ιαστασιολόγηση Περιεχόμενα Ορισμός Μηχανολογικός Σχεδιασμός Εισαγωγή Στοιχεία διαστασιολόγησης ιαστασιολόγηση χαρακτηριστικών αντικειμένων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ιαστασιολόγηση Περιεχόμενα Ορισμός Μηχανολογικός Σχεδιασμός Εισαγωγή Στοιχεία διαστασιολόγησης ιαστασιολόγηση χαρακτηριστικών αντικειμένων"

Transcript

1 Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή ιαστασιολόγηση η Στοιχεία διαστασιολόγησης ιαστασιολόγηση χαρακτηριστικών αντικειμένων Πρακτική διαστασιολόγησης Μηχανολογικός Σχεδιασμός ιαδικασία Προκαταρκτικός Σχεδιασμός τεμαχίου Αποτέλεσμα Σκαριφήματα Μεταφερόμενη πληροφορία Ορισμός ιαστασιολόγηση είναι ο πλήρης και μονοσήμαντος ορισμός της πληροφορίας που αφορά θέση, μέγεθος και ιδιότητες ενός αντικειμένου με χρήση αριθμών, συμβόλων και σημειώσεων. ημιουργία σχεδίων Σχέδιο όψεων ιαστασιολόγηση Μορφή, Σχήμα 1. Μέγεθος, Θέση 2. Μη γραφική πληροφορία Πληροφορία που πρέπει να ορισθεί : 1. Μέγεθος και θέση των χαρακτηριστικών 2. Ποιότητες επιφανειών 3. Ανοχές διαστάσεων Κατασκευή 4. Συναρμογές

2 Σύστημα διαστασιολόγησης Στοιχεία διαστασιολόγησης 1. Μετρικό σύστημα (σε mm): πρότυπο ISO Παράδειγμα 2. εκαδικές ίντσες Παράδειγμα 3. Κλασματικές ίντσες Παράδειγμα 32, 32.5, 32.55, 0.5 (όχι.5) κλπ (όχι.25), κλπ. 1 4, κλπ. Βοηθητικές γραμμές διαστάσεων Γραμμές διαστάσεων (με βέλη) Γραμμές υποδείξεως Αριθμοί Σημειώσεις : - τοπικές - γενικές Λεπτή συνεχής (0.35 mm) Ευανάγνωστα (0.7 mm) Βοηθητικές γραμμές διαστάσεων Καθορίζουν τη θέση του χαρακτηριστικού του αντικειμένου το οποίο πρόκειται να διαστασιολογηθεί. Γραμμές διαστάσεων Καθορίζουν την διεύθυνση και το μέγεθος μίας διάστασης και περιλαμβάνουν τους αριθμούς

3 Γραμμές υποδείξεως Μπορούν να καθορίζουν λεπτομέρειες ενός χαρακτηριστικού ή τη διάστασή του με χρήση τοπικής σημείωσης. Σχεδιασμός βελών x 10 R16 15 ο d=0.7mm (πάχος παχειάς συνεχούς γραμμής) Προσοχή! Όταν το αντικείμενο είναι σχεδιασμένο υπό κλίμακα, οι διαστάσεις που αναγράφονται στο σχέδιο είναι οι πραγματικές. Βοηθητικές γραμμές διαστάσεων Βοηθητικές γραμμές διαστάσεων Αφήνουμε ορατό κενό ( 1 mm) από την όψη και σχεδιάζουμε την βοηθητική γραμμή διάστασης (προέκταση). Οι βοηθητικές γραμμές δεν διακόπτονται όταν τέμνουν γραμμές του αντικειμένου. Η βοηθητική γραμμή έχει μήκος ώστε να εξέχει της (τελευταίας) γραμμής διάστασης κατά 1-2 mm. Ορατό κενό, εξοχή Σύνηθες λάθος Συνεχής Σύνηθες λάθος

4 Γραμμές διαστάσεων Οι γραμμές διαστάσεων δεν πρέπει να είναι πολύ κοντά μεταξύ τους ή κοντά στην όψη. Αφήστε κενό τουλάχιστον δύο φορές το ύψος του γράμματος. Αριθμοί Το ύψος των αριθμών προτείνεται να είναι 3.5 mm. Τοποθετούμε τους αριθμούς 1 mm πάνω από την γραμμή διάστασης και στοιχισμένους ανάμεσα στις βοηθητικές γραμμές. Σύνηθες λάθος Αφήστε κενό τουλάχιστον μία φορά το ύψος του γράμματος. Αριθμοί Όταν δεν υπάρχει αρκετός χώρος για να τοποθετηθεί εσωτερικά η διάσταση ή τα βέλη, τότε αυτά τοποθετούνται εξωτερικά εκατέρωθεν των βοηθητικών γραμμών εν υπάρχει χώρος εν υπάρχει χώρος για βέλη για τον αριθμό ή/και αριθμό ιαστάσεις : Μονάδες Οι κανονισμοί ISO υιοθετούν τις παρακάτω μονάδες Μονάδα μήκους : χιλιοστό (mm) χωρίς να τοποθετούνται μονάδες στους αριθμούς Μονάδα γωνίας : μοίρα ( ο ), το σύμβολο τοποθετείται δίπλα στον αριθμό. ή

5 1. Ευθυγραμισμένοι Αριθμοί : ιάταξη Οι αριθμοί των διαστάσεων τοποθετούνται κατά τρόπο ώστε να μπορούν να διαβαστούν από κάτω προς τα πάνω ή από αριστερά προς τα δεξιά όταν το σχέδιο είναι οριζόντιο (το υπόμνημα κάτω και δεξιά). 2. Μίας κατεύθυνσης Οι αριθμοί των διαστάσεων τοποθετούνται κατά τρόπο ώστε να μπορούν να διαβαστούν από αριστερά προς τα δεξιά (οριζόντια γραφή). εν πρέπει να χρησιμοποιούνται και οι δύο τρόποι στο ίδιο σχέδιο ή στην ίδια σειρά σχεδίων Παράδειγμα : Τοποθέτηση διαστάσεων μηκών χρησιμοποιώντας την ευθυγραμμισμένη μέθοδο Παράδειγμα : Τοποθέτηση διαστάσεων μηκών χρησιμοποιώντας την μέθοδο μίας κατεύθυνσης. Παράδειγμα : Τοποθέτηση διαστάσεων γωνιών χρησιμοποιώντας την ευθυγραμμισμένη μέθοδο.

6 Παράδειγμα : Τοποθέτηση διαστάσεων γωνιών χρησιμοποιώντας την μέθοδο μίας κατεύθυνσης. Αριθμοί Οι αριθμοί 6,9,66,68,86,89,98,99 φέρουν κάτω δεξιά μια τελεία, όταν λόγω της λοξής θέσης τους είναι δυνατόν από λάθος να διαβαστούν ανάποδα. 89. ιαστάσεις με γραμμές υποδείξεως Οι γραμμές υποδείξεως τοποθετούνται κοντά στο χαρακτηριστικό το οποίο περιγράφουν και εκτός της όψης. Χορδή Γωνία Τόξο Τρόπος διαστασιολόγησης χορδής γωνίας τόξου. Γράφονται πάντα οριζόντια mm Σύνηθες λάθος 10 Πολύ μακρυά 10

7 Η βασική ιδέα Η διαστασιολόγηση επιτυγχάνεται με την τοποθέτηση πληροφορίας για το μέγεθος και τη θέση των χαρακτηριστικών που απαιτούνται για την κατασκευή του αντικειμένου. Η πληροφορία αυτή πρέπει : να είναι σαφής να είναι πλήρης Να διευκολύνει - την διαδικασία κατασκευής - την διαδικασία μέτρησης Παράδειγμα Αντικείμενο Μ Για την κατασκευή του αντικειμένου πρέπει να γνωρίζουμε 1. Μήκος, πλάτος και πάχος του αντικειμένου. 2. ιάμετρο και βάθος της οπής. 3. Θέση των οπών. Θ Θ Μ Θ Μ Μ διάσταση που προσδιορίζει μέγεθος Θ διάσταση που προσδιορίζει θέση. Θ Μ Γωνίες Για την διαστασιολόγηση γωνιών χρησιμοποιούμε κυκλική γραμμή διαστάσεως με κέντρο την κορυφή της γωνίας. Σύνηθες λάθος Τόξα κύκλου Τα τόξα κύκλου διαστασιολογούνται δίνοντας την ακτίνα τους στην όψη στην οποία φαίνεται το πραγματικό τους σχήμα. Για να είναι σαφές ότι πρόκειται για ακτίνα προσθέτουμε πριν τον αριθμό που ορίζει το μήκος της ακτίνας το σύμβολο R. ή

8 Τόξα κύκλου Η γραμμή διαστάσεων και ο αριθμός πρέπει να είναι εσωτερικά του τόξου όταν υπάρχει αρκετός χώρος. Τόξα κύκλου Οι γραμμές διαστάσεων, όταν είναι εκτός του κύκλου πρέπει να προεκτείνονται και να δημιουργούν γωνία ~ 60 μοιρών με την οριζόντια. Αρκετός χώρος και για τα δυο. Αρκετός χώρος για τη γραμμή διάστασης μόνο Μετακινήστε τον αριθμό εκτός R 62.5 Ανεπαρκής χώρος και για τα δυο. Μετακινήστε και τη γραμμή διάστασης και τον αριθμό εκτός R62.5 Σύνηθες λάθος R62.5 R62.5 R62.5 R62.5 R62.5 R 58.5 R 6.5 Τόξα κύκλου Όταν το κέντρο του τόξου είναι έξω από το φύλλο σχεδίασης ή σε διπλανές όψεις τότε χρησιμοποιούμε τον παρακάτω τρόπο διαστασιολόγησης. Μέθοδος 1 Μέθοδος 2 Ακτίνες καμπυλότητας Η διάσταση των ακτίνων καμπυλότητας (fillets, rounds) δίνεται με χρήση γραμμής υποδείξεως. Αν όλες οι ακτίνες καμπυλότητας είναι ίδιες σε μέγεθος, τότε μπορούν να παραληφθούν και να προστεθεί γενική σημείωση η Ακτίνεςς Καμπυλότητας Rxx εκτός και αν ορίζονται διαφορετικά στο σχέδιο. R6.5 R12 Φύλλο σχεδίασης Σημείωση: Ακτίνες Καμπυλότητες R6.5 Φύλλο σχεδίασης Σημείωση: Ακτίνες Καμπυλότητας R6.5 εκτός και αν ορίζονται διαφορετικά στο σχέδιο.

9 Καμπύλες Στις καμπύλες που αποτελούνται από δύο ή περισσότερα τόξα κύκλου πρέπει να δίνονται τα κέντρα και οι ακτίνες όλων των επιμέρους τόξων. Σύνηθες λάθος Σημείο εφαπτομένης Κύλινδροι Για τον ορισμό του μεγέθους δίνονται η διάμετρος και το μήκος του κυλίνδρου. Για τον ορισμό της θέσης του κυλίνδρου δίνουμε την απόσταση της αξονικής του από άλλο χαρακτηριστικό του αντικειμένου, στην όψη που δείχνει την κυκλική διαμόρφωση του κυλίνδρου. Μέθοδος μέτρησης Κύλινδροι Η διάμετρος δίνεται συνήθως στην πλάγια όψη του κυλίνδρου και χρησιμοποιείται το σύμβολο πριν τον αριθμό που ορίζει τη διάσταση. Οπές Για τον ορισμό του μεγέθους δίνονται η διάμετρος και το μήκος της οπής. Για τον ορισμό της θέσης της οπής δίνουμε την απόσταση της αξονικής της από άλλο χαρακτηριστικό του αντικειμένου, στην όψη που δείχνει την κυκλική διαμόρφωση της οπής Μέθοδος μέτρησης

10 Οπές μικρού μεγέθους Οπές μικρού μεγέθους Χρησιμοποιούμε γραμμή υπόδειξης και σημείωση για να δείξουμε τη διάμετρο και το βάθος της οπής στην όψη που δείχνει την κυκλική διαμόρφωση της οπής Χρησιμοποιούμε γραμμή υπόδειξης και σημείωση για να δείξουμε τη διάμετρο και το βάθος της οπής στην όψη που δείχνει την κυκλική διαμόρφωση της οπής 1) ιαμπερής οπή xx xx, ιαμπερής 2) Τυφλή οπή xx, Βάθος yy xx, Βάθος yy Βάθος οπής Οπές μεγάλου μεγέθους Οπές Με βοηθητικές γραμμές και γραμμές διαστάσεων Με διαμετρική γραμμή διαστάσεων Με γραμμή υπόδειξης και σημείωμα xx xx Συνήθη λάθη xx xx xx xx xx

11 Τετραγωνικές μορφές Η τετραγωνική διατομή διαστασιολογείται με τη χρήση του συμβόλου B. Οι λεπτές συνεχείς διασταυρούμενες γραμμές ορίζουν επίπεδες επιφάνειες. Σφαιρικές μορφές Οι διαστάσεις σφαιρικών μορφών τοποθετούνται με χρήση των συμβόλων S (διάμετρος) και SR (ακτίνα). Βοηθητικές ιαστάσεις - ιαστάσεις ελέγχου ιαστάσεις εκτός κλίμακας ιαστάσεις ελέγχου: Σημαντικές για τη λειτουργικότητα ενός εξαρτήματος που πρέπει να προσεχτούν ιδιαίτερα κατά την κατασκευή και τον έλεγχο. Βοηθητικές διαστάσεις: ιαστάσεις οι οποίες προκύπτουν από υπάρχουσες αλλά κρίνεται αναγκαίο να συμπεριληφθούν. Όταν η διάσταση ενός χαρακτηριστικού του σχεδίου δεν αντιστοιχεί στην πραγματικά σχεδιασθείσα (δεδομένης της κλίμακας του σχεδίου), τότε η διάσταση αυτή τοποθετείται υπογραμμισμένη

12 Λοξότμηση (chamfer) Χρησιμοποιούμε γραμμή υπόδειξης και σημείωση για να δείξουμε το μήκος και τη γωνία της λοξότμησης. Τοποθέτηση διαστάσεων S S Για ή CS S S Τοποθέτηση διαστάσεων με σύστημα αναφοράς Τοποθέτηση διαστάσεων με σύστημα αναφοράς Οι διαστάσεις σε μη συμμετρικά τεμάχια μπορούν να τοποθετηθούν ως προς σύστημα αναφοράς δύο ή τριών διαστάσεων. Πλάκα Υψομετρικός χαράκτης

13 Τοποθέτηση διαστάσεων γύρω από άξονα συμμετρίας Οι διαστάσεις σε τεμάχια με άξονα συμμετρίας τοποθετούνται γύρω από τον άξονα αυτόν. Αλυσιδωτή τοποθέτηση διαστάσεων Οι διαστάσεις τοποθετούνται η μία μετά την άλλη σε μια σειρά, σαν αλυσίδα. 1. Γραμμές προέκτασης, και γραμμές υπόδειξης δεν πρέπει κατά το δυνατόν να τέμνουν άλλες βοηθητικές γραμμές διαστάσεων. Λάθος Σωστό 2. Οι βοηθητικές γραμμές πρέπει να χαράσσονται από τα πιο κοντινά σημεία της διάστασης που πρόκειται να δειχθεί. Λάθος Σωστό

14 3. Οι βοηθητικές γραμμές για την διαστασιολόγηση ενός εσωτερικού χαρακτηριστικού μπορούν να τέμνουν ορατές ακμές, χωρίς να αφήνουμε διάκενο στο σημείο τομής. Λάθος Σωστό 4. εν χρησιμοποιούμε γραμμές του αντικειμένου, αξονικές γραμμές ή γραμμές διαστάσεων σαν βοηθητικές. Λάθος Σωστό 5. Αποφεύγουμε τη διαστασιολόγηση μη ορατών ακμών. Ασαφές Σαφές 6. Τοποθετούμε τις διαστάσεις εκτός της όψεως, εκτός και αν η τοποθέτησή τους μέσα στην όψη βελτιώνει την σαφήνεια του σχεδίου. Μέτριο Σωστό

15 6. Τοποθετούμε τις διαστάσεις εκτός της όψεως, εκτός και αν η τοποθέτησή τους μέσα στην όψη βελτιώνει την σαφήνεια του σχεδίου. Ασαφές Σαφές 7. Τοποθετούμε διαστάσεις στην όψη που παρουσιάζεται καθαρά το σχήμα του χαρακτηριστικού που θέλουμε να διαστασιολογήσουμε. Ασαφές Σαφές 8. Οι γραμμές διαστάσεων πρέπει να στοιχίζονται και να ομαδοποιούνται όσο το δυνατόν περισσότερο. Ασαφές Σαφές 9. εν επαναλαμβάνουμε μία διάσταση. Λάθος Σωστό

ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΣΤΑΣΕΙΣ - ΤΟΜΕΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΣΤΑΣΕΙΣ - ΤΟΜΕΣ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΣΤΑΣΕΙΣ - ΤΟΜΕΣ Διαστασιολόγηση Μια από τις σημαντικότερες εργασίες του σχεδιαστή, αλλά και η πιο δύσκολη και υπεύθυνη, είναι η σωστή τοποθέτηση διαστάσεων

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΕΙΣ ΣΧΕΔΙΟΥ. Αναγκαιότητα τοποθέτησης διαστάσεων. 29/10/2015 Πολύζος Θωμάς

ΔΙΑΣΤΑΣΕΙΣ ΣΧΕΔΙΟΥ. Αναγκαιότητα τοποθέτησης διαστάσεων. 29/10/2015 Πολύζος Θωμάς Αναγκαιότητα τοποθέτησης διαστάσεων 29/10/2015 Πολύζος Θωμάς 1 Αναγκαιότητα τοποθέτησης διαστάσεων Σφάλμα μέτρησης που οφείλεται: Σε υποκειμενικό λάθος εκείνου που κάνει την μέτρηση. Σε σφάλμα του οργάνου

Διαβάστε περισσότερα

1.4 Κλίµακες σχεδίασης και κανόνες τοποθέτησης διαστάσεων

1.4 Κλίµακες σχεδίασης και κανόνες τοποθέτησης διαστάσεων 1.4 Κλίµακες σχεδίασης και κανόνες τοποθέτησης διαστάσεων 1.4.1 Κλίµακες σχεδίασης Στο µηχανολογικό σχέδιο είναι επιθυµητό να σχεδιάζεται ένα αντικείµενο σε φυσικό µέγεθος, γιατί έτσι παρουσιάζεται η αληθινή

Διαβάστε περισσότερα

Εργαστήριο 1: Σχέδια από την οικοδομική άδεια ενός κτηνοτροφικού κτηρίου

Εργαστήριο 1: Σχέδια από την οικοδομική άδεια ενός κτηνοτροφικού κτηρίου Εργαστήριο 1: Σχέδια από την οικοδομική άδεια ενός κτηνοτροφικού κτηρίου Περιεχόμενα 1. Στόχος του εργαστηρίου... 3 2. ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ... 3 2.1 Εξοπλισμός σχεδίασης... 3 2.1.1 Μολύβια... 3 2.1.2. Επιφάνεια

Διαβάστε περισσότερα

Τεχνικό Τοπογραφικό Σχέδιο

Τεχνικό Τοπογραφικό Σχέδιο Τεχνικό Τοπογραφικό Σχέδιο Γ. Καριώτου ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ & ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

1.2 Στοιχεία Μηχανολογικού Σχεδίου

1.2 Στοιχεία Μηχανολογικού Σχεδίου 1.2 Στοιχεία Μηχανολογικού Σχεδίου Τα µηχανολογικά σχέδια, ανάλογα µε τον τρόπο σχεδίασης διακρίνονται στις παρακάτω κατηγορίες: Σκαριφήµατα Κανονικά µηχανολογικά σχέδια Προοπτικά σχέδια Σχηµατικές παραστάσεις.

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ.

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ. ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΔΙΑΡΚΕΙΑ: 1 περιόδους 28/9/2008 12:48 καθ. Τεχνολογίας 28/9/2008 12:57 Προοπτικό σχέδιο με 2 Σημεία Φυγής Σημείο φυγής 1 Σημείο φυγής 2 Γωνία κτιρίου

Διαβάστε περισσότερα

Μ ά θ η μ α «Εισαγωγή στο Σχέδιο και τα Ηλεκτροτεχνικά Υλικά»

Μ ά θ η μ α «Εισαγωγή στο Σχέδιο και τα Ηλεκτροτεχνικά Υλικά» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μ ά θ η μ α «Εισαγωγή στο Σχέδιο και τα Ηλεκτροτεχνικά Υλικά» Γεώργιος Περαντζάκης Δρ. Ηλεκτρολόγος Μηχανικός

Διαβάστε περισσότερα

Εισαγωγή. Μηχανολογικό Σχέδιο

Εισαγωγή. Μηχανολογικό Σχέδιο Εισαγωγή Σχέδιο: Γραφική παράσταση αντικειμένου. Η φωτογραφία είναι ανεπαρκής γιατί αποτελεί την προοπτική αναπαράσταση των αντικειμένων, δηλαδή δεν έχει πραγματικές διαστάσεις και γιατί δεν αποκαλύπτει

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Τεχνικό Σχέδιο Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Διάλεξη 2η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΣΧΕΔΙΑΣΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 3: Μηχανολογικό Σχέδιο Τομή, Ημιτομή

Τεχνικό Σχέδιο. Ενότητα 3: Μηχανολογικό Σχέδιο Τομή, Ημιτομή Τεχνικό Σχέδιο Ενότητα 3: Μηχανολογικό Σχέδιο Τομή, Ημιτομή Διάλεξη 3η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΣΧΕΔΙΑΣΗ ΤΟΜΩΝ Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη

Μηχανολογικό Σχέδιο με τη Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Διδάσκοντες : Α. Γκίνης Χ. Παπαδόπουλος Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Εισαγωγή στο Autodesk Inventor Περιεχόμενα Εισαγωγή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Λεμονιά Αμυγδάλου, Ε.Τ.Ε.Π. ΤΜΟΔ (Ειδικό Τεχνικό Εργαστηριακό Προσωπικό) email αποστολής εργασιών: idaegean@gmail.com ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή στην Τεχνική Σχεδίαση

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ I CAD

ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ I CAD ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ I CAD ΘΕΜΑΤΑ ΑΣΚΗΣΕΩΝ ΣΧΕΔΙΟΥ Κώστας Κονταξάκης - Θωμάς Πολύζος - Γιώργος Κοζυράκης Page 1 of 29 Page 2 of 29 Θεωρία Εισαγωγή στη Μηχανολογική σχεδίαση Τρισδιάστατη αντίληψη δισδιάστατη

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 3: Τομές Ι Όνομα Καθηγητή: Γιώργος Ανδρεάδης Τμήμα: Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΠΡΟ ΙΑΓΡΑΦΕΣ ΠΟΙΟΤΗΤΑΣ ΚΡΑΣΠΕ ΩΝ ΚΑΤΑ ΕΛΟΤ ΕΝ 1340:2003-08 ΚΡΑΣΠΕ Ο ΚΡ006 ΙΝΟΠΛΙΣΜΕΝΟ

ΠΡΟ ΙΑΓΡΑΦΕΣ ΠΟΙΟΤΗΤΑΣ ΚΡΑΣΠΕ ΩΝ ΚΑΤΑ ΕΛΟΤ ΕΝ 1340:2003-08 ΚΡΑΣΠΕ Ο ΚΡ006 ΙΝΟΠΛΙΣΜΕΝΟ ΚΡΑΣΠΕ Ο ΚΡ006 ΙΝΟΠΛΙΣΜΕΝΟ 1000x60x200 Να δηλώνονται - ± 2 ±3% (δηλ. ±2mm) - ± 5 ±3% (δηλ. ±6mm) - Λοιπές διαστάσεις ±5% ±5% - διάστασης Επιπεδότητα (µε µετρητή Ευθύτητα (µε µετρητή Ύπαρξη πλευρικών αποστατών

Διαβάστε περισσότερα

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα)

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 20 1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 1.3.1 Ορισµός- Είδη - Χρήση Σκαρίφηµα καλείται η εικόνα ενός αντικειµένου ή εξαρτήµατος που µεταφέρεται σε χαρτί µε ελεύθερο χέρι (χωρίς όργανα σχεδίασης ή

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Κελύφη οπλισμένου σκυροδέματος Κελύφη Ο/Σ Καμπύλοι επιφανειακοί φορείς μικρού πάχους Εντατική

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΠΕΙΡΩΜΑΤΑ - ΚΟΧΛΙΕΣ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΠΕΙΡΩΜΑΤΑ - ΚΟΧΛΙΕΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΠΕΙΡΩΜΑΤΑ - ΚΟΧΛΙΕΣ Διαμόρφωση Σπειρώματος Το σπείρωμα δημιουργείται από την κίνηση ενός παράγοντος σχήματος (τρίγωνο, ορθογώνιο κλπ) πάνω σε έλικα που

Διαβάστε περισσότερα

Γραμμές. 4.1 Γενικά. 4.2 Είδη και πάχη γραμμών

Γραμμές. 4.1 Γενικά. 4.2 Είδη και πάχη γραμμών 4 Γραμμές 4.1 Γενικά Στα σχέδια, προκειμένου να απεικονίσουμε με σαφή και κατανοητό τρόπο το σχεδιαστικό μας αντικείμενο, χρησιμοποιούμε ποικίλες γραμμές, που καθεμιά έχει διαφορετική σημασία και διαφορετικές

Διαβάστε περισσότερα

289 Κεφάλαιο 6 Τομές 289

289 Κεφάλαιο 6 Τομές 289 Κεφάλαιο 6 Τομές Mark Manders, Ολλανδός καλλιτέχνης Μικρή άψητη πήλινη μορφή Συμμετοχή με ένα γλυπτό του στην 1 η Μπιενάλε της Αθήνας 2007 Destroy Athens 6.1 Τι είναι τομή στο σχέδιο; Πολλές φορές στο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΠΕΙΡΩΜΑΤΑ - ΚΟΧΛΙΕΣ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΠΕΙΡΩΜΑΤΑ - ΚΟΧΛΙΕΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΠΕΙΡΩΜΑΤΑ - ΚΟΧΛΙΕΣ Διαμόρφωση Σπειρώματος Το σπείρωμα δημιουργείται από την κίνηση ενός παράγοντος σχήματος (τρίγωνο, ορθογώνιο κλπ) πάνω σε έλικα που

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Λεμονιά Αμυγδάλου, Ε.Τ.Ε.Π. ΤΜΟΔ (Ειδικό Τεχνικό Εργαστηριακό Προσωπικό) email αποστολής εργασιών: idaegean@gmail.com ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή στην Τεχνική Σχεδίαση

Διαβάστε περισσότερα

με τόξο ακτίνας R 43 1.2.14 Σύνδεση ευθείας τ με δύο τόξα ακτίνας R και R 1

με τόξο ακτίνας R 43 1.2.14 Σύνδεση ευθείας τ με δύο τόξα ακτίνας R και R 1 Πρόλογος 19 1 1.1 ΒΑΣΙΚΟΙ ΚΑΝΟΝΙΣΜΟΙ ΚΑΙ ΟΡΓΑΝΑ ΣΧΕΔΙΟΥ 21 1.1.1 Χαρτί σχεδίου 21 1.1.2 Κανονισμοί στο σχέδιο 21 1.1.3 Τοποθέτηση του χαρτιού 23 1.1.4 Αναδίπλωση 23 1.1.5 Υπόμνημα 24 1.1.6 Κλίμακα 25 1.1.7

Διαβάστε περισσότερα

ΘΕΜΑ: «ΜΙΚΡΗ ΚΑΤΟΙΚΙΑ ΔΙΑΚΟΠΩΝ»

ΘΕΜΑ: «ΜΙΚΡΗ ΚΑΤΟΙΚΙΑ ΔΙΑΚΟΠΩΝ» ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 26 ΙΟΥΝΙΟΥ 2010 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΠΕΝΤΕ (5) ΘΕΜΑ: «ΜΙΚΡΗ ΚΑΤΟΙΚΙΑ ΔΙΑΚΟΠΩΝ» ΠΕΡΙΓΡΑΦΗ: Πρόκειται

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Λεμονιά Αμυγδάλου, Ε.Τ.Ε.Π. ΤΜΟΔ (Ειδικό Τεχνικό Εργαστηριακό Προσωπικό) (e-mail: lamygdalou@fme.aegean.gr) ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή στην Τεχνική Σχεδίαση Όψεις

Διαβάστε περισσότερα

Κεφάλαιο 2. Βασικά στοιχεία τεχνικού κατασκευαστικού σχεδίου

Κεφάλαιο 2. Βασικά στοιχεία τεχνικού κατασκευαστικού σχεδίου Κεφάλαιο 2. Βασικά στοιχεία τεχνικού κατασκευαστικού σχεδίου Σύνοψη Τα τεχνικά κατασκευαστικά σχέδια αποτελούν βασικό προϊόν των συστημάτων CAD και την παραδοσιακή και πιο ευρέως χρησιμοποιούμενη μέθοδο

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Κόνιαρης Γεώργιος. Σχέδιο Ειδικότητας ΤΕΧΝΙΚΑ ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΕΚΠΑΙ ΕΥΤΗΡΙΑ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Κόνιαρης Γεώργιος. Σχέδιο Ειδικότητας ΤΕΧΝΙΚΑ ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΕΚΠΑΙ ΕΥΤΗΡΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Κόνιαρης Γεώργιος Σχέδιο Ειδικότητας ΤΕΧΝΙΚΑ ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΕΚΠΑΙ ΕΥΤΗΡΙΑ Β Τάξη 1 ου Κύκλου Ειδικότητα: Αµαξωµάτων ΜΗΧΑΝΟΛΟΓΙΚΟΣ ΤΟΜΕΑΣ

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

Pivot Support.

Pivot Support. Το φυλλάδιο οδηγιών που κρατάτε στα χέρια σας βρίσκεται και σε ηλεκτρονική μορφή (αρχείο Acrobatpdf) στον φάκελο PDF του υπολογιστή (υπάρχει η σχετική συντόμευση την επιφάνεια εργασίας). Για την καλύτερη

Διαβάστε περισσότερα

Offset Link.

Offset Link. Offset Link Το φυλλάδιο οδηγιών που κρατάτε στα χέρια σας βρίσκεται και σε ηλεκτρονική μορφή (αρχείο Acrobatpdf) στον φάκελο PDF του υπολογιστή (υπάρχει η σχετική συντόμευση την επιφάνεια εργασίας). Για

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο. Εργαστηριακή Άσκηση 1 Σχέδιο 1 2. Σπύρος Ερμίδης. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Ε.Μ.Π

Μηχανολογικό Σχέδιο. Εργαστηριακή Άσκηση 1 Σχέδιο 1 2. Σπύρος Ερμίδης. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Ε.Μ.Π Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Ε.Μ.Π Μηχανολογικό Σχέδιο Εργαστηριακή Άσκηση 1 Σχέδιο 1 2 Σπύρος Ερμίδης Η παρουσίαση προετοιμάστηκε το ακ. έτος 2014 15 από τον Σερράο Απόστολο (nm11046@mail.ntua.gr)

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΚΥΡΙΑΚΗ 24 ΙΟΥΝΙΟΥ 2012 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΠΕΝΤΕ (5) ΘΕΜΑ: «ΜΙΚΡΗ ΔΙΩΡΟΦΗ ΚΑΤΟΙΚΙΑ» ΠΕΡΙΓΡΑΦΗ: Πρόκειται

Διαβάστε περισσότερα

Πρόβλημα 4.9.

Πρόβλημα 4.9. Πρόβλημα 4.9. Να βρεθεί το δυναμικό V() παντού στο χώρο ενός θετικά φορτισμένου φύλλου απείρων διαστάσεων με επιφανειακή πυκνότητα φορτίου σ. Πάρτε τον άξονα κάθετα στο φύλλο και θεωρήστε ότι το φύλλο

Διαβάστε περισσότερα

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση

Διαβάστε περισσότερα

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? ΣΧΕΔΙΑΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - Εξεταστέα ύλη Β εξαμήνου 2011 1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? Τρεις μέθοδοι προβολών

Διαβάστε περισσότερα

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D 1 Φύλλο 2 Δράσεις με το λογισμικό Cabri-geometry 3D Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο με το αντίστοιχο λογισμικό του Cabri II. Περιέχει γενικές εντολές και εικονίδια που συμπεριλαμβάνουν

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

Σχέδιο Ειδικότητας Αµαξωµάτων

Σχέδιο Ειδικότητας Αµαξωµάτων 65 ιδακτικοί στόχοι: Στο τέλος αυτής της διδακτικής ενότητας θα είσαι σε θέση: Να γνωρίζεις τα µέρη του αµαξώµατος και την ονοµατολογία τους. Να µπορείς να διαβάζεις, από τα διαγραµµατικά σχέδια των αµαξωµάτων,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

ΚΕΦΑΛΑΙΟ 5 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Σχεδίαση με τη χρήση Η/Υ ΚΕΦΑΛΑΙΟ 5 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Σκιές αντικειμένων (cast shadows): Ορισμός: πρόκειται

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

Σ ΣΤ Σ Η Τ Μ Η ΑΤ Α Α Τ ΠΑΡΑ Ρ ΓΩΓ Ω ΗΣ Η Σ ΜΕ Η/Υ (CAD-CAM-CAE) Ι

Σ ΣΤ Σ Η Τ Μ Η ΑΤ Α Α Τ ΠΑΡΑ Ρ ΓΩΓ Ω ΗΣ Η Σ ΜΕ Η/Υ (CAD-CAM-CAE) Ι ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΜΕ Η/Υ (CAD-CAM-CAE) Ι ΤΕΧΝΙΚΟ / ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ Σύμβολα R: Radius-ακτίνα, Ø (Φι): Διάμετρος, κύκλου ή τόξου ΟΨΕΙΣ ΟΡΘΟΓΩΝΙΕΣ ΠΡΟΒΟΛΕΣ Βασικές όψεις: Ορθογώνιες προβολές στις έξι

Διαβάστε περισσότερα

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες:

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες: Το αντικείμενο του θέματος είναι η ταχυμετρική αποτύπωση σε κλίμακα 1:200 της περιοχής που ορίζεται από τo Σκαρίφημα Λιμνίου με Συντεταγμένες Σημείων το οποίο παραδόθηκε στο μάθημα και βρίσκεται στο eclass.

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ης ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ης ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 19 ΙΟΥΝΙΟΥ 2015 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΕΞΙ (6) ΘΕΜΑ: «ΜΙΚΡΗ ΕΞΟΧΙΚΗ ΚΑΤΟΙΚΙΑ ΚΑΙ ΕΡΓΑΣΤΗΡΙΟ ΓΛΥΠΤΗ»

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-15 1. Εισαγωγή ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Οι γραφικές παραστάσεις (ή διαγράμματα) χρησιμεύουν για την απεικόνιση της εξάρτησης

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΩΝ

ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 1: Μηχανολογικό Σχέδιο - Εισαγωγή

Τεχνικό Σχέδιο. Ενότητα 1: Μηχανολογικό Σχέδιο - Εισαγωγή Τεχνικό Σχέδιο Ενότητα 1: Μηχανολογικό Σχέδιο - Εισαγωγή Διάλεξη 1η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ Εισαγωγή Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΑΡΑΡΤΗΜΑ Τεχνικές διατάξεις σχετικά με το πρότυπο λογοτύπου, σφραγίδων και εγγράφων του Α.Π.Θ. Έκδοση 1.0 Σεπτέμβριος 2005 1. Εισαγωγή Το Αριστοτέλειο Πανεπιστήμιο

Διαβάστε περισσότερα

0 0 30 π/6 45 π/4 60 π/3 90 π/2

0 0 30 π/6 45 π/4 60 π/3 90 π/2 Βασικός Πίνακας Μοίρες (Degrees) Ακτίνια (Radians) ΓΩΝΙΕΣ 0 0 30 π/6 45 π/4 60 π/3 90 π/2 Έστω ότι θέλω να μετατρέψω μοίρες σε ακτίνια : Έχω μία γωνία σε φ μοίρες. Για να την κάνω σε ακτίνια, πολλαπλασιάζω

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΩ Η ΠΑΡΑ ΕΙΓΜΑΤΑ ΧΡΗΣΗΣ ΤΟΥ ΣΧΕ ΙΟΥ ΝΑΥΠΗΓΙΚΩΝ ΓΡΑΜΜΩΝ

ΣΤΟΙΧΕΙΩ Η ΠΑΡΑ ΕΙΓΜΑΤΑ ΧΡΗΣΗΣ ΤΟΥ ΣΧΕ ΙΟΥ ΝΑΥΠΗΓΙΚΩΝ ΓΡΑΜΜΩΝ ΣΤΟΙΧΕΙΩ Η ΠΑΡΑ ΕΙΓΜΑΤΑ ΧΡΗΣΗΣ ΤΟΥ ΣΧΕ ΙΟΥ ΝΑΥΠΗΓΙΚΩΝ ΓΡΑΜΜΩΝ ΣΧΕ ΙΑΣΜΟΣ ΠΑΡΙΣΑΛΩΝ ΜΕ ΕΓΚΑΡΣΙΑ ΚΛΙΣΗ Έστω ένα πλοίο το οποίο επιπλέει µε µια εγκάρσια κλίση που παριστάνεται µε το επίπεδο π. Σχήµα 1 Ζητείται

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2 η Μηχανολογικά Κατασκευαστικά Σχέδια

ΕΝΟΤΗΤΑ 2 η Μηχανολογικά Κατασκευαστικά Σχέδια ΕΝΟΤΗΤΑ 2 η Μηχανολογικά Κατασκευαστικά Σχέδια Μάθημα 2.6 Τρισδιάστατη στερεά μοντελοποίηση εξαρτημάτων ημιουργία ενός τρισδιάστατου μοντέλου από ένα σχέδιο δύο διαστάσεων. Ορθές προβολές (Top, Bottom,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία 2. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΧΑΡΑΞΗΣ 2.1 Μετρητικές ταινίες Οι μετρητικές ταινίες, πτυσσόμενες (αρθρωτές) ή περιελισσόμενες σε θήκη, είναι κατασκευασμένες από χάλυβα ή άλλο ελαφρύ κράμα και έχουν χαραγμένες υποδιαιρέσεις

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο)

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο) ΤΕΙ ΛΑΡΙΣΑΣ - Παράρτημα Καρδίτσας ΤΜΗΜΑ ΣΧΕΔΙΑΣΜΟΥ & ΤΕΧΝΟΛΟΓΙΑΣ ΞΥΛΟΥ ΕΠΙΠΛΟΥ ΣΗΜΕΙΩΣΕΙΣ ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ ΙΙ (Μέρος πρώτο) - ΠΛΑΓΙΑ ΠΡΟΒΟΛΗ - ΑΞΟΝΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ - ΑΝΟΧΕΣ - ΣΥΝΑΡΜΟΓΕΣ ΚΟΛΛΑΤΟΣ ΓΕΩΡΓΙΟΣ

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ

Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ ΤΕΙ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ ΕΡΓΑΣΤΗΡΙΩΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ & ΟΙΚΟΔΟΜΙΚΗΣ Σύνταξη κειμένου: Μαρία Ν. Δανιήλ, Αρχιτέκτων

Διαβάστε περισσότερα

Εγχειρίδιο 3D σχεδιασμού στο SOLID WORKS

Εγχειρίδιο 3D σχεδιασμού στο SOLID WORKS Εγχειρίδιο 3D σχεδιασμού στο SOLID WORKS Παρακάτω παρουσιάζεται ένα λεξικό βασικών όρων και στην συνέχεια ενδεικτικά η σειρά εκτέλεσης των εντολών του ηλεκτρονικού σχεδίου όπως παραδόθηκαν στην αίθουσα.

Διαβάστε περισσότερα

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 2: Όψεις Όνομα Καθηγητή: Παρασκευοπούλου Ροδούλα Α.Π.Θ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΠΑΡΑ ΕΙΓΜΑ : ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΠΗ ΑΛΙΟΥ

ΠΑΡΑ ΕΙΓΜΑ : ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΠΗ ΑΛΙΟΥ Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια ΠΑΡΑ ΕΙΓΜΑ : ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΠΗ ΑΛΙΟΥ (σελ. 96 / ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17 ) Η μελέτη σχεδίαση του πηδαλίου εκπονείται

Διαβάστε περισσότερα

Stroke.

Stroke. Το φυλλάδιο οδηγιών που κρατάτε στα χέρια σας βρίσκεται και σε ηλεκτρονική μορφή (αρχείο Acrobatpdf) στον φάκελο PDF του υπολογιστή (υπάρχει η σχετική συντόμευση την επιφάνεια εργασίας). Για την καλύτερη

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Επιμέλεια: ιώργος Ράπτης ΘΕΤ ΣΤΗΝ ΕΩΕΤΡΙ ΛΥΚΕΙΟΥ ΘΕ 1 ο. Να αποδείξετε ότι το εμβαδό τραπεζίου με βάσεις 1, και ύψος υ δίνεται από τον τύπο: ( 1+ ) υ Ε= ονάδες 1 B. ν φν, λν και αν είναι: η γωνία, η πλευρά

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΟ. Βάρος: 500 gr

ΕΡΓΑΛΕΙΟ. Βάρος: 500 gr ΟΝΟΜΑ Αλφάδι Μεταλλικό πλαίσιο που συγκρατεί μικρό γυάλινο σωλήνα με νερό και φυσαλίδα αέρα. Διαστάσεις: Μήκος ~ 30cm Βάρος: 500 gr Επαλήθευση οριζόντιου επιπέδου. Τρόπος Χρήσης: (πως χρησιμοποιείται το

Διαβάστε περισσότερα

1. Σχεδιασμός - Γραφική Επικοινωνία

1. Σχεδιασμός - Γραφική Επικοινωνία 1. Σχεδιασμός - Γραφική Επικοινωνία 1.1 Εισαγωγή Πολλές φορές, όταν μιλάμε για την τεχνολογία, το μυαλό μας πηγαίνει στα τελευταία και πιο εντυπωσιακά της επιτεύγματα, όπως αυτά της μικροηλεκτρονικής και

Διαβάστε περισσότερα

ΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

ΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ Φ3 ΚΥΚΛΟΣ y Μ(x,y) A(x,y) ε Ο C x ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΙΚΟ 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ Ν. ΣΜΥΡΝΗΣ 0-0 ΘΕΩΡΙΑ. Τι ονομάζεται κύκλος με κέντρο το σημείο K( x0,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 23 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ

ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 23 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 23 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΘΕΜΑ: «ΚΥΛΙΚΕΙΟ ΜΕ ΥΠΑΙΘΡΙΟ ΚΑΘΙΣΤΙΚΟ» ΠΕΡΙΓΡΑΦΗ: Πρόκειται για ένα μικρό

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 6: Μηχανολογικά Σχέδια & Συναρμολογήματα Δρ. Βαρύτης Δ. Εμμανουήλ. Δρ.Βαρύτη ηςδ. Εμμανο ουήλ

ΜΑΘΗΜΑ 6: Μηχανολογικά Σχέδια & Συναρμολογήματα Δρ. Βαρύτης Δ. Εμμανουήλ. Δρ.Βαρύτη ηςδ. Εμμανο ουήλ Τ. Ε. Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΝΙΑΣ ΣΧΛΗ ΤΕΧΝΛΓΙΚΩΝ ΕΦΑΡΜΓΩΝ ΤΜΗΜΑ ΛΓΙΑΣ Εργαστήριο Μηχανουργικών Κατεργασιών & CAD ΛΓΙΚ ΔΙ ΙΙ Δρ.Βαρύτη ηςδ. Εμμανο ουήλ Επιστημον νικός Συνεργ γάτης ΛΓΙΚ ΔΙ ΙΙ ΜΑΘΗΜΑ 6: Μηχανολογικά

Διαβάστε περισσότερα

Μπορούμε να χρησιμοποιήσουμε τις παρακάτω μορφές συντεταγμένων με οποιοδήποτε συνδυασμό θέλουμε.

Μπορούμε να χρησιμοποιήσουμε τις παρακάτω μορφές συντεταγμένων με οποιοδήποτε συνδυασμό θέλουμε. 2. ΣΥΝΤΕΤΑΓΜΕΝΕΣ Όταν σχεδιάζουμε, πρέπει να προσδιορίζουμε σημεία πάνω σε ένα επίπεδο. Μπορούμε να εντοπίσουμε οποιοδήποτε σημείο στο χώρο, αν ορίσουμε πρώτα ένα απόλυτο, σταθερό σημείο και να μετρήσουμε

Διαβάστε περισσότερα

6. Σχηµατισµοί και όργανα γραµµής

6. Σχηµατισµοί και όργανα γραµµής 6. Σχηµατισµοί και όργανα γραµµής 6.1 Εισαγωγή Απαραίτητη προϋπόθεση για την οικονοµική εκµετάλλευση ενός σιδηροδροµικού δικτύου αποτελεί η δυνατότητα ένωσης, τοµής, διχασµού και σύνδεσης των γραµµών σε

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Ερωτήσεις ανάπτυξης 1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο (A = 90 ) και πλευρές = 3 cm, = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Να βρείτε: α) Το εµβαδό Ε Π της παράπλευρης επιφάνειας.

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

6 Γεωμετρικές κατασκευές

6 Γεωμετρικές κατασκευές 6 Γεωμετρικές κατασκευές 6.1 Γενικά Στα σχέδια εφαρμόζουμε γεωμετρικές κατασκευές, προκειμένου να επιλύσουμε προβλήματα που απαιτούν μεγάλη σχεδιαστική και κατασκευαστική ακρίβεια. Τα γεωμετρικά - σχεδιαστικά

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2015 Πανεπιστήμιο Αθηνών, Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2015 Πανεπιστήμιο Αθηνών, Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Γ Λυκείου 7 Μαρτίου 2015 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό.

Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό. Q1-1 Δύο προβλήματα Μηχανικής (10 Μονάδες) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό. Μέρος A. Ο Κρυμμένος Δίσκος (3.5 Μονάδες)

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ http://www.ikastiko.gr/ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΚΥΡΙΑΚΗ 24 ΙΟΥΝΙΟΥ 2012 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΠΕΝΤΕ (5) ΘΕΜΑ: «ΜΙΚΡΗ ΔΙΩΡΟΦΗ ΚΑΤΟΙΚΙΑ»

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΕ ΤΕΛΕΙΟΥΣ ΑΓΩΓΟΥΣ

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

2.2 Αναπτύγµατα. Σχέδιο Ειδικότητας Αµαξωµάτων

2.2 Αναπτύγµατα. Σχέδιο Ειδικότητας Αµαξωµάτων 2.2 Αναπτύγµατα Ανάπτυγµα ενός γεωµετρικού στερεού σώµατος είναι η αποτύπωση σε ένα επίπεδο του συνόλου των επιφανειών του. Με βάση τα αναπτύγµατα, γίνεται η κοπή της πρώτης ύλης (έλασµα, λάµα) και µε

Διαβάστε περισσότερα

03. Τροποποίηση σχεδιασμένων οντοτήτων

03. Τροποποίηση σχεδιασμένων οντοτήτων 03. Τροποποίηση σχεδιασμένων οντοτήτων Μηχανολογικό Σχέδιο ΙΙ Περιεχόμενα 1. Μετατόπιση Αντιγραφή 2. Παράλληλη αντιγραφή 3. Περιστροφή 4. Απότμηση 5. Προέκταση 6. Στρογγύλεμα γωνιών 7. Λοξοτομή γωνιών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΜΕ Η/Υ (CAD-CAM-CAE) Ι

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΜΕ Η/Υ (CAD-CAM-CAE) Ι ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΜΕ Η/Υ (CAD-CAM-CAE) Ι ΤΕΧΝΙΚΟ / ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ Σύμβολα R: ακτίνα κύκλου ή τόξου Ø (Φ): Διάμετρος κύκλου ή τόξου 1 ΟΨΕΙΣ ΟΡΘΟΓΩΝΙΕΣ ΠΡΟΒΟΛΕΣ Βασικές όψεις: Ορθογώνιες προβολές

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα