ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο."

Transcript

1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα άλλο (του ίδιου ή άλλου διανυσματικού χώρου). Τ x>= y> (1) (Στην (1) ο τελεστής Τ δρα πάνω στο διάνυσμα x> και το στέλνει (απεικονίζει, μετασχηματίζει) στο διάνυσμα y>) Παράδειγμα πολύ απλού τελεστή είναι ο Τ= ( μιγαδικός). Η δράση του πάνω σε ένα διάνυσμα αντιστοιχεί σε πολλαπλασιασμό του διανύσματος με τον αριθμό. Άλλο παράδειγμα τελεστή είναι ο τελεστής στροφής, η δράση του οποίου πάνω σε ένα διάνυσμα προκαλεί τη στροφή του διανύσματος κατά ορισμένη γωνία. (Γενικά, οποιοσδήποτε μετασχηματισμός διανυσμάτων π.χ. στροφή, επιμήκυνση, μεταφορά - μπορεί να θεωρηθεί αποτέλεσμα της δράσης κάποιου τελεστή.) Άλλο παράδειγμα τελεστή (ο οποίος δρα σε διανυσματικό χώρο συναρτήσεων) είναι η παράγωγος d/dx. Η δράση του πάνω σε συνάρτηση είναι η παραγώγισή της. Ένας τελεστής Τ λέγεται γραμμικός αν για οποιαδήποτε διανύσματα x>, y> του διανυσματικού χώρου στον οποίο δρα ο τελεστής, και για κάθε αριθμούς λ, μ (πραγματικούς ή μιγαδικούς) ισχύει Τ(λ x>+μ y>)= λ(t x>)+μ(t y>) Είναι η παράγωγος γραμμικός τελεστής; Αν Τ 1, Τ 2 γραμμικοί τελεστές, τότε ισχύουν οι ακόλουθες ιδιότητες: (Τ 1 +T 2 ) x>=t 1 x>+t 2 x> (λτ 1 ) x>=λ(t 1 x>) (Τ 1 T 2 ) x>=t 1 (T 2 x>) Σε κάθε διανυσματικό χώρο μπορούμε να ορίσουμε τον μηδενικό τελεστή Τ=0, ώστε 0 x>=0 για κάθε x>, και τον μοναδιαίο τελεστή Τ=I, ώστε Ι x>= x> για κάθε x>. Επίσης, για κάποιους τελεστές Τ υπάρχει τελεστής Τ -1, ώστε (ΤΤ -1 ) =(Τ -1 Τ) x>= x>. Ο Τ -1 λέγεται αντίστροφος του τελεστή Τ. Γνώση ενός τελεστή σημαίνει να ξέρουμε το αποτέλεσμα της δράσης του πάνω σε οποιοδήποτε διάνυσμα του διανυσματικού χώρου. Αν έχουμε τον τελεστή σε «κλειστή» μορφή, όπως ο τελεστής της παραγώγου, αυτό είναι εύκολο. Συνήθως, όμως, σε μη συναρτησιακούς διανυσματικούς χώρους δεν μπορούμε να έχουμε τους τελεστές σε τέτοια μορφή.

2 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 2 Σε τέτοιες περιπτώσεις είναι εύκολο να δειχθεί ότι για να ξέρουμε τη δράση του τελεστή πάνω σε οποιοδήποτε διάνυσμα x> αρκεί να ξέρουμε τη δράση του πάνω στα διανύσματα κάποιας βάσης του διανυσματικού χώρου: N y >= T x >= T x e >= x ( T e > ) i i i i i= 1 i= 1 N Δηλαδή αν ξέρουμε το Τ e i > για κάθε e i >, τότε γνωρίζουμε το y> =Τ x> Αλλά N T e >= ξ >= τ e > < e T e >=< e Te >= τ i ki k j i j i ji k = 1 Άρα για να ξέρουμε τη δράση του τελεστή αρκεί να ξέρουμε τους αριθμούς τ ji, οι οποίοι λέγονται συνιστώσες του τελεστή Τ στη βάση { e i >}. Παρατηρήστε ότι N N N N N y>= T x > y e >= x ( T e > ) = x τ e > y = τ x (2) i i j j j ij i i ij j i= 1 j= 1 j= 1 i= 1 j= 1 Οι τ ji αποτελούν μια διδιάστατη διάταξη αριθμών, η οποία ονομάζεται πίνακας και γράφεται συνήθως στη μορφή τ11 τ12 L τ1n N () τ τ L τ τ = (3) M M O M τn1 τn2 τnn Ο (τ), με στοιχεία (τ) ij =τ ij λέμε ότι είναι ο πίνακας που αναπαριστά τον τελεστή Τ στη βάση { e i >} (με την ίδια έννοια που μια στήλη αριθμών (οι συντεταγμένες) αναπαριστάνει ένα διάνυσμα). Προσέξτε: Αλλάζοντας τη βάση αλλάζουν οι αριθμοί τ ij. Ο (τ) της εξ. (1) λέμε ότι είναι πίνακας Ν Ν, δηλαδή πίνακας με Ν γραμμές και Ν στήλες. Είναι δυνατόν να έχουμε και πίνακες με διαφορετικό αριθμό γραμμών και στηλών (Ν Μ, δηλ. Ν γραμμές, Μ στήλες προέρχονται από μετασχηματισμούς διανυσμάτων μεταξύ διαφορετικών διανυσματικών χώρων). Οι πίνακες με ίσο αριθμό γραμμών και στηλών λέγονται τετραγωνικοί πίνακες. Τέλος, και τα διανύσματα μπορούν να θεωρηθούν ως πίνακες, με μία μόνο στήλη (πίνακες Ν 1 ή πίνακες στήλης). Π.χ x x1 x M xn 2 =

3 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 3 Από τα παραπάνω συμπεραίνουμε ότι αν έχουμε έναν διανυσματικό χώρο στον οποίο έχει οριστεί μια βάση, η άλγεβρα τελεστών μπορεί να αναχθεί σε άλγεβρα πινάκων, η οποία είναι και το θέμα των επόμενων εδαφίων. 2. Πράξεις πινάκων Οι πράξεις μεταξύ πινάκων μπορούν να προκύψουν εύκολα από τις ιδιότητες των τελεστών τους οποίους εκπροσωπούν οι πίνακες. Στα παρακάτω, το σύμβολο (α) ij =α ij θα συμβολίζει το στοιχείο του πίνακα (α) που βρίσκεται στην i γραμμή και στην j στήλη. Πριν να αναφερθούμε στις πράξεις μεταξύ πινάκων θα ορίσουμε την ισότητα πινάκων. Δύο πίνακες θα λέμε ότι είναι ίσοι αν τα στοιχεία τους είναι ένα προς ένα ίσα, δηλ (α)=(b) αν και μόνο αν α ij =b ij για κάθε i,j Πράξεις πινάκων: Άθροισμα πινάκων: ((α)+(b)) ij =α ij +b ij, δηλ. b b + b + b + = b21 b b b22 Ιδιότητες: (α)+(b)=(b)+(α) (αντιμεταθετική), (α)+[(b)+(c)]=[(α)+(b)]+(c) (προσαιτεριστική) Πολλαπλασιασμός πίνακα με αριθμό: Προκύπτει ένας νέος πίνακας, με στοιχεία (λ(α)) ij =λα ij, δηλ. Ιδιότητες: λ[(α)+(b)]=λ(α)+λ(b) (λ+μ)(α)=λ(α)+μ(α) (λμ)(α)=λ(μ(α)) (λ, μ αριθμοί) λ λ λ = λ21 λ22 Πολλαπλασιασμός πίνακα με διάνυσμα: Το αποτέλεσμα είναι ένα νέο διάνυσμα (σκεφτείτε τη δράση του αντίστοιχου τελεστή πάνω σε διάνυσμα), με συνιστώσες [(α)x] i = j α ij x j (δείτε την πιο πάνω εξ. (2)), δηλ. x x + x = x2 21x1 + 22x2

4 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 4 Πολλαπλασιασμός πινάκων: Αν έχουμε δύο πίνακες (α) και (b), το γινόμενο (α)(b) υπάρχει μόνο αν ο αριθμός των στηλών του (α) ισούται με τον αριθμό των γραμμών του (b). Αν ο (α) είναι πίνακας Ν Μ και ο (b) πίνακας M Κ, το γινόμενο (γ)=(α)(b) είναι πίνακας Ν Κ, με στοιχεία δηλαδή (γ) ij =((α)(b)) ij = k α ik b kj, γ11 γ 12 b11 b12 b b b + b = = γ γ b b b + b b + b (δηλ. το ij στοιχείο του γινομένου είναι εσωτερικό γινόμενο της γραμμής i του (α) με τη στήλη j του (b)). Ιδιότητες: [(α)+(b)](c)=(α)(c)+(b)(c) [(α)(b)](c)=(α)[(b)(c)] (c)[(α)+(b)]=(c)(α)+(c)(b) Προσοχή! δεν ισχύει η αντιμεταθετική ιδιότητα, δηλ. (α)(b) (b)(α) 3. Ειδικές, χρήσιμες κατηγορίες πινάκων Παρακάτω αναφέρουμε μερικές ειδικές κατηγορίες πινάκων, τους οποίους συναντάμε συχνά σε εφαρμογές. Μηδενικός πίνακας (0) (αντιστοιχεί στον μηδενικό τελεστή) είναι ο πίνακας για τον οποίο ισχύει (0)(α)= (α)(0)=(0) για κάθε (α). Ένας μηδενικός πίνακας έχει όλα του τα στοιχεία του ίσα με μηδέν. Μοναδιαίος ή ταυτοτικός πίνακας (ε) (αντιστοιχεί στον μοναδιαίο τελεστή) είναι ο πίνακας για τον οποίο ισχύει (ε)(α)=(α)(ε)=(α) για κάθε (α). Ο ταυτοτικός πίνακας έχει όλα του τα στοιχεία ίσα με μηδέν, εκτός από τα στοιχεία της κύριας διαγωνίου, τα οποία είναι μονάδα. Π.χ ο μοναδιαίος 2 2 είναι ο 1 0 () ε = 0 1 Διαγώνιος λέγεται ένας πίνακας (δ) ο οποίος έχει όλα του τα στοιχεία ίσα με μηδέν, εκτός από τα στοιχεία της κύριας διαγωνίου, δηλαδή τα στοιχεία δ ij με i=j, π.χ. δ1 ( δ ) = 0 0 δ2

5 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 5 Άνω (κάτω) τριγωνικός λέγεται ένας πίνακας στον οποίο είναι μη μηδενικά μόνο τα στοιχεία πάνω (κάτω) από την κύρια διαγώνιο, καθώς και αυτά της κύριας διαγωνίου. Π.χ (άνω τριγωνικός), (κάτω τριγωνικός) Τριδιαγώνιος λέγεται ο πίνακας στον οποίο είναι μη μηδενικά μόνο τα στοιχεία της κύριας διαγωνίου και της διαγωνίου πάνω και κάτω από την κύρια. Π.χ , δηλ. α ij 0 αν i=j, j± Έστω ο πίνακας (α) με στοιχεία () ij = ij, πχ. ( ). = Συζυγής του πίνακα (α) λέγεται ο πίνακας που έχει στοιχεία του τα μιγαδικά συζυγή των στοιχείων του (α). Θα τον συμβολίζουμε με (α*). Δηλ (α*) ij =(α ij )* ή * * ( *) = * * Αν ο πίνακας (α) είναι πραγματικός, τότε (α*)=(α). Ανάστροφος του πίνακα (α) λέγεται ο πίνακας που έχει γραμμές τις στήλες του (α) και στήλες τις γραμμές του (α). Θα τον συμβολίζουμε με (α) Τ, δηλ. ( ) T = Αν ένας πίνακας ισούται με τον ανάστροφό του, τότε ο πίνακας λέγεται συμμετρικός. Αν (α) συμμετρικός, τότε α ij =α ji. Π.χ. c c b

6 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 6 Ερμιτιανός συζυγής ή προσαρτημένος του πίνακα (α) λέγεται ο ανάστροφος του συζυγούς τού (α) (ή ο συζυγής του αναστρόφου του (α)). Θα τον συμβολίζουμε με (α) +. Δηλ. (α) + =(α*) Τ. Π.χ. * * ( ) = * * Αν ένας πίνακας (α) ισούται με τον προσαρτημένο του τότε ο (α) λέγεται ερμιτιανός ή αυτοπροσαρτημένος πίνακας. Για έναν αυτοπροσαρτημένο πίνακα (α) ισχύει α ij =(α ji )*. Οι αυτοπροσαρτημένοι πίνακες αποτελούν μια από τις πιο χρήσιμες κατηγορίες πινάκων. Παράδειγμα 2 2 ερμιτιανού πίνακα: 2 i i 1 Αν ένας πίνακας μετατίθεται με τον ερμιτιανό συζυγή του, δηλ. (α)(α) + =(α) + (α) ο πίνακας αυτός λέγεται κανονικός. Π.χ. i i Αντίστροφος του πίνακα (α), αν υπάρχει, λέγεται ο πίνακας (α) -1, τέτοιος ώστε (α) (α) -1 =(α) -1 (α)=(ε) (ο μοναδιαίος πίνακας). Για τον υπολογισμό του αντιστρόφου ενός πίνακα θα μιλήσουμε σε επόμενο εδάφιο. Αν για έναν πίνακα (α) ο οποίος έχει αντίστροφο ισχύει (α) + =(α) -1, τότε ο (α) λέγεται μοναδιακός πίνακας. Πολλές φορές συμβολίζεται με (u) (από το unitry). Προσοχή: Να μην συγχέεται με τον μοναδιαίο! Αν για έναν πίνακα (α) ο οποίος έχει αντίστροφο ισχύει (α) Τ =(α) -1, τότε ο (α) λέγεται ορθογώνιος πίνακας. Πολλές φορές συμβολίζεται με (ο) (από το orthogonl). Για πίνακες με πραγματικά στοιχεία, όπου (α) + =(α) Τ, ο μοναδιακός και ο ορθογώνιος πίνακας ταυτίζονται. Οι μοναδιακοί και οι ορθογώνιοι πίνακες αποτελούν από τις πιο χρήσιμες κατηγορίες πινάκων. Η ορίζουσά τους έχει μέτρο μονάδα, οι στήλες τους αποτελούν ορθοκανονικό σύστημα διανυσμάτων και όταν πολλαπλασιάσουν ένα διάνυσμα οδηγούν σε διάνυσμα με το ίδιο μήκος (μέτρο) με το αρχικό. Αποτελούν επίσης ειδικές κατηγορίες κανονικών πινάκων. 4. Ίχνος και ορίζουσα πίνακα Το ίχνος και η ορίζουσα είναι δύο χρήσιμοι αριθμοί, χαρακτηριστικοί κάθε πίνακα. Ορίζονται μόνο για τετραγωνικούς πίνακες Ίχνος πίνακα, Tr (από το trce) ονομάζουμε το άθροισμα των διαγώνιων στοιχείων του πίνακα: Tr(α)= i α ii,

7 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 7 Δηλ. Tr = Για το ίχνος ισχύουν: Tr((α)+(b))=Tr(α)+Tr(b) Tr((α)(b))=Tr((b)(α)) (ακόμα και αν (α)(b) (b)(α)) Αξίζει να σημειωθεί επίσης ότι το ίχνος είναι χαρακτηριστικό του τελεστή τον οποίο εκπροσωπεί ο πίνακας και παραμένει το ίδιο για κάθε αναπαράσταση του τελεστή. Ορίζουσα πίνακα είναι ένας αριθμός, ο οποίος υπολογίζεται από τα στοιχεία του πίνακα (με προσθέσεις και πολλαπλασιασμούς των στοιχείων αυτών). Η ορίζουσα ενός πίνακα, π.χ. ( ) =, συμβολίζεται είτε με det(α) (από την αγγλική λέξη determinnt=ορίζουσα) είτε ως ( ) = Πριν αναφερθούμε στον τρόπο υπολογισμού της ορίζουσας θα εισάγουμε την έννοια του υποπίνακα, της υποορίζουσας και του αλγεβρικού συμπληρώματος πίνακα. Υποπίνακας (c ij ) του πίνακα (α) ονομάζεται ο πίνακας που προκύπτει από τον (α) με απαλοιφή της γραμμής i και της στήλης j. Π.χ. ο (c 11 ) του πιο πάνω πίνακα (α) είναι το στοιχείο α 22 (πίνακας 1 1). Οι ορίζουσες τέτοιων υποπινάκων του (α) ονομάζονται υποορίζουσες του πίνακα (α). Αλγεβρικό συμπλήρωμα του υποπίνακα (c ij ) λέγεται ο αριθμός Δ ij =(-1) i+j det(c ij ) Χρησιμοποιώντας τα παραπάνω, η ορίζουσα ενός πίνακα (α) υπολογίζεται ως εξής: det(α)= j α ij Δ ij = j (-1) i+j α ij det(c ij ) ή det(α)= i α ij Δ ij = i (-1) i+j α ij det(c ij ) (1) Ο δείκτης j μετράει τις στήλες του πίνακα (α) και ο δείκτης i τις γραμμές του. Στο άθροισμα ως προς j ο δείκτης i μπορεί να δηλώνει οποιαδήποτε γραμμή του πίνακα. Λέμε τότε ότι υπολογίζουμε την ορίζουσα με ανάπτυγμα ως προς τη γραμμή i. Οποιαδήποτε από τις γραμμές του πίνακα αν επιλεγεί το αποτέλεσμα θα είναι το ίδιο. Ανάλογα και για το άθροισμα ως προς i. Τότε λέμε ότι υπολογίζουμε την ορίζουσα με ανάπτυγμα ως προς τη στήλη j. Τα παραπάνω θα γίνουν περισσότερο κατανοητά με ένα συγκεκριμένο παράδειγμα: Έστω ο πίνακας. 13 ( ) = Θα υπολογίσουμε την ορίζουσά του αναπτύσσοντας ως προς την πρώτη γραμμή, δηλ. χρησιμοποιώντας τη σχέση det(α)= j (-1) i+j α ij det(c ij ), με i=1. Δηλ.

8 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 8 det(α)= (-1) 1+1 α 11 det(c 11 ) +(-1) 1+2 α 12 det(c 12 ) +(-1) 1+3 α 13 det(c 13 ), ή, πιο παραστατικά, ( ) = = ( 1) 11 + ( 1) 12 + ( 1) Ο υπολογισμός γίνεται ευκολότερος στην πράξη αντιστοιχίζοντας στο στοιχείο α 11 το πρόσημο + και στα άλλα στοιχεία εναλλάξ πρόσημο + ή -, και αναπτύσσοντας ως προς κάποια γραμμή ή στήλη χρησιμοποιώντας τα πρόσημα αυτά. Π.χ. στο πιο πάνω παράδειγμα 3 3 πίνακα, όπου αναπτύσσουμε ως προς την πρώτη γραμμή, ( ) = = + Αν ο (α) είναι πίνακας 2 2 ο υπολογισμός είναι πολύ απλός: ( ) = 21 22, τότε ( ) = = Επίσης, ειδικά για 3 3 πίνακες, υπάρχει και ένας ευκολότερος τρόπος υπολογισμού, γνωστός ως κανόνας του Srrus: ( ) = = Το εξωτερικό γινόμενο διανυσμάτων του γνωστού μας τριδιάστατου ευκλείδιου χώρου, μπορεί να υπολογιστεί εύκολα με χρήση οριζουσών, ως (σε καρτεσιανές συντεταγμένες) xˆ yˆ zˆ b = x y z. b b b x y z Υπολογίστε την ορίζουσα ενός διαγώνιου πίνακα 3 3. Υπολογίστε την ορίζουσα ενός κάτω τριγωνικού πίνακα Ιδιότητες οριζουσών Για να μπορέσουμε να παρουσιάσουμε σε πιο συμπαγή μορφή τις ιδιότητες των οριζουσών, θα γράψουμε τον πίνακα () στην εξής μορφή:

9 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 9 K 1 N O M O M N1 L L NN ( ) 21 2N ( ) = = 1, 2,..., όπου το α i με την παύλα δηλώνει την i στήλη του (α). 1. det (,,...,,..., ) det (,,...,,..., ) λ =λ (κοινός παράγων μιας στήλης ή γραμμής 1 2 i N 1 2 i N βγαίνει κοινός παράγων της ορίζουσας). 2. Αν μια γραμμή ή στήλη μιας ορίζουσας είναι μηδέν η ορίζουσα είναι ίση με μηδέν (προκύπτει αμέσως από την 1). 3. Η ορίζουσα του διαγώνιου πίνακα είναι γινόμενο των διαγώνιων στοιχειών του πίνακα. Η ορίζουσα του ταυτοτικού πίνακα είναι ίση με Αντιμεταθέτοντας δύο οποιεσδήποτε γραμμές ή στήλες μιας ορίζουσας η ορίζουσα αλλάζει πρόσημο, δηλ. det ( 1,..., i, i+ 1..., N) = det ( 1,..., i+ 1, i,..., N) (οι γραμμές (ή οι στήλες) δεν είναι απαραίτητο να είναι γειτονικές). 5. Όταν δύο γραμμές ή στήλες μιας ορίζουσας είναι ίσες ή ανάλογες, η ορίζουσα είναι μηδέν, δηλ. det,...,,..., 0 det,...,, λ..., =λ det,...,,..., (από 1) και ( 1 i λ i N) =. ( ( 1 i i N) ( 1 i i N) ( ) = ( ) (από 4)). det,...,,..., det,...,,..., 1 i i N 1 i i N 6. det ( 1, 2,..., i bi,..., N) det ( 1, 2,..., i,..., N) det ( 1, 2,..., bi,..., N) + = +, δηλ. όταν μια γραμμή ή στήλη μιας ορίζουσας γράφεται ως άθροισμα δύο προσθετέων, η ορίζουσα μπορεί να σπάσει σε άθροισμα δύο οριζουσών (προκύπτει εύκολα από τον τύπο (1), αναπτύσσοντας ως προς τη γραμμή ή στήλη που είναι άθροισμα). 7. Αν προστεθεί σε μια γραμμή (ή στήλη) μιας ορίζουσας το πολλαπλάσιο μιας άλλης γραμμής (ή στήλης), η ορίζουσα παραμένει αμετάβλητη, δηλ. det ( 1, 2,..., i,..., N ) = det ( 1, 2,..., i +λ j,..., N ) (προκύπτει εύκολα από την ιδιότητα 6, σε συνδυασμό με την 5). 8. Η ορίζουσα του γινομένου πινάκων ισούται με το γινόμενο των οριζουσών των πινάκων αυτών, δηλ. det(( )( b)) = det( )det( b). Αν ο (β) είναι ο αντίστροφος του (α), τότε det(( )( ) ) det( )det(( ) ) det( ) 1 det(( ) ) 1/det( ) = = ε = =. T 9. det( ) = det( ) (προκύπτει εύκολα αναπτύσσοντας τον έναν πίνακα ως προς γραμμές και τον άλλον ως προς στήλες). det( *) = [det( )]* (αφού det( ) + = det( *) T ). 10. Αν η ορίζουσα ενός πίνακα (α) είναι μηδέν τότε οι στήλες του (α) είναι γραμμικά εξαρτημένα διανύσματα. Αν είναι διαφορετική από μηδέν οι στήλες είναι διανύσματα γραμμικά ανεξάρτητα. Το ίδιο ισχύει και για τις γραμμές του (α). N 6. Τάξη πίνακα, αντίστροφος πίνακα

10 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 10 Τάξη πίνακα: Τάξη ενός πίνακα (α) λέγεται ο αριθμός των γραμμικά ανεξάρτητων στηλών (ή γραμμών) του (α). Χρησιμοποιώντας την παραπάνω ιδιότητα 10 των οριζουσών, μπορεί να δειχθεί ότι αν ο (α) είναι τετραγωνικός πίνακας Ν Ν με det() 0 τότε η τάξη του (α) ισούται με Ν (δηλ. με τη διάστασή του). Αν det()=0 η τάξη του () ισούται με τη διάσταση του μέγιστου τετραγωνικού υποπίνακά του με μη μηδενική ορίζουσα. Ένας πίνακας του οποίου η ορίζουσα ισούται με μηδέν λέγεται ιδιόμορφος ή ιδιάζων πίνακας. Αντίστροφος πίνακα: Είπαμε στα προηγούμενα ότι ο αντίστροφος ενός πίνακα (α), αν υπάρχει, ορίζεται από τη σχέση (α) (α) -1 =(α) -1 (α)=(ε) ((ε) είναι ο μοναδιαίος πίνακας). Η συνθήκη για την ύπαρξη αντιστρόφου είναι ο πίνακας (α) να έχει μη μηδενική ορίζουσα. Πίνακες με ορίζουσα ίση με μηδέν (ιδιόμορφοι πίνακες) δεν είναι αντιστρέψιμοι. Υπολογισμός αντιστρόφου: Ο υπολογισμός του αντιστρόφου ενός πίνακα (α) σχετίζεται στενά με τον υπολογισμό της ορίζουσας του (α). Υπενθυμίζουμε ότι η ορίζουσα του πίνακα (α) δίδεται από τη σχέση det(α)= j (-1) i+j α ij det(c ij ) = j α ij Δ ij. Οι αριθμοί Δ ij (τα αλγεβρικά συμπληρώματα των στοιχείων του (α)), οι οποίοι αποτελούν μια διαδιάστατη διάταξη αριθμών, μπορούν να γραφούν και αυτοί σε μορφή πίνακα: Δ11 Δ12 K Δ1N 21 2N ( ) Δ O Δ Δ =. M O M ΔN1 L L ΔNN Μπορεί να αποδειχθεί τότε ότι (α)(δ) Τ =(Δ) Τ (α)=(ε)det(α), όπου (Δ) Τ είναι ο ανάστροφος του (Δ) και (ε) ο μοναδιαίος. Πολλαπλασιάζοντας και τα δύο μέλη της ισότητας από αριστερά με (α) -1 και χρησιμοποιώντας τον ορισμό του αντιστρόφου, προκύπτει εύκολα ότι T ( Δ) 1 ( ) = det( ) (Μπορείτε να αποδείξετε, χρησιμοποιώντας τον τύπο (1) για τον υπολογισμό της ορίζουσας, το T T εξής?: (( )( ) ) ii = (( )( Δ ) ) ii = ( ik ( Δ ) ki ) = ( ikδ ik ) = 1) det( ) det( ) det( ) Για τον αντίστροφο πίνακα ισχύουν οι εξής ιδιότητες: ((α) -1 ) -1 =(α) ((α) Τ ) -1 =((α) -1 ) Τ ((α) + ) -1 =((α) -1 ) + ((α)(b)) -1 =(b) -1 (α) -1 (προσέξτε την αλλαγή στη σειρά των πινάκων). Αποδείξτε τις παραπάνω ιδιότητες του αντιστρόφου χρησιμοποιώντας τον ορισμό του. k k

11 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 11 Αποδείξτε ότι ο αντίστροφος ενός διαγώνιου πίνακα (δ), είναι ένας διαγώνιος πίνακας με στοιχεία τα αντίστροφα των στοιχείων του (δ). Αποδείξτε ότι ο αντίστροφος ενός γενικού διδιάστατου πίνακα (α) δίδεται από τη σχέση ( ) = det( ) Αποδείξτε ότι η ορίζουσα ενός ορθογώνιου πίνακα είναι +1 ή -1 (χρησιμοποιήστε τον ορισμό του ορθογώνιου πίνακα, και το γεγονός ότι η det() -1 =1/det()) Αποδείξτε ότι η ορίζουσα ενός μοναδιακού πίνακα έχει μέτρο μονάδα.

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Πίνακες ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 12 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας και της άλγεβρας των πινάκων. Το ϕυλλάδιο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Β:περιστροφή κατά 240 ο ως προς τον άξονα z ή περιστροφή κατά 120 ο ως προς τον z. M:περιστροφή κατά 180 ο ως προς την ΟΜ ( c 2

Β:περιστροφή κατά 240 ο ως προς τον άξονα z ή περιστροφή κατά 120 ο ως προς τον z. M:περιστροφή κατά 180 ο ως προς την ΟΜ ( c 2 I ΟΡΙΣΜΟΣ ΟΜΑΔΑΣ ΠΑΡΑΔΕΙΜΑΤΑ ΚΑΙ ΙΔΙΟΤΗΤΕΣ I Ομάδες μετασχηματισμών συμμετρίας Όπως συνηθίζεται θα διαλέξουμε μια ομάδα συμμετρίας και θα εξετάσουμε όλες τις ιδιότητες στην συγκεκριμμένη ομάδα σε ολόκληρες

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

= k. n! k! (n k)!, k=0

= k. n! k! (n k)!, k=0 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2015 Χρήστος Α Αθανασιάδης Συμβολίζουμε με O το μηδενικό πίνακα καταλλήλων διαστάσεων, με I (ορισμένες φορές, με I n τον n n ταυτοτικό πίνακα,

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ:

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ: Η ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ καθώς είναι από τα σημαντικότερα κομμάτια της Άλγεβρας με τις περισσότερες εφαρμογές ΔΕΝ πρέπει να αποστηθίζεται και κυρίως ΔΕΝ πρέπει να γίνεται αντιπαθητική. Για τη σωστή εκμάθηση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 6: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΗΡΑΚΛΕΙΟ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012)

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012) Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός

Διαβάστε περισσότερα

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση. Ο πίνακας Μ μπορεί να ληφθεί χωρίς καμμία έλλειψη γενικότητας ως

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ

ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ Νικόλαος Ι. Ιωακειμίδης Ομότιμος Καθηγητής Πολυτεχνικής Σχολής Πανεπιστημίου Πατρών ΠΑΤΡΑ 2014 ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις

Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-2: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις H ανάλυση ενός κυκλώματος με αντιστάσεις στη

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων Πίνακες Ένας πίνακας είναι μια δισδιάστατη λίστα από αριθμούς. Για να δημιουργήσουμε ένα πίνακα στο Matlab εισάγουμε κάθε γραμμή σαν μια ακολουθία αριθμών που ξεχωρίζουν με κόμμα (,) ή κενό (space) και

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης

Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης Στη Φυσική ενδιαφερόμαστε για την δυναμική εξέλιξη των διαφόρων συστημάτων. Καίριο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 978-960-456-314-2 Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται

Διαβάστε περισσότερα

Γ Ρ Α Μ Μ Ι Κ Η Α Λ Γ Ε Β Ρ Α

Γ Ρ Α Μ Μ Ι Κ Η Α Λ Γ Ε Β Ρ Α Ι Ω Α Ν Ν Η Σ Μ Α Ρ Ο Υ Λ Α Σ ΚΑΘΗΓΗΤΗΣ ΣΕΜΦΕ Γ Ρ Α Μ Μ Ι Κ Η Α Λ Γ Ε Β Ρ Α Επιµέλεια : ρ Αδάµ Μαρία ΕΜΠ, 005 ΠΡΟΛΟΓΟΣ Ο ρόλος της Γραµµικής Άλγεβρας στις Εφαρµοσµένες Επιστήµες είναι εξαιρετικά σηµαντικός.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ Το σύνολο C των μιγαδικών αριθμών είναι ένα υπερσύνολο του R, του συνόλου των πραγματικών αριθμών, στο οποίο ισχύουν: Επεκτείνονται οι πράξεις της πρόσθεσης του πολλαπλασιασμού έτσι ώστε, να έχουν τις

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα.

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Ακολουθίες ΔΙΑΝΥΣΜΑΤΑ Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Να ορίζουμε τις σχέσεις μεταξύ διανυσμάτων (παράλληλα, ομόρροπα, αντίρροπα, ίσα και αντίθετα διανύσματα). Να προσθέτουμε και

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος Γραµµικη Αλγεβρα ΙΙ Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 011-01 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laiihtml

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

Τανυστές στην Κβαντομηχανική Κβαντική Πληροφορική

Τανυστές στην Κβαντομηχανική Κβαντική Πληροφορική Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσική Τανυστές στην Κβαντομηχανική Κβαντική Πληροφορική Το ζήτημα των τανυστών είναι πολύ σημαντικό τόσο για την Κβαντομηχανική, όσο και για τη Σχετικότητα. Οι δύο

Διαβάστε περισσότερα

Πρόλογος... 15. Οι συγγραφείς... 18

Πρόλογος... 15. Οι συγγραφείς... 18 Περιεχόμενα Πρόλογος... 15 Οι συγγραφείς... 18 1 Θεμελιώδεις έννοιες... 19 1.1 ΕΙΣΑΓΩΓΗ... 19 1.2 ΙΣΤΟΡΙΚΟ... 19 1.3 ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ... 20 1.4 ΤΑΣΕΙΣ ΚΑΙ ΙΣΟΡΡΟΠΙΑ... 20 1.5 ΣΥΝΟΡΙΑΚΕΣ ΣΥΝΘΗΚΕΣ...

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

= DX(0, 0)(ae 1 + be 2 ) = adx(0, 0)e 1 + bdx(0, 0)e 2 = ax u (0, 0) + bx v (0, 0).

= DX(0, 0)(ae 1 + be 2 ) = adx(0, 0)e 1 + bdx(0, 0)e 2 = ax u (0, 0) + bx v (0, 0). Κεφάλαιο 3 Ο εφαπτόμενος χώρος Σύνοψη Ο εφαπτόμενος χώρος μιας κανονικής επιφάνειας αποτελεί τη βέλτιση γραμμική προσέγγιση της επιφάνειας σε ένα σημείο της. Αποτελείται από όλα τα εφαπτόμενα διανύσματα

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Θέματα από τους μιγαδικούς

Θέματα από τους μιγαδικούς 6/0/0 Θέματα από τους μιγαδικούς Μπάμπης Στεργίου Σεπτέμβριος 0 Θέμα ο ***Οι λύσεις έγιναν από τον Αλέξη Μιχαλακίδη Δίνονται τα σύνολα : A C/ και α) Να εκφράσετε γεωμετρικά το σύνολο Α BwC/w,A β) Να βρείτε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis)

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η μέθοδος PCA (Ανάλυση Κύριων Συνιστωσών), αποτελεί μία γραμμική μέθοδο συμπίεσης Δεδομένων η οποία συνίσταται από τον επαναπροσδιορισμό των συντεταγμένων ενός

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Είναι επίσης βολικό σε κάποιες περιπτώσεις να θεωρήσουµε το σύνολο διανυσµάτων x(n), που περιέχουν τις τιµές x(n), x(n-1),,x(n-n+1) ενός σήµατος

Είναι επίσης βολικό σε κάποιες περιπτώσεις να θεωρήσουµε το σύνολο διανυσµάτων x(n), που περιέχουν τις τιµές x(n), x(n-1),,x(n-n+1) ενός σήµατος Ανασκόπηση Γραµµική Άλγεβρα Σε πολλά µαθηµατικά προβλήµατα που θα συναντήσουµε στην φασµατική εκτίµηση και γενικά στην εκτίµηση παραµέτρων θα είναι βολικό να χρησιµοποιούµε διανύσµατα και πίνακες για την

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

Τυπικές χρήσεις της Matlab

Τυπικές χρήσεις της Matlab Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις

Διαβάστε περισσότερα

τέτοιες συναρτήσεις «πραγµατικές συναρτήσεις µε µία πραγµατική µεταβλητή». Σε αυτή

τέτοιες συναρτήσεις «πραγµατικές συναρτήσεις µε µία πραγµατική µεταβλητή». Σε αυτή Κεφάλαιο Ορίζουσες Η Συνάρτηση Ορίζουσα Είµαστε όλοι εξοικειωµένοι µε συναρτήσεις όπως η f(x) sin x και η f(x) x οι οποίες αντιστοιχίζουν έναν πραγµατικό αριθµό f(x) σε κάθε πραγµατική τιµή της µετα- ϐλητής

Διαβάστε περισσότερα

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Χώρος Διανύσματα Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Καρτεσιανές συντεταγμένες και διανύσματα στο χώρο. Στο σύστημα καρτεσιανών (ή ορθογώνιων) συντεταγμένων κάθε

Διαβάστε περισσότερα

1. Στοιχεία κβαντικής μηχανικής

1. Στοιχεία κβαντικής μηχανικής . Στοιχεία κβαντικής μηχανικής Σύνοψη Στο κεφάλαιο αυτό, παρουσιάζονται τα κβαντικά συστήματα δύο καταστάσεων, οι βασικές τους καταστάσεις και η έννοια της υπέρθεσης καταστάσεων. Δίνονται ορισμοί και παραδείγματα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. Γραμμική Άλγεβρα. Δημήτρης Σουρλάς Αναπλ. Καθηγητής. uv, u v ΠΑΤΡΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. Γραμμική Άλγεβρα. Δημήτρης Σουρλάς Αναπλ. Καθηγητής. uv, u v ΠΑΤΡΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Γραμμική Άλγεβρα Δημήτρης Σουρλάς Αναπλ. Καθηγητής 00 uv, u v ( ) ΠΑΤΡΑ dsourlas@physics.upatras.gr www.physics.upatras.gr II ΠΕΡΙΕΧΌΜΕΝΑ ΕΙΣΑΓΩΓΗ... V ΚΕΦΑΛΑΙΟ Ι... ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. Γραμμική Άλγεβρα. Δημήτρης Σουρλάς Αναπλ. Καθηγητής. uv, u v ΠΑΤΡΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. Γραμμική Άλγεβρα. Δημήτρης Σουρλάς Αναπλ. Καθηγητής. uv, u v ΠΑΤΡΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Γραμμική Άλγεβρα Δημήτρης Σουρλάς Αναπλ. Καθηγητής uv, u v ( ) ΠΑΤΡΑ dsourlas@physics.upatras.gr www.physics.upatras.gr II ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... V ΚΕΦΑΛΑΙΟ Ι... ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα