistical Power (Ισχύς)( 6

7 Statistical power: Κλειστό σύστηµα POWER (P)(1-β) Statistical significance (α or p) Sample size (N) Effect size ( )( Μέγεθος δείγµατος Πόσοι ασθενείς χρειάζονται σε κάθε οµάδα Α & Β για να ανιχνευθεί στατιστικώς σηµαντική διαφορά µεταξύ τους Απαιτούµενος αριθµός ασθενών στη µελέτη Παράγοντες που σχετίζονται Απαιτούµενη διαφορά µεταξύ των δύο οµάδων η οποία πρέπει να ανιχνευθεί (effect size) Alpha error (Type I error) Beta error (Type II error) Τα ιδιαίτερα χαρακτηριστικά των στοιχείων της µελέτης 7

8 είγµα (Ν) Παράγοντες που σχετίζονται Sample (N) varies Investigator Data 1/Difference, 1/Palpha, 1/Pbeta Difference: διαφορά µεταξύ των 2 οµάδων P alpha : p-value (Type I error) P beta : Βήta (Type II error) V ή 1/P V: ιακύµανση των παρατηρήσεων P: Αναλογία ασθενών µε το υπό µελέτη εύρηµα Στατιστική διαφορά µεταξύ των οµάδων Effect size Effect size αναφέρεται στo µέγεθος της επίδρασης που ασκεί η νέα θεραπεία (Α) έναντι της παλιάς (Β) σε κλινικές παραµέτρους έκβασης (outcomes) Η φύση της επίδρασης δεν είναι η ίδια από µελέτη σε µελέτη. Μπορεί να είναι διαφορά στο ποσοστό αποθεραπείας, διαφορά στον στατιστικό µέσο όρο µιας µέτρησης π.χ. διαστολική πίεση ή να αναφέρεται σαν σταθερά συσχέτισης µεταξύ δύο µεταβλητών Όποια και αν είναι όµως η φύση του effect size έχει την ίδια σηµασία για την power analysis. Η ισχύς συναρτήσει του effect size & του αριθµού των ασθενών της µελέτης 1.0 Power Group A=0.40, B=0.30 Group A=0.50, B=0.30 Group A=0.60, B=0.30 p=0.05, Tails= Αριθµός ασθενών ανά group 8

9 Η ισχύς συναρτήσει alpha-error & του αριθµού των ασθενών της µελέτης Power α) Alpha =0.01 β) Alpha =0.05 γ) Alpha = Tails=2 Effect size= Αριθµός ασθενών ανά group Statistical power analysis: When? POWER (P)(1-β) Statistical significance (α or p) Sample size (N) Effect size ( )( Statistical power analysis - Solution POWER (P)(1-β) 0.80 Statistical significance (α or p) Sample size (N) 0.05 Effect size ( )( 9

10 Statistical power analysis: Goal HALF FULL HALF EMPTY Statistical Power analysis Εφαρµογή ειδικών κανόνων επίλυσης Ειδικοί µαθηµατικοί τύποι, πίνακες, νορµογράµµατα, software Προϋποθέτει τεχνογνωσία και εµπειρία Θα πρέπει να ανατίθεται σε ειδικούς Απευθυνθείτε στο Τµήµα Επιδηµιολογίας για υπολογισµό Power, Sampling, statistical analysis Point Estimates Confidence Intervals Point estimate Το µέγεθος της επίδρασης του παράγοντα υπό έρευνα στις συγκρινόµενες οµάδες (effect size) π.χ επίδραση φαρµάκου σε κλινική µελέτη ή ο σχετικός κίνδυνος σε µελέτη cohort Αποτελεί το πιο σηµαντικό στοιχείο µιας µελέτης γιατί αντιπροσωπεύει την ουσία της µελέτης (µέγεθος επίδρασης) Αποτελεί το ουσιαστικότερο στοιχείο των περιγραφικών στοιχείων µιας έρευνας (Descriptive summary) Confidence Interval (CI) Η αληθής τιµή της επίδρασης του υπό µελέτη παράγοντα (effect size) είναι αδύνατον να υπολογιστεί στην ιατρική έρευνα Συνήθως η αληθής τιµή εµπεριέχεται σε όρια τα οποία υπολογίζονται στην µελέτη και τα ονοµάζουµε διαστήµατα εµπιστοσύνης (CI) ή όρια αξιοπιστίας 10

11 Confidence Intervals: Έννοια Σηµασία Confidence Interval (CI) Συνήθως παρατίθενται µαζί µε το επίπεδο στατιστικής σηµαντικότητας που επιθυµείται π.χ 95%CI (3-4.5). Σηµαίνει ότι µε πιθανότητα 95% η αληθής τιµή εµπεριέχεται στο διάστηµα µεταξύ Όσο πιο στενά είναι τα όρια εµπιστοσύνης τόσο πιο ακριβής είναι η µελέτη. Έχουν παρόµοια σηµασία µε την στατιστική σηµαντικότητα (p-value). Confidence intervals: Πλεονεκτήµατα Παράθεση ορίων τιµών επί κλινικών συνήθως δεδοµένων Έµφαση στο κλινικό αποτέλεσµα µιας µελέτης και όχι σε στατιστική σηµαντικότητα που µπορεί να είναι αλλά µπορεί και όχι κλινικώς ενδιαφέρον Ο αναγνώστης της µελέτης µπορεί να διαµορφώσει άποψη για την κλινική σηµασία των ευρηµάτων Ευρεία όρια αξιοπιστίας ιδίως αν αυτά εµπεριέχουν την τιµή που αντιπροσωπεύει µηδενική επίδραση σηµαίνει ότι δυνατόν να ευρεθεί στατιστική σηµαντικότητα αν αυξηθεί η ισχύς της µελέτης (π.χ. αυξάνοντας τον αριθµό των ασθενών) Το πρόβληµα των πολλαπλών συγκρίσεων (multiple comparisons) Το στατιστικό συµπέρασµα µιας µελέτης µπορεί να είναι λανθασµένα σηµαντικό όταν τίθενται πολλές ερευνητικές ερωτήσεις και επιχειρούνται πολλές στατιστικές συγκρίσεις στο ίδιο set δεδοµένων. Π.χ. Υποθέτουµε ότι δοκιµάζετε ένα νέο φάρµακο σε οµάδα ασθενών µε ισχαιµία. Υποθέτουµε ότι οι ερευνητές επιχειρούν πολλές συγκρίσεις χωρίζοντας τους ασθενείς σε οµάδες βαρύτητας ενώ εξετάζουν την επίδραση του φαρµάκου σε διάφορες παραµέτρους έκβασης π.χ θάνατοι, εµφράγµατα, στηθάγχη, νοσηλείες, ποιότητα ζωής κ.λ.π. Ας υποτεθεί επίσης ότι το φάρµακο δεν έχει πραγµατική θεραπευτική δράση. Κάνοντας πολλές συγκρίσεις και µε δεδοµένο ότι υπάρχει πιθανότητα 5% να ευρεθεί σηµαντικότητα τυχαίως και όχι σαν συνέπεια πραγµατικής διαφοράς, υφίσταται κίνδυνος 1 στις 20 στατιστικές αναλύσεις να δώσει σηµαντικά στατιστικό αποτέλεσµα για γ τυχαίους και όχι πραγµατικούς λόγους. 11

12 Το πρόβληµα των πολλαπλών συγκρίσεων (multiple comparisons) Πολλαπλές ερευνητικές ερωτήσεις και επακόλουθες στατιστικές συγκρίσεις στο ίδιο set δεδοµένων µπορεί να οδηγήσει σε κάποια από αυτές σε ψευδώς στατιστικό σηµαντικό συµπέρασµα εν πρέπει παρόλα αυτά µια ευρεθείσα σηµαντική διαφορά έστω και αν είναι προϊόν multiple comparisons να απορρίπτεται αλλά να εξετάζεται µε προσοχή Μπορεί να πυροδοτήσει νέα µελέτη προς επιβεβαίωση γιατί µπορεί να υποκρύπτει σηµαντική κλινική παρατήρηση Παράδειγµα: Confidence Intervals, Power analysis Σύντοµη παρουσίαση της µελέτης 12

13 Power analysis των δύο πιο σηµαντικών παραµέτρων έκβασης της µελέτης Α Β Power analysis της µελέτης στην φάση σχεδιασµού της εδοµένα Outcome: Ratio of complete pleural drainage Alpha=0.05 (p-value=0.05) Power = 90% Effect size (outcome difference between groups: >50% Ζητούµενο Πόσα άτοµα πρέπει να περιλαµβάνει η κάθε οµάδα για να ικανοποιηθούν τα παραπάνω δεδοµένα Παράδειγµα διαστηµάτων εµπιστοσύνης 13

14 Power analysis completed study (Tzanakis et al ) Power analysis: Υπολογισµός της ισχύος της µελέτης για τις παραµέτρους παρακολούθησης Cough: 0.84 (84%) Sputum production: 0.81 (81%) Wheezing: 0.80 (80%) Dyspnea: 1.0 (100%) Haemoptysis: (60%) Power analysis completed study (Tzanakis et al ) Περιγράφοντας συσχετίσεις 14

15 Πως συσχετίζονται δύο µεταβλητές ΒΑΡΟΣ ΟΓΚΟΣ ΠΛΑΣΜΑΤΟΣ 58 2, , ,37 63,5 2, ,62 70,5 3, , ,12 ΟΓΚΟΣ ΠΛΑΣΜΑΤΟΣ 3,6 3,4 3,2 3 2,8 2,6 2,4 2, ΒΑΡΟΣ Σ( x-xm)( y- ym) r = 2 2 [ Σ( x-xm) Σ(y- ym) ] Οι µορφές συσχετίσεων είκτης συσχέτισης (r) υνατές τιµές του r r= 0 έως +1 r= 0 έως 1 r=0 15

Methods of analysis. Assumptions. Normality. Variables. Normality. Groups. Summary Guide. Quantitative Qualitative. Normal Non-normal distributed

Methods of analysis. Assumptions. Normality. Variables. Normality. Groups. Summary Guide. Quantitative Qualitative. Normal Non-normal distributed Methods of analysis Summary Guide Assumptions Variables Quantitative Qualitative Normality Normal Non-normal distributed Groups Number (1, 2, >2) Pair or independent Normality Cases Cases >50

Διαβάστε περισσότερα

Νίκος Τζανάκης Ιατρική Σχολή Πανεπιστήμιο Κρήτης Web Site: www.pepagnh.gr/users/epidemiology

Νίκος Τζανάκης Ιατρική Σχολή Πανεπιστήμιο Κρήτης Web Site: www.pepagnh.gr/users/epidemiology Νίκος Τζανάκης Ιατρική Σχολή Πανεπιστήμιο Κρήτης Web Site: www.pepagnh.gr/users/epidemiology Μεταβλητές (Variables) Μεταβλητή: Κάθε ποιοτικό ή ποσοτικό χαρακτηριστικό που μπορεί να μετρηθεί Οι μεταβλητές

Διαβάστε περισσότερα

Σκοπός του μαθήματος. Έλεγχος μηδενικής υπόθεσης OR-RR. Έλεγχος μηδενικής υπόθεσης. Σφάλαμα τύπου Ι -Σφάλμα τύπου ΙΙ 20/4/2013

Σκοπός του μαθήματος. Έλεγχος μηδενικής υπόθεσης OR-RR. Έλεγχος μηδενικής υπόθεσης. Σφάλαμα τύπου Ι -Σφάλμα τύπου ΙΙ 20/4/2013 Σκοπός του μαθήματος Έλεγχος μηδενικής υπόθεσης OR-RR Μαρία Γκριζιώτη Μsc Ιατρικής Ερευνητικής Μεθοδολογίας Μηδενική υπόθεση p value 95% Διαστήματα Εμπιστοσύνης Odds Ratio Relative Risk Έλεγχος μηδενικής

Διαβάστε περισσότερα

Τι θα µάθουµε σήµερα. Έκφραση κλινικών παρατηρήσεων

Τι θα µάθουµε σήµερα. Έκφραση κλινικών παρατηρήσεων Τι θα µάθουµε σήµερα Με ποιους τρόπους ξεχωρίζουµε το φυσιολογικό από το παθολογικό Βιολογικές παρατηρήσεις Πως µετρώνται Πως εκφράζονται Πως κατανέµονται σε ένα τυχαίο φυσιολογικό πληθυσµό Πως επιλέγονται

Διαβάστε περισσότερα

Μπεττίνα Χάιδιτς. Επίκουρη Καθηγήτρια Υγιεινής Ιατρικής Στατιστικής e mail:

Μπεττίνα Χάιδιτς. Επίκουρη Καθηγήτρια Υγιεινής Ιατρικής Στατιστικής e mail: Μπεττίνα Χάιδιτς Επίκουρη Καθηγήτρια Υγιεινής Ιατρικής Στατιστικής e mail: haidich@med.auth.gr Υπολογισμός μεγέθους δείγματος Πιο πολλές επιδημιολογικές μελέτες έχουν ως στόχο να εκτιμηθεί κάποιο χαρακτηριστικό

Διαβάστε περισσότερα

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια

Διαβάστε περισσότερα

Χαράλαµπος Κ. Μαµουλάκης

Χαράλαµπος Κ. Μαµουλάκης Τα λάθη στο δείγµα και τη στατιστική ανάλυση Χαράλαµπος Κ. Μαµουλάκης Επικουρος Καθηγητής Ουρολογίας Ουρολογική Κλινική Πανεπιστηµιακό Γενικό Νοσοκοµείο Ηρακλείου Πανεπιστήµιο Κρήτης, Τµήµα Ιατρικής Σύγκρουση

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2

ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2 1 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2 Β. ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΕΥΝΑ 1. Γενικά Έννοιες.. 2 2. Πρακτικός Οδηγός Ανάλυσης εδοµένων.. 4 α. Οδηγός Λύσεων στο πλαίσιο

Διαβάστε περισσότερα

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης Κεφάλαιο 13 Εισαγωγή στην Ανάλυση ιακύµανσης 1 Η Ανάλυση ιακύµανσης Από τα πιο συχνά χρησιµοποιούµενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές µέσων όρων, όπως και

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

Απλή Ευθύγραµµη Συµµεταβολή

Απλή Ευθύγραµµη Συµµεταβολή Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Ερευνητική υπόθεση. Εισαγωγή ΜΑΘΗΜΑ 11Ο 1. ΜΑΘΗΜΑ Θεραπεία Μέρος 2 ο. Κλινικές µελέτες. Σύνδεση µε το προηγούµενο µάθηµα

Ερευνητική υπόθεση. Εισαγωγή ΜΑΘΗΜΑ 11Ο 1. ΜΑΘΗΜΑ Θεραπεία Μέρος 2 ο. Κλινικές µελέτες. Σύνδεση µε το προηγούµενο µάθηµα ΜΑΘΗΜΑ Θεραπεία Μέρος 2 ο Κλινικές Μελέτες 1 Εισαγωγή Σύνδεση µε το προηγούµενο µάθηµα Ανάγκη ελέγχου και επιβεβαίωσης των προτεινόµενων θεραπειών Είδη µελετών των θεραπευτικών µεθόδων Κλινικές µελέτες

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Δεδομένων

Εισαγωγή στην Ανάλυση Δεδομένων ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός

Διαβάστε περισσότερα

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ ΧΡΗΣΙΜΕΣ ΠΛΗΡΟΦΟΡΙΕΣ ΙΑΡΘΡΩΣΗ ΜΑΘΗΜΑΤΟΣ

ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ ΧΡΗΣΙΜΕΣ ΠΛΗΡΟΦΟΡΙΕΣ ΙΑΡΘΡΩΣΗ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ Epidemiology and Public Health Dept of Epidemiology and Public Health N. TZANAKIS M.D. Consultant in Respiratory Medicine Assistant Professor in Epidemiology P.O. Box 1352, 71110

Διαβάστε περισσότερα

ΜΕΡΟΣ Α Κάθε µια από τις παρακάτω φράσεις (1α, 1β, 1γ, 2α κτλ) µπορεί να είναι σωστή ή λανθασµένη. Ποιες είναι σωστές και ποιες όχι;

ΜΕΡΟΣ Α Κάθε µια από τις παρακάτω φράσεις (1α, 1β, 1γ, 2α κτλ) µπορεί να είναι σωστή ή λανθασµένη. Ποιες είναι σωστές και ποιες όχι; 2. ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΠΑΓΩΓΗ. ΣΚΟΠΟΣ στο τέλος της ενότητας είναι να γνωρίζετε - Τι είναι η «δειγµατοληπτική κατανοµή» π.χ. της µέσης τιµής - τι είναι και σε τι χρησιµεύει το «τυπικό σφάλµα της µέσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ. ΜΑΘΗΜΑ 6 ο. Epidemiology and Public Health Dept of Epidemiology and Public Health

ΕΙΣΑΓΩΓΗ ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ. ΜΑΘΗΜΑ 6 ο. Epidemiology and Public Health Dept of Epidemiology and Public Health ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ Epidemiology and Public Health Dept of Epidemiology and Public Health N. TZANAKIS M.D. Consultant in Respiratory Medicine Assistant Professor in Epidemiology P.O. Box 1352, 71110

Διαβάστε περισσότερα

Δειγματοληπτικές κατανομές

Δειγματοληπτικές κατανομές Δειγματοληπτικές κατανομές Κατανομές που χρησιμοποιούνται για τον έλεγχο υποθέσεων στα δείγματα Κανονική κατανομή (z-κατανομή) t-κατανομή Χ κατανομή F-κατανομή Ζητάμε να προσδιορίσουμε τις παραμέτρους

Διαβάστε περισσότερα

Ιατρικά Μαθηματικά & Βιοστατιστική

Ιατρικά Μαθηματικά & Βιοστατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιατρικά Μαθηματικά & Βιοστατιστική Στατιστικοί έλεγχοι για συνεχή και κατηγορικά δεδομένα Διδάσκοντες: Ευάγγελος Ευαγγέλου, Kωνσταντίνος Τσιλίδης, Ιωάννης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Κλινικές Μελέτες. Εισαγωγή. Εκτίµηση έκβασης. Κλινικές Μελέτες - Μέρος 3ο 1. Μέρος 3ο. Intervention

Κλινικές Μελέτες. Εισαγωγή. Εκτίµηση έκβασης. Κλινικές Μελέτες - Μέρος 3ο 1. Μέρος 3ο. Intervention Κλινικές Μελέτες Μέρος 3ο 1 Εισαγωγή Ερευνητική υπόθεση Επιλογή ασθενών Τυχαιοποίηση Biases πριν και µετά την τυχαιοποίηση Intervention Open study Blind study Μέτρηση έκβασης Συµπεράσµατα 2 Εκτίµηση έκβασης

Διαβάστε περισσότερα

Μελέτες ασθενών οµάδας ελέγχου

Μελέτες ασθενών οµάδας ελέγχου Μελέτες ασθενών οµάδας ελέγχου Μελέτες ασθενών οµάδας ελέγχου ως µέθοδος αναπτύχθηκε στις αρχές του 50 διερεύνηση παραγόντων κινδύνου σε ασθένειες µε µακρά λανθάνουσα περίοδο, όπου οι µελέτες κοόρτης δεν

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

Ανάλυση ποσοτικών δεδομένων. ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος

Ανάλυση ποσοτικών δεδομένων. ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος Ανάλυση ποσοτικών δεδομένων ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος Εισαγωγή στη στατιστική Στατιστική: σύνολο αρχών και μεθοδολογιών που χρησιμοποιούνται για:

Διαβάστε περισσότερα

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Στατιστικοί Έλεγχοι Υποθέσεων Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Τι θέλουμε να συγκρίνουμε; Δύο δείγματα Μέση αρτηριακή πίεση σε δύο ομάδες Πιθανότητα θανάτου με δύο διαφορετικά

Διαβάστε περισσότερα

Κλινική Επιδηµιολογία

Κλινική Επιδηµιολογία Κλινική Επιδηµιολογία Ρυθµιστικοί παράγοντες Συγχυτικοί παράγοντες Ενδιάµεσοι παράγοντες Πρέπει να πιστέψουµε τις µετρήσεις µας; Κάπνισµα Καρκίνος Πνεύµονα OR = 9.1 Πραγµατική σχέση αιτιολογική µη-αιτιολογική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΠΙΔΗΜΙΟΛΟΓΙΑΣ

ΜΑΘΗΜΑ ΕΠΙΔΗΜΙΟΛΟΓΙΑΣ ΜΑΘΗΜΑ ΕΠΙΔΗΜΙΟΛΟΓΙΑΣ Epidemiology and Public Health Dept of Epidemiology and Public Health N. TZANAKIS M.D. Consultant in Respiratory Medicine Assistant Professor in Epidemiology P.O. Box 1352, 71110

Διαβάστε περισσότερα

Εισαγωγή στη μεθοδολογία της Εκπαιδευτικής Έρευνας

Εισαγωγή στη μεθοδολογία της Εκπαιδευτικής Έρευνας Εισαγωγή στη μεθοδολογία της Εκπαιδευτικής Έρευνας Νίκος Καλογερόπουλος 2014 Τι είναι έρευνα στην στατιστική Αρχική παρατήρηση: κάτι που πρέπει να διευκρινιστεί Κάθε χρόνο υπόσχομαι στον εαυτό μου ότι

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Ένα Ερευνητικό Παράδειγμα Σκοπός της έρευνας ήταν να διαπιστωθεί εάν ο τρόπος αντίδρασης μιας γυναίκας απέναντι σε φαινόμενα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ

ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ Epidemiology and Public Health Dept of Epidemiology and Public Health N. TZANAKIS M.D. Consultant in Respiratory Medicine Assistant Professor in Epidemiology P.O. Box 1352, 71110

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Παιδαγωγικά II. Εισαγωγή στη μεθοδολογία της Εκπαιδευτικής Έρευνας Ευαγγελία Παυλάτου, Αν. Καθηγήτρια ΕΜΠ Νίκος Καλογερόπουλος, ΕΔΙΠ ΕΜΠ

Παιδαγωγικά II. Εισαγωγή στη μεθοδολογία της Εκπαιδευτικής Έρευνας Ευαγγελία Παυλάτου, Αν. Καθηγήτρια ΕΜΠ Νίκος Καλογερόπουλος, ΕΔΙΠ ΕΜΠ Παιδαγωγικά II Εισαγωγή στη μεθοδολογία της Εκπαιδευτικής Έρευνας Ευαγγελία Παυλάτου, Αν. Καθηγήτρια ΕΜΠ Νίκος Καλογερόπουλος, ΕΔΙΠ ΕΜΠ Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,

Διαβάστε περισσότερα

Τυχαία vs. συστηµατικά σφάλµατα (random vs. systematic errors)

Τυχαία vs. συστηµατικά σφάλµατα (random vs. systematic errors) Τυχαία vs. συστηµατικά σφάλµατα (random vs. systematic errors) Εσωτερική & εξωτερική εγκυρότητα Εσωτερική εγκυρότητα Σχεδιασµός της µελέτης Εξωτερική εγκυρότητα (δυνατότητα γενίκευσης) Πολύ επιλεγµένος

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17 ΚΕΦΑΛΑΙΟ 17 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Στο κεφάλαιο αυτό θα αναφερθούμε σε ένα άλλο πρόβλημα της Στατιστικής που έχει κυρίως (αλλά όχι μόνο) σχέση με τις παραμέτρους ενός πληθυσμού (τις παραμέτρους της κατανομής

Διαβάστε περισσότερα

Αιτιότητα και τυχαίο σφάλμα στις επιδημιολογικές μελέτες

Αιτιότητα και τυχαίο σφάλμα στις επιδημιολογικές μελέτες Αιτιότητα και τυχαίο σφάλμα στις επιδημιολογικές μελέτες Αιτιότητα Πρόγραμμα εκπαίδευσης στην επιδημιολογική επιτήρηση και διερεύνηση επιδημιών ΕΣΔΥ ΚΕΕΛΠΝΟ, 2007 "Ευτυχισμένος είναι αυτός που κατόρθωσε

Διαβάστε περισσότερα

STADYING CASES. Case Reports. Case Reports. Case reports Case-series studies Case-control studies. Περιγραφή ενδιαφέροντος περιστατικού

STADYING CASES. Case Reports. Case Reports. Case reports Case-series studies Case-control studies. Περιγραφή ενδιαφέροντος περιστατικού STADYING CASES Case reports Case-series studies Case-control studies Case Reports Περιγραφή ενδιαφέροντος περιστατικού Case Reports Ηλεπτοµερής παρουσίαση µιας περίπτωσης νοσήµατος η µικρής οµάδας οµοειδών

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ

ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ Epidemiology and Public Health Dept of Epidemiology and Public Health N. TZANAKIS M.D. Consultant in Respiratory Medicine Assistant Professor in Epidemiology P.O. Box 1352, 7111 Heraklion

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Εισαγωγή Στα προβλήµατα που έχουµε ασχοληθεί µέχρι τώρα, υποστηρίζουµε ότι έχουµε ένα δείγµα X = (X 1, X 2,...,X n ) F(,θ). π.χ. X 1, X 2,...,X n τ.δ. N(µ,σ 2 ),

Διαβάστε περισσότερα

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

Αντικείμενο των επιδημιολογικών μελετών

Αντικείμενο των επιδημιολογικών μελετών Αντικείμενο των επιδημιολογικών μελετών Εάν το αντικείμενο μιας μελέτης είναι ο υπολογισμός του λόγου των επιπτώσεων-πυκνοτήτων του καρκίνου του πνεύμονα στους καπνιστές σε σχέση με τους μη καπνιστές,

Διαβάστε περισσότερα

StatXact ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. StatXact. ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 - συνέχεια ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ StatXact

StatXact ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. StatXact. ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 - συνέχεια ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ StatXact ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο StatXact ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 - συνέχεια ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 09-10 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Έλεγχοι υποθέσεων Βόλος, 2016-2017

Διαβάστε περισσότερα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα Κεφάλαιο 7 Έλεγχος Υποθέσεων 1 Ένα παράδειγµα Ένας ερευνητής θέλησε να διαπιστώσει κατά πόσο η από απόσταση εκπαίδευση είναι καλύτερη από τη δια ζώσης εκπαίδευση. Για το σκοπό αυτό, επέλεξε δύο οµάδες

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει

Διαβάστε περισσότερα

Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων

Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων Επαγωγική Στατιστική Ο έλεγχος υποθέσεων είναι η δεύτερη μορφή της επαγωγικής στατιστικής. Έχει επίσης μεγαλύτερη δυνατότητα εφαρμογής. Για να κατανοήσουμε την

Διαβάστε περισσότερα

8. Ελεγχος Υποθεσεων. Μαθηματικά και Στατιστικη στην Βιολογια ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ (1 ο ) Τμημα Βιολογιας Αριστοτελειο Πανεπιστημιο Θεσσαλονικης

8. Ελεγχος Υποθεσεων. Μαθηματικά και Στατιστικη στην Βιολογια ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ (1 ο ) Τμημα Βιολογιας Αριστοτελειο Πανεπιστημιο Θεσσαλονικης Μαθηματικά και Στατιστικη στην Βιολογια ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ (1 ο ) Τμημα Βιολογιας Αριστοτελειο Πανεπιστημιο Θεσσαλονικης Mathematics and Statistics in Biology WINTER SEMESTER (1 st ) School of Biology Aristotle

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΙΕΘΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ IΙ ΕΙΣΗΓΗΤΡΙΑ: ΣΑΒΒΑΣ ΠΑΠΑ ΟΠΟΥΛΟΣ ΠΑΛΑΙΑ ΘΕΜΑΤΑ ********************************************************************

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

1991 US Social Survey.sav

1991 US Social Survey.sav Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος Το σύμβολο μ απεικονίζει 92.4% το μέσο όρο του πληθυσμού 121 92.4% το μέσο όρο του δείγματος 8 6.1% το μέσο όρο της κατανομής t 0 0% το μέσο όρο της κανονικής κατανομής 2 1.5% Το σύμβολο X απεικονίζει

Διαβάστε περισσότερα

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος

Διαβάστε περισσότερα

Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή. μεγέθους n από έναν πληθυσμό με μέση τιμή μ

Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή. μεγέθους n από έναν πληθυσμό με μέση τιμή μ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή Έστω ένα τυχαίο δείγμα X,, 1 X n μεγέθους n από έναν πληθυσμό με μέση τιμή μ 2 και διακύμανση σ, άγνωστη.

Διαβάστε περισσότερα

4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ

4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ 4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑ (STRATIFIED RANDOM SAMPLING) Στην τυχαία δειγµατοληψία κατά στρώµατα ο πληθυσµός των Ν µονάδων (πρόκειται για τον στατιστικό πληθυσµό και τις στατιστικές µονάδες)

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 6 : Έλεγχος Υποθέσεων Ι. Αντωνίου, Χ. Μπράτσας Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ Βασικές µορφές Ερωτήσεων - απαντήσεων Ανοιχτές Κλειστές Κλίµακας ΕΛΕΥΘΕΡΙΟΣ ΑΓΓΕΛΗΣ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΘ 2 Ανοιχτές ερωτήσεις Ανοιχτές

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΞΙΟΠΙΣΤΙΑΣ ΣΥΣΤΗΜΑΤΩΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΞΙΟΠΙΣΤΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΞΙΟΠΙΣΤΙΑΣ ΣΥΣΤΗΜΑΤΩΝ Συστήµατα µε στοιχεία συνδεδεµένα σε σειρά Με χρήση των αποτελεσµάτων από τα διαγράµµατα Markov, είναι δυνατόν να δηµιουργούνται ισοδύναµα διαγράµµατα

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Κλινική Ε ιδηµιολογία. Τυχαίο Σφάλμα Συστηματικό Σφάλμα

Κλινική Ε ιδηµιολογία. Τυχαίο Σφάλμα Συστηματικό Σφάλμα Κλινική Ε ιδηµιολογία Τυχαίο Σφάλμα Συστηματικό Σφάλμα ερευνητικό ερώτηµα : Η θνησιµότητα από καρδιαγγειακά επηρεάζεται από την κοινωνική τάξη; ερευνητικό ερώτηµα : η θνησιµότητα από καρδιαγγειακά (εξαρτηµένη

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο δειγμάτων, που διαχωρίζονται βάσει δύο ανεξάρτητων παραγόντων (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς περισσότερους

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Μέρος Α. ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων

ΠΕΡΙΕΧΟΜΕΝΑ. Μέρος Α. ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... vii Μέρος Α ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων Πρόλογος Α Μέρους... 3 Αρχικές πληροφορίες και

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Πολλαπλές Συγκρίσεις Μέσων Γενικά Η ANOVA αποκαλύπτει εάν υπάρχουν διαφορές μεταξύ των επεμβάσεων, αλλά ποιες ακριβώς είναι αυτές? Κατηγορίες συγκρίσεων A posteriori συγκρίσεις (αφού δούμε τα δεδομένα)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΚΛΙΝΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ VS ΣΤΑΤΙΣΤΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ Ι 1. Η στατιστική σημαντικότητα αντανακλά την επίδραση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ελεγκτική

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ελεγκτική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ελεγκτική Ενότητα # 12: Εισαγωγή στην επιλογή μονάδων και τη δειγματοληψία Νικόλαος Συκιανάκης Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation. Σταμάτης Πουλακιδάκος

Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation. Σταμάτης Πουλακιδάκος Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation Σταμάτης Πουλακιδάκος Μερικά εισαγωγικά λόγια Οι έλεγχοι των ερευνητικών υποθέσεων πραγματοποιούνται με διάφορους στατιστικούς ελέγχους,

Διαβάστε περισσότερα

Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA)

Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA) Κεφάλαιο 7 Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA) 7.1 Γενικότητες Η ANOVA περιλαμβάνει μία ομάδα στατιστικών μεθόδων κατάλληλων για την ανάλυση δεδομένων που προκύπτουν από πειραματικούς

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΓΕΩΧΗΜΙΚΩΝ ΜΕΤΡΗΣΕΩΝ

ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΓΕΩΧΗΜΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΓΕΩΧΗΜΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΠΕΡΙΕΧΟΜΕΝΑ 1. Ορολογία αβεβαιότητας 2. Εκτίµηση επαναληψιµότητας 3. Εκτίµηση αναλυτικής ακρίβειας 4. Περιληπτικά στατιστικά µετρήσεων ΟΡΟΛΟΓΙΑ ΑΒΕΒΑΙΟΤΗΤΑΣ Αβεβαιότητα

Διαβάστε περισσότερα

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)

Διαβάστε περισσότερα

Πίνακας 1: Ενδεικτικές Κατηγορίες είκτη Ικανοποίησης

Πίνακας 1: Ενδεικτικές Κατηγορίες είκτη Ικανοποίησης ΜΕΤΡΗΣΗ ΤΗΣ ΙΚΑΝΟΠΟΙΗΣΗΣ ΚΑΙ ΕΜΠΙΣΤΟΣΥΝΗΣ ΤΩΝ ΕΛΛΗΝΩΝ ΑΣΘΕΝΩΝ ΣΤΟ ΦΑΡΜΑΚΟ ΜΕ ΒΑΣΗ ΤΟΝ ΕΥΡΩΠΑΪΚΟ ΕΙΚΤΗ ΙΚΑΝΟΠΟΙΗΣΗΣ EPSI RATING (Extended Performance Satisfaction Index) EPSI HELLAS Επιστηµονικός Υπεύθυνος:

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

Πρόληψη. Τι θα διαπραγµατευτεί το. Ορισµοί στην πρόληψη. Ιατρικές δραστηριότητες πρόληψης. Κατανόηση των βασικών αρχών της πρόληψης π.χ.

Πρόληψη. Τι θα διαπραγµατευτεί το. Ορισµοί στην πρόληψη. Ιατρικές δραστηριότητες πρόληψης. Κατανόηση των βασικών αρχών της πρόληψης π.χ. Πρόληψη Να ζείτε συνετά, σε χίλιους ανθρώπους µόνο ένας θα πεθάνει φυσικά, οι υπόλοιποι θα υποκύψουν λόγω του παράλογου τρόπου ζωής τους Μαµµωνίδης 1135-1204 µ.χ. Τι θα διαπραγµατευτεί το µάθηµα Ιατρικές

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η

Διαβάστε περισσότερα

γένεση των µετακινήσεων

γένεση των µετακινήσεων 3 γένεση των µετακινήσεων εισαγωγή το υπό διερεύνηση θέµα: πόσες µετακινήσεις ξεκινούν από κάθε ζώνη? πόσες µετακινήσεις κάνει ένας µετακινούµενος κατά την διάρκεια µιας µέσης εβδοµάδας? Ανάλυση κατά ζώνη

Διαβάστε περισσότερα

Δειγματοληψία στην εκπαιδευτική έρευνα. Είδη δειγματοληψίας

Δειγματοληψία στην εκπαιδευτική έρευνα. Είδη δειγματοληψίας Δειγματοληψία στην εκπαιδευτική έρευνα Είδη δειγματοληψίας Γνωρίζουμε ότι: Με τη στατιστική τα δεδομένα γίνονται πληροφορίες Στατιστική Δεδομένα Πληροφορία Αλλά από πού προέρχονται τα δεδομένα; Πώς τα

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα